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On the chain algebra of a loop space
by J. P. Adams and P. J. Hilton

1. Introduction

An important concept in homotopy theory is that of the loop space of
a given space. Given a C W-complex K, James has described in [4] a re-
duced product complex K^ which has the singular homotopy type of the
space of loops on the suspension of K ; and Toda has also introduced a
standard path space (in [9]), performing essentially the same function1).
In this paper, we consider the loop space of a OTF-complex K which
need not be a suspension but such that K1 is a single point, the base-
point2). We do not construct a combinatorial équivalent of QK, the loop
space, but instead obtain a chain-equivalent of the cubical chain group
of QK. Our method lends itself readily to the computation of the homo-
logy groups oî QK.

There is a fibre-space {LK, p, K), where LK is the space of paths on
K terminating in the base-point and p associâtes with every path its
initial point. Then QK is the fibre. We will in fact construct a System of
chain groups and maps équivalent to that given by the fibre-space.

In this paper we adopt J. C. Moore's définition of a path in a space X.
In this définition a path is a pair (/, r) where r is a non-negative real
number and / is a map of the closed interval [0, r] into X. Paths (/, r),
{g, s) such that f(r) g(0) are added by the rule (/, r) + (g, s)

(h, r -f~ s)y where

h(t) g(t-r) r <£ <r + s

Let X1 be the space of maps of the unit interval / into X and let R be

the set of non-negative real numbers with its usual topology. A function

x) We understand that J. C. Milnor has described a construction replacing the space of
loops on a suitably restricted complex by an équivalent topological group.

2) This restriction could be avoided at the cost of an increase in complication in the
proofs of our results (and a small modification in some statements). However, the restriction

is not so serious in practice, since, for any CW-eomplex K, the universal cover of K
is of the homotopy type of a CTT-complex of the given kind.
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h : EX ~>XIxR, where EX is the set of paths on X, is given by
h(f,r) (/', r) where f'(t) f(rt), 0 < t < 1. Then EX is topologized
by requiring h to be a homeomorphism onto its image. Let

Qt -X

be the déformation given by gt(f, r) (/, r(l — t) + t). Let LX, QX
be the subsets of EX consisting of paths (/, r) such that / (r) x^,
/(0) f(r) x% respectively, where x* is the base-point in X. Then
LX, QX are topologized as subsets ofEX. Let 1/(X), Q' (X) be the sub-

spaces of X1 corresponding to LX, QX in the classical définition. Then
Qxh(LX) Lf(X)xl, gxh(QX) Qf(X)xl and gt respects the sub-

spaces h(LX),h(QX). This shows that LX C^LL' (X), which is contrac-
tible, and QXC^L Q'(X). Moreover a homotopy équivalence

(LX,QX)~{L'(X),Q'(X))

is given by g(f9r) f where f (t) f(rt).
The advantage of Moore's définition is that the pairing of LX and QX

to LX, by composition of paths, is associative and QX possesses a unit.
The chain groups C* (LX), C* (QX) inherit thèse properties and the
algebraical analogue we construct when X is a CJF-complex will repro-
duce the multiplicative features of the chain groups of the fibre-space.
In particular, we define in section 2 the notion of a chain algebra 3) A (K)
which describes the additive and multiplicative structure of O* (QK).

In section 2 we state and prove the main theorem. In section 3 we

prove that our constructions behave properiy with respect to maps (not
necessarily cellular) of CTF-complexes. In section 4 we consider the prob-
lem of the relation of A(KxxK2) to A(KX) and A(K2). A generaliza-
tion of Samelson's resuit (see [8]) on the relation between Whitehead
and Pontryagin products is obtained by considering products of arbitra-
rily many sphères. We also study a product whose rôle in homotopy
groups is closely related to that of the torsion product in homology
groups and obtain an analogue of Samelson's resuit for this product.

It should be noted that the mapping W : Q(XtxX2) -> QXxxQX2,
given by Wl (ptl, p2l) where pt : X1xX2 -> Xt, i 1, 2, is the
projection, is not a homeomorphism in Moore's définition. However it
follows from the commutativity of the diagram -

8) This will differ from a DGA-algebra over the integers, in the sensé of Cartan ([2]),
in not requiring that multiplication be anti-commutâtive.
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that W is a homotopy équivalence.

2. Chain-algebras and the main theorem

Let A be a differential graded free abelian group, A Z An such

that An 0, 7i<0, and dAn^An~1. Then .4 will be called a chain
algebra if a product is defined in A such that

(i) ^4 is a ring with unit élément ;

(ii) ApA*^Ap+<i ;

(iii) d(xy) (dx)y + (- \yx{dy), x e A»

We write 1 for the unit élément ; condition (ii) implies that 1 € A0.
A function cp from the chain algebra A to the chain algebra A' will be
called a map if it is a chain mapping and a ring homomorphism4). An
augmentation a : A -> A is a map whose image is the ring generated
by 1. A map (p of augmented chain algebras is required to commute with
a. Henceforth it will be understood that a chain algebra is augmented.
The homology group H* (A) is an augmented graded ring with unit
élément and a map cp : A -> A' induces a homomorphism

Let Q{QK) be the group generated by the singular cubes oîQK. Then
the multiplication in QK induces a ring structure in Q (QK) in the usual

way. Moreover the subgroup D(QK) generated by the degenerate
singular cubes oîQK (with respect to any co-ordinate) is an idéal in Q{QK).
Let C*(OK) be the quotient ring Q{QK)jD{QK). Then C*(QK) is a
chain algebra with respect to the boundary operator induced by that in
Q{QK) ; the unit élément is the 0-cube at the unit élément of QK and
C* (QK) is augmented by requiring a to be 1 on every 0-cube. The homology

ring of 0* (QK) is the (singular) Pontryagin homology ring of QK.
Our object is to use the structure of K as a OTF-complex to construct a
chain algebra A and a map 6 : A~>C* (QK) such that 0* is an isomorph-

*) We require a ring-homomorphism to hâve the property ç?(l) 1.
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ism. With this end in view we Write A1 for C^(QK). We recall that K
is being restricted to having one 0-cell (the base-point) and no l-cells.

Let {e™}, ?i 0, 2, 3,..., i e indexing set Tn, be the cells of K and
to eaeh e* except the vertex choose a generator at an%~x of dimension
(n — 1). Let A A{K) be the ring with unit élément freely generated
by the éléments at, and augmented by a(l) 1, a(a4) 0, alH. Then
A, provided with a suitable differential, will turn out to be the appropri-
ate chain algebra.

Let LK be the space of paths on K terminating at the base-point and
let p : LK -> K associate with every path its initial point. Then
(LK, p ; K) is a fibre-space with QK as fibre. Let C* (LK) be the group
generated by the non-degenerate singular cubes of LK whose vertices lie
in QK. Then C^(LK)y given a graduation, differential and augmentation

in the usual way, is the singular ehain group of LK, which is, of
course, acyclic. The pairing LK x QK -> LK, given by composition of
paths, induces a pairing (C% (LK) x C* (QK) -> C* (LK) which is associative

with a unit [in C^(QK)]. C^(LK) contains C^(QK) and the
pairing, restricted to C*(QK)xC*(QK), induces the ring structure in

Let C% (K) be the singular chain group of K generated by the non-
degenerate cubes of K ail of whose vertices are at the base-point. Then
the projection p : LK -> K induces a chain mapping5) p : C* (LK)
-> C* (K). We proceed to construct a System of chain groups and maps
équivalent to that given by the fibre-space.

To this end, we introduce a free graded abelian group B B(K),
freely generated by éléments bt b" in (1 — 1) dimension-preserving
correspondence with the cells of K. The élément 6° will be written 1. B is

augmented by a(l) 1, a(6^) 0, n>0. Then B is intended to play
the rôle of C* (K) ; the latter will therefore be called B'. Define C C(K)
as the tensor product B (g) A, graded and augmented by the usual
rules. Then A, B may be embedded in C by identifying y with 1 ® y,
x with a? ® 1, y e A, x e B. There is a pairing CXA -> C given by
(x (g) y, yf) -> x ® y y1 ; restricted to AxA, this pairing induces the
multiplication in A. It is clearly legitimate to write a typical generator
of C as xy ; this will be done when convenient. A projection6) n : G -> B
is given by n(xy) oc(y)x. Since C is to play the rôle of C* (LK), the
latter will be called C We may now state the main theorem.

5) Where no confusion will anse, we will use the same symbol for a map and the mdueed
cham mapping.

6) We may regard the augmentation of an élément m A, B or C as an ordmary mteger.
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Theorem 2.1. Differentials d :C,A -+C,A, d : B -> B, and chain
maps d : C, A -> C', A1', Q : B -> B' may be defined such that

(i) A is a chain algebra with respect to d\ A ;
(ii) 0 \ A is a map of chain algebras and 6 is product-preserving7) ;
(iii) 6jc pd, nd dn;
(iv) 0* : H* (A) ^ H* {A') H* (QK)

0* :H*(B)^H*(B') H
0* :H*{C)^H*(C) =H

Notice that since n maps G onto B, d and 0 are determined by d and d.
The differential d and the map d will be defined inductively on the

sections of K. Let Kn be the ^-section of K and let nA,nB, nC be A(Kn),
B(Kn), C(Kn) respectively ; we regard them as embedded in A, B, C.
Similarly we define M', nB\ nCf and embed them in Ar, B', Cf.

For n 1, define d(l) 0, 0(1) 1 ; the theorem is trivially
verified. Suppose now that d and d hâve been determined on nC, M so
that the theorem is verified. We proceed to détermine d and d on n+1O,
n+1J.. To détermine d on n+1J[ it is sufficient to détermine it on the
generators. On the generators of dimension <n we détermine it by the
embeddings nA(=in+1A, nA'Ç:n+1Af. Let a be a generator of dimension

n, corresponding to a cell ew+1 in Kn+1. Let / : En+1, Sn -> Kn+1, Kn be

the characteristic map for this cell, inducing /' : LSn, QSn -> LKn,
QKn, f":LEn+\ QEn+1->LKn+\ QK^1; and let p * H^QS»),
with a (P) 0 if n 1, be such that the suspension of /? générâtes8)
Hn(Sn). Choose an (rc — 1) cycle z in M such that 0*{z} f^p - this
is possible by the inductive hypothesis - and define da z. Then
d2 0 on ail cells and, hence, by the product rule, d2 is zéro on n+1A.

If n 1, we must take rfa 0, since a(/S) 0, so that a is obvi-
ously an augmentation of A with respect to the differential being defined
on A.

We next define a retraction s : n+1C -> n+1C, raising dimension by 1, by

x € n+*C, y

and extend the differential to a differential d on n+1C by defining9)

{Dl)db\ (1 — «dX"1, r>l
(- l)*xdy, x e n^C\ y

7) In the sensé of the pairings C X A -> C, C" x ^L' -> C".

8)If n > 1, £ générâtes Hn^(QSn).
9) Notice that the chain group B has the differential d. B is only embedded in C as a

subgroup.
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Then s is clearly consistent with the two distributive laws ; it is also
consistent with the associative law of multiplication since

s(x(yz)) (sx)(yz) + (otx)s(yz) (sx)(yz) + <x(x)(sy)z + oc(x)a(y)sz

while

s({xy)z) (s(xy))z + <x(xy)sz (sx)yz + oc(x)(sy)z + (x(x)<x(y)sz

Similarly d is consistent with the two distributive laws and the associative

law of multiplication.
We now prove

Lemma2.1. For zc^C, (ds + sd)x (1 — <x)x.

If x 1, this is trivial. Thus it holds for x <• n+1C°, Now let x a,
a generator of n+1A with sa b. Then a(a) 0 and (ds -f- «d)(a)

db + sda a by (Dl). Next let x b, a generator of n+1jB with
sa 6, then a (6) 0 and

(ds + sd)b sdb s(l — sd)a ^a — s2da

Now by (121) s2 is zéro on the generators of n+1B and of n+1A ; thus by
(J22) s2 is zéro on n+1C. It follows that (d« + sd)b 5a 6, so that
the lemma is verified on the generators of n+12? and of w+1^l.

Now suppose that x c n+1Cv, y e n+1A and the lemma is verified for
x and y. Then, using (122) and (D2) we hâve

{ds + sd)(xy) d((*a?)y + (aa?)«y) + *((da?)y + (- l)*xdy)

(sdx)y + (- 1)»(«»)(%) + (- iy(<xx)sdy
(— l)vsdy)

Now if p>0, ocx 0 and (ds + sd)(xy) xy (l — oc)(xy). If
2? 0, then

(ds + sd)(xy) — xy — ocx-y + <x#(^ — a?/) xy — ocx-oty (1 — ot)xy.

Thus the lemma is completely established.

Lemma 2,2. dis a differential on n+1C.

The only assertion to be proved is that d2 0. This certainly holds

on n+1A and so, in the light of (D2) it is sufficient to verify it on a generator

ofw+1JS. Let 6 be a generator with sa 6. Then d2b d(l — sd)a
(d — dsd)a (1 — ds)da. Now (ds + sd)da (1 — a)da. Thus

dsda da since d2a 0, ada 0. This implies d2b 0 and hence
the lemma.
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Lemma 2.3. n+1C is acyclic.
For, by lemma 2.1, s is a chain-homotopy between ex and the identity.
Lemma 2.4. The kernel of tz, restricted to n+1C, is stable under d.
For an arbitrary élément of n+1C is expressible as x0 ® 1 + E xt ® yt,

where xt e n+1j8 and ^en+1iWl, wt>0. The ^-image of this is #0, so
that the kernel of n, restricted to W+1C, consists of éléments of the form

Zx%®yt or Exty%

The set ofsuch expressions is obviously stable under d since d(n+1Ax) 0.
It follows that d induces a differential d on n+1B ; it is given by

db — Trsda

Notice also that the définitions of s and d respect the embedding of nC,
nA in^C, w+1^4.

We next define 6 ; we recall that 6 is to be a product-preserving map
«+i(7? «+1^4 _^ C* (LE**1), C* (QE**1). It is sufficient to define d on the
generators of n+1B, n^1A and, as above, we détermine it on the gener-
ators of n+1B of dimension <n + 1 and on those of n+1A of dimension
<n by means of the embeddings WC, MCHip, n+i^. c*{LEn),
C^{QEn)^C^{LKn^), C^QE»*1). We conserve the notation of this
section and let i : LSn, Q8n -> LEn+\ QEn+\ j : LEn, QKn -> LZ^1,
i3Zn+1 be injections ; then jff f"i and 6 jd on nC. Let C be a cycle
in the class p and let iÇ^dr}, rj e Cn{QEn^). Now 6z - f Ç dx',
x' e Cn(QEn). We define10) 0a - ?V + /"??. Then

- djx' + dfti jOz - jf'Ç + f"iÇ jBz

Now let 6, as before, be the generator of B corresponding to en+1 {and
hence to a above). Since LSn is acyclic, f df, £ c Cn(LSn). More-

over, p £ is an w-cycle of /Sn whose class générâtes Hn (8n) - by the
définition of p. Since LEn+1 is acyclic and i£ ~ y is a cycle of LEn+l, it
follows that iÇ ~ rj dx, k e Cn+1(LEn+1), Moreover px is an (ti + 1)-
relative cycle of 2£n+1mod#n whose class générâtes Hn+1(En+1,8n)-
in fact, under d: Hn+1(En+\Sn)-+Hn(Sn), we hâve d{px}= {pi}

8p. We now proceed to define db. We hâve

xr) /'f ~6z + dz-f'Ç O

since az 0, d^ 0. Thus /'£ — 052; + xr is a cycle in i^T" and so

10) If n=l, then x' 0 and 0a f^.
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/'£ - 6sz + x' dx\ xn c Cn^{LKn). We define11) 06 ?V- f"x.
Then Odb 6(1 — sd)a jxf + frj — dsz, and dBb djx" ~dj"x

jf'g — 05^; + ?V — /"i| + /"?7, so that Odb d6b. Thus 0 is de-
finedonn+1<7.

We next show that a map 0 : n+1B -» n+1Bf is defined by 0jc p6 ;

it is sufficient to show that 0 is single-valued. As above, let Extyt be a
typical élément of the kernel of n, xt e n+1B, yt e n+^An\ n% > 0. Then
0(xtyt) Ox%dyt\ but 0^ c (7Wî(ÛZ^1) so that pO(xtyt) is a sum of
degenerate cubes and so is zéro in C* (K). Thus ^00 is zéro on the kernel
of n so that 0 is single-valued.

The inductive définition of d and 0 will be established when we hâve
shown that ^ : ^ (n+1^} ^^ (ûZl|+1) (2 1}

\-H^B)g±H*{K«^) (2.2)

0* : #* (^iC) ^ iï* (iZn+1) (2.3)

(2.3) is trivial since n+1C, LKn+1 are acyclic and 0(1) 1. To prove
(2.2), observe that 06 ^06 pjx" — pf'x pjx" — fpn. Thus 06

is a relative cycle of Kn+1 mod Kn whose class générâtes

Thus 0* : Hn+1{n^B, nB) ^ Hn+1(Kn+\ Kn) and (2.2) follows from
the inductive hypothesis and the 5-lemma.

To establish (2.1) we introduce a filtration into n+1C'. Then 0 will be

a filtration-preserving map from n+1C to C*(LKn+1), filtered by the
Serre filtration, and we will be able to apply a theorem due to J. C.

Moore (see [6]) which asserts that, since the first terms of the spectral
séquence are well behaved12), and since the map induces isômorphisms
of the homology groups of the fibre-spaces and of the bases, it must
therefore induce isômorphisms of the homology groups of the fibres. To
avoid an undue prolifération of superscripts and subscripts, we will permit

ourselves in this part of the argument to write A, B, C for n+1A,
n+1B, n+1C.

We filter C by putting Co Z B* ® A ; equivalently if x € Bp

y € A, then w(xy) p. Moreover if b is a g-dimensional generator of
JSand yeA then d(by) (db)y + (— Vfbdy^ay — (sz)y + (—

ii) If n 1, then x" 0 and 06 — f'x. Note that, in definmg 0a, 06, we hâve
used J, r\, |, x for fixed ehams of standard spaces and x'9 x" dépend on /.

12) We make the notion of 'good behaviour' précise m our application below.
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and so clearly belongs to Cq. Thus dCP^Cv and C is a differential
filtered group. Also 0(by) 6b-dy and dytCiQK^1). Thxxs <p6{by)
is a sum of cubes only depending on their first q co-ordinates. It follows
that 6(by) €Crq, so that 6 respects filtration. Let E*>q, ErrPA be the terms
of the spectral séquences associated with C, C so that 6 induces 0* :

Define y> : Bp ® A* -> E^q by y (a ® y) {a?y}. Then tp is an iso-
morphism and tpdF doy> where dF(x ® y) (— 1)*# ® rfy. Thus
the induced map ^ : BP®HQ(A) ->J$l>q is an isomorphism. Define
dB:B»®Hq(A)->B*-i®Hq{A) by rf^(^ ® {y}) dx ® {y}. We
will show that ^*^s — ^iV* •

No\^ ûflVs|e (s ® {y}) di{a;y} {{dx)y}, while ^dB(a; ® {y})
\p*(dx ® {y}) {(d»)y}. Suppose x e Bp ; then rfa; a;0 + Zxtyt,

y±eAnt, xt€Bp-1'nt9 where ?it>0 if i>0, and dx x0. Thus
(dx)y — (da;)y 27 xty%y € Cp-2, whence {{dx)y} {(dx)y}. It fol-

lows that y* induces an isomorphism ip^ : HP(B ; i/a(^l)) ^ jBf><?.

Let ç? be the map E'0p'9 -> B/p ® J[/s introduced by Serre. Then since
jBl is simply-connected we know that <p induces isomorphisms

^ 5,(5' ; HQ(A')) •

Consider the diagram

Bp®Hq{A) -^ S^®^^7)
v*

where ®(y ® {x}) §y ® {^^}- Then 0 ^O*^*- For

e*v*(y ® {»}) e*(2/^} (^^} •

Now if u is a ^-cube otLKn+1, v a g-cube of£3Kn+1, then p)Thus q?0(yx) q)(0y-6x) pdy ® 6x 6y ® dx and so

ëy® {0a:} 0(y® {«}).
We hâve now verified the conditions of validity of Moore's theorem13).

The proof of this theorem sets up and filters the chain mapping-cylinder
of 6 : C -> C;. It then follows from the diagram above that the first
terms of the spectral séquence of this filtration also are properly related
to the appropriate tensor products, and then an inductive argument

18) Théorème B, p. 3-04, of [6]. The fact that y>* goes m the opposite direction in the
statement of the theorem is, of course, of no conséquence.
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shows that the spectral séquence is trivial. This leads immediately to the
conclusion that

The proof of Theorem 2.1 is now practically complète. We hâve
shown that differentials d, d and maps 6, Ô may be defined verifying (i),
(ii) and (iii) and such that

for ail n. It foliows immediately that d* : H*(B) ^ H*(K). Since the
retraction s may be defined over ail G, it foliows that C is acyclic so that
0* : H* (G) ^ H* (LK). We again apply the spectral séquence argument
to deduce that 0* : H* (A) ^ H% (QK) and the proof is complète.

Corollary 2.1. If K is a subcomplex of K* and if d, d are given on
G(K), A(K) then d*, 0* may be chosen so that d*\C(K) id,
0* | C(K) jQ, where i : C(K) -> C(K*)9 j : C* (LK) -> C* (LK*) are
injections.

Corollary 2.2. Let K be the union of subcomplexes Kt with a single
common point, the single O-cell of each Kt. Then A (K) may be chosen as
the free product of the A(Kt), and 6 may be given by 6bt 6tbt, Bat

0tat where Ot:C(Kt) ->C*(LKt).
Thèse two corollaries follow immediately from the définitions of d and

6. By a free product of chain-algebras A% we understand the chain alge-
bra which is, qua algebra, the free product of the algebras A% and whose
differential is given by

k

d(aH alh) E (- l)f«atl... (da a%k a c A*
q-l g=l

where ra Zns.

In the light of theorem 2.1, corollary 2.2 may be regarded as a gener-
alization of the theorem due to Bott and Samelson (see [17]) when K is

a wedge of sphères.
Before stating the next corollary, which is in the nature of an example,

we draw attention to the fact that the map 6 : B ~> G* (K) reverses
orientation, in the sensé that the generator bn corresponds to the négative

of the class of the oriented n-cell en in Hn(Kn, Kn~1).
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Corollary 2.3. Let K 8m ^ em+1, m > 2, where em+1 is attachée,

by a map of degree r. Then A(K) is the chain algebra generated by a, a\
with dira a m — 1, dim a' m and da' — ra.

For certainly da' ka, for some integer k, Now let 6, 6' be the
generators of B. Then since the attaching map is of degree r, we hâve
db' rb. Thus ndb1 rb ; but ndb' n{a' — sda') rc(a' — &sa)

n(a' — kb) ~ kb, whence14) & — r. We note that the differ-
ential in C is given by db a, dô' a' + r6.

Corollary 2.4. Let K SmxSn, m, n > 2. Then we may take for
A (K) the chain algebra (ax ,a2ia) with dim ax m — 1, dim a2
7i — 1, dim a m + n ~ 1 and

da e(a1a2 - (- l)^-1^-1^^) s ± 1

Let Ko Smw 8n. Then -4 (JK'q) (ax, aa) and 0% belongs to a
generator g! of Hm__1(Q8m)9 0a2 belongs to a generator g% of Hn_x{Q8n).
Now em+n is attached to Ko by a map, /, in the class [t,m, in] and, by
Samelson's theorem (see [8], /*£ — e(g1g2 ~ (— l)(m-1)(n-%2£i). It
follows therefore that we may choose da e{axa2 — (— i)(»»-i)^^^g^j).
We note that the differential in C is given by dbx ax, rf62 a2,
d6 (1 — sd)a a — e(b1a2 — (— l)<m-1><n-1>6aa1). We note also
that 6a is a relative cycle in the class generating Hm+n_1(D(8mx8n)1
Q(8mv8n)).

For further discussion of product complexes, see section 4.

3. Induced maps of chain-algebras

Let / : Kx-+ K2 be a map15) of CTF-complexes, inducing /' : LKtJ
QK1-> LK2, QK2. Our main object in this section is to realize the
induced homology homomorphism /^ by an appropriate y* : H% {A (Kt))
->H*(A(K2)), induced by a map <p : C^), A{KX) -> C(K2),A(K2).
Although A (K) is not uniquely determined by K, we may then think of
the passage from the category of C W-complexes and maps to that of
chain algebras and maps given by (K, f) -> (A(K), cp) as a (multi-
valued) covariant functor. We will prove

14) The minus sign can be avoided by replacing (iÊl), (Dl) by sa1"-1 — (—l)r6r,
dbr — (—l)r(l—sfya7'-1. Of course, to compute H*(QK) one may take a chain
algebra generated by a, a' with da — ra,

15 Recall that ail complexes considered in this paper hâve one O-cell and no 1-cells.
A map is required to send O-cell to O-cell.
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Theorem 3.1. There are chain-maps <p : C^), A(Kj) ->C(Kt),
B(K2) suchthat

(i) <p is product-preserving and <ps s<p ;

(m) ~ynx =JZs<p;
(iii) the diagrams

^> C'iK,), A'(KX) B(KX) -?i* B'(

C(K2),A(K2) -*> C'^,), ^'(Zt)
are commutative to within chain homotopy.

We will define <p and a chain homotopy tp : CiKJ, A(KX) -> C (K2),
A'(K2), such that dtp -\- ipd fd1 — 02ç?, inductively on the sections
of Kt. Define <p(l) 1, ^(1) 0. Suppose cp,y) defined on C(K™),
and let a be the generator of A (K^ corresponding to the cell en~x in Kx.
Then q>, ip are defined on da and

62<pda fQxda — dxpda d{f'd1a — xpda)

Since 02* is (1 — 1), there is an élément g2 € A(K2) with dg2 çpda,
Now f O^cl — xpda — 02g2 is a cycle in ^'(JS^) ; since 02* is onto, there
is a cycle z2 in A (K2) and an élément g2 in ^4; (ir2) such that

We put ^« ^2 + ^25 Wa — ^2- Then dya dg2 cpda and

/'^a — 02^2 — 022;2 dg2 + tpda

as required. Extend <p to a map of J. (^+1) into A (K2) ; direct compu-
tation shows that tp is extended to A (K^+1) by the formula
tp(xy) (yjx)(f'diy) + (- l)*(eaya?)(Vy), for x e»+^*, y ew+^
^=^(iT1). Extend ç? to C(ZJ+1) by putting <pb S(pa. Then
sç? ç?5 on the generators of A(K^+1), B(K™+1) and hence on the
whole of O(i?i+1). Certainly \pb may be defined since C'(K2) is acyclic
and y) is extended to the whole of C(K^+1) by the same formula as

above, where now x e n+1Cv and y e n+1^4. The inductive définitions
of q? and ip are complète.

Now ç? is defined by (ii), provided we can show that n2(p is zéro on
the kernel of n1. A typical élément of the kernel is Zx%yt, yt e A^iK-^),
nt>0. Then (p(xtyj q>(xt)<p(yt), y(yt) e Anz(K2), so that

7t2((p(xt)<p(yt)) 0
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Thus (p is defined. A chain homotopy tp : B(K^) -> B'(K2) such that
dtp + ipd fÔ1 — 02<p is defined by ipn^ p2ip, provided p2tp is zéro
on the kernel of nx. Now if yt <¦ ^4Wï (i^), ti, > 0, then

It follows from the product formula for ip that p^W^iVi) ^ i*1 ^'{K2),
xl e CVl(K1)} so that ^ is defined as required. This complètes the proof
of the theorem.

We make some remarks about this theorem. First we note that if g/ is

any other suitable chain map C(K^), A(K^) -> C(K2), A(K2), then
02(pr ~ f'd1 — ô2cp ; since 02 *s a chain équivalence, it follows that any
two choices of <p are chain homotopic. Similarly any two choices of ~q> are
chain homotopic. Let us write q>(f) for <p ; then we see that if / : Kt -> K2,
g : iJT2 -> Kz are maps we may choose <p(gf) to be <p(g)<p(f). We also
note the trivial fact that if/ is an injection and if d, 6 hâve been chosen

on K2 consistently with their values on Kx, then cp, çp may be taken as

injections. Finally, we remark that if / is a map Kl9 Lx -> K2, L2 where

Lt is a subcomplex of Kt, i 1, 2, then ç?, ^ may be chosen so that

viCiLùAiLMçCiLJ, A(L2), vidLJ, i(L,))^'(I2), 4'(L2).

Now let /0 : L1-+L2 be a map of OPF-complexes and let Kt—Lt ^ e™+1,

where gt - En+1, 8n -> Kt, Lt is a characteristic map for e"+1, i 1,2.
Suppose /o^! | 8nC^Lg2 \ Sn. Then we may extend /0 to a map
f:K1->K2 with fg±!2±g2. Now ^4(iQ is formed from -4(Z/J by
adjoining a new generator at. We prove

Theorem 3.2. // we16) hâve chosen d and 6 on Kx and L2 and <p on Lx,
then we may choose d and d on a2 and (p, y) on axso that cpax a2.

We first choose da2. Adopting the notation of the previous section,
we hâve only to choose da2 so that 62da2 ^ g2C- Now

62cpdal ff01da1 — dtpda1 frg[Ç + fdx! — dipda1

Now f'g[ ~ g2 ; there is a chain homotopy co : C* (LEn+1), 0*
->C'(K2), Af(K2), C'(L2), A'(L2) with17)

f'9i -g* dco + wd fg{ - gl dco + cod

It follows that 62(pda1 g2Ç + d(œÇ + f x1 — ipda^. We may, and

16) We will say that d and 6 are chosen on K if they are chosen on A (K).
17 In the argument which follows it is cumbersome and unnecessary always to dis-

tinguish g'lt g'2 from g\, g"2 ; however, we simply copy the notation of theorem 2.1.
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do, choose da2 q>dax. Then we may take x2 cof + f x[ — \pdax
and 62a2 j2x2 + g"2r\, Now

ff61a1 — xpdax — 02a2 f jxx[ + f'gxrj - ^rfax - j2coÇ ~~ j2f xx

+ j2ipdax — g2rj f^i^ — 02*7 ~ 7s«>C ^^ + °>dr} —
d -f- coi£ d

Thus we may choose q>ax a2, ipax corj, and the theorem is proved.
Suppose /0 is a homotopy équivalence. Then 9?* : H^(A (Lx)) ~

H*(A(L2)). Also / is a homotopy équivalence so that 9?* : H*(A{KX))

^ H*(A(K2)). This is the topological analogue of the foliowing purely
algebraic theorem.

Theorem 3.3. Let <p : A -> A1 be a map of chain algebras inducing an
isomorphism <p* : H*(A) ->H*(A'). Let A be defined by adjoining a
generator ato A and let A1 be defined by adjoining a gênerator a' to A' of the

same dimension, n, as a. Let q>da daf. Then the map "<p : A -> A1

given by <p\ A — cp, <pa a1, induces an isomorphism 9?^ : H^(A)

Filter A by the rule coixQax^.. .axv) p, xi e A and filter A'
similarly. Let the associated groups of the spectral séquence be Evr )<?,

E'rVA. Then E'rVA E'rp>q 0 if q<pn — p. Now ^ is filtration-
preserving and dApÇ:Ap, dAfp^Afp, where (^4^,), (Afp) are the filtering
subgroups. Thus ç> is a map of differential filtered groups.

Let A{p) be the tensor product of p copies of A and define Af{p)
similarly. Then cp induces (p : AiP) -> Al{p) which is a chain équivalence
since <p is a chain équivalence. Let A{P)Q, q > pn — p, be the homo-

geneous component of A{p) of dimension p -j- q — pn and let xp : AiP)q

-> E\A be defined by tp(x0 ® (g) xp) (—- l)axoax1... axv, where

xt c Ani and a n Ein^ Then %p is an isomorphism and ipd doip so
=0

that xp induces ^ : fi^^J^^) ^ ^'ç. Similarly xpf : ^7^>« -> Er*>*

induces^ ^ : Jî,^.^^'^) ^ ^'^. Also y7? =^V : -4(p)a^> <p'ff,
so that <p induces <p* : E™ ^ Exp'q. It follows that cp induces q>^ : jS^«

g* ^2^ and hence ^ : Jï* (Z) ^ JET* (Af).
The spectral séquence -Ef?g seems the appropriate tool for studying

the effect on H*{QK) of adding a cell to K, since AQ A.
Our next resuit is in the nature of an example.

Theorem 3.4. Let K Sn ^ e2n, n > 2, and suppose A(K) is the

chain algebra generated by al9 a2 with da2 pa\. Then p is the Hopf
invariant of the attaching map for e2n.
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Let K\ K" be copies of K and let KfxK" be decomposed into cells
in the obvious way. We write %, a2 for the generators of A (K) corre-
sponding to the cells en, e2n of K and a[, a2, a", a2, an, a12, a21, a22 for the
generators of A (K'xK") corresponding to the cells e/n, e'2n, effn, e"2n,

e'nXe"n, efnxe"2n, e'2nXe"n, e'2nxe"2n of K'xK". Let f :K ->K'xK"
be the diagonal map. Suppose d, 6 chosen on A(K'xK") consistent
with the embedding of K' v K" in K' x K". Let <p : A (K) ->A(K'x K"),
!j):B(K) ->B(K'xK") be associated with /, let the cells of B(K),
B(K'xK") be symbolized similarly to the generators of A(K),
A (K' X K") and let the Hopf invariant of the attaching map be q. Then

çJôj. b'x + b![, !pb2 b2 + qbn + b2

A dimensionality argument18) shows that (pax ga[ + aa^, cpa2 Xa2

+ fJLaxl + va2f. Applying s and comparing with the formulae for ç>, we
find q~ a — A — v= 1, ju q. Now dcpa2

+Valaf1+pal\ while d(a;+gan+<) ^^2
(we orient the cell an, or a in corollary 2.4, so that e (— l)m).
Comparing coefficients, £> (— I)nq> P q- This proves the theorem and
also shows that the Hopf invariant is zéro if n is odd.

If e2n is attached by a map of Hopf invariant 1, then H^ (QK) ^ H* (A)
where A is the chain algebra generated by ax aj^1, a2 a?/1"1 with
rfa2 a2. It may be of interest to compute the ring H%(A). We prove

Theorem 3.5. Hr(zn_2)(A) Z^, generated by {g}r,
g aia2 - (— lf"1^^, ^r(3w_2Hw_1(^L) Z^, generated by {/aj,
Um(^) 0, for oiher values of m. Moreover {axg} (— l)n{ga1}.

We remark first that in the topological case n is even so that
g axa2 + «g»! and {a1g} {ga^}. Thus the theorem asserts that
H* (A) is a commutative ring in this case, isomorphic with the tensor
product of an exterior ring generated by {a^ and a polynomial ring
generated by {g}. We now prove the theorem.

% j
Consider the exact séquence 0 -> Ak_n+1 -> Ak -> Ak_2n+1 -> 0,

where ix xal9 j{xax + ya2) y, x e Ak_n+1, y e Ak_2n+1. This
induces the exact homology séquence

18) This argument only holds if n > 2 ; if n — 2, the expression for <p a2 could, a

priori, contain terms in an and a"3. We may either eliminate this possibility by con-
sidering projections Kf x K" -> K', Kf x K" ~> K", (whereby we may also deduce
X v 1) — or leave thèse terms in the expression until they are annihilated in the
passage from <p to q>.
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where i*{x} {xaj, ù{xa1 + ya2} {y}, and d*{*/} (— l
<x dim^/. Now the homology groups of A are certainly as stated
in dimensions <3n — 2. Suppose inductively that they are as
stated in dimensions <(r + l)(3n — 2), r > 0. The part of the

homology séquence beginning H(r+mn_2)+2n_2(A) -> and ending...

(^) w^ be trivial except for

7* : -"(r+l)(3«-2) -"r(3n-2)+n-l >

3w-2) /2(r+l)(3n-2)+w=l

-«(f+i)(3W_2) -"(7

Thus #(r+D(3n_2) Zoo generated by {gra1a2 -\- xax}, x being chosen

arbitrarily, subject only to the condition that gra1a2 + xax be a cycle ;

since g is a cycle and gr+1 is of this form, it follows that H(r+1)^n_2)
is generated by {gr}r+1. It then follows that jGT(r+1)(3n_2)+n_1 Zœ,
generated by {^r+1ai} and that iï^ is zéro in ail other dimensions

<(r + 2)(3n-2).
We complète the proof of the theorem by observing that d{a\)

4. Product complexes.

The main object of this section is to obtain a chain équivalence from
A(K1xK2) to A{K^) (g) A(K2). We first provide a universal example
for the chain algebra of a product complex.

Theorem 4.1. Let Ex c° ^ ev ^ ep+1 be a (p + l)-element decom-

posed in the usual way into the cells c°, ep, ev+1 and let E2 be a (q + 1)-
element similarly decomposed, p,q^2. Then A(EtxE2) is freely generated

by éléments19) ax, a2, clf c2, b, e, e, t, corresponding to the cells ev, eq,

ep+1, etf+1, evxeq, ep+1xeq, epxeq+1, ep+1Xeq+1 and d,0 may be chosen

on ExxE2 to give dcx — al9 dc2 — a2,

db (- l)p{a1a2 - (- îy-vta-vataj

(- l)*(axct ~ (-
d^ (_ i)p6 - e + (- l^MciC, -

The first two boundary formulae are given by corollaries 2.2 and 2.3.
19) TKe notations used for generators of A (Et x Ez) are chosen for their convenience

in studying product complexes and are not related to previous notation.
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The formula for db is given by corollary 2.4, the orientation being chosen
so that, under the map tp : A (Ep+*) ~>A(8PX 8*) induced by the charac-
teristie map Ep+*, flfp+a-i -+8px8<i, Sp v S*, the cell corresponding to
$î>+g-i {s mapped precisely by the Samelson formula (cf. Theorem 3.4).

Now consider A(E1x8l) {al9 a2, c19 6, e}. Sinee the injection i2 :

#£ -> JS?! X SI and the projection p2 : 1^ x #f -> #f are homotopy
équivalences such that p2i2 1, it follows readily that20) we may choose

<p2 <p{p2) such that <p2a2 a2, <p2a 0 for a a1} cls or 6 and ç?2*
is an isomorphism. Now, if z is the élément proposed for de, then z is a
cycle and <p2z 0. Thus z is a boundary ; it follows that, for an arbi-
trary choice oîde, there exist an integer k and an élément x e {ax,a2,ct,6}
such that d(&e + x) z or &(de) + c?a; z. It may be seen by
inspection that no such équation can subsist in {alf a2, cl9 b} unless
Je -j- 1. Thus, if c is suitably oriented, z is a proper choice for de. The
orientation of e is chosen to give the correct boundary formula in
BiEiXSl), when the cells of Exx8l are given the product orientation.

A similar argument establishes the formula of cCê ; the orientation of c
is chosen by the same considérations.

Finally the élément z' proposed for dt is a cycle and therefore a boundary

; it follows that, for an arbitrary choice of dt, there exist an integer kf
and an élément x' c {alf a2, clf c2, b, e, c} such that k'{dt) + dx1 z1'.

It may be seen by inspection of {al5 a2, cl9 c2, 6, e, ê} that this implies
k' — ± 1, so that z' is a proper choice for d£ if t is suitably oriented ; we
choose the orientation for t as for e and e and the theorem is proved.

Now let KxxK2 be the topological product of two OTF-eomplexes
with its usual cellular décomposition21). Let

j :A{KXXK2) -»A(KX) ® A(K2)

be the ring homomorphism given by

ja a ® 1, a €

j a 1 ® a, a c A (K2)

7*a o, for any other generator a of A(KxxK2).
Let <p{ : ^(ifiXi^) -> ^(iQ, t 1, 2, be the ring homomorphism

given by

o, for any other generator a of A (K1 x K2).

20) Clearly a suitable ç> for the projection Svx8%-> #| is given by ^(Oj) 0,
çj(a2) a2, ç)(6) 0, provided 6b has been appropriately chosen.

81 We are not disturbed by the fact that Kx X K% need not be a C W-complex ; theorem

2.1 holds for products of OTT-complexes.
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Let q :G*XxC*Y ->C*(XxY) be the standard chain équivalence of
cubical homology theory.

The main theorem of this section is as follows.

Theorem 4.2. We may choose d and 6 on KxxK2 so that j is a chain
mapping; wiih this choice ç?t is a cp-map22) associated with the projection
Pi : Kx X K2 -» K{, and the diagram

A^xKJ -

A'^xKJ
1"

—>A(Kï)<î)A(K2)

et® e

Z>A'(K

is homotopy-commutative and leads to a commutative diagram of isomor-
phisms of homology rings.

Suppose that d and 0 hâve been chosen so that j is a chain mapping.
Let i : A (K^ g) A (K2) -> A (Kx X K2) be the chain mapping of chain

groups given by i{x ® y) xy, % e A (Kx), y € A (K2). Then ji — 1.

Let ÛKt, QK2 be embedded in Q{KX X K2) and let

y] : QKxxQK2 ->Q{KxxK2)

be the map given by t](ll912) lxl2 (composition of loops). Then23)
di tjq(01® 62). We next show that r\ is a homotopy inverse of W.
Since W is a homotopy équivalence it is sufficient to show that Wrj — 1.
Now Wtj^, l2) (ixCOg, œrl2) where lx is a loop of 'duration' r, l2 is a
loop of * duration' s and a)r, co8 are constant loops of duration r, s. Thus
a homotopy of the identity to Wrj is given by ht(lx, l2) (^co^, cortl2).
Then S7^* ~ q(ô1 ® 02). Since W,0, g and 0! <g> 02 are chain équivalences

it follows that i is a chain équivalence. Since ji 1, it follows
that ?* is a chain inverse of i so that W6 2^. q(01(Si 02)j and j% is an iso-

morphism.
We still assume that j is a chain mapping and next prove that if

p[: A'{K1xK2)->A'{K1) is induced by pl9 then pf10'^±ei(p1. Let
pi : C*(QKtxQK2) -> A1 (Kx) be induced by the projection

22) In the sensé of theorem 3.1.
M) We always suppose d and 6 chosen consistently with the embedding
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let p1 : A (Ki) ® A (K2) -> A (Kt) be the map given by px(x ® 1) x,
Pi(l ® y) 0 and let ££ : A'(Kt) ® 4'(jBl2) -> ^'(^i) be defined simi-
larly. Then the relations

V"i? Pï, 0i Pi PÎ(0i ® »i) Pi K' 0 > 9>i Pi?

are obvious.
We hâve proved that 6 ~ ??e(0i ® 0a)/ an(* Pi*7 — Pi since ^V — 1 •

Thus

Thus <px is a suitable choice for cp (p^ and a similar argument shows that
<p2 is a suitable choice for (p(p2)-

It remains to show that d and 0 may be chosen so that / is a chain
mapping. We observe first that / is a chain mapping on A(K± v K2)f
embedded in A(K1xK2), and second that j is a chain mapping on the
universai example A (Et X E2).

We now prove that d and d may be chosen on EtxK2, Et E*+1,

p ^ 2, so that j is a chain mapping. The argument proceeds by induction
on the sections of K2. It is trivial for Ex X K\ and follows easily for
ExxK\ from theorem 4.1. Suppose inductively that d and d hâve been
chosen on E1xKl, q > 2, so that j is a chain mapping and let e be a
(q + l)-cell attached to i£f, the characteristic map being / : ]5f+1,

flf -> i£f ^ e, Kq2. Let ç>a : A(Eq2+1) -* A(K\^ e) be associated with /.
We proceed to define a map <p \A(Exx8l) -> A(ExxKl). In the
notation of theorem 4.1, we put (p{a^) al9 <p(a2) <p2(a2), q>(c±) ct.
Then, so far as q> is defined, the diagram

A(ExxSl) -U
|l®y2 (4.3)

A (E, xK*)-UA (Et) ® A (Kl)
is commutative.

Consider the élément b c A(E1xSl). Then j<pdb 0; since j is a
chain équivalence onto A {Ex) ® ^4 (Z|), it follows that the kernel of /
is acyclic, so that there exists an élément x e A [Ex X Kl) with dx <pdb

and jx 0. Define q?b x. Then yd dcp on 6 and the commu-
tativity of (4.3) is preserved. Then jcpde 0 and the same argument
shows that there exists an élément y c A (Ex x Kl) with dy <pde,

jy o ; we take <pe y. Thus we hâve defined a map ç? making (4.3)
a commutative diagram.
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We now assert that q> is associated with the map

To establish this, we consider the diagram

x X 8\) j

VQ

A'(EJ ® A'(S\)

A'(EJ ® A'(Kl)

We wish to show that d<p ~ (1 xf)f6 ; but this foliows from the com-
mutativity properties of the diagram. Now Ex X E2 is obtained from
Ex X 8\ bj attaching cells eq+1, ep X c«+1, ev+1 X eq+1 and each of thèse
cells is mapped homeomorphically onto a cell of Ex x (K\ ^ e). The
generators of A (Et X E2) corresponding to thèse cells are c2, <ë, t ; let the
generators of A (Ex X {K\ ^ e) corresponding to the cells (lx/)(e8+1),
(lxf)(epxeq+1)y (lx/Xe^Xe^1) be called c2, ê*? «*. Then by theo-
rem 3.2, we may define d, 0 onê*, t* and extend cp to a map associated
with lx/ : E1xE2 ->Exx(Kl ^ e) by putting <pê=ë*, <pt ^* ; but
then /de* /dçpi /ç>dê (1 ® <p2)jde 0 and ?ê* 0 so that j
is a chain mapping on c* ;and jt*=O, jdi*=jd(pt jcpdt (1 g) y^jdt
(since, by définition, jcpê (1 ® q>%)fë 0)) 0, so that / is a chain
mapping on t* and hence on the whole of A(EX x {Kl ^ e)). We proceed
in this way over ail the (q + 1)-cells of K2 and so define d and d on
A (Et X Kl+1) so that / is a chain mapping. This establishes the induction
and hence the resuit when Kx Ex.

Finally we consider the gênerai case, and proceed by induction over
the sections of Kx. It is an immédiate conséquence of the argument
above that we may choose d and 6 on K\ X K2 so that / is a chain mapping.

Suppose inductively that d and 6 hâve been chosen on K% X K2 so

that j is a chain mapping and let e be a (p + l)-cell attached to K\,
the characteristic map being / : jE?£+1, 8* -> K*^ e, K*. Let
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be associated with /. We assert that a map

cp : A(S{xK2) ^ A(KlxK2)
may be defined so that the diagram

A (S* xif2)-^4 (S*) ® A (K2)

Vi ® l
A (K{ xK2)-±->A {Kl) ® A (K2)

is commutative24). We may define <pax cpxax, ax € A (81), <pa2 a2>

a2 € A(K2). We then define cp a where a is a generator eorresponding to
a cell ep X en+1 in 8% X K2 inductively with respect to n. For if cp is defined
on A (SI xK2 w (S^ v K2)) so that jcp (cpx ® 1)? and if the generator
a corresponds to a cell epxen+1, then /^da (<px ® l)?da 0 and so,
as previously, there exists an élément x e A (K% x K2) such that c?x

ç?da and jx 0 ; we put ya x and then ;ç?a — (ç?! ® l)/a 0.
This establishes that such a map 9? may be defined. Arguing from a
diagram analogous to (4.4) shows that 9? is associated with the map
/Xl :S>xK2^K*xK2.

Let en be an arbitrary cell of K2, let a be the generator of A (Ex x if2)

eorresponding to ep+1 X cn and let a* be the generator of A ((K% ^ e) x K2),
e ep+1, eorresponding to e X ew. Again applying theorem 3.2, we de-
duce that d, 0 may be chosen on A((K* ^ e)xK2) so that the map <p

may be extended to a map associated with / X 1 : E1xK2-^ (K^ ^ e) X K2
by defining 9?a a* for ail en in K2. Then we still hâve jcp (^ ® 1)/.
It remains to show that /rfa* 0 for ail a* ; but jda* /dç^a

(<px ® \)jda 0, since y a 0 and / is a chain mapping on
X K2). We proceed in this way over ail the (p + l)-cells of i^! and

so define d and 0 on A (K*+1 X K2) so that ; is a chain mapping. This
establishes the induction and complètes the proof of the theorem.

Corollary 4.1. Let q?t : A(Kt) -> A(Lt) be associated with maps
ft : Kt -> L%, i 1, 2, and let d, d be chosen on KxxK2, LxxL2
so that j is a chain mapping. Then we may choose a map

cp : A(KxxK2) -* A(LtxL2)

so that jcp (cpx ® cp2)j and any such cp is associated with the product map
/iX/2.

24) We suppose A{Ex x K2) furnished with suitable d, 6 to make j a map.

325



We establish the existence of sueh a map cp by an inductive argument
analogous to that following diagram (4.3) and the required property of
<p by an argument based on a diagram analogous to (4.4).

Corollary 4.2. // Lt^Ki9 i 1,2, and if d,0 hâve been chosen

on L1xL2 so that j is a chain mapping, then d, d may be eodended to

Kx X K2 so that j remains a chain mapping.
For this is essentially the procédure in the last part of the proof of theo-

rem 4.2.
Now let K StX • • • xSt, where /S^ is an wrsphere, nt ^ 2,

i 1,..., t. Then K may be decomposed into cells in the usual way :

for each non-empty subset D of {1,2,...,£}, let eD be the ceD 77et,
and let aD be the corresponding generator of A (K). We prove t€D

Theorem 4.3. d and d may be chosen on K so that

daD Z(- lfA>B)aAaB

where the sum extends over ail partitions of D into non-empty subsets A, B
and

e(A,B)=2Jna+ Z nanb.
aeA aeA, beB

a>b
We prove this by induction on t ; it is trivial if t 1 and reduces to

the Samelson formula if t 2. Suppose the theorem established for
products of t — 1 sphères, t ^ 3, and consider K. We propose to
choose d and d on K so that j : A (K) -> A (S1 x • • • X 8^) ® A (St) is

a map. For any aD, D ^ {1, 2,..., t}, choose the proposed formula
for daD ; the inductive hypothesis tells us this is possible, and we observe

(by direct computation) that jdaD djaD. Now let D {1,2,...,$};
by corollary 4.2, there exists a choice for the boundary of aD, say d1aD,
such that j remains a map and therefore a chain équivalence. Now we
observe (by direct computation) that x 2(— l)e(^A>B)aAaB is a

A,B
cycle and jx 0. If foliows that # is a boundary, so that x dy
+ kd'aD, where y e A(K — eD) and k is an integer. Now (arguing as

in theorem 4.1) we observe that aAaB, for example, cannot appear in
the boundary of an élément of A (K — eD) with non-zero coefficient.
Thus it must appear in the boundary of aD and we must hâve k ± 1.

Thus, reorienting eD if necessary, we hâve proved that a; is a legitimate
choice for daD. We observe, of course, that / remains a map with this
choice. In fact, partitioning the ordered array {1,2,..,,$} in any way
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we please as At9... 9A89 where .44is the array {nt,nt+ 1,... ,nî+1— 1},
nx 1, n8+1 t + ly we find that

is a map, where the définitions of j is an obvious extension of that for
s 2 and Kt

Theorem 4.3 constitutes a generalization of Samelson's formula ; it is
consistent with the formula contained in remark (i) on p. 5 of [7].

J. C. Moore considers in [5] spaces with a single non-vanishing homo-
logy group, in dimension p, say. If this group is finitely generated, then
an appropriate space is a wedge of subspaces Xti where each X% is a
2?-sphere or a ^-sphère with a (p + l)-cell attached by a map of non-
zero degree. We study hère the Pontryagin ring of the loop space of a
Moore space. The method is exemplified by the case when the Moore
space Z is the wedge of two such subspaces Xt, but we will generalize
the problem slightly by allowing Z Xt v X2, where X1 is a ^-sphère
or a ^-sphère with a (p + l)-cell attached by a map of non-zero degree
and X2 is a g-sphere or a g-sphere with a (q + l)-cell attached by a map
of non-zero degree. We take p, q ^ 2. We will also consider H^(QP),
where P XtxX2. We first observe that, for quite arbitrary spaces
Xl9 X2, H* (QZ) and H* (QP) contain H* (QXX) + H* (QX2) as a direct
summand ; we will use the congruence symbol to indicate that we are
Computing modulo this subgroup.

We prove

Theorem 4.4. Let P XtxX2, where Xx 8P ^ ep+x, ep+1 being
attached by a map of degree m ^ 0, and X2 8Q ^ e«+1, e«+1 being
attached by a map of degree n =£ 0, p, q ^ 2. Then A(P) is generated by

aly a2, cl3 c2, b, e,"ê9t, corresponding to the cells ep, ev+1, eq, eq+1, evxeq,
ev+1xeq, epxeq+1, ep+1xeq+1 and d,6 may be chosen on P to give
dcx ~ max, dc2 — na2, db (— l)p(a1a2— (—
de - mb + (- l)^1^^ - (~ l)'^1^.^)
de (- lY^nb + (- l)p(^ic2 - (- l)
dt (— Vfne ~ mê + (- l)p+1(c1c2 - (-

Consider E1xE2 and use the same symbols for the generators of
A(ExxE2). Let f% : Et ->Xt be characteristic maps, i 1, 2. Then
we may take (p1a1 maly q>iCt cl9 cp2a2 na2, cp2c2 c2. We will
define d on A (P) so that j is a chain mapping, and we will also define an
appropriate cp : A(E1xE2) ->A(P)9 in accordance with corollary 4.1.
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The formula for db m already estàjblished. The formula proposed for de
is a cycle of A (K1X $f in the kernel of j and hence a boundary ; arguing
as in theorem 4.1, we see that it is a legitimate choice for de ; similarly
we justify the formula for dJ. Then it follows, from corollary 4.1, that
we may take <p(b) mnb, <p(e) —ne, q>(e) me. By theorem 3.2
we may now take <p{t) t, getting the given formula for dt.

From theorem 4.4 we may calculate H^ (Z) and H% (P). In particular
we consider the injection HVJtq_x(QZ) -> Hv+q_x{QP). Let h be the
g-c-d of m, n, so that m hmf, n hn1. We will restrict attention
to the case p, q > 3, though, by complicating the argument, it would
be possible to include the cases p 2 or q 2 (or both). With this
restriction we hâve H9+q_x{QZ) Zh -f- Zh, with generators

(— l^n'Cittg} {rj} {nfa2cx +

On the other hand,

Hp+a^{QP) Tor (H^(QXX), H^QXj) Zh

generated by {1} or {rj}. In fact, we see that

f — (- iy«r) <Z((- l)pn'c - w'ë)

It follows that the injection HJ)+q_l{QZ) ->Hv+a_l{QP) is onto

H^^QP) with kernel25) {| - (- 1)«jj}.
Consider the diagram

C09

\h
Hv+q{QP, QZ) -^*HM

where cot are the usual isomorphisms and h{ are Hurewicz homomor-
phisms, i 1,2. Then each square is commutative or anti-commuta-
tive and hx is onto Hp+q(QP, QZ). Moreover d" maps HM(QP, QZ)

25) We permit ourselves hère and subsequently to identify A(Z) with C*(QZ), and
thus to omit the maps 6, 0*.
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onto Zh9 generated by {I — (— l)VQrj}. The group

was computed in [3] ; we hâve

QZ) Zh if h is
Z2h, if i=4i
Z* + Za, if A - 4Jfc + 2

If A is even the Z2 subgroup (direct factor if h 4& + 2) is certainly
annihilated by A2d'. Thus there is an élément, q in n^^-i^Z) which
is mapped by h2 to {£ — (— 1)^^} ; it follows from arguments in [3]
that the image of (drœ1)"1Q in the Hurewicz homomorphism

générâtes the latter group which is isomorphic to Tor (HP(XX), Hq(X2)).
For further simplicity we now take m n ; we leave the slight

modifications in the gênerai case to the reader. Let S be any path-con-
nected space and let ol€tzp(8), fi€7tq(8) be éléments whose order
divides m. Then we may map Z to S by a map g which, restricted to 8P,

represents a. and, restricted to SQ, represents fi. Let / : Sp+q -> Z repre-
sent co^q. Then gf : Sp+q -> 8 represents an élément {oc, fi} e np+q(S)
which is determined modulo the subgroup generated by éléments [a, h]
[2., fi], x€Kq+1(8), X€7ip+1(S). Let u e Ap_t(S), v € A^(8) be cycles
such that26) {u} Ji2w2ol, {v} h2œ2fi, and let — mu du',
~~ mv dvf. Then uv1 + (— l)pti'v — (— \)**(vu' + (— l)*v'u) is a
(p -f- q — 1)-cycle of J.($) whose homology class is determined modulo
the idéal generated by {u} and {v}. We call the élément of

so determined | a, fi \. Since h2 w2 [oc, nq+1 (S) ] lies in the idéal generated
by {u} and h2a)2 [np+1(S), fi] lies in the idéal generated by {v}, we may
discuss unambiguously the élément h2œ2 {a, fi} in the quotient ring

}, {v}). It follows by naturality that

h2co2{oc, fi} | ex, fi |

the space Z being a universal example for the construction {a, fi}.

26) We use a>2, h2 for the maps 7tr(Y) -> Try.!^ F), tt^tOF) -> H^Q Y) for any r
and any space Y. See also the previous footnote.
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A direct computation shows that

(- ir || a, p |, y | + (- 1)«* II j8, y |, a | + (- l)r* II y, « |, /H 0

where y e 7tr(S), r > 3, my 0 and the calculation is made in
modulo the idéal generated by {%}, {v}, and {w} h2co2y.

Note added in proof. W. S. Massey [Annals of Mathematics 62 (1955)

p. 327] lias raised (as problem 18) the question of homotopy opérations
of higher kinds. It is clear that the product {a, /?} introduced above
is an opération of the sort indicated.
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