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Ungleichungen
fir die Minkowskische Summe und
Differenz konvexer Korper

von D. OpmaNN, Mailand

Vom Verfasser wurde gezeigt, daB3 zwischen den Flicheninhalten der
konvexen Bereiche 4 und B & A sowie deren Minkowskischen Summe
A 4 B und Differenz A — B die Ungleichungen

F(4 + B) + F(4 — B) > 2F(4) + 2F(B)
und
F(A + B) <3F(A) + F(B) — 2F(A)} F(4 — B)}

bestehen, die mit den trivialen Ungleichungen F(4) > F(4 — B) > 0
und F(B) > 0 ein vollstindiges Ungleichungssystem bilden?). Diese
Ungleichungen werden in der vorliegenden Note in folgender Form auf
die Volumina konvexer Korper des n-dimensionalen euklidischen Rau-
mes tibertragen :

1 1 1 1
V(A+ B)+V(A—B) > (V(A)n +V (B)yn)" +(V (A)yn—V (B)m)"

V(d) > V(B) 1)
V(A B)— V(B)<(2V(A)n — V(A — By — (V (A)% — V(4 — Byry»
(4 — BoL) . 2)

Dabei steht L in der Ungleichung (2) fiir die leere Menge, und es bedeutet
A — Bo L, dal A4 — B nicht leer sein soll. In der fiir V(4) > V(B)
giiltigen Ungleichung (1) hat man V(4 — B) =0 zu setzen, wenn
A — B=1L ist.

Fir n > 3 stellen die beiden Ungleichungen (1) und (2) unter der
Voraussetzung 4 — B> L auch im Verein mit den trivialen Unglei-

chungen
V(Ay=V(A—-B)=>0, V(B)=0 (3)

1) D. Ohmann, Ein vollstandiges Ungleichungssystem fir die Minkowski-
sche Summe und Differenz. Comment. Math. Helv. 27, 151-156 (1953).
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noch kein vollsténdiges Ungleichungssystem fiir die vier Gréflen V(4),
V(B), V(A + B) und V(4 — B) dar. Wie am Schlu8 in einer kurzen
Betrachtung gezeigt wird, besitzt ndmlich nur Ungleichung (2) auch in
hoher dimensionierten Réumen die gleiche Bedeutung fiir das Voll-
standigkeitsproblem wie in der Ebene. Dagegen bildet das Ungleichungs-
paar (1), (2) wiederum eine Verschirfung des Brunn-Minkowskischen
Ungleichungspaares

V(A + By > V(A)n + VB, V(A—B)n< V(A7 — V(B (4)

1. Vorbereitungen fiir den Beweis

(a) Minkowskische Summe und Differenz. Werden die Punkte des
Raumes mit den zu ihnen hinweisenden Ortsvektoren identifiziert, so
gestatten die Minkowskische Summe A4 4+ B und Differenz 4 — B
der konvexen Korper A und B die folgenden Definitionen :

A + B stellt die Gesamtheit aller Punkte x 4+ n(xed ; ne B) dar.

A — B stellt die Gesamtheit der Punkte x dar, fir die x + BS€ A4
besteht.

Die durch diese Festlegungen entstandenen Korper sind wieder kon-
vex. Im folgenden wird beim Auftreten von Differenzkorpern stets vor-
ausgesetzt, dafl diese nicht leer sind.

Aus den Definitionen folgen die Beziehungen?)

(@) A+ B=B+4 , (b) (A4 B)+C=4+ (B+ (), (5)
(a) A4+ B)—B=4, (b) (A—B)+ B4, (6)
(8) (A—B)—C=4—(B+C), (b) (A4+B)—C24+(B-0C) ()

und ALt ud=(GQA+pd  (A>u>0), (8)

wobei die Mengen 14 und p4 in (8) durch Dilatation aus 4 entstanden
sein sollen. Wihrend sich die Formeln (5), (6) und (8) unmittelbar er-
schlieBen lassen, bediirfen die Relationen (7) eines kurzen Beweises :
Bei (7a) benutzt man (5) und (6) um zunichst

[(A—B)—Cl+(B+(C)={(4—-B)—C]+C}+BS(4—-B)+B< 4

herzuleiten und daraus durch Subtraktion von 4 + B die Ungleichung

(A — B) —CS A — (B + 0) zu gewinnen. Weiter folgert man
A2[A - B+ O]+ B+0) ={4d-(B+0)]+C}+ B

2) Die Formeln (5) bis (7a) finden sich fiir beliebige Mengen bei H. Hadwiger, Min -
kowskische Addition und Subtraktion beliebiger Punktmengen... Math.
Z. 53, 210-218 (1950).
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ebenfalls aus (5) und (6) und sodann die umgekehrte Ungleichung
(A —B)—C24 — (B+ C) durch aufeinanderfolgende Subtraktion
von B und C. Damit ist (7a) schon erwiesen. (7b) ergibt sich aus (6)
und (5b) in folgender Weise :

(Ad+B)—C2{4+[(B-0)+0)y—-0C
={4d+B-0N+0}—-C=4+(B-0).
Wir haben noch die Beziehung
A,— B, =A4A—B
(4,=4—1B;B,=B—1B;0< 1<) ©)
anzumerken, die aus (7a) und (8) flieBt :
A, —B,=4—[t«B+(B—1B)]=4—(r++1—1)B=A4 — B.

(b) Gemischte Volumina. Die Minkowskischen gemischten Volumina

Vo(4;B)=V (4,...4; B,...B) definieren wir rekursiv durch das
n—k k

Formelsystem?)

L timL(v,(4 +eB;B) — V,(4; B)]

'n-—-k €——>0 &

Vk-{-](A;B):
(10)
Vo(d; B)=V(4) (¢>0;k=0,1...0n—1).

Es ist dann V,(4; B) = V(B). Nachdem wir sodann die elementaren
Eigenschaften der Monotonie und Homogenitét durch

Vi(d'; B) < Vi(4;B) (4'S4; B'<B), (11)
Vi(AA; uB) = A *uy* V, (4; B) (i, u>0) (12)

ausgedriickt haben, notieren wir die Entwicklung des Volumens der
Minkowskischen Summe V(A 4+ B) nach den gemischten Volumina :

V(4 + B) — k%(’l:) V.(4; B) (13)
und merken die Minkowskische Ungleichung
Vi(d; B)> V(4) & V(B (14)
sowie das Brunn-Minkowskische Ungleichungspaar an :
() Vil + B; Vi > V,(4; O + V,(B; 0w,
(b) V(4 — B;0)7137< VI(A;C’){:T~ Vl(B;C)”l—l . "

3) Vgl. etwa T. Bonnesen, W. Fenchel, Theorie der konvexen Koérper. Ergeb-
nisse der Mathematik und ihrer Grenzgebiete 3, 1-164, insbes. 38-41 und 91-93 (1935).
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Zu (14) 1st dabei zu bemerken, dafl dort nur im Falle der Homothetie
der Korper A4 und B Gleichheit gelten kann. Die Ungleichung (15b)
ergibt sich mit Riicksicht auf (6b) und (11) durch Anwendung der be-
kannten Ungleichung (15a) auf (4 — B) + B.

Aus (10) 148t sich unter Beachtung von (5b) noch die Differentiations-

formel ) 4 By —aV, (4 +1B:B)  (z>0) (16)

fiir die Korper der Schar 4 +4 7B herleiten. V' gibt darin die Ableitung
nach 7 an.

(¢) Die Schar der Relativparallelkorper nach innen. Die Haupthilfe
beim Beweis von (1) stellt uns die von G.Bol?) als Beweismittel einge-
fihrte Betrachtung der Relativparallelkorper nach innen, die in unserer
Bezeichnungsweise die Differenzkérperschar 4, = 4 — 7B darstellen.

Nach G.Bol ist

V'(4,) __11m—-[V(A,+8) V(4)]=—nV(d4,;B) (0 <t <l;¢>0). (17)

&—>0 €&
Uns wird vor allem dieSchar 4,, + B, (4,, =4 —atB; B, = B — ©B)
bei festem o (0 << a <{1) beschiftigen. Aus (7) und (8) kann man fir
diese Ay, e+ B, ¢S (Ay,~+ B,)sq+q) erschliefen und daraus vermoge (17)

Veap(dar + B,) < — (1 + ) nV,(4,, + B,; B) (18)

folgern, wobei durch Vj, gekennzeichnet sein soll, daB der Limes in
(17) durch den Limes superior zu ersetzen ist. Mit Hilfe von (12) erhalten
wir wegen B_ = (1 — 7)B die endgiiltigen Formeln

(a‘) V, (A‘r) =

n
1 —1 VI(AT’ Br) ’

n
l1—1

(b) V'(B)=—

V(B,), 0<z<1) (19)

(© Vi(Ae+ B) < — (+“) V.(A,. -+ B.; B) .

2. Beweis der Ungleichungen (1) und (2)

(a) Ungleichung (1) fiir A — B> L. Durch Kombination von (19¢)
und (154) findet man

VI

sup

(A, + B) < — o (Va(d,; Byos + V(B)os

)n-l .

1) G. Bol, Beweis einer Vermutung von H. Minkowski. Abh. Math. Sem.
Univ. Hamburg 15, 37-56 (1943).
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Fiir die Ableitung des Funktionals

1

2 l L
—(Vd,)»+ V(B)")" —(V(4,)» — V(B,)")" (0<t<])

ergibt sich daher gemifl (19a, b) und (9) die Abschitzung
1—

P4, B) = 9(2)

N S x 1y 3 1 Iy * 1
=2 (141 n_1+bn)<an+bn)"—l—( o —br) @n—bm)

a1 a n

in der zur Abkiirzung V(4,) =a, V(B,)=0b und V,(4,;B,) ==
gesetzt ist. Da aus der Minkowskischen Ungleichung (14) und der Be-

n—1 1

dingung 4 — B> L wegen (11) auf zy=a » br <2 < a zu schlie-
Ben ist, kann die wichtige Beziehung

F.,(4,; B,) <0 (20)

der Ungleichung ¢(x) > 0 (2, < 2« < a) entnommen werden, die fiir
n = 2 trivial ist, und fiir » >3 wegen der Konkavitit von ¢(z)
(¢" () <0) aus p(x,) =0 und @(a) >0 folgt. Wiahrend nun ¢” (z) < 0
und ¢@(x,) = 0 unmittelbar verifiziert werden kann, vereinfacht man
zum Nachweis von ¢(a)> 0 zundchst zu

LA 1 i b
9(@) = a-(2-(1 + cr1)y=1— (1 4 en)* — (1 — cn)") (" :‘a“>
und entwickelt nach dem binomischen Lehrsatz. Durch geeignete Zusam-

menfassung erhilt man

(a)—zaz[(;’;__ﬂ)"z’: 1+( vl>“:V —(;J"%]

— n —
wobei n' :?——2—2 fiir gerades » und =’ = 3

setzen ist. Als Anwendung der Ungleichung zwischen arithmetischem
und geometrischem Mittel ergibt sich jedoch, dal jedes Glied der Summe
nichtnegativ ist und hochstens fir ¢ =0 und ¢=1 null werden
kann.

Setzt man 7, = 1, womit sich B, auf einen Punkt reduziert, so

wird V4, + B,)= V(4,) uwd V(4, — B,)=V(4,), und es

fiir ungerades n zu
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ist mithin F(4, ; B, )= 0. Aus (20) erschlieBt man daher

F(A;B)=>F(4,,; B,) — IF (4,;B,)d, =0

sup

was den Inhalt der Ungleichung (1) ausma,cht.

Zur Herleitung von spéter zu benutzenden Gleichheitsbedingungen fir
n > 3 stellen wir fest, dafl ¢(z) =0 fir » >3 und b= V(B,)>0
nur an der Stelle # = z, bestehen kann. Falls nimlich, wie es nach der

obigen Entwicklung moglich ist, etwa auch ¢(a) =0 wire, so ist

c = % =1 und daher a = x, Voraussetzung. Da x = z, aber nichts

n—1 1
anderes als V,(4,; B,) = V(A4,) » V(B,)» bedeutet, ist der Gleich-
heitsbedingung fiir die Minkowskische Ungleichung (14) die folgende
Aussage zu entnehmen: In Ungleichung (1) kann fir » >3 und

V(B)>0 nur bei homothetischen Korpern A und B Gleichheit eintreten.

(b) DerFall A — B=L, V(4) > V(B). Da nun V(4 — B)=0
ist, untersucht man das Verhalten des Funktionals

G(4; B,)= V(4 + B,) — (V(4)» + V(B,)»)" — (V(4)» — V(B,)")"

Beriicksichtigt man, dafl hier die zweite Klammer mit wachsendem t
und daher abnehmendem V (B,) zunimmt, so ergibt sich fiir die Ablei-

tung unter Beachtung von (19)
1

n 1 1 1
Cuup(4; B,) <— 17—V (A+ B, B)— V(B)" (V(A)" +V (B,))]
n—1 1
Mit Hilfe von (14): V,(4 + B,;B,) >V + B,) » V(B,)» und
der Brunn-Minkowskischen Unglelchung (4)

V(4 + B ) (A)" + V(BT)"

folgt schon, daBi G, (4; B,) <0 ausfallen muB. Man hat nun 7,
nur noch so grol zu wihlen, da8 4 — B, zwar nicht leer ist, aber doch

verschwindendes Volumen besitzt. Damit gewinnt man Anschlu8 an den
Fall (a). Es ist dann namlich G(4; B, ) = F(4; B, ) > 0. Daraus folgt

G(4;B)>G(A;B,) — jG (4;B,)d, >

sup

(e) Dle Ungleichung (2). Durch Entmcklung von V(4 + B) nach der

Formel (13) erhilt man V(4 + B) — V(B) = (k)Vk(A ; B). Auf

Grund der Monotonieeigenschaft (11) kann V(4 + B) — V(B) daher
nicht abnehmen, wenn man A — B mit C bezeichnet und B sodann
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durch 4 — C2 B ersetzt. (2) folgt mithin aus der Ungleichung
1 1 1 1
@V =V O))"—V[A+A-O)N=(V(A)» =V (O))"—V(4—0),

die aber sicher richtig ist, wenn die Funktion

p(2) = (V{4 + 7d)» — V(O)»)" — V[z4 4 (4 — 0)]

fir 7>0 monoton zunimmt. Um dies zu zeigen, bilden wir unter Be-
achtung von (16) die Ableitung
Vi(Ad+z4; A 1 L]
P (=TT (44 e (C)ryt Y [r A (A—0); 4]
V(A+7d)
n—1

1
Nunist V(4 + t4;A4) =V (4 + vA) » V(4)» ; und es folgt weiter
Vi[tA 4+ (4 —0); A] < V(4 + tA4) — C; A] aus (7b) und (11).
Mit Riicksicht auf (14) ergibt sich daher

1

1
v (D)2alV (A+7r4; )1V (C; A)r1]1—nV,[(A+74)—C; 4],
so daBl y'(7) gemalB (15b) nicht negativ sein kann.

3. Das Vollstindigkeitsproblem
Setzt man

Vd)=u, V(By=v, VA+B) =z, V(A—B)=y, (21)

so gehen die Ungleichungen (3) und (4) bzw. (1) bis (3) in die Unglei-
chungssysteme

ER S 11 22
x = (un + o),y < (un — o))" b(zw?
X 1 L1 v>y>=>0,v>0
(@) @4y > @n 4 on) + (wr — on) Y
i1 11 (23)
(b) = — v < (2un —yn)" — (ur — y»)°

iiber. Wird nun »>0 und % >v fest vorgegeben, so bezeichne I'; (u, v)
bzw. I'y(u,v) den durch die Ungleichungen (22) bzw. (23) bestimmten
Bereich der (2, y)-Ebene und I;(u,v) die Menge der Punkte (z,y),
denen sich derart konvexe Koérper A, B zuordnen lassen, daB (21)
erfiillt ist. Wir zeigen, daB fir n > 3

Fl(uyv)DF2(uav)DP3(u’v) (u>'v>0) (24)
besteht, was die Folgerung zulafit, dafl das Ungleichungssystem (1) bis
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(3) wohl eine Verschiarfung des Ungleichungssystems (3), (4) darstellt,
jedoch noch nicht vollsténdig ist.

(a) Wie aus (22) zu folgern ist, stellt I, den Halbstreifen der
(z, y)-Ebene dar, der von Teilen der Geraden y =0, y =y, und

1 1
x = x, begrenzt wird, wobei zur Abkiirzung xz,= (u» 4 v»)* und
1 1
Yo = (un —vn)" gesetzt ist. Durch die Ungleichungen (23) wird I, als

ein dreiecksférmiger Bereich beschrieben, dessen Begrenzung durch die

beiden Geraden y =0 und « + y = %, + y, und die fir 0 <y <u
1 1 1 1
monoton fallende Kurve x — v = (2un — y»)" — (u» — y»)* gegeben

wird. Als Ecken ermittelt man unschwer die Punkte Py(z,;v,),
Py, =2+ Y341 =0) und Py(z,=(2"—1)u +2v;y,=0). Es
ist daher unmittelbar I'y> I', zu erschlieBen.

(b) Da fir Korper 4, B positiven Volumens in Ungleichung (1) nur
im Falle ihrer Homothetie Gleichheit besteht, d.h. aber fir = z, und

Yy = Y,, gehort von der Randstrecke 130_1;1 des Bereiches I, nur der
Punkt P, auch zu I;. Die triviale Beziehung 1,2 I'; verschirft sich
daher zu I',o I;.

Zur weiteren Untersuchung des Durchschnitts des Randes von I', mit

I'; sei A’ ein gerader Kegel des Grundflichenradius r, und der Hohe
n

By = — 7o (« = Volumen der (n — 1)-dimensionalen Einheitskugel), und
B’ stelle einen zu 4’ parallelen Kegelstumpf dar, d.h. einen geraden
Kegelstumpf, der aus einem zu A’ homothetischen Kegel durch Ab-
schneiden seiner Spitze entstanden ist. Bezeichnen r, und r,<r, dabei
die Radien der Deckflichen von B’, so 1ldBt sich V(4') =r; wund
V(B') = r{ — ry errechnen. Da sich A’ 4+ B’ bzw. A’ — B’ als ein
zu A’ paralleler Kegelstumpf bzw. Kegel ergibt, findet man zudem
VA" + B)= (ro +r)"—7ry und V(A" — B') = (ry — r)". Fir 4’, B’
tritt daher in (2) Gleichheit ein, wie sich durch Einsetzen verifizieren
14Bt. Man kann die Radien nun aber offenbar noch so wihlen, daf3 die
Korper A', B’ der Beziehung (21) bei Vorgabe eines beliebigen Qua-
drupels u, v, x,y geniigen, fiir das (23) erfiillt ist und speziell in (23b)

S

Gleichheit gilt. Der Randbogen P,P, gehort mithin ganz zu I';. Dies
besagt aber, daB sich Ungleichung (2) nicht mehr verschirfen la6t.

Eingegangen den 17.0Oktober 1955
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