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Konkave Eikoérperfunktionale

und hohere Trigheitsmomente

von H. HADwIcER, Bern

Eine Klasse & konvexer Korper (Eikorper) P, Q,... des k-dimensio-
nalen euklidischen Raumes R heiBt konver, wenn aus P,Q ¢ K stets
auch aPXfQeR [x,f >0, o« + p = 1] folgt.

Dabei verstehen wir unter AP einen Eikorper, der aus P durch Dilata-
tion mit 4>0 von einem festen Ursprung O des Raumes R aus hervor-
geht ; P X bezeichnet die Minkowskische Addition. Diese Eigenschaft
einer Eikorperklasse bezieht sich demnach nicht nur auf GréBe und Ge-
stalt der Korper, sondern auch auf ihre Lage im Raum.?)

Ein tiber einer konvexen Eikoérperklasse  definiertes Funktional ¢ (P)
nennen wir (im Minkowskischen Sinn) konkav, wenn fiir zwei beliebige
(nichtleere) Eikorper P, @ ¢ & die Funktionalungleichung

p(aPXBQ) = xp(P) + @) [x,20, x+5=1] (A)

erfiillt ist. Eine Invarianzeigenschaft des Funktionals ¢ wird nicht von
vornherein postuliert, doch handelt es sich in den geldufigen Féllen aus-
schlieflich um bewegungsinvariante Funktionale.

Als wichtigstes Beispiel sei vorerst das Funktional

@ (P) = V(P)t/* (B)

erwihnt, wobei V das Volumen bezeichnen mége. Der klassische Brunn-
Minkowskische Satz, der innerhalb der Theorie der konvexen Korper eine
Schliisselstellung einnimmt, sagt bekanntlich aus, dafl dieses Funktional
iiber der Klasse aller Eikorper invariant definiert und in unserem Sinn
konkav ist.

Eine wichtige Erweiterung stellt die von W. Fenchel und A. Alexan-

1) Beispiele konvexer Klassen sind: a) Eipolyeder, b) Rotationseikérper mit gleicher,
durch den Ursprung 0 laufender Achse, ¢) Eikérper, die in einem festen Eikérper als Teil
enthalten sind, wenn dieser selbst den Ursprung 0 enthalt.
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droff2) bewiesene Aussage dar, wonach fiir + = 0,...,k — 1 durch die

Ansitze
@ (P) = W (P)/*-D (C)

im gleichen Sinne konkave Funktionale gegeben sind. Hier bedeutet W,
das ¢-te Minkowskische Quermafintegral.
Einer Anregung von (. Polya?3) folgend, beweise ich in der vorliegenden
Note u. a., daB '
(p(P) s I(P)l/(k+2) (D)

ein konkaves Funktional ist, wenn I das Inertialmoment beziiglich des
Schwerpunktes von P (polares Triagheitsmoment) bezeichnet.

Im gleichen Zusammenhang betrachte ich auch gewisse hohere Trig-
heitsmomente, die als Simplexquadratintegrale angesetzt werden und
die das gewohnliche Inertialmoment als einfachsten Sonderfall enthalten.
Fiir diese Momente werden Ungleichungen gewonnen, welche die ent-
sprechenden Extremaleigenschaften der Kugel zum Ausdruck bringen.
In diesen Ungleichungen spielt neben dem Volumen V noch die Norm
N eine wesentliche Rolle. Sie ist proportional der sogenannten mittleren
Breite*), mif3t also die (lineare) GroBe des KEikorpers. Volumen und
Norm stellen im wesentlichen erste und letzte MaBlzahl in der Skala der
nichttrivialen Minkowskischen Quermaflintegrale dar, indem V = W,
und N =kW,_; gilts).

Jedes bewegungsinvariante und konkave Funktional nimmt unter
allen Eikorpern fester Norm den groftmoglichen Wert fiir die Kugel an.
Auf dieser Tatsache, die mit der Feststellung der Konkavitét eines Funk-
tionals auch schon die Losung des zugehdrigen Extremalproblems liefert,
beruht die Bedeutung des erdrterten Begriffs innerhalb der Theorie der
allgemeinen Eikorperfunktionale, wie dies auch an anderer Stelle hervor-
gehoben wurde ©).

Ein Nachweis, dal unter allen Eikorpern vorgeschriebener Norm
(mittlerer Breite) die Kugel das groBte Inertialmoment aufweist, bot

2) W. Fenchel, Généralisation du théoréme de Brunn et Minkowski con-
cernant les corps convexes, C.r. Acad. Sci. Paris 208, 764-766 (1936); A.Alexan-
droff, Neue Ungleichungen fiir die Mischvolumen konvexer Koérper, C. r.
Acad. Sci. URSS (N.S.) 14, 155-157 (1937).

3) Briefwechsel Sommer 1954.

%) BEsgilt N = (k w/2)b, wenn b die mittlere Breite ist. w . bezeichnet das Volumen
der k-dimensionalen Einheitskugel.

5) Fiir die niedrigsten Dimensionen gilt insbesondere: a) k = 1: N = b = Linge,
b) k = 2: N =nab= Umfang, ¢) k= 3: N = 271b = Integral der mittleren Kriim-
mung.

8y H. Hadwiger, Konkave Eikérperfunktionale. Monatshefte fiir Mathematik
89, 230—237 (1955).
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unerwartete Schwierigkeiten?); aus den Anstrengungen, diese zu iiber-
winden, ist die vorliegende Abhandlung hervorgegangen. Verschiedene
sachliche und methodische Ansitze und Kunstgriffe verdanke ich Herrn
G. Polya®).

I. In diesem ersten Teil gebe ich zunichst eine zusammenfassende
Darstellung der fiir die Trigheitsmomente giiltigen Ungleichungen, die
in den darauffolgenden Teilen abgeleitet werden sollen, und formuliere
damit auch die Extremaleigenschaften der Kugel, unter allen Eikoérpern
fester Norm die groBten und unter allen Eikoérpern festen Volumens die
kleinsten Tragheitsmomente aufzuweisen.

1.1. Es sei P ein Eikorper des k-dimensionalen euklidischen Raumes
R und p bezeichne einen in P verinderlichen Punkt. Fiir Punkte und
ihre Ortsvektoren verwenden wir das gleiche Zeichen. Der Schwerpunkt
von P sei s. Das polare Triagheitsmoment I von P ist dann durch das

Integral I(P) = [ |s,p |2dp ()

gegeben, wobei | s, p| die Lange der von s nach p fithrenden Strecke
und dp das Raumdifferential (Punktdichte) des beweglichen Punktes p
bedeutet. Die Integration erstreckt sich iiber alle Lagen von p im Ei-
kérper P.

Es seien weiter K° bzw. K Kugeln, welche mit P volumgleich bzw.
normgleich sind, so dafl also

V(K°) =V(P); N(K)=N(P) (2)
gilt. Es besteht dann die Ungleichung
I(K) = I(P) = I(K”) . (3)

1.2. Nun definieren wir eine Skala von % + 1 hoéheren Tragheits-
momenten I, (n = 0,1,...,k) durch die Integralansitze

IO(P):1 3 (43’)
In(P)::—Cl—'j‘Ilsapl""’pnlzdpl“'dpn [1<n<k] (4b)

n
Hierbei bedeutet |s,p,...,p,| das Volumen eines n-dimensionalen

) Im ebenen Fall (k = 2) lautet die entsprechende Ungleichung L* — 32731 > 0,
wobei L den Umfang des Eibereiches bezeichnet; der u. W. einzige Beweis hierfiir stammt
von @. Pélya und G. Szegd, Isoperimetric Inequalities in Mathematical Physics,
Princeton 1951, p. 10, 123-126 und erfordert funktionentheoretische Hilfsmittel. Als
., Ungelostes Problem Nr. 1 (Elemente der Math. 9, 111, (1954)) findet sich die Aufgabe
vorgelegt, fiir die oben stehende Ungleichung einen einfachen Beweis zu finden.

8) Vgl. G. Pélya, More isoperimetric inequalities proved and conjectured,
Comment. Math. Helv. 29, 112-119, (1955).
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Simplex, dessen Eckpunkte durch den Schwerpunkt s und durch n im
Eikorper P bewegliche Punkte p;, (¢ = 1,...,n) gebildet werden. Die
n-fache Integration erstreckt sich iiber alle Lagen der Punkte p, im Ei-
korper P. Die Konstante c, ist durch

1 k
o = W(n) (40)

gegeben und bewirkt lediglich eine zweckméBige Normierung.
Offensichtlich wird I,(P) = I(P), woraus erhellt, dal mit der Skala
der in (4) angesetzten Integralmomente eine Erweiterung des klassischen
Triagheitsmomentes zu einem vollstdndigen System gegeben ist.
Als Vervollstandigung der Ungleichung (3) ergibt sich

I(K) = 1, (P) Z I,(P)*? = - - = I, (P)'/* > I(K®) . (5)
Weiter gilt die in den drei Indizes zyklisch-symmetrische Ungleichung
L(P) o (P)e= I (P)e =1 [0 <a<b<c<Ek], (6)

welche ausdriickt, daBl 7,(P) in Abhingigkeit von der ganzzahligen
Variablen n logarithmisch konkav ist.

1.3. Durch eine naheliegende Variation des Ansatzes gelangen wir
zu einer weiteren Skala von %k 4 1 hoheren Integralmomenten J,
(n=0,1,...,k), die wir durch

Jo(P) = V(P) (7a)

1
J,(P) :Tj"'jlpﬂ’pl""’pn |2dpedp, .. .dp, [1 <n <Kk] (7b)

einfiilhren. Es handelt sich um zu den vorher definierten [, analoge
Simplexquadratintegrale, wobei nun aber alle » + 1 Eckpunkte p;,
(t=0,...,n) des m-dimensionalen Simplex im Eikoérper P variieren
sollen.

Es zeigt sich, dal3 diese J, keine neuen Eikorperfunktionale darstellen,
sondern sich auf einfache Weise auf die ,, zuriickfiihren lassen. Sie diirfen
daher auch als hohere Triagheitsmomente gelten. Iis besteht némlich die
Beziehung

Jo(P) = (n + 1) V(P)L,(P) , (8)

welche gestattet, alle Resultate iiber die Momente I, direkt auf die J,
zu iibertragen. Dies lassen wir hier natiirlich weg.

I1. Dieser zweite Teil ist dem Nachweis der Konkavitdt der gewohn-
lichen polaren und planaren Trigheitsmomente gewidmet.
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2.1. Es bezeichne O den Ursprung des Raumes und E eine durch O
gelegte, (K — 1)-dimensionale Ebene ; u sei ein in O angreifender, auf E
orthogonal stehender, normierter Richtungsvektor. Alle Vektoren «,
deren Skalarprodukte mit % durch (z,u) >0 bzw. (x,u) <0 einge-
schrinkt sind, kennzeichnen die beiden durch E erzeugten (abgeschlosse-
nen) Halbrdume H _bzw. H_. Wir betrachten im folgenden nur Eikérper,
die ganz im positiven Halbraum H_ liegen ; sie bilden beziiglich des Ur-
sprungs O als Dilatationszentrum eine konvexe Eikorperklasse K, (vgl.
Einleitung).

Das planare Trigheitsmoment von P beziiglich £ ist durch das Integral
T,(P)=J|E,p|*dp (8)

gegeben, wobei | £, p| den Abstand des in P beweglichen Punktes p
von K bezeichnet. Das zugehorige Funktional

¢(P) = T, (P)/k+2 (9)

ist iiber der Klasse &, definiert, dort definit, monoton und linear bei Dila-
tation, so dalB3 also

p(P) =0, o¢P)=¢e@ (P>2Q), ¢AP)= Aigp(P)

gilt. Wir zeigen jetzt, dall das Funktional auch (im Minkowskischen
Sinne) konkav ist, so daf} die Beziehung (A) der Einleitung erfiillt ist.

In der Tat : Wir betten den k-dimensionalen Raum R in einen (k -+ 2)-
dimensionalen Raum £* ein und fiihren weiter zwei Richtungsvektoren v
und w im R* ein, die zueinander wie auch auf R orthogonal stehen und
zudem normiert sein sollen. Einem Eikérper Pc R der Klasse |, ord-
nen wir dann den Eikérper P*c RB* zu, dessen Punkte p* durch die
Parameterdarstellung

p*=p+ (p,w)(ev+ow), (0<e<1, 0<0<<])

aus den Punkten p von P hervorgehen. Man bestétigt leicht, daB fiir
P,Q e, und o, > 0 die Beziehung («P X pQ)* = o« P* X p@* erfiillt
ist, wobei sich die Minkowskische Linearkombination links im R und
rechts im R* vollzieht. Weiter ist unmittelbar einzusehen, daB fiir
P eQ, die Identitit T (P)= V*(P*) gilt, wo V* das Volumen im
Raum R* bezeichnet. Mit der Vertauschungsrelation oben ergibt sich das
Bestehen der Funktionalungleichung (A) fiir das Funktional (9), wenn
man den Brunn-Minkowskischen Satz im Raum R* zur Wirkung bringt.

2.2. Es sei jetzt P ein Eikorper des Raumes R, den wir uns so ver-
schoben denken, daB sein Schwerpunkt s mit dem Ursprung O zusammen-

19  Commentarii Mathematici Helvetici 289



fallt. Die beiden zu Beginn des vorigen Abschnittes betrachteten Halb-
rdiume H, und H_ zerlegen P in die beiden Teilkérper P, = P~ H_ und
P_= P~ H_. Da unsere Definition des planaren Trigheitsmomentes
fur P versagt, filhren wir die beiden einseitigen Trigheitsmomente
T,(P) und T_(P) durch die Festsetzungen T (P)=T_(P,),
T_(P)=T_(P_) ein. Die Summe 7 (P) =T, (P) + T_(P) ist das ge-
wohnliche planare Triagheitsmoment 7' des Eikorpers P beziiglich der
Ebene Z, das durch das Integral

T(P)=[|E,p|*dp (10)
dargestellt wird. Mit dem Ansatz
p(P) = T (P)Y/k+2) (11)

wird ein iiber der Klasse aller Eikorper definiertes Funktional festgelegt,
das wie das Funktional (9) definit, monoton und linear bei Dilatation ist,
das aber auBlerdem translationsinvariant ausfillt, so dal o (P) = »(Q)
gilt, wenn P und @ translationsgleich sind. Hierbei ist selbstverstdandlich
vorausgesetzt, daB die Ebene £ durch den Ursprung O festgelassen wird.
Wir wollen nun nachweisen, dafl ¢ auch (im Minkowskischen Sinne) kon-
kav ist.

In der Tat: Es seien P und ¢ zwei Eikorper des Raumes R und S
=aPXpQ (¢, =0, a« + B = 1) bezeichne eine Linearkombination ;
der Schwerpunkt s von S mdge mit dem Ursprung O zusammenfallen.
Mit u bezeichnen wir wieder einen normierten Richtungsvektor, der auf
E orthogonal steht. Nun betrachten wir neue Koérper P, und @, , die aus
P und @ durch entgegengesetzt wirkende Transformationen hervorgehen
sollen ; sind nédmlich p und ¢ Punkte von P und ¢, so mégen

p,=pP+ tfu und g=qg— Tau

Punkte von P, und @, darstellen. 7 bezeichnet einen im Intervall
—oo< 7<oco variierbaren Parameter. Wie man miihelos bestdtigt, gilt
fiir alle 7 die Beziehung S = «P_X @, in unverdnderter Weise.

Nun fithren wir die Hilfsfunktionen &(7)=7_(P,)/T_(P,) und
n(t) =T,(@,)/T_(Q,) ein, wobei &(z) in einem offenen Intervall
o<t<p definiert ist und dort monoton von 0 bis co stetig ansteigt,
wihrend #(7) in einem andern offenen Intervall o <t <o definiert ist,
dort aber von oo bis 0 stetig sinkt. Da fiir ausreichend kleine t sicher
P,cH_ und Q,cH,_, fiir ausreichend grofle v dagegen umgekehrt
P,cH,_ und Q,cH_ gilt, da weiter niemals beide Eikorper im gleichen
Halbraum liegen, da sich sonst auch S ganz in einem Halbraum befinden
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miifite, was nach Annahme iiber den Schwerpunkt ausgeschlossen ist, so
gibt es Parameterwerte derart, daB P, und @, gleichzeitig durch £ in
zwei eigentliche Teilkorper zerlegt werden. Dies bedeutet, daB die beiden
Definitionsintervalle fiir &£(7) und # () ein nichtleeres Durchschnittsinter-
vall aufweisen miissen.

Unter Verwendung der Monotonie- und Stetigkeitseigenschaften ergibt
sich jetzt leicht, daBl ein 7, existiert, fiir welches &(7,) = n(t,) = ¢
wird. Ohne Einschrinkung darf man annehmen (Translationsinvarianz
des Funktionals y!), da 7, = 0 wird, was damit gleichbedeutend ist,
daB sich die beiden urspriinglich gew#hlten Kérper P = P, und Q = @,
in der durch die Gleichheit von & und 7 ausgezeichneten Lage befinden.

Nun iiberlegt man sich weiter, dafl

S, 5aP,xpQ, und S_SaP_xpQ_ .

Hieraus ergeben sich mit der bereits bewiesenen Konkavitidt der einseiti-
gen Funktionale 7%+ ynd 7"*+? die Ungleichungen

T, (S)l/(k+2) > OtTi (P)1/tk+2) 1 ﬂTi (Q)l/(k+2) .

Nun war aber nach unserer Konstruktion 7' (P)= (T_(P) und
T,(P)={_T_(Q). Aus den beiden obenstehenden Relationen und unter
Verwendung der Ungleichungen

T,(P)+T_(P)=T({P) und T,@Q)+T-@Q) =T@)

(man beachte, dafl die Ebene £ nicht notwendig durch die Schwerpunkte
von P und @ geht), gewinnt man jetzt leicht die gewiinschte Formel,

néimlich
T (S)1/E+2) > T (P)1/k+2) 4 BT (Q)r/*+2) |

also das Bestehen der Ungleichung (A) fiir das Funktional (11).

2.3. Wir betrachten nun k paarweise aufeinander orthogonal stehende
normierte Richtungsvektoren u, (¢ = 1,...,k) und legen die X ihnen
entsprechenden Ebenen E; (i = 1,..., %) durch den Ursprung O. Einen
Eikorper P denken wir wieder so im Raum R verschoben, dafl sein
Schwerpunkt ¢ mit O zusammenfillt. Die Summe der £ gewohnlichen,
planaren Trigheitsmomente 7'; (¢ = 1,..., %) des Korpers P beziiglich
der Ebenen K, ist dann bekanntlich gleich dem gewdhnlichen polaren
Trigheitsmoment 7, so daBl die Additionsformel I = X7, vorgemerkt
werden kann. Wir erinnern, dafl I durch das Integral (1) eingefithrt wurde.

Der Ansatz

2 (P) = I(P)t/t2) (12)
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fithrt ein fiir die Klasse aller Eikorper definiertes Funktional ein, das wie
das Funktional (11) ebenfalls definit, monoton und linear bei Dilatation
ist, das aber nicht nur wie jenes translationsinvariant, sondern sogar be-
wegungsinvariant ist, so dafl y(P) = y () gilt, falls P und @ kongruent
sind.

Nun wollen wir beweisen, dal3 ¥ auch (im Minkowskischen Sinn) kon-
kav ist. Um das Bestehen der Funktionalungleichung (A) zu bestatigen,
geniigt es zu zeigen, dafl aus I(P)=1I(Q)=1 und 8§ = aPXpQ
(¢, =0, a +pf=1) die Ungleichung I(S) > 1 gefolgert werden
kann.

Dies ist in der Tat der Fall : Es sei u ein variabel gedachter Richtungs-
vektor und 7' (P, u) bezeichne das planare Moment des Eikorpers P be-
ziiglich einer durch den Schwerpunkt von P gehenden, auf « orthogonal
stehenden Ebene. Offenbar ist 7'(P, u) eine stetige Funktion von «. Nun
betrachten wir die stetige Richtungsfunktion f(u) = 7'(P, ) — T(@, ).
Nach einem Hilfssatz iiber stetige Funktionen auf Sphiren gibt es k
paarweise aufeinander senkrecht stehende Richtungen u, (z =1, ..., k),
so dafl f(u,) =...= f(u;) wird?®). Danun X f(u,) =I(P) —1(Q) =0
ausfillt (man beachte die Additionsformel fiir die Momente und die Vor-
aussetzung der zu beweisenden Aussage), schlieBt man auf f(u;) =0,
(¢=1,...,k) oder also auf T(P,u,) =T@,u,), ¢t =1,...,k).

Aus der bereits bewiesenen Konkavitit der Funktionale 7'1/k+2) folgen
jetzt die £ Ungleichungen

T(S, u{)l/(ka—z) > aT(P, ui)ll(k+2) -+ IgT(Q, ui)ll(k-{—z) ,

die unter Verwendung der oben erzielten Ubereinstimmung der einzelnen
Momente von P und @ in die Ungleichungen 7'(S, w,) > 7' (P, w;) iiber-
gehen. Mit der Additionsformel resultiert 7(S) > 1, was zu beweisen
war.

ITI. In diesem dritten Teil wollen wir zeigen, daf3 sich die von uns be-
trachteten hoheren Trigheitsmomente als elementar-symmetrische Funk-
tionen der planaren Haupttrigheitsmomente darstellen lassen. Dadurch
wird eine zwischen den Simplexquadratintegralen bestehende starke
gegenseitige Abhéngigkeit auf rein algebraische Weise ausgedriickt.

3.1. Wir geben wieder einen Eikoérper P im Raum R vor und dazu
k Richtungen »; (1 = 1,...,%), welche durch den Schwerpunkt von P

?) Es handelt sich um die k-dimensionale Erweiterung eines Theorems von S. Kakutani
(k = 3). Vgl. H. Yamabe und Z. Yujobo, On the continuos function defined on
a sphere. Osaka math. J. 2, 19-22 (1950).
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hindurchlaufen und seinen Haupttrigheitsachsen entsprechen mogen.
Die ihren Normalebenen zugeordneten planaren Trigheitsmomente von
P sind dann die planaren Haupttrigheitsmomente 7', (s = 1,..., k) be-
ziiglich der Hauptebenen E,.

Wie wir nachfolgend beweisen werden, gelten fiir die mit (4) und (7)
eingefiihrten hoheren Trigheitsmomente die Darstellungen

1
I.(P)= nlc, 2. Ty,...,T,) (13)
und
1Py ="y 5y, 1y, (14)
wobei X, (7,...,T,) die elementarsymmetrische Funktion n-ten Gra-

des der k planaren Haupttrigheitsmomente 7', bezeichnet. Insbesondere
istalso Iy =1, I, =1=T,+---+T,, I,=kT,... T, und Jy=V,
Jy=2V Ty+---+T), J, =k + 1)E¥VT,...T,.

3.2. Die Resultate (13) und (14) konnen durch direkte Rechnung ge-
wonnen werden. Es sei p, ein Punkt im Eikorper P, den wir uns zunéchst
fest denken wollen, wihrend weitere n Punkte p, (z = 1,...,n) variabel
sind. Setzen wir ¢, = p, — p, ¢ =1,...,n), soist

| Dos P15 -5 P |2 = (/0 ])? Det || (¢,,9,) [ (v,ue=1,...,m) .

Nun wihlen wir die Hauptachsen der Triagheit durch den Ursprung O,
der selbst mit dem Schwerpunkt von P zusammenfallen soll, als Koordi-
natenachsen.

Bezeichnen wir die Koordinaten der Punkte p, mit z,, ¢ = 1,...,n;
A=1,...,%k) und diejenigen von p, mit ¥y, (A =1,...,%) und setzen
wir die Ausdriicke k

(v, 9u) :le(x“ — ¥ (@) — ¥

fiir die Skalarprodukte oben in die Determinante ein ! Hierauf integrieren
wir iiber die » im Korper P variierbaren Punkte p, (¢ = 1,...,n). Es
ergibt sich dann nach einigen zweckméifligen Umgruppierungen die
Formel

k k
Joo§ 120 Py e s 2o Pdpy e ndpy = (U012 2 - ARy, .00, 4],

)\121 )\nzl

wobei A[A,... 2,] = Det || DI, ||, (i,7=1,...,7) ist und DY, das
Moment

Dgy - .f (x/\ — y/\) (xy. - yy.)dp

293



bezeichnet (der Punktindex ist hier als iiberfliissig weggelassen). Setzt
man noch

D/\p = j‘ x)\xp.dfp ’
so ergibt sich mit Riicksicht auf das Verschwinden der statischen Momente

§ z)dp die Beziehung
DS, =Dy, + 9y V .

Nun wollen wir die Determinanten A4 berechnen.

1. Fall: Die 4, sind alle verschieden. Es gilt dann Dx;»; = 0 fiir
t #7, da es sich um Deviationsmomente beziiglich der Hauptebenen
der Trigheit handelt. Die Diskussion der Determinante A liefert

Ay, 2] =T, Ty, L+ 5. VT +-- -+ 45, VIT,}
wobei noch zu beachten ist, dafl D,,,, = T,, ist.

2. Fall : Die A, sind nicht alle verschieden. Da die Determinante gleiche
Zeilen enthilt, gilt
A[Ayyeey 4,]=0.

Lassen wir jetzt einmal p, mit dem Schwerpunkt, also mit O zusammen-
fallen, so gilt y;, =0 (¢ = 1,..., k) und es resultiert mit Riicksicht auf
die Formel des 1. Falles

Ay eer 2] =Ty ,erus Ty,

die Darstellung

1
5"'IIs’pl"“’pnlzdpl"'dpnzmzn(Tl’”"Tk) .

Wird aber p, auch als verinderlich angenommen, so ergibt sich mit Riick-
sicht auf die wieder aus dem 1. Fall flieBende Formel

IA[A].,..-, Zn]dpo - (n + ].)VTAl,.oo, TA”
ganz analog

n 1
J-'-IIpo,pl,-u,pnIzdpodpl.-~dpn=—(—;}—)VEn(Tl,---,Tk) .

Damit sind die Darstellungen (13) und (14) gewonnen.

IV. In diesem letzten Teil beweisen wir die im ersten zusammengefaf3t
dargestellten Ungleichungen.
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4.1. Wir weisen zunichst die Zyklisch-symmetrische Ungleichung (6)
nach. Setzen wir

Sn = 1/(?,/) Zn(T19 ey Tk) ’

so gilt nach einer klassischen Ungleichung fiir elementarsymmetrische
Funktionen 19)

Spo18ni1 85 [0<n<k] .

Diese Ungleichung driickt auch aus, da8 logs, als Funktion der ganz-
zahligen Variablen n konkav ist. Mit Riicksicht auf diesen Umstand 148t
sich (durch logarithmieren) unmittelbar die Beziehung

sbegegah > [0 <a<b<e <k]

verifizieren. Wegen (13) und (4¢) ergibt sich aber, dal s, = k"I, ist.
Setzt man dies in obenstehender Ungleichung ein, so erhilt man (6). Hier
gilt das Gleichheitszeichen dann und nur dann, wenn alle 7'; den gleichen
Wert aufweisen, d. h. wenn der Eikorper ein solcher ,,konstanter Trig-
heit“ ist, insbesondere also dann, wenn es sich um eine Kugel handelt1).

Setzen wir in (6) a =0, b =2, ¢ =n + 1, so erhalten wir unter
Beachtung von (4a) die Beziehung

1/ 1/(n+1
Inn 2 ]n/-(i—l 4

und damit den Nachweis des mittleren Teils der Kettenungleichung (5).

4.2. Nun weisen wir das linksseitige Ende der Ungleichungskette (5)
nach. Wir betrachten einen Eikorper ¢, der aus P durch eine Minkowski-
sche Drehsymmetrisierung hervorgeht, also in der Form

Q = A, P, XA PyX A, P, , [A4>0,4 4+ A, =1]

darstellbar ist, wobei die Korper P, alle durch Drehungen aus P hervor-
gehen. Mit der Konkavitit des Funktionals [1/**+2) und der Drehinva-
rianz von I schlieBt man auf I(Q) > I(P). Die Norm N bleibt bei der
Drehsymmetrisierung invariant, so da N (Q) = N (P) vorgemerkt wer-
den kann.

Nun 148t sich aber nach einem bereits an anderer Stelle bewiesenen

10) Vgl. G. Hardy, J. E. Littlewood und G. Pdlya, Inequalities. Cambridge 1934,
p. 52, Theorem 51.

11) Bin Koérper konstanter Trigheit hat die Eigenschaft, dal sein Tragheitsellipsoid
eine Kugel ist; demzufolge sind seine planaren und axialen Trégheitsmomente aller Rich-
tungen einander gleich. Der Zylinder mit Radius R = 1 und Héhe H = V12/(k + 1)
ist ein Korper konstanter Tragheit.
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Hilfssatz!2) durch eine geeignete Drehsymmetrisierung mit beliebig vor-
gegebener Genauigkeit eine Kugel approximieren. Es gibt also bei be-
liebigem ¢>0 ein @ so, dal d(Q, K)<<e wird, wo K eine mit P norm-
gleiche Kugel und d die Eikoérperdistanz bedeutet. Unter Verwendung
der iiblichen Stetigkeitsbetrachtungen folgt sofort I(K) > I(P), was zu
zeigen war.

4.3. Endlich wenden wir uns noch dem rechtsseitigen Ende der Un-
gleichungskette (5) zu. Aus der Definition (4) folgt unmittelbar, dafl das
Funktional 4 = I, V-%+2 affininvariant ist. Ersetzen wir I, nach For-
mel (13) durch die planaren Haupttrigheitsmomente, so resultiert das
affininvariante Funktional 4 = k*7T,,..., T, V-%+2 Wir kénnen aber
den Eikorper P durch eine einfache affine Abbildung in einen Eikorper
P, konstanter Trégheit iiberfithren, fiir welche alle planaren Haupttrig-
heitsmomente den gleichen Wert 7', haben ; wegen kT, = I, ergibt sich
dann die Beziehung A4 = A, = IF V¥4

Nunist I, = [ rdp, wo r den Abstand des in P, variierenden Punktes
p vom Schwerpunkt bedeutet. Bezeichnet df2 die Richtungsdichte
(Flachendifferential der (k& — 1)-dimensionalen Richtungssphire), so
1aBt sich dp = r*-1drdS2 schreiben, und es resultiert I, = (f r*+1drdQ2.
In diesem Integral integrieren wir zunichst bei fester Richtung nach r
und erzielen I, = 1/(k 4 2) [ R*+2dQ2, wobei R die Linge derjenigen
Teilsehne bedeutet, die von einer vom Schwerpunkt auslaufenden Halb-
geraden in der fest gewihlten Richtung aus P, ausgeschnitten wird. Ein
Vergleich mit der Integralformel V,= 1/k [ R*d(? fiihrt hierauf mit
Anwendung der bekannten Ungleichung fiir Potenzintegralmittel 13) und
mit Kenntnis des Richtungsintegrals fdQ = kw, zur (bekannten) Un-
gleichung

I, > k/(k + 2) o Ry E+aE

Wir verwenden dieses Teilresultat in der obigen Darstellung des Funk-
tionals 4 und gewinnen 4 > w;?[k/(k + 2)]*. Damit resultiert aber
die Ungleichung I, > w;?[k/(k + 2)]¥V*+2, und diese ist gleichbedeu-
tend mit 7,(P)* > I(K°, wo K° eine mit P volumgleiche Kugel be-
zeichnet. Damit ist der Nachweis abgeschlossen.

(Eingegangen den 27. September 1955.)

12) H. Hadwiger, Altes und Neues iiber konvexe Korper. Birkhéauser Basel 1955, p. 27.
(Der Beweis ist daselbst nur dreidimensional gefiihrt.)
18) Loc. cit. Fuinote 10, p. 143, Theorem 192.
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