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Konkave Eikôrperfunktionale
und hôhere Trâgheitsmomente

von H. Hadwiger, Bern

Eine Klasse R konvexer Kôrper (Eikôrper) P, Qf... des /b-dimensio-
nalen euklidischen Raumes R heiBt konvex, wenn aus P, Q e R stets
auch ocPxPQeSi [a,j8>0, a + p 1] folgt.

Dabei verstehen wir unter XP einen Eikôrper, der aus P durch Dilatation

mit X > 0 von einem festen Ursprung 0 des Raumes R aus hervor-
geht ; PxQ bezeiehnet die Minkowskische Addition. Dièse Eigenschaft
einer Eikôrperklasse bezieht sich demnach nicht nur auf GrôBe und Ge-
stalt der Korper, sondern aueh auf ihre Lage im Raum.1)

Ein ûber einer konvexen Eikôrperklasse Si definiertes Funktional cp (P)
nennen wir (im Minkowskischen Sinn) konkav, wenn fur zwei beliebige
(nichtleere) Eikôrper P, Q e R die Funktionalungleichung

<p(ocPxpQ) > occp(P) + p<p(Q) [a, P > 0, oc + fi 1] (A)

erfûllt ist. Eine Invarianzeigenschaft des Funktionals (p wird nicht von
vornherein postuliert, doch handelt es sich in den gelàufigen Fâllen aus-
schlieBlich um bewegungsinvariante Funktionale.

Als wichtigstes Beispiel sei vorerst das Funktional

tp(P) V(P)i* (B)

erwâhnt, wobei F das Volumen bezeichnen môge. Der klassische Brunn-
Minkowskisehe Satz, der innerhalb der Théorie der konvexen Kôrper eine
Schlusselstellung einnimmt, sagt bekanntlich aus, daB dièses Funktional
iiber der Klasse aller Eikôrper invariant defîniert und in unserem Sinn
konkav ist.

Eine wichtige Erweiterung stellt die von W. Fenchel und A. Alexan-

J) Beispiele konvexer Klassen sind: a) Eipolyeder, b) Rotationseikorper mit gleicher,
durch den Ursprung 0 laufender Achse, c) Eikôrper, die m einem festen Eikôrper als Teil
enthalten sind, wenn dieser selbst den Ursprung 0 enthalt.
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droff2) bewiesene Aussage dar, wonach fur i 0,..., k — 1 durch die
Ansàtze

im gleichen Sinne konkave Funktionale gegeben sind. Hier bedeutet Wt
das i-te Minkowskische Quermafiintegral.

Einer Anregung von G. Pôlyaz) folgend, beweise ich in der vorliegenden
Note u. a., daB

<p(P) =I(P)l/(k+2) (D)

ein konkaves Funktional ist, wenn / das Inertialmoment bezuglich des

Schwerpunktes von P (polares Tragheitsmoment) bezeichnet.
Im gleichen Zusammenhang betrachte ich auch gewisse hohere Trag-

heitsmomente, die als Simplexquadratintegrale angesetzt werden und
die das gewohnliche Inertialmoment als einfachsten Sonderfall enthalten.
Fur dièse Momente werden Ungleichungen gewonnen, welche die ent-
sprechenden Extremaleigenschaften der Kugel zum Ausdruck bringen.
In diesen Ungleichungen spielt neben dem Volumen F noch die Norm
N eine wesentliche Rolle. Sie ist proportional der sogenannten mittleren
Breite4), miBt also die (lineare) GroBe des Eikorpers. Volumen und
Norm stellen im wesentlichen erste und letzte MaBzahl in der Skala der
nichttrivialen Minkowskischen QuermaBintegrale dar, indem V — Wo

und tf iWVi gift5)-
Jedes bewegungsinvariante und konkave Funktional nimmt unter

allen Eikorpern fester Norm den groBtmoglichen Wert fur die Kugel an.
Auf dieser Tatsache, die mit der Feststellung der Konkavitat eines Funk-
tionals auch schon die Lôsung des zugehorigen Extremalproblems liefert,
beruht die Bedeutung des erôrterten Begriffs innerhalb der Théorie der
allgemeinen Eikorperfunktionale, wie dies auch an anderer Stelle hervor-
gehoben wurde6).

Ein Nachweis, daB unter allen Eikorpern vorgeschriebener Norm
(mittlerer Breite) die Kugel das grôBte Inertialmoment aufweist, bot

2) W. Fenchel, Généralisation du théorème de Brunn et Minkowski
concernant les corps convexes, C. r Acad. Sci. Pans 203, 764—766 (1936), A.Alexan
droff, Neue Ungleichungen fur die Mischvolumen konvexer Korper, C. r.
Acad. Sci. URSS (N.S.) 14, 155-157 (1937).

3) Briefwechsel Sommer 1954.
4) Es gilt N (k co&/2) B, wenn B die mittlere Breite ist. coK bezeichnet das Volumen

der k dimensionalen Emheitskugel.
5) Fur die niedrigsten Dimensionen gilt msbesondere a)&=l ^ 6 Lange,

b) k 2. N — nb Umfang, c) k 3. N — 2nl> — Intégral der mittleren Krum
mung.

6) H, Hadwiger, Konkave Eikorperfunktionale. Monatshefte fur Mathematik
59, 230—237 (1955).
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unerwartete Schwierigkeiten7) ; aus den Anstrengungen, dièse zu ûber-
winden, ist die vorliegende Abhandlung hervorgegangen. Verschiedene
sachliche und methodische Ansâtze und Kunstgriffe verdanke ich Herrn
0. Pôlya*).

I. In diesem ersten Teil gebe ich zunâehst eine zusammenfassende
Darstellung der fur die Tràgheitsmomente gùltigen Ungleiehungen, die
in den darauffolgenden Teilen abgeleitet werden sollen, und formuliere
damit auch die Extremaleigenschaften der Kugel, unter allen Eikôrpern
fester Norm die grofiten und unter allen Eikôrpern festen Volumens die
kleinsten Tràgheitsmomente aufzuweisen.

1.1. Es sei P ein Eikorper des fc-dimensionalen euklidischen Raumes
R und p bezeichne einen in P veranderlichen Punkt. Fur Punkte und
ihre Ortsvektoren verwenden wir das gleiche Zeiehen. Der Sehwerpunkt
von P sei s. Das polare Tragheitsmoment / von P ist dann durch das

J|.,p|.cfr (1)

gegeben, wobei | s, p | die Lange der von s nach p fùhrenden Strecke
und dp das Raumdifïerential (Punktdichte) des beweglichen Punktes p
bedeutet. Die Intégration erstreckt sich ùber aile Lagen von p im
Eikorper P.

Es seien weiter K° bzw. K Kugeln, welche mit P volumgleich bzw.
normgleieh sind, so da6 also

V(K°) V(P) ; N(K) N(P) (2)

gilt. Es besteht dann die Ungleichung

I(K) ^I(P) >I{K°) (3)

1.2. Nun definieren wir eine Skala von k + 1 hôheren Tragheits-
momenten In (n 0, 1,..., k) durch die Integralansàtze

J0(P) 1 (4a)

/n(P)=J-J •••/|«,Pi,...,Pnl2dPi...^n [1 <n<fc] (4b)
Cn

Hierbei bedeutet | s, px..., pn \ das Volumen eines n-dimensionalen

7) Im ebenen Fall {k 2) lautet die entsprechende Ungleichung L4 — 32 7ts I > 0,
wobei L den Umfang des Eibereiches bezeichnet, der u. W. emzige Beweis hierfur stammt
von G. Pôlya und G.Szcgo, Isoperimetrie Inequalities in Mathematieal Physies,
Princeton 1951, p. 10, 123-126 und erfordert funktionentheoretische Hilfsmittel. Als
?,XJngelostes Problem Nr. 1" (Elemente der Math. 9, 111, (1954)) findet sich die Aufgabe
vorgelegt, fur die oben stehende Ungleichung einen emfachen Beweis zu finden.

8) Vgl. G. Pôlya, More îsoperimetric inequalities proved and conjectured,
Comment. Math. Helv. 29, 112-119, (1955).
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Simplex, dessen Eckpunkte durch den Schwerpunkt s und durch n im
Eikôrper P bewegliche Punkte p{ (i 1,..., n) gebildet werden. Die
w-fache Intégration erstreckt sich uber aile Lagen der Punkte pt im
Eikôrper P. Die Konstante cn ist dureh

gegeben und bewirkt lediglich eine zweckmàBige Normierung.
Ofïensichtlich wird IX{P) — I(P), woraus erhellt, dafi mit der Skala

der in (4) angesetzten Integralmomente eine Erweiterung des klassischen
Trâgheitsmomentes zu einem vollstândigen System gegeben ist.

Als Vervollstândigung der Ungleichung (3) ergibt sich

(5)

Weiter gilt die in den drei Indizes zyklisch-symmetrische Ungleichung

[0 < a<b<c < k] (6)

welche ausdriickt, da8 In(P) in Abhàngigkeit von der ganzzahligen
Variablen n logarithmisch konkav ist.

1.3. Durch eine naheliegende Variation des Ansatzes gelangen wir
zu einer weiteren Skala von 4 + 1 hëheren Integralmomenten Jn
(n 0, 19.. k), die wir durch

J0(P) V(P) (7a)

Jn(P)=^rS---5\Po,Vi,---,Pn\2dpodPl...dPn [l^n^k] (7b)

einfûhren. Es handelt sich um zu den vorher definierten In analoge
Simplexquadratintegrale, wobei nun aber aile n + 1 Eckpunkte p{
(i o,..., n) des w-dimensionalen Simplex im Eikôrper P variieren
sollen.

Es zeigt sich, da8 dièse Jn keine neuen Eikôrperfunktionale darstellen,
sondern sich auf einfache Weise auf die In zurûckfuhren lassen. Sie diirfen
daher auch als hôhere Trâgheitsmomente gelten. Es besteht nâmlich die

Beziehung
Jn{P) {n+l)V(P)In{P) (8)

welche gestattet, aile Resultate uber die Momente In direkt auf die Jn

zu iibertragen. Dies lassen wir hier naturlich weg.

II. Dieser zweite Teil ist dem Nachweis der Konkavitat der gewôhn-
lichen polaren und planaren Trâgheitsmomente gewidmet.
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2.1. Es bezeichne 0 den Ursprung des Raumes und E eine durch 0
gelegte, (Je — l)-dimensionale Ebene ; u sei ein in 0 angreifender, auf E
orthogonal stehender, normierter Richtungsvektor. Aile Vektoren x,
deren Skalarprodukte mit u durch (x, u) > 0 bzw. (x, u) < 0 einge-
schrânkt sind, kennzeichnen die beiden durch E erzeugten (abgeschlosse-
nen) Halbrâume H+ bzw. H_. Wir betrachten im folgenden nur Eikôrper,
die ganz im positiven Halbraum H+ liegen ; sie bilden bezuglich des Ur-
sprungs 0 als Dilatationszentrum eine konvexe Eikôrperklasse R+ (vgl.
Einleitung).

Das planare Trâgheitsmoment von P bezuglich E ist durch das Intégral

T+(P)=$\E,p\*dp (8)

gegeben, wobei | E, p | den Abstand des in P beweglichen Punktes p
von E bezeichnet. Das zugehorige Funktional

<p(P) ^T+iP)1^» (9)

ist iiber der Klasse 5t+ definiert, dort définit, monoton und linear bei
Dilatation, so da6 also

(Pz>Ç), cp(lP)

gilt. Wir zeigen jetzt, daB das Funktional auch (im Minkowskischen
Sinne) konkav ist, so daB die Beziehung (A) der Einleitung erfullt ist.

In der Tat : Wir betten den &-dimensionalen Raum R in einen (k + 2)-
dimensionalen Raum i£* ein und fuhren weiter zwei Richtungsvektoren v
und w im R* ein, die zueinander wie auch auf R orthogonal stehen und
zudem normiert sein sollen. Einem Eikôrper PœR der Klasse R+ ord-
nen wir dann den Eikôrper P*czR* zu, dessen Punkte p* durch die
Parameterdarstellung

p* p + (p,u)(qv + ow) (0<£<l, 0<or<l)
aus den Punkten p von P hervorgehen. Man bestâtigt leicht, daB fur
P, Q € R+ und a, j8 > 0 die Beziehung (aPx/9Q)* <*¦?* X/ÎQ* erfullt
ist, wobei sich die Minkowskische Linearkombination links im R und
rechts im R* vollzieht. Weiter ist unmittelbar einzusehen, daB fur
Pe#+ die Identitât T+(P) V*{P*) gilt, wo F* das Volumen im
Raum i?* bezeichnet. Mit der Vertauschungsrelation oben ergibt sich das
Bestehen der Funktionalungleichung (A) fur das Funktional (9), wenn
man den Brunn-Minkowskischen Satz im Raum iJ* zur Wirkung bringt.

2.2. Es sei jetzt P ein Eikôrper des Raumes R, den wir uns so ver-
schoben denken, daB sein Schwerpunkt s mit dem Ursprung 0 zusammen-
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fallt. Die beiden zu Beginn des vorigen Abschnittes betrachteten Halb-
râume H+ und H_ zerlegen P in die beiden Teilkôrper P+ P ^ H+ und
P_ =z p rs H_. Da unsere Définition des planaren Tràgheitsmomentes
fur P versagt, fiihren wir die beiden einseitigen Trâgheitsmomente
T+(P) und T_{P) durch die Festsetzungen T+(P) T+{P+),
T_(P) T_(P_) ein. Die Summe T(P) r+(P) + T_(P) ist das ge-
wôhnliche planare Trâgheitsmoment T des Eikôrpers P bezûglich der
Ebene E, das durch das Intégral

T{P)=$\E,p\Up (10)

dargestellt wird. Mit dem Ansatz

ip(P) T(P)i/<*+2) (11)

wird ein liber der Klasse aller Eikôrper definiertes Funktional festgelegt,
das wie das Funktional (9) définit, monoton und linear bei Dilatation ist,
das aber auBerdem translationsinvariant ausfallt, so daB y>(P) y>{Q)

gilt, wenn P und Q translationsgleich sind. Hierbei ist selbstverstândlich
vorausgesetzt, daB die Ebene E durch den Ursprung 0 festgelassen wird.
Wir wollen nun nachweisen, daB y> auch (im Minkowskischen Sinne) kon-
kav ist.

In der Tat : Es seien P und Q zwei Eikôrper des Raumes R und 8
aPxpQ (oc, f} ^ 0, a-f/?=l) bezeichne eine Linearkombination ;

der Schwerpunkt s von 8 môge mit dem Ursprung 0 zusammenfallen.
Mit u bezeichnen wir wieder einen normierten Richtungsvektor, der auf
E orthogonal steht. Nun betrachten wir neue Kôrper Pr und QT, die aus
P und Q durch entgegengesetzt wirkende Transformationen hervorgehen
sollen ; sind nâmlich p und q Punkte von P und Q, so môgen

pr p -f t/3u und q q — rocu

Punkte von PT und QT darstellen. r bezeichnet einen im Intervall
— oo<t<oo variierbaren Parameter. Wie man miihelos bestâtigt, gilt
fur aile r die Beziehung 8 ocPTxf}Qr in unverânderter Weise.

Nun fuhren wir die Hilfsfunktionen f(t) T+(Pr)/T_(PT) und
rj(z) T+(QT)/T_(QT) ein, wobei |(t) in einem ofïenen Intervall
£<t<£ definiert ist und dort monoton von 0 bis oo stetig ansteigt,
wâhrend rj(t) in einem andern offenen Intervall a<r<a definiert ist,
dort aber von oo bis 0 stetig sinkt. Da fur ausreichend kleine t sicher

PTçzH_ und QT(zHjt, fur ausreichend groBe r dagegen umgekehrt
Pr(zH+ und QrdH^ gilt, da weiter niemals beide Eikôrper im gleichen
Halbraum liegen, da sich sonst auch 8 ganz in einem Halbraum befinden
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mûBte, was nach Annahme iiber den Schwerpunkt ausgeschlossen ist, so

gibt es Parameterwerte derart, da8 PT und Qr gleichzeitig durch E in
zwei eigentliche Teilkorper zerlegt werden. Bies bedeutet, daB die beiden
Definitionsintervalle fur £(t) und rj(r) ein nichtleeres Durchschnittsinter-
vall aufweisen mussen.

Unter Verwendung der Monotonie- und Stetigkeitseigenschaften ergibt
sich jetzt leicht, daB ein r0 existiert, fur welches £(t0) rj{r0) f
wird. Ohne Einschrânkung darf man annehmen (Translationsinvarianz
des Funktionals ipl), daB r0 0 wird, was damit gleichbedeutend ist,
daB sich die beiden ursprùnglich gewâhlten Kôrper P Po und Q Qo

in der durch die Gleichheit von f und r\ ausgezeichneten Lage befinden.
Nun uberlegt man sich weiter, daB

S+zxxP+xpQ+ und 8_Z)ocP_xPQ_

Hieraus ergeben sich mit der bereits bewiesenen Konkavitât der einseiti-
gen Funktionale J*><*+*> und ï^<*+*> die Ungleichungen

Nun war aber nach unserer Konstruktion T+(P) ÇT_(P) und
T+(P) ÇT_(Q). Aus den beiden obenstehenden Relationen und unter
Verwendung der Ungleichungen

T+{P) + T_(P) > T(P) und T+(Q) + T_(Q) > T(Q)

(man beachte, daB die Ebene E nicht notwendig durch die Schwerpunkte
von P und Q geht), gewinnt man jetzt leicht die gewxinschte Formel,
nâmlich

also das Bestehen der Ungleichung (A) fur das Funktional (11).

2.3. Wir betrachten nun k paarweise aufeinander orthogonal stehende
normierte Richtungsvektoren ut (i 1,..., k) und legen die k ihnen
entsprechenden Ebenen E% (i 1,..., k) durch den Ursprung 0. Einen
Eikorper P denken wir wieder so im Raum R verschoben, daB sein

Schwerpunkt s mit 0 zusammenfâllt. Die Summe der k gewôhnlichen,
planaren Trâgheitsmomente Tt (i 1,..., k) des Kôrpers P bezûglich
der Ebenen Et ist dann bekanntlich gleich dem gewôhnlichen polaren
Trâgheitsmoment /, so daB die Additionsformel / ETt vorgemerkt
werden kann. Wir erinnern, daB / durch das Intégral (1) eingefuhrt wurde.

Der Ansatz
/*> (12)
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fuhrt ein fur die Klasse alJer Eikôrper definiertes Funktional ein, das wie
das Funktional (11) ebenfalls définit, monoton und linear bei Dilatation
ist, das aber nicht nur wie jenes translationsinvariant, sondern sogar be-

wegungsinvariant ist, so daB #(P) " %{Q) gîlt, falls P und Q kongruent
sind.

Nun wollen wir beweisen, daB % auch (im Minkowskischen Sinn) kon-
kav ist. Um das Bestehen der Funktionalungleichung (A) zu bestàtigen,
geniigt es zu zeigen, daB aus I(P) I(Q) 1 und S ocPxfiQ
(a, /? ^ 0, oc -{- fi l) die Ungleichung I (S) ^ 1 gefolgert werden
kann.

Dies ist in der Tat der Fall : Es sei u ein variabel gedachter Richtungs-
vektor und T(P,u) bezeichne das planare Moment des Eikôrpers P be-

zuglich einer dureh den Sehwerpunkt von P gehenden, auf u orthogonal
stehenden Ebene. Ofîenbar ist T(P, u) eine stetige Funktion von u. Nun
betrachten wir die stetige Richtungsfunktion f(u) T(P, u) — T(Q, u).
Naeh einem Hilfssatz uber stetige Funktionen auf Sphâren gibt es k

paarweise aufeinander senkrecht stehende Richtungen ut (i 1,..., k),
so daB f(ux) f(uk) wird9). Da nun Ef{ut) I(P) - I(Q) 0

ausfâllt (man beaehte die Additionsformel fur die Momente und die Vor-
aussetzung der zu beweisenden Aussage), schlieBt man auf f(ut) 0,
(i 1, ...,£) oder also auf T(P, ut) T(Q, ut), (i 1,..., k).

Aus der bereits bewiesenen Konkavitât der Funktionale T1/{k+2) folgen
jetzt die k Ungleichungen

T(8, uxyw+*> > ocT(P, wt)i/(*+a) + pT(Q,

die unter Verwendung der oben erzielten Ûbereinstimmung der einzelnen
Momente von P und Q in die Ungleichungen T(S, ut) ^ T(P, u%) ûber-
gehen. Mit der Additionsformel resultiert 1(8) > 1, was zu beweisen

war.

III. In diesem dritten Teil wollen wir zeigen, daB sich die von uns be-
traehteten hoheren Trâgheitsmomente als elementar-symmetrische
Funktionen der planaren Haupttrâgheitsmomente darstellen lassen. Dadureh
wird eine zwischen den Simplexquadratintegralen bestehende starke
gegenseitige Abhângigkeit auf rein algebraisehe Weise ausgedruckt.

3.1. Wir geben wieder einen Eikôrper P im Raum R vor und dazu
k Richtungen ut (i 1,..., k), welche durch den Sehwerpunkt von P

9) Es handelt sich um die fc-dimensionale Erweiterung eines Theorems von S. Kakutani
(k 3). Vgl. H. Yamabe und Z. Yujobo, On the continuos function defined on
a sphère. Osaka math. J. 2, 19-22 (1950).
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hindurchlaufen und seinen Haupttràgheitsachsen entsprechen mogen.
Die ihren Normalebenen zugeordneten planaren Trâgheitsmomente von
P sind dann die planaren Haupttrâgheitsmomente Tt (i 1,..., k) be-

zuglich der Hauptebenen Et.
Wie wir nachfolgend beweisen werden, gelten fur die mit (4) und (7)

eingefuhrten hoheren Trâgheitsmomente die Darstellungen

±(T1,...,Tk) (13)n()rZn(T1,...,Tk)n i cn

und

Jn(P) ïl±lvZn(T1,...,Tk), (14)

wobei Zn (Tlf..., Tk) die elementarsymmetrische Funktion n-ten Grades

der k planaren Haupttrâgheitsmomente Tt bezeichnet. Insbesondere
ist also /0 1, Ix I Tx H \-Tk, Ik kkTx.. .Tk und Jo V,

Jt 2V (T1+...+ rfc), Jk (k + l)kkVT1...Tk.
3.2. Die Resultate (13) und (14) kônnen durch direkte Rechnung ge-

wonnen werden. Es sei p0 ein Punkt im Eikorper P, den wir uns zunâchst
fest denken wollen, wâhrend weitere n Punkte pt (i 1,..., n) variabel
sind. Setzen wir qt pt — p0 (i 1,..., n), so ist

|Po> Pi, ¦••>?» |2-(l/^!)2Det|| (ïv,ïfi) || (v,p l,...,n)
Nun wâhlen wir die Hauptachsen der Trâgheit durch den Ursprung O,
der selbst mit dem Schwerpunkt von P zusammenfallen soll, als Koordi-
natenachsen.

Bezeichnen wir die Koordinaten der Punkte pt mit xtx (i 1,..., n ;

A 1,..., k) und diejenigen von p0 mit yx (A 1,..., k) und setzen
wir die Ausdriicke k

fur die Skalarprodukte oben in die Déterminante ein Hierauf integrieren
wir iiber die n im Kôrper P variierbaren Punkte pt (i 1,..., n). Es

ergibt sich dann nach einigen zweckmâBigen Umgruppierungen die
Formel

J' • • J I Po, Pi, • • • > Pn \2dPi... dp» 1 /n !)2 Z • • • Z A [Xx,..., XJ

wobei A [Xl9... X}>] Det || Z>Xtx, ||, (i, / 1,..., w) ist und D^, das
Moment

£>l» J (^a - 2/a)(^ - y^î^p
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bezeichnet (der Punktindex ist hier als uberflussig weggelassen). Setzt
man noch

so ergibt sich mit Riicksicht auf das Verschwinden der statischenMomente
J x\dp die Beziehung

Nun wollen wir die Determinanten A berechnen.

1. Fall: Die Xt sind aile verschieden. Es gilt dann Dxtx? =0 fur
i ^ j, da es sich um Deviationsmomente beziiglich der Hauptebenen
der Tragheit handelt. Die Diskussion der Déterminante A liefert

A fa, ...,U TK>. ..,TXn{l + y\JITXi +... + ylnV/TxJ

wobei noch zu beachten ist, daB Dxtxt ^xt îs^-

2. Fall : Die kt sind nicht aile verschieden. Da die Déterminante gleiche
Zeilen enthâlt, gilt

Lassen wir jetzt einmal p0 mit dem Schwerpunkt, also mit 0 zusammen-
fallen, so gilt yt 0 (i 1,..., h) und es resultiert mit Riicksicht auf
die Formel des 1. Falles

die Darstellung

J J | s, Pl,..., pn \HVl ...dpn=^i:n(Tl9...9Tk)

Wird aber p0 auch als verànderlich angenommen, so ergibt sich mit Riicksicht

auf die wieder aus dem 1. Fall flieBende Formel

J A [h,..., XJdpb (n + 1) F7\,.... TXn

ganz analog

..dPn vi:n(Tl,...,Tk)

Damit sind die Darstellungen (13) und (14) gewonnen.

IV. In diesem letzten Teil beweisen wir die im ersten zusammengefaBt

dargestellten Ungleichungen.

294



4.1. Wir weisen zunachst die ^yklisch-symmetrische Ungleichung (6)
nach. Setzen wir

so gilt nach einer klassischen Ungleichung fur elementarsymmetrische
Funktionen10)

V-iVn <4 [0<n<k]
Dièse Ungleichung druckt auch aus, daB log sn als Funktion der ganz-
zahligen Variablen n konkav ist. Mit Rucksicht auf diesen Umstand laBt
sich (durch logarithmieren) unmittelbar die Beziehung

sb-c8cb-asac-b > 1 [0 <a<6<c <&]
verifizieren. Wegen (13) und (4 c) ergibt sich aber, daB sn k~nIn ist.
Setzt man dies in obenstehender Ungleichung ein, so erhàlt man (6). Hier
gilt das Gleichheitszeichen dann und nur dann, wenn aile Tt den gleichen
Wert aufweisen, d. h. wenn der Eikorper ein solcher ,,konstanter Trâg-
heit" ist, insbesondere also dann, wenn es sich um eine Kugel handelt11).

Setzen wir in (6) a — 0, b n, 0 71 + 1, so erhalten wir unter
Beachtung von (4 a) die Beziehung

rl/n ^ rl/(n+l)
n

und damit den Nachweis des mittleren Teils der Kettenungleichung (5).

4.2. Nun weisen wir das linksseitige Ende der Ungleichungskette (5)
nach. Wir betrachten einen Eikorper Q, der aus P durch eine Minkowski-
sche Drehsymmetrisierung hervorgeht, also in der Form

darstellbar ist, wobei die Kôrper Pt aile durch Drehungen aus P hervor-
gehen. Mit der Konkavitat des Funktionals /1/^+2> und der Drehinva-
rianz von / schlieBt man auf I{Q) > I(P). Die Norm N bleibt bei der
Drehsymmetrisierung invariant, so daB N(Q) N(P) vorgemerkt wer-
den kann.

Nun laBt sich aber nach einem bereits an anderer Stelle bewiesenen

10) Vgl. O. Hardy, J. E. Littlewood und G. Pôlya, Inequalities. Cambridge 1934,

p. 52, Theorem 51.
11 Em Korper konstanter Tragheit hat die Eigenschaft, daB sem Tragheitselhpsoid

eine Kugel ist; demzufolge smd semé planaren und axialen Tragheitsmomente aller Rich-
tungen emander gleich. Der Zylmder mit Radius R 1 und Hohe H — j/l2/(fc -f- 1)

ist em Korper kon»èanter Tragheit.
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Hilfssatz12) durch eine geeignete Drehsymmetrisierung mit beliebig vor-
gegebener Genauigkeit eine Kugel approximieren. Es gibt also bei be-

liebigem e > 0 ein Q so, daB d (Q, K) < s wird, wo K eine mit P norm-
gleiche Kugel und d die Eikôrperdistanz bedeutet. Unter Verwendung
der ublichen Stetigkeitsbetrachtungen folgt sofort I(K) ^ I(P), waszu
zeigen war.

4.3. Endlieh wenden wir uns noch dem reehtsseitigen Ende der Un-
gleichungskette (5) zu. Aus der Définition (4) folgt unmittelbar, daB das
Funktional A Ik V~{k+2) affininvariant ist. Ersetzen wir Ik nach Formel

(13) durch die planaren Haupttrâgheitsmomente, so resultiert das
affininvariante Funktional A JckT1,..., Tk V~(k+2\ Wir kônnen aber
den Eikôrper P durch eine einfache affine Abbildung in einen Eikôrper
Po konstanter Trâgheit uberfuhren, fur welche aile planaren
Haupttrâgheitsmomente den gleichen Wert To haben ; wegen lcT0 Io ergibt sich
dann die Beziehung A Ao /* F0-(*+2).

Nun ist Io § r2dp, wor den Abstand des in Po variierenden Punktes

p vom Schwerpunkt bedeutet. Bezeichnet dQ die Richtungsdichte
(Flâchendifferential der (k — l)-dimensionalen Richtungssphâre), so
lâBt sich dp rk~xdrdQ schreiben, und es resultiert Io $§ rk+1drdQ.
In diesem Intégral integrieren wir zunâchst bei fester Richtung nach r
und erzielen Io l/(Jc + 2) j Rk+2dQ, wobei R die Lange derjenigen
Teilsehne bedeutet, die von einer vom Schwerpunkt auslaufenden Halb-
geraden in der fest gewâhlten Richtung aus Po ausgeschnitten wird. Ein
Vergleich mit der Integralformel Fo l/Jc J RkdQ fuhrt hierauf mit
Anwendung der bekannten Ungleichung fur Potenzintegralmittel13) und
mit Kenntnis des Richtungsintegrals j dQ kcok zur (bekannten)
Ungleichung

Wir verwenden dièses Teilresultat in der obigen Darstellung des Funk-
tionals A und gewinnen A ^ co^2[^/(^ + 2)]*. Damit resultiert aber
die Ungleichung Ik^ (ok2[k/(k + 2)]kVk+2, und dièse ist gleichbedeu-
tend mit Ik(P)llk > I(K°), wo K° eine mit P volumgleiche Kugel
bezeichnet. Damit ist der Nachweis abgeschlossen.

(Eingegangen den 27. September 1955.)

12) H. Hadwiger, Altes und Neues uber konvexe Korper. Birkhauser Basel 1955, p. 27.

(Der Beweis ist daselbst nur dreidimensional gefuhrt.)
13) Loc. cit. FuSnote 10, p. 143, Theorem 192.
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