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On the immersion of n-manifolds
in (n + l)-space

by Johx Milnor, Princeton

I. Introduction

Let M be a closed, orientable, difïerentiable w-manifold of class C1, for
which a fixed orientation has been chosen. Suppose that an immersion
of M in euelidean space En+1 is given (that is : a map / : M -> En+1 of
class C1 whose Jacobian matrix has rank n at ail points). At each point
x of M the given orientations of M and En+1 détermine a unique direction
for the unit normal vector N(x). Considering N(x) as a point of the unit
sphère Sn, this defines the normal map N : M -> Sn. The degree d of
this map has been called, by H. Hopf, the curvatura intégra of the
immersion.

We will be principally concerned with the following question, suggested
to the author by Hopf1). Consider ail immersions of a given w-manifold
M in En+1. What are the corresponding values of the degree d

For n even this question has been answered by Hopf ([2], [4]). In
fact the degree d is uniquely determined by the formula

where /(if) dénotes the Euler characteristic.
For n odd Hopf has shown (not published) that the sphère 8n ean be

immersed in En+1 with arbitrary odd degree.
In fact he showed that, for n odd, if M can be immersed in En+1 with

some odd degree (some even degree), then it can be immersed with
arbitrary odd degree (arbitrary even degree). New proofs of thèse results
are included in this paper. For a manifold M which is not parallelizable,
it is shown that only odd degrees are possible. If M is parallelizable, and
certain other conditions are satisfied, then it is shown that only even
degrees are possible.

In section III the corresponding question is studied for an imbedding

*) This question is also studied in a forthcoming paper by M. Kervaire [5].
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of M in En+1 (immersion without self-intersections). Rather strong
restrictions on the degree d are obtained. In particular d must be even
or odd according as the sum of the Betti numbers of M is congruent to
0 or 2 modulo 4.

In section IV an immersion of the real projective space P3 in E* is
constructed. As a conséquence it is shown that the sphère #3 can be
immersed in E* with arbitrary normal degree d. In conclusion, several
unsolved problems are mentioned.

II. The normal degree for an immersion

We first state two lemmas.

(1) Let f : M -> En+1 be an immersion with normal degree d, and let r :

En+1 -> En+1 be relection in a hyperplane. Then the immersion rf has

degree (—l)nd.
In fact if N(x) is the original normal vector, then —rN(x) is the new

normal vector. (The minus sign occurs because r reverses the orientation
of En+1.) But r | Sn has degree — 1, and the antipodal map Sn -> 8n
has degree — 1 y-1.

By the sum Mx -f M2 of two oriented n-manifolds we mean, foliowing
Seifert [7], the manifold obtained by removing a small w-cell fromeach
of the two, and then piecing the two manifolds together along the result-
ing boundaries. A difîerentiable structure can be constructed for the sum
of two differentiable manifolds.

(2) // Mx and M2 can be immersed in En+1 with degrees dl9 d2 respec-
tively, then Mx + M2 can be immersed with degree dx + d2 — 1.

Pick any two points xx c Mx, x2 e M2. Perform an euclidean motion
of Mg so that the unit normal vectors at thèse two points point towards

Fig. 1 Fig. 2

each other. (See figure 1. The orientation is important.) Now remove a
small neighborhood of each of thèse points and insert a tube, as in
figure 2. The resuit is clearly an immersion of Mx + M2. The degree
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dz for this immersion can be computed as follows. To détermine dz

(respectively dx, d2) it is sufficient to consider those points x of Mx + M2
(respectively Ml9 M2) for which the normal vector lies in a neighbor-
hood of some fîxed vector No. Seleeting No Nix-J we may assume
that the point xx makes a contribution of +1 to the degree of the map
N : Jf -> 8n. (It may be necessary to first make a bulge in M1 for
this to be true.) Now in the immersion of Mx + ^2> ^ne contribution
from the point xx has disappeared, but the contributions from ail other
points of Mx and M2 remain unchanged. Therefore

dz dx + d2 — 1

Propositions (1) and (2) can be used as follows. Let n be odd. Accord -

ing to (1) the sphère Sn can be immersed in En+1 with normal degree
— 1. Therefore by (2) the sum Sn + Sn can be immersed with degree
(—1) + (—1) — 1 —3. By an obvious induction we find that the
&-fold sum SnJr • • • + Sn can be immersed with degree

(1 - 2 (k - 1)) + (- 1) - 1 1 - 2k

Since Sn + • • • + Sn is homeomorphic to 8n, this implies that Sn can
be immersed with any négative, odd degree. Making use of proposition
(1) again, this implies Hopf's resuit :

(3) For n odd the sphère Sn can be immersed in En+1 with arbitrary odd

degree,

Any ?i-manifold M is homeomorphic to M + Sn * Therefore (2) and
(3) imply the foliowing.

(4) Theorem. For n odd, if M can be immersed in En+1 with degree d,
then it can also be immersed with any degree d' which is congruent to d
modulo 2.

The possible normal maps N are strongly restricted by the following
lemma.

(5) The normal map N : M -> Sn is covered by a bundle map (see for
example Steenrod [8]) of the tangent bundle of M into the tangent bundle

of Sn.

In fact for each tangent vector at a point x of M there corresponds
the parallel vector with the same length at the point N(x) of Sn.

This proposition can be restated as follows : The tangent bundle of
M is the bundle which is induced by the map N : M -> Sn. Since a

map M -> Sn of degree zéro is inessential, and since an inessential map
induces a trivial bundle2), we hâve :

2) See Hopf [3] and Steenrod [8], 10.3, 11.5.
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(6) // M can be immersed in En+1 with normal degree zéro, then M is
parallelizable.

This gives an answer to our problem for any manifold M which is

not parallelizable.

(7) Theorem. Let M be an n-manifold which is not parallelizable, n
odd. If M can be immersed in En+1 at ail, then it can be immersed with
arbitrary odd degree, but cannot be immersed with even degree.

This foliows immediately from (4) and (6). As an example let M be
the sphère 8n. Steenrod and J. H. C. Whitehead hâve proved [9] that
8n can only be parallelizable when n has the form 2k — 1. Thus Sn

cannot be immersed in En+1 with even degree unless n has the form 2k — 1.

It will be shown in section IV that $3 can actually be immersed in E*
with even degree. The first imsettled case is therefore S7.

Another conséquence of (5) is the foliowing. Let n be a dimension for
which Sn is parallelizable (say n 7). Then every orientable n-manifold
immersed in En+1 is parallelizable. This foliows from the fact that any
bundle induced from a trivial bundle is trivial.

In order to complète the results of this section, it would be natural to
ask the following question. Let n be a dimension for which Sn is not
parallelizable, and let M be an ^-manifold which is parallelizable. Can

M be immersed in En+1 with odd degree?
The answer to this question is négative, at least for the spécial class

of manifolds which are "sphere-like" in the sensé of Puppe [6]. Let
r\ : M -> Sn dénote the (unique up to homotopy) map of degree 1. Puppe
calls the manifold M sphere-like if for any space X and any essential map
| : Sn -> X, the composition £rj : M -> X is also essential. He proves
that any w-manifold which can be imbedded in En+1 is sphere-like.
(Immersion in En+1 would not be sufficient : a counter-example is pro-
vided by the projective space P3).

(8) Let M be an n dimensional manifold which is sphere-like and
parallelizable, n being an odd dimension for which Sn is not parallelizable. If
M can be immersed in En+1 at ail, then it can be immersed with arbitrary
even degree, but cannot be immersed with odd degree.

In fact let X be a classifying space for the gênerai linear group
GLn. Then the tangent bundle of Sn is induced by a essential map
| : Sn -> X. If M could be immersed in En+1 with odd degree, then it
could be immersed with degree + 1. But this would imply, by the
définition of sphere-like, that the composition ÇN : M -> X was essential,
and hence that M was not parallelizable.
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III. The normal degree lor an imbedding

Let Z(M) P0(M) + px(M) -\ h Pn(M) dénote the sum of the
Betti numbers of the manifold M. (Any field may be used as coefficient
group.)

(9) Theorem. For any imbedding of M in En+1 the degree d of the normal
map satisfies

d \Z{M) (mod. 2), | d | < \Z(M)
We may assume that M is oriented so that the normal vectors point

away from the bounded component A of En+1 — M. Under this addi-
tional hypothesis we will prove the stronger inequality

2 - \Z{M) <d <\Z{M)
A theorem of Hopf ([4] Satz VI) asserts that under the above as-

sumptions, the normal degree d is equal to the Euler characteristic of
the manifold A bounded by M. Thus we hâve

d x(Z). (a)

For any space A the définitions Z — Z fii9 % Z (— 1)* p4 and the
inequalities /?t. > 0, /80 > 1 imply that

x(Â) Z(I) (mod 2), and

2-27(3) <x(Â)<Z(I)
(b)

Let Sn+1 be the one point compactification of En+1, and define
B Sn+1 — A. From the Alexander duality theorem it follows that

Z(M) ZiS"*1 - M) Z(A) + Z(B)

On the other hand the Alexander duality theorem applied to A implies
that

_~A) Z(B)

Since Z(A) 27(3), it follows that

27(3) \Z(M) (c)

Now combining formulas (a), (b), and (c), this complètes the proof of
theorem (9).

Slightly stronger restrictions on the degree can be obtained by taking
the ring structure of H* {M) into account. In fact (following Thom [10]
chapter V) the inclusion maps M -> A, M -> B détermine a homo-
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morphism H*(A) + H*(B) ->H*(M) which is an isomorphism except
in the top and bottom dimensions. Thus for a number d to occur as the
normal degree for an imbedding of M, the ring H*(M) must split into
the sum of two subalgebras, which are admissible in the sensé of Thom,
and one of which lias Euler characteristic d.

As an example consider the 3-dimensional torus S1 X S1 X S1, with
Betti numbers (1, 3, 3, 1). According to theorem (9) the four values
d —2, 0, 2, 4 would ail be possible. However the above technique
can be used to show that only degrees 0 and 2 can occur. Both degrees
do actually occur.

The 3-manifold (S1 x S2) + (S1 X S2) + (S1 X S2) has the same Betti
numbers as the 3-torus, but a différent ring structure. This manifold
can actually be imbedded with ail four degrees — 2, 0, 2, 4. The usual
imbedding of S1xS2 in S* splits S* into two components with Euler
characteristics 0 and 2. Hence making use of lemma (2) (modified so as

to apply to imbeddings), the two-fold sum can be imbedded with degrees
— 1, 1,3 ; and the three-fold sum with degrees — 2,0,2, 4.

IV. An immersion of P3 in E4

The object of this section will be to show that :

(10) The projective space P3 can be immersed in E*.
Before giving the proof we state two corollaries.

(11) The sphère S3 can be immersed in E* with even normal degree.

Let d be the normal degree of the immersion / : P3 -> Eé of proposition

(10). Since the covering map p : S3 -> P3 has degree 2, the
composition fp : S3 -> j?4 is an immersion with normal degree 2d.

By (4) this implies that S3 can be immersed in jEJ4 with arbitrary
normal degree. In view of (2) this implies the following.

(12) // the 3-manifold M can be immersed in E*, then it can be immersed
with arbitrary normal degree.

The proof of (10) foliows. We start from the known fact that the
projective plane P2 can be immersed in E3. (This immersion is known as

Boy's surface. See [1] pg. 280.) The projection p : S2 ~> P2 carries a

neighborhood of the equator into a Moebius band B2. The immersion

g : P2 -> Ez can be chosen so that J52 is mapped homeomorphically, and
so that its image g(B2)czE3 is a Moebius band with a single twist.

Let J33 dénote a smooth neighborhood of P2, considered as a subspace
of P3. Thus the boundary of B3 is a 2-sphere, and the space P3 is obtained
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from jB3 by adjoining a 3-eell which is matched with B3 along this
boundary 2-sphère.

It will first be shown that the immersion g of P2 in E3 can be extended
to an immersion of B3 in E3. Let N : S2 -* S2 be the normal map as-
sociated with the immersion gp : S2 -> E3. Define g' : S2 X [— 1, 1] -> E3
by

g'(x,t) gp(x) + etN(x)

(where the two terms are added as vectors). For s sufficiently small,
this map gf is clearly an immersion.

Note that B3 can be obtained from S2x [— 1, 1] by identifying the
points (x, t) with — x, —t). Since g' : S2x [— 1, 1] -» E3 satisfies the
identity

g'(~x,~t)=gf(x,t)
it follows that g' gives rise to an immersion of B3 in E3.

Now adding a fourth coordinate, we define an immersion g" of B3
in the half-space E3 X — oo, 0) by the formula

This immersion g" maps the interior of B3 in the open half-space, and
maps the boundary 2-sphere into E3X[0]. The immersion h of this
boundary 2-sphere is defîned by

h(x) g"(±(x, 1)) - (gp(x) + sN(x), 0)

To complète the proof we must construct an immersion of a 3-cell in
the half-space E3x[0, oo] so that the immersion of its boundary
2-sphere in U3x[0] coincides with the given immersion h.

This immersion will be described by giving the intersections of its
image with the variable hyperplane E3 X [u] as u varies from 0 to 4.
Any immersion /' of a 3-manifold M in EA E3x{ — oo, oo) can be
described by this method. In gênerai the intersections /' (M) ^ (E3x [u])
are immersions of 2-manifolds which vary continuously with u. How-
ever critical points in this picture appear whenever the tangent plane of
M coincides with ^3X[^0]- I*1 ^ne neighborhood of such a point we
may take the coordinates fx, fa, f8 of E3 as parameters for M, so
that the immersion /' is given by the équation

u u0 + S al3 ft f, + (remainder term).

Assuming that the matrix (atJ) has rank 3, there are four cases, according
as the signature of this matrix is 3, 1, — 1, or — 3. Geometrically
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thèse four cases are distinguished as follows. As u increases past u0, the
quadratic surface E au |t ^ u — u0 either

(a) changes from the vacuous set to an ellipsoid,
(b) changes from a hyperboloid of two sheets to a hyperboloid of one

sheet (see the transition from figure 3 to figure 4),

(c) changes from a hyperboloid of one sheet to a hyperboloid of two
sheets, or

(d) changes from an ellipsoid to the vacuous set.

If remainder terms are added, the situation in the large will change,
but the local situation will not. Thèse four types of singularities will be

used in the following proof.
Let us start out at u 0 with the immersion h of S2 in E3X [0]

which was described above. Each sheet of the original image g (P2) c 2?3

is sandwiched between two sheets of the image h (S2). (See figure 3.)

Let x0 be the north pôle of S2. As u varies from 0 to 1 let the surface in
Ezx [u] change as follows. Two bulges appear in h (S2) at the points
h(x0), h(—x0). Thèse expand towards each other and, at u 1, meet
each other in a critical point of type (b). Thus as u increases past 1 the
figure takes the form illustrated in figure 4. In the large, the surface
immersed in Ezx [u] is no longer a 2-sphere, but rather a torus.

Now as u varies from 1 to 2 let the tube joining the two sheets of
h (S2) spead out (figure 5) until, for u 2, nothing is left of the
surface except a small tubular neighborhood (figure 6) of the Moebius band

As u varies from 2 to 3, smooth this torus out (figure 7) and shrink its
inner circle /S to a point. Thus for u 3 there is a critical point of
type (c). As u increases past 3 the surface, in the large, changes back
from a torus to a 2-sphere.

As u varies from 3 to 4, smooth this 2-sphere out, and shrink it to a

point. For u 4 there is a critical point of type (d), and the surface

disappears.
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It is clear that the object described above for 0 < u < 4 is an
immersion of some 3-manifold in the half-space Ezx (0, oo), and that the

Fig. 7

boundary of this manifold is a 2-sphère, immersed in E3 X [0] by the
map A. Our problem is to prove that this manifold is actually a 3-cell.

It is not hard to show that the portion of this 3-manifold for whieh

2J<^<4 isa solid torus, whose boundary is the torus of figure 7.
Similarly the portion for which 0 < u < 2| is a solid torus with an
interior 3-cell removed ; having as boundaries both the torus u %\
and the 2-sphère u 0.

However the 3-manifolds which can be obtained by matching two
solid toruses Tx, T2 (i. e. manifolds possessing a Heegard diagram of
genus 1) hâve been thoroughly studied (see Seifert [7], § 5). Every such
manifold is either S*, SxxS2, or a Lens space. Thus to prove that such
a manifold Tx ^ T2 is a 3-sphere, it is sufficient to check that its first
homology group is trivial. In particular it is sufficient to check that
every 1-cycle in the torus Tx ^ T2 is the sum of a cycle which bounds
in Tx and a cycle which bounds in T2.

In our case the first homology group of the torus u 2| is gener-
ated by the meridian a and the parallel p. But jl bounds in the solid
torus 2| < u < 4, and the combination a + 2/? (obtained by trav-
ersing the boundary of the Moebius band) bounds in 0 < u < 2J.
Since f} and a + 2/? generate the homology group of the torus, this
complètes the proof.
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In conclusion we summarize several problems which hâve been sug-
gested by the results of this paper.

(a) For what n can the projective space Pn be immersed in En+1

Prom arguments concerning the Stiefel-Whitney classes, one can show 3)

that n must hâve the form 2^—1 or 2k ¦— 2. For n odd it foliows
from (7) that if Pn can be immersed in En+1 then Sn must be parallel-
izable (compare the proof of (11)). Since the immersion is known to be

possible for n 0, 1, 2, 3, the first unsolved cases are for dimensions
6,7.

(b) For what n can Sn be immersed in En+1 so that the degree d is
even? This is known to be possible for n 1,3. The sphère Sn must
be parallelizable.

(c) Let n be a dimension for which Sn is not parallelizable. Can some
parallelizable w-manifold be immersed in En+1 with odd degree? Can

some (necessarily parallelizable) w-manifold be immersed in En+1 both
with odd and with even degree?
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