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On the immersion of n-manifolds
in (n+ 1)-space
by Jonx MiLNor, Princeton

I. Introduction

Let M be a closed, orientable, differentiable n-manifold of class C!, for
which a fixed orientation has been chosen. Suppose that an immersion
of M in euclidean space E"+! is given (that is: a map f: M — E"+1 of
class C* whose Jacobian matrix has rank n at all points). At each point
x of M the given orientations of M and E"+! determine a unique direction
for the unit normal vector N (x). Considering N (z) as a point of the unit
sphere 8", this defines the normal map N: M — 8*. The degree d of
this map has been called, by H. Hopf, the curvatura integra of the im-
mersion.

We will be principally concerned with the following question, suggested
to the author by Hopf!). Consider all immersions of a given n-manifold
M in E™+1, What are the corresponding values of the degree d ?

For n even this question has been answered by Hopf ([2], [4]). In
fact the degree d is uniquely determined by the formula

where y (M) denotes the Euler characteristic.

For n odd Hopf has shown (not published) that the sphere 8* can be
immersed in E"*+! with arbitrary odd degree.

In fact he showed that, for n odd, if M can be immersed in E"+! with
some odd degree (some even degree), then it can be immersed with
arbitrary odd degree (arbitrary even degree). New proofs of these results
are included in this paper. For a manifold M which is not parallelizable,
it is shown that only odd degrees are possible. If M is parallelizable, and
certain other conditions are satisfied, then it is shown that only even
degrees are possible.

In section III the corresponding question is studied for an imbedding

1) This question is also studied in a forthcoming paper by M. Kervaire [5].
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of M in E"+! (immersion without self-intersections). Rather strong
restrictions on the degree d are obtained. In particular d must be even
or odd according as the sum of the Betti numbers of M is congruent to
0 or 2 modulo 4.

In section IV an immersion of the real projective space P3? in E* is
constructed. As a consequence it is shown that the sphere S3 can be
immersed in E* with arbitrary normal degree d. In conclusion, several
unsolved problems are mentioned.

I1I. The normal degree for an immersion
We first state two lemmas.

(1) Let f: M — E™* be an immersion with normal degree d, and let r :
En+1t — En+1 be relection tn a hyperplane. Then the immersion rf has
degree (— 1)"d.

In fact if N (z) is the original normal vector, then —» N (x) is the new
normal vector. (The minus sign occurs because r reverses the orientation
of En+1) But r|S" has degree —1, and the antipodal map 8" — §”
has degree (— 1)1,

By the sum M, + M, of two oriented n-manifolds we mean, following
Seifert [7], the manifold obtained by removing a small n-cell from each
of the two, and then piecing the two manifolds together along the result-
ing boundaries. A differentiable structure can be constructed for the sum
of two differentiable manifolds.

(2) If M, and M, can be immersed in E"+! with degrees d,, d, respec-
tively, then M, + M, can be immersed with degree d, + dy — 1.

Pick any two points ;¢ M,, x, e M,. Perform an euclidean motion
of M, so that the unit normal vectors at these two points point towards

|
= =C
¥ U v

7 M, M,

g
- » -

Fig. 1 Fig. 2

each other. (See figure 1. The orientation is important.) Now remove a
small neighborhood of each of these points and insert a tube, as in
figure 2. The result is clearly an immersion of M, + M,. The degree
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dy for this immersion can be computed as follows. To determine d,
(respectively d,, d,) it is sufficient to consider those points z of M, + M,
(respectively M,, M,) for which the normal vector lies in a neighbor-
hood of some fixed vector N,. Selecting Ny, = N(x;) we may assume
that the point z; makes a contribution of + 1 to the degree of the map
N :M, - 8" (It may be necessary to first make a bulge in M, for
this to be true.) Now in the immersion of M, + M,, the contribution
from the point x, has disappeared, but the contributions from all other
points of M, and M, remain unchanged. Therefore

dy=d, +dy — 1.

Propositions (1) and (2) can be used as follows. Let » be odd. Accord-
ing to (1) the sphere 8" can be immersed in E"*! with normal degree
— 1. Therefore by (2) the sum S™ 4 8" can be immersed with degree
(—1)+ (—1) — 1= —3. By an obvious induction we find that the
k-fold sum 8"+ ...4 8® can be immersed with degree

1—2Fk—1)+(—1)—1=1—2k.

Since 8" 4 ...+ 8" is homeomorphic to 8", this implies that S" can
be immersed with any negative, odd degree. Making use of proposition
(1) again, this implies Hopf’s result :

(3) For n odd the sphere 8™ can be vmmersed in K"+ with arbitrary odd
degree.

Any n-manifold M is homeomorphic to M 4 S™. Therefore (2) and
(3) imply the following.

(4) Theorem. For n odd, if M can be vmmersed tn E"+' with degree d,
then it can also be immersed with any degree d' which is congruent to d
modulo 2.

The possible normal maps N are strongly restricted by the following
lemma.

(5) The normal map N : M — S™ s covered by a bundle map (see for
example Steenrod [8]) of the tangent bundle of M into the tangent bundle
of 8*.

In fact for each tangent vector at a point x of M there corresponds
the parallel vector with the same length at the point N (x) of 8".

This proposition can be restated as follows: The tangent bundle of
M is the bundle which is induced by the map N : M — §". Since a
map M — 8" of degree zero is inessential, and since an inessential map
induces a trivial bundle?), we have:

2) See Hopf [3] and Steenrod [8], 10.3, 11.5.
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(6) If M can be immersed in E"+! with normal degree zero, then M 1is
parallelizable.

This gives an answer to our problem for any manifold M which is
not parallelizable.

(7) Theorem. Let M be an n-manifold which is not parallelizable, n
odd. If M can be immersed in E"*! at all, then it can be immersed with
arbitrary odd degree, but cannot be tmmersed with even degree.

This follows immediately from (4) and (6). As an example let M be
the sphere S". Steenrod and J. H. C. Whitehead have proved [9] that
8" can only be parallelizable when » has the form 2 — 1. Thus §»
cannot be immersed in E™+1 with even degree unless n has the form 28 — 1.
It will be shown in section IV that S% can actually be immersed in £*
with even degree. The first unsettled case is therefore S7.

Another consequence of (5) is the following. Let n be a dimension for
which 8" is parallelizable (say n = 7). Then every orientable n-manifold
immersed in E"t! is parallelizable. This follows from the fact that any
bundle induced from a trivial bundle is trivial.

In order to complete the results of this section, it would be natural to
ask the following question. Let » be a dimension for which §" is not
parallelizable, and let M be an n-manifold which is parallelizable. Can
M be immersed in E"+! with odd degree?

The answer to this question is negative, at least for the special class
of manifolds which are ‘“‘sphere-like’’ in the sense of Puppe [6]. Let
n : M — 8" denote the (unique up to homotopy) map of degree 1. Puppe
calls the manifold M sphere-like if for any space X and any essential map
£:8" - X, the composition &y : M — X is also essential. He proves
that any n-manifold which can be imbedded in E"+! is sphere-like.
(Immersion in E”+! would not be sufficient : a counter-example is pro-
vided by the projective space P3).

(8) Let M be an n dimensional manifold which is sphere-like and paral-
lelizable, n being an odd dimension for which S™ is not parallelizable. If
M can be immersed in E"* at all, then it can be immersed with arbitrary
even degree, but cannot be immersed with odd degree.

In fact let X be a classifying space for the general linear group
GL,. Then the tangent bundle of 8" is induced by a essential map
§:8" - X. If M could be immersed in E"+! with odd degree, then it
could be immersed with degree + 1. But this would imply, by the defi-
nition of sphere-like, that the composition &N : M — X was essential,
and hence that M was not parallelizable.
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II1. The normal degree for an imbedding

Let 2(M) = Bo(M) + B, (M) +---+ B,(M) denote the sum of the
Betti numbers of the manifold M. (Any field may be used as coefficient

group.)
(9) Theorem. For any imbedding of M in E"+1 the degree d of the normal
map satisfies

d=1Z(M) (mod.2), |d| < iZ(M).

We may assume that M is oriented so that the normal vectors point
away from the bounded component 4 of E"+! — M. Under this addi-
tional hypothesis we will prove the stronger inequality

2—32(M) <d < {XZ(M).

A theorem of Hopf ([4] Satz VI) asserts that under the above as-
sumptions, the normal degree d is equal to the Euler characteristic of
the manifold A bounded by M. Thus we have

d=y(4). (a)

For any space A the definitions X = X 8,, y = X (—1)!§, and the
inequalities f§, > 0, f, > 1 imply that
x(4d) = X(4) (mod 2), and -
9 — Z(@) < y@) < Z(3) .
Let 8S"+! be the one point compactification of E"+l, and define
B = 87+t — 4. From the Alexander duality theorem it follows that
2(M) = XS — M) = X(4) + X(B) .

On the other hand the Alexander duality theorem applied to 4 implies
that .
2(A) = XS+ — 4) = X(B) .

Since X'(4) = X(A4), it follows that
Z(A)=3Z(M) . (c)

Now combining formulas (a), (b), and (c), this completes the proof of
theorem (9).

Slightly stronger restrictions on the degree can be obtained by taking
the ring structure of H* (M) into account. In fact (following Thom [10]
chapter V) the inclusion maps M — A, M — B determine a homo-
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morphism H*(A) + H*(B) — H*(M) which is an isomorphism except
in the top and bottom dimensions. Thus for a number d to occur as the
normal degree for an imbedding of M, the ring H* (M) must split into
the sum of two subalgebras, which are admissible in the sense of Thom,
and one of which has Euler characteristic d.

As an example consider the 3-dimensional torus S§!x8'x 8!, with
Betti numbers (1, 3, 3, 1). According to theorem (9) the four values
d= —2,0,2,4 would all be possible. However the above technique
can be used to show that only degrees 0 and 2 can occur. Both degrees
do actually occur.

The 3-manifold (S*xS2%) + (S'x82%) + (S'x82) has the same Betti
numbers as the 3-torus, but a different ring structure. This manifold
can actually be imbedded with all four degrees — 2, 0, 2, 4. The usual
imbedding of 8'x 82 in §* splits §% into two components with Euler
characteristics 0 and 2. Hence making use of lemma (2) (modified so as
to apply to imbeddings), the two-fold sum can be imbedded with degrees
— 1,1, 3; and the three-fold sum with degrees —2, 0, 2, 4.

IV. An immersion of P3 in E*

The object of this section will be to show that :
(10) The projective space P3 can be tmmersed in E*.
Before giving the proof we state two corollaries.

(11) The sphere S® can be immersed in E* with even normal degree.

Let d be the normal degree of the immersion f: P3 — E* of propo-
sition (10). Since the covering map p :8% — P3 has degree 2, the
composition fp : 8% — E* is an immersion with normal degree 2d.

By (4) this implies that 83 can be immersed in £* with arbitrary
normal degree. In view of (2) this implies the following.

(12) If the 3-manifold M can be immersed in E*, then it can be immersed
with arbitrary normal degree.

The proof of (10) follows. We start from the known fact that the pro-
jective plane P2 can be immersed in E3. (This immersion is known as
Boy’s surface. See [1] pg. 280.) The projection p : 8% — P? carries a
neighborhood of the equator into a Moebius band B2. The immersion
g : P2 — E3 can be chosen so that B? is mapped homeomorphically, and
so that its image ¢g(B?) c E*® is a Moebius band with a single twist.

Let B3 denote a smooth neighborhood of P2, considered as a subspace
of P3. Thus the boundary of B?is a 2-sphere, and the space P? is obtained
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from B? by adjoining a 3-cell which is matched with B?® along this
boundary 2-sphere.

It will first be shown that the immersion g of P2 in E3 can be extended
to an immersion of B? in E3. Let N : 82 — 82 be the normal map as-
sociated with the immersion gp : 82 — E2. Define ¢’ : S2x[—1, 1] — E3
by

9' (%, t) = gp(x) + etN ()

(where the two terms are added as vectors). For ¢ sufficiently small,
this map ¢’ is clearly an immersion.

Note that B® can be obtained from S§2x[—1, 1] by identifying the
points (x,¢) with (—x, —¢). Since ¢' : S2x[—1, 1] — E3 satisfies the
identity

g (—z, —t) =g'(z, t) ,

it follows that ¢g' gives rise to an immersion of B3 in E3.
Now adding a fourth coordinate, we define an immersion g” of B3
in the half-space E?X(—oo, 0) by the formula

9" (£ (=, 1) = (9'(2, 1), > — 1) .

This immersion g” maps the interior of B3 in the open half-space, and
maps the boundary 2-sphere into E3X[0]. The immersion % of this
boundary 2-sphere is defined by

h(z) =g"(L(x, 1)) = (9p(x) 4 eN (), 0) .

To complete the proof we must construct an immersion of a 3-cell in
the half-space E?Xx[0, co] so that the immersion of its boundary
2-sphere in E3%x[0] coincides with the given immersion 4.

This immersion will be described by giving the intersections of its
image with the variable hyperplane E®X[u] as w varies from 0 to 4.
Any immersion f of a 3-manifold M in E* = E3X(—o0, o) can be
described by this method. In general the intersections f' (M)~ (E3X [u])
are immersions of 2-manifolds which vary continuously with «. How-
ever critical points in this picture appear whenever the tangent plane of
M coincides with E3X [u,]. In the neighborhood of such a point we
may take the coordinates &, &,, & of E® as parameters for M, so
that the immersion f' is given by the equation

u = uy + 2 a;;&,&; + (remainder term).
Assuming that the matrix (a,;) has rank 3, there are four cases, according

as the signature of this matrix is 3,1, —1, or —3. Geometrically
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these four cases are distinguished as follows. As u increases past u,, the
quadratic surface X'a,; &6, = u — u, either

(a) changes from the vacuous set to an ellipsoid,

(b) changes from a hyperboloid of two sheets to a hyperboloid of one
sheet (see the transition from figure 3 to figure 4),

Fig. 3 4 Fig. 4

U=0 U =14

(¢) changes from a hyperboloid of one sheet to a hyperboloid of two
sheets, or

(d) changes from an ellipsoid to the vacuous set.

If remainder terms are added, the situation in the large will change,
but the local situation will not. These four types of singularities will be
used in the following proof.

Let us start out at % = 0 with the immersion 2 of 82 in E3X [0]
which was described above. Each sheet of the original image g¢(P?)c E?
is sandwiched between two sheets of the image A (S%). (See figure 3.)
Let z, be the north pole of S2. As u varies from 0 to 1 let the surface in
E®x [u] change as follows. Two bulges appear in A(S2) at the points
h(zg), h(— x,). These expand towards each other and, at « = 1, meet
each other in a critical point of type (b). Thus as u increases past 1 the
figure takes the form illustrated in figure 4. In the large, the surface
immersed in E3X [#] is no longer a 2-sphere, but rather a torus.

Now as % varies from 1 to 2 let the tube joining the two sheets of
h(8?) spead out (figure 5) until, for % = 2, nothing is left of the sur-
face except a small tubular neighborhood (figure 6) of the Moebius band
g(B?).

As u varies from 2 to 3, smooth this torus out (figure 7) and shrink its
inner circle 8 to a point. Thus for % = 3 there is a critical point of
type (c). As u increases past 3 the surface, in the large, changes back
from a torus to a 2-sphere.

As u varies from 3 to 4, smooth this 2-sphere out, and shrink it to a
point. For u = 4 there is a critical point of type (d), and the surface
disappears.
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It is clear that the object described above for 0 <u < 4 is an im-
mersion of some 3-manifold in the half-space E3?X (0, oo), and that the

Fig. 5

u=1.2 u=2

Fig. 7

boundary of this manifold is a 2-sphere, immersed in E3x [0] by the
map k. Our problem is to prove that this manifold is actually a 3-cell.

It is not hard to show that the portion of this 3-manifold for which
23 <wu <4 is a solid torus, whose boundary is the torus of figure 7.
Similarly the portion for which 0 < u << 2} 1is a solid torus with an
interior 3-cell removed ; having as boundaries both the torus = = 2}
and the 2-sphere » = 0.

However the 3-manifolds which can be obtained by matching two
solid toruses 7', T, (i.e. manifolds possessing a Heegard diagram of
genus 1) have been thoroughly studied (see Seifert [7], § 5). Every such
manifold is either S3, S1x 82, or a Lens space. Thus to prove that such
a manifold 7', v T, is a 3-sphere, it is sufficient to check that its first
homology group is trivial. In particular it is sufficient to check that
every l-cycle in the torus 7', ~ T', 'is the sum of a cycle which bounds
in 7', and a cycle which bounds in 7',.

In our case the first homology group of the torus u = 2} is gener-
ated by the meridian « and the parallel 8. But g bounds in the solid
torus 2} < < 4, and the combination o -4 28 (obtained by trav-
ersing the boundary of the Moebius band) bounds in 0 <wu < 2%.
Since 8 and o 4 28 generate the homology group of the torus, this
completes the proof.
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In conclusion we summarize several problems which have been sug-
gested by the results of this paper.

(a) For what n can the projective space P" be immersed in E"+1?
From arguments concerning the Stiefel-Whitney classes, one can show ?)
that » must have the form 2* — 1 or 2¥ — 2. For n odd it follows
from (7) that if P* can be immersed in E"+! then S§” must be parallel-
izable (compare the proof of (11)). Since the immersion is known to be
possible for n = 0,1, 2, 3, the first unsolved cases are for dimensions
6, 7.

(b) For what n can S" be immersed in E”+! so that the degree d is
even? This is known to be possible for n = 1, 3. The sphere 8™ must
be parallelizable.

(c) Let n be a dimension for which S" is not parallelizable. Can some
parallelizable n-manifold be immersed in E"+! with odd degree? Can
some (necessarily parallelizable) n-manifold be immersed in E"+! both
with odd and with even degree?
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