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Ein alternierendes Verfahren
auf Riemannschen Flichen

von ALBERT PFLUGER, Ziirich

1. Einleitung

Eine fundamentale Aufgabe zur Konstruktion Abelscher Integrale auf
einer geschlossenen Riemannschen Fliche R ist die folgende: Zu einer
orientierten nicht zerlegenden Jordankurve I' auf R ist eine im Gebiet
R — I' eindeutige harmonische Funktion w gesucht, die auf R unbegrenzt
harmonisch fortgesetzt werden kann und dabei lings jeden geschlossenen
Weges I'' die Periode 1 hat, der tn R — I'" das linke mit dem rechten U fer von
I’ verbindet. Die Existenz einer solchen Funktion # kann etwa mit der
Ahlforsschen Formulierung des Dirichletschen Prinzips [1] bewiesen wer-
den, indem man zeigt, dafl unter den eindeutigen exakten Differentialen
w auf R mit |po =TI X I' (d.i. die Schnittzahl von I" mit I'’) genau
eines mit minimaler Norm existiert; dieses ist harmonisch und sein In-
tegral die gesuchte Funktion u. Diese Methode ist nicht konstruktiv. Der
klassische Weg fiithrt iiber Elementarintegrale dritter Gattung y,, mit
den logarithmischen Singularititen und Residuen 4 1 und — 1 in den

«benachbarten» Punkten ¢ und b. Ihre Superposition entlang einer Punkt-
t=n

reihe a,,a,,...,a,,0,., =a, lings I, d.i. X y,,,, , liefert die
i=1

gewiinschte Funktion . Diese Methode ist nicht direkt.

Nun hat H. A. Schwarz [2], nachdem er sein alternierendes Verfahren
zur Losung des Dirichletschen Randwertproblems entwickelt und viel-
seitig angewendet hatte, auch zur direkten Konstruktion der obgenann-
ten Funktion % ein alternierendes Verfahren vorgeschlagen, bei dessen
Konvergenzbeweis er aber dann auf Schwierigkeiten gestofen ist und sich
durch Heranziehung von berandeten kompakten Flichen auf andere
Weise behelfen muBte. Das Problem einer direkten Konstruktion der
Potentiale erster Gattung durch Verwendung eines alternierenden Ver-
fahrens ist erst durch Herrn A. Steiner [3] erfolgreich behandelt worden.
Er hat die Schwierigkeit dadurch iiberwunden, daf er das Verfahren von
Schwarz zunichst so modifizierte, dal die Konvergenz sichergestellt wer-
den konnte. Diese Modifikation bedingte aber das Auftreten einer addi-
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tiven Konstanten, von der dann noch bewiesen werden muBte, daB sie
verschwindet.

Angeregt durch diese Arbeit von Herrn Steiner werde ich im folgenden
unter Verwendung des Kalkiils mit der Dirichletschen Bilinearform

Dg(u, v) = [[p(u,v, + u,v,) dzdy (1.1)

zeigen, dal das urspriingliche, von H. A. Schwarz in natiirlicher Weise
angesetzte Verfahren in bezug auf die durch (1.1) definierte Metrik kon-
vergiert. Ausschlaggebend ist die bekannte Tatsache, daB3 die auf F ein-
deutigen harmonischen Funktionen mit endlichem Dirichletintegral in
bezug auf das Skalarprodukt (1.1) einen Hilbertraum bilden, wenn Funk-
tionen, die sich nur um eine Konstante unterscheiden, als dquivalent
betrachtet werden?). Die Methode 148t sich verwenden, um direkt, ohne
eine kanonische Homologiebasis heranzuziehen, zu jedem singularititen-
freien exakten Differential auf R ein dazu kohomologes harmonisches
Differential zu konstruieren. Sie gibt also in diesem Falle eine konstruk-
tive Variante zum Dirichletschen Prinzip. Zum Schlufl wird noch gezeigt,
daf dieselbe Methode auch einen Konvergenzbeweis fiir das sogenannte
Neumannsche alternierende Verfahren liefert. Sie kann auch auf offenen
Flachen verwendet werden.

2. Das Schwarzsche Verfahren

Um unnoétige Komplikationen zu vermeiden, setzen wir voraus, da I’
analytisch sei. Wir bezeichnen I' mit Iy und wihlen einen zweiten ein-
fach geschlossenen analytischen Weg I, so da I, — Iy auf R
genau zwei Teilgebiete berandet. Das im positiven Sinne umlaufene
Gebiet bezeichnen wir mit B,, das andere mit B,. Wird R lings einem
I';(s =0, 1) aufgeschnitten, so entsteht eine berandete Fliche F; mit den
beiden Randkomponenten (rechtes und linkes Schnittufer) It und
I'; #=0,1).

Nun konstruiert Schwarz eine Doppelfolge von harmonischen Funk-
tionen u{?(; =0,1; n =0,1,2,...). Die 4 sind auf F, harmonisch
und alternierend durch folgende Randbedingungen festgelegt:

u ____{uﬁ’)-}—l auf I}

u® auf I',
" ' (2.1)
© u® auf Iy
U e
n+1 ud — 1 auf Iy
fir n=0,1,2,... und % = 0.

1) Vgl z. B. [4], S. 339-342.
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Wenn das Verfahren konvergiert, d. h. die % auf F, lokal gleich-
méfig konvergieren, so sind die Grenzfunktionen «‘? auf F,(z = 0, 1)
harmonisch mit «® = 4@ auf R, und «® + 1 = 4V auf R,. Damit
wire dann offenbar die Aufgabe gelost. Es geniigt aber, die Konvergenz
der Differentiale du” nachzuweisen. Hiezu setzen wir

©
o _ u,” +1 auf R,
u® auf R,
. (2.2)
o _ j uP —1 auf R,
l u® auf R,
fir »n=1,2,.... Die f) — 4 sind auf F, eindeutig, stetig und

stiickweise stetig differenzierbar und verschwinden auf den beiden Rand-
komponenten I'; und I'; (i = 0, 1). Uberdies sind die »{? auch auf
dem Rande von F, harmonisch, da I'; analytisch ist. Unter Verwendung
der Bilinearform (1.1) folgt aus der Greenschen Formel, angewandt
auf F';,
(u(') f(@) us:)) — j‘ (fﬁ:’ . uﬁf)) du*},? == [} 2) ,
1T
oder wegen (2.2)

Dp(ul), u) — ud) = 0, Dpluy), u — ul) =0 (2.3)
fir m,n =1,2,.... Diese Relationen (2.3) ergeben die Konvergenz

der du{” in folgender Weise.
Zunichst folgt aus (2.3) fir m =n

D@ — ) = D) — D(ud) 2.4)
und
DO — u®,) = D) — D) . (2.5)

Dies liefert die monotone Sequenz

2D =2DEP) =DEd,) =... .

Es ist also
lim D (u®) = lim D (u®) = d (2.6)
n—>00 n—>00
und wegen (2.4) und (2.5)
lim D u® — u®) = lim D(»{® — 4«1 ) =0 . (2.7
n—> o0 n—> o0

%) du* ist das konjugierte Differential zu du.
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Das Ziel ist der Beweis von (2.10). Wiirden neben (2.3) auch die
Relationen D(u®, v — 4®) =0 und D[P, »® — u® ) =0 gel-
ten, so konnte dieser nach bekannten Verfahren sofort erbracht wer-
den. Aber hier ist noch eine weitere Rechnung notig. Die Relationen (2.3)
liefern zusammen mit der Symmetrieeigenschaft D(u, v) = D(v, u)
nacheinander D (4, u®) = D@, »® ) = D®, «® ) und analog
Dul, u) = D(uQ, ,, u¥). Beides zusammen ergibt

D(u?, w)) = D, u,)

und daraus folgt durch Iteration

Du. ,,, w) = D (P, , (2.8)
fir m,p=1,2,3,...;1=0,1.
Dahel" ist D(uﬁ,’f{rzp — uV) = D, ,,) + D)) — 2D(u,,,, ud)
= D(,,) + D)) — 2D (), ) und wegen (2.6) fiir beliebige p
lim D ,, —u{?) =0 . (2.9)
M—>00

Mit der Dreiecksungleichung VD(u + v) < VD(u) + VD(v) folgt
daraus zusammen mit (2.7)

lim D@ —u® =0, ¢=0,1. (2.10)

m,n—>o00

Dies bedeutet, dafl die %" in bezug auf den Distanzbegriff
d(u, v) = VD(u — v)

eine Cauchy-Folge bilden. Nun sind die «{” wegen der Randbedingungen
(2.1) und des analytischen Charakters der Randkurven I'; auf F; har-
monisch, und deshalb konvergieren die Differentiale du{?’ auf F, gleich-
mifig gegen ein harmonisches Differential w;. Wegen (2.7) ist aber
wo = w; in Fy~ F,, d. h. esist ein einziges auf K harmonisches Differen-

tial w konstruiert worden. Fiir ein festes p, ¢ F, konvergiert

w? (p) — uP(py)

auf F, gleichmiBig gegen eine harmonische Funktion U mit dU = w,
die beim Ubergang von Iy zu I'y; den Sprung — 1 erfihrt: Dieses « hat
also die in Nr. 1 geforderten Eigenschaften.

Die Methode ist auch auf beliebige offene Flichen anwendbar, sofern
1.) I' wiederum die Fliche nicht zerlegt, auch nicht in nichtkompakte
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Teile, und 2.) zu den Randbedingungen (2.1) eine zusitzliche Bedingung
fiir den «idealen Rand» gestellt wird. Ist F irgendein in der Riemann-
schen Fliche R kompaktes Teilgebiet mit dem Rand y und ist

w:w(p,y,R-——F)

das harmonische MaB von y in bezug auf R — F, so kann diese Zusatz-
bedingung so formuliert werden: Fiir geeignete positive Konstanten K,
soll in einer Umgebung des «idealen Randes»

| vl | < K, - (2.1)

sein. Dann sind die «{” eindeutig konstruierbar, und man kann zeigen,
dafl dann auch die Relationen (2.3) giiltig sind.

3. Verallgemeinerung

Es sei R wieder eine geschlossene Riemannsche Fliche und z = = + iy
irgendein zuldssiger lokaler Parameter. Zufolge der konformen Struktur
ist jedem (reellen) Differential o = pdx + qdy ein konjugiertes Dif-
ferential w* = — qdx + pdy zugeordnet. w ist exakt, wenn seine
duBere Ableitung dw = (9, — p,) dxdy iiberall auf R verschwindet.
Sind w und w* exakt, so heilt » harmonisch, d. h. es gibt lokal eine
harmonische Funktion 2 mit w =dh =h, dxz 4 h,dy. o heillt total, wenn
eine eindeutige Funktion f mit df=w existiert. Ist w,=p,dx+q,dy
und w, = p,dz + ¢,dy, so wird ihr inneres Produkt (w,, w,) durch

(01, wy) = .g(plpz + ¢:19.) dxdy

definiert. Die positive Quadratwurzel aus (o, w) ist die Norm || o ||
von .

Es ist eine fundamentale Tatsache in der Theorie der harmonischen
Differentiale auf geschlossenen Flachen, dall zu jedem singularitdten-
freien exakten Differential w, auf R ein harmonisches Differential ¢
existiert, so dal ¢ — w, total ist. Dieses ¢ kann etwa auf Grund einer
kanonischen Homologiebasis aus den Potentialen u der Nr. 1 gewonnen
werden. Einen andern, besonders eleganten Zugang liefert das Diri-
chletsche Prinzip in der Ahlforsschen Begriindung [1]: Man betrachte
die Kohomologieklasse 2 in der wq liegt, d. h. simtliche singularitéiten-
freien exakten Differentiale w, wo @ — w, total ist. Dann existiert eine
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Folge {w,} aus Q mit || w,]|] - Inf|| || und man zeigt, daB diese
wel

Minimalfolge stark gegen ein harmonisches Differential ¢ konvergiert und
@ € 2 ist. Unsere Methode (Nr. 2) kann so modifiziert werden, daf} sie
eine direkte Konstruktion einer solchen Minimalfolge liefert. Wir setzen
voraus, dafl w, stetig differenzierbar und exakt sei und bezeichnen mit
die Klasse der Differentiale w von der Form o = w, + df, wo f eine
stetige Funktion ist und stiickweise glatt in folgendem Sinne: Abgesehen
von der Vereinigungsmenge A endlichvieler analytischer Kurvenbogen,
also auf der offenen Menge R — A4 ist f stetig differenzierbar und das
iiber R — A erstreckte Dirichletintegral endlich.

Unter Parameterzelle verstehen wir eine Umgebung V und eine zu-
gehorige konforme Abbildung «, die in einer umfassenderen Umgebung,
welche 7V (abgeschlossene Hiille von V) enthilt, noch definiert ist und V
in den Parameterkreis K = {z| |z|] <1} iiberfiihrt. Da R kompakt ist,
gibt es eine endliche Uberdeckung mit Parameterzellen, die wir fiir das
Folgende festgewdhlt und numeriert mit V,,7 =0,1,2,...,k be-
zeichnen. Wir definieren fiir jede Parameterzelle V, einen linearen Opera-
tor @,: Zu w « 2 gibt es in V, eine stetige Funktion f, mit df, = » in
V;. Da f; auf dem Rande von V, stetig ist, kann man die zugehéorige erste
Randwertaufgabe 16sen, d. h. jene in ¥V, harmonische und auf ¥, noch
stetige Funktion F; konstruieren, die auf dem Rande von ¥V, mit f,
iibereinstimmt.

Wir setzen _

o in R-—V,;
D, = 1=0,1,2,...,k .
dF, in V,
D, w ist durch w und den Index ¢ eindeutig bestimmt und es gehért auch
P, w zur Klasse . Es gilt der

Hilfssatz: Fir jedes exakte Differential ¢ mit endlicher Norm, das in V,
harmonisch ist, gilt
(p, 0 —D,w) =0 . (3.1)

Beweis: Da w = @, w istin R — V,, so bedeutet die Gleichung (3.1),
daB bei Beschrinkung auf ¥V, und Verpflanzung in den Parameterkreis K,
(p, 0 — D, 0)y; = (p, © — D,0)g, = 0 ist. Nungilt w =df,, ;0 =dF,
und F, 16st fiir den Kreis K, in bezug auf die Randwerte von f; das
Dirichletsche Randwertproblem. Es ist also D(F,)<D(f;) <oo. Ferner
sieht man leicht, dal es eine Folge von stetigen und stiickweise glatten
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Funktionen g, gibt, die im Kreisring {z;|1 —1,<|z|<1} ver-
schwinden und der Bedingung lim D(g, — f, — F;) = 0 geniigen.

N —>0o
Offenbar ist (¢, dg,) = 0, woraus sich durch Grenziibergang dann die
gewiinschte Gleichung ergibt.

Das angekiindigte Konstruktionsverfahren verlauft nun folgender-
maBen. Ausgehend von dem gegebenen Differential w, wird eine Folge von
Differentialen w, aus 2 gebildet, wo jedes aus dem Vorangehenden durch
Anwenden des Operators @, hervorgeht, und der Index ¢ stindig die

Zahlenreihe 0,1,2,...,k hin und her durchliuft. Wir setzen also
Diwy = 0y, Py, = wy,..., Py, = w;, P10, = 0pyq,
D oWy = Wpyps - - o5 Prap s = Wapy, oWy = Wy, usw., d. h.
D, wappti1 = Woppris ¢=0,1,2,...,k
und
¢iw2k(v+1)-—i-—1 = Wappin-i> =k —1,k—2,...,2,1.

GemaB (3.1) ist daher (¢, w, — w,_;) = 0 fiir jedes exakte @ endlicher
Norm, das in ¥V, harmonisch ist, und n = 2kv + ¢ mit »=1,2,...,
1 =0,1,..., k. Nunist w, mit m = 2ky + ¢+ in V, harmonisch und
somit

(wy,, ®, — @, ;) =0 fir m= + n(mod 2k) . (3.2)

Daraus folgt zunéchst mit m = »
o, — 0p s |2 = ] @pyt ||? = || @a [[* .

Es sind also die Normen || o, || monoton abnehmend, es existiert

lim|| w, || =d (3.3)
und es ist n—>e
lim|| 0, — @, || =0 . (3.4)
N—y00
Weiter folgt aus (3.2) (0,,, ®,) = (W4, ©,,) fir m = — n (mod 2k);

denn es ist in diesem Falle neben (3.2) auch (w,_,, w,, — w,,) = 0.
Dies ergibt

(wma C‘)m—i-2v) = “ wm+v ”2
fiir alle m und ». Daher ist

” Wy 2y — Oy H2 = “ Wyt 2y ”2 = H Wy H2 - 2(wm+2v: wm)

= || Opioy |2+ || @ |2 = 2{| @y, |I?

und somit fiir beliebige » lim || w4, — @, || = 0. Zusammen mit (3.4)
M—y o0
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und der Subadditivitit der Norm folgt dann

lim || w,, —w,||=0.
m, n—> o

Die w, bilden also eine Cauchy-Folge. Fiir ein festes ¢ ist ¢\ = wyy, . ;
in ¥V, harmonisch, und es gilt bei Restriktion auf V, a fortiori

lim [ 9% — ¢ lly, = 0 .

HyV—> 0

Daher konvergieren die ¢{” in V; lokal gleichmiBig gegen ein harmo-
nisches Differential ¢!? mit

lim || ¢} — @ [ly, =0 . (3.5)

V—>
Damit ist in jeder Parameterumgebung V, ein harmonisches Differential
@9 konstruiert worden, das der Bedingung (3.5) geniigt. Fiir zwei be-
liebige ¢« und j aus der Indexmenge {0,1,2,...,k} gilt aber nun

I 99(3) - ‘P(vj) | = ” Wopypri — Wogyyj | =0

fir » >oo und daraus folgt bei Restriktion auf den Durchschnitt
Vin Vi || ¢ — ¢ || vi~v; = 0, d. h. die Differentiale ¢® und ¢
stimmen im Durchschnitt ¥V, ~ V; iiberein, sind als harmonische Fort-
setzungen voneinander und definieren ein einziges, auf R eindeutiges und
harmonisches Differential ¢. Da die w, eine Cauchy-Folge bilden, ist
wegen (3.5) lim || w, — ]|y, =0 fir :=0,1,2,...,k, woraus sich
unmittelbar "
lim || @, — ¢ ||z = 0 (3.6)
N—>
ergibt: Die w, konvergieren stark gegen das harmonische Differential ¢.

Es ist noch zu zeigen, dall ¢ — w, total ist. Man kann leicht zu jedem
geschlossenen Weg I' auf R ein Differential y, konstruieren, so daf
frw = (yp, o) ist fir jedes exakte Differential w?). Nun ist w,,, — o,
total, also auch w, — w, und daher (ypp, w, — w,) = 0. Aus (3.6) folgt
dann (yp, ¢ — w,) = 0 oder [q(p — w,) = 0 fiir jeden geschlossenen
Weg I'. Also ist ¢ — w, total und ¢ das gesuchte harmonische Diffe-
rential.

Es ist mir nicht gelungen, dieses Verfahren direkt auf offene Fliachen zu
iibertragen, da das periodische Hinundherlaufen des Operators @, auf
den Parameterzellen V,,7 = 0,1, 2, ..., k sehr wesentlich ist. Dagegen
ist es unmittelbar auf einen Kreisbereich B einer offenen Fliche, d. i.
eine zusammenhingende Vereinigungsmenge von endlich vielen Para-

3) Vgl. etwa [5], § 11.
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meterzellen, anwendbar. Man gewinnt dadurch ein in B harmonisches
Differential ¢ mit ¢ — wy = df in Bund f = 0 auf dem Rande von B.
Schopft man die offene Fliche R durch Kreisbereiche aus, so erhilt man
dann ein auf R harmonisches Differential ¢, so da ¢ — w, auf R
total ist. Damit dieses Ausschépfungsverfahren konvergiere, ist natiirlich
notwendig, dafl das gegebene Differential w, von endlicher Norm sei.

4. Anwendung auf das Neumannsche alternierende Verfahren

Zum Schlul} soll noch gezeigt werden, dall man mit unserer Methode
auch die Konvergenz des Neumannschen Verfahrens beweisen kann. Es
sei die Riemannsche Fliche R der Einfachheit halber wieder geschlossen,
F, eine Parameterzelle und o die konforme Abbildung, die den Para-
meterkreis {z‘ |z| <1} in F,; tuberfihrt. Wir bezeichnen mit R,
bzw. K das «-Bild von {z||z| <1,} baw. {z|Y,<|z| <1}
und setzen R — R, =F,, R—F,=R,. I';seider Rand von F,,7=0, 1.
Das Neumannsche Verfahren lost die Aufgabe, zu gegebener harmo-
nischer Funktion H in K mit

fr,dH* =0 (4.1)

in F, und F, je eine harmonische Funktion H, und H, zu finden, so daf
H, — H, = H ist in K. Hiefiir wird eine Doppelfolge von harmonischen
Funktionen «{ in F,,+ = 0,1, durch folgende alternierende Rand-
bedingungen konstruiert:

u® =u® +H auf I, n=1,2,3,... (4.9
uP =u —H auf I7 wuf’=0.

Man zeigt, daB die «{? in F, lokal gleichmiBig gegen eine harmonische
Grenzfunktion H,,7= 0,1, konvergieren. Daher ist nach (4.2)
Hy— H,=H auf K.

Es geniigt aber die Konvergenz der du{’ und diese kann durch
eine dhnliche Betrachtung wie in Nr. 2 bewiesen werden. Wegen (4.1)
existiert in R, eine harmonische Funktion A mit dh* = dH* lings I.
Wir setzen
‘ h im Innern von R,

H = (4.3)
1 H auf K .

H ist stiickweise in R, und K harmonisch, aber nicht stetig; dagegen
sind die Normalableitungen von H lings I', stetig.
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v auf

Wir setzen ©
f(O) —

F
u +H auf R,
(4.4)

R

! u® auf

= .
W’ +H auf F,

n

Die f® haben lings I', eine Unstetigkeitslinie. Dagegen sind die Diffe-
renzen [0 —f® und O —fY . auf R stetig, sowie fO—f0=0 aufR,
und fQ —f0 =0 auf R,. Daher ist Dg(fQ, {9 — {P) = Dy (f¥, {9 — fP)
und D (f“’), fO — ) = Dy (fQ, O — f22,) . Nach der Greenschen
Formel verschwinden aber diese beiden Ausdriicke, da gemiB (4.4) f©
auf F, harmonisch und f) stiickweise auf K und R, harmonisch ist mit
stetiger N. ormalkomponente langs I'y. Es gelten also die Relationen

D, 19 — [2.2) = Do, 19 — ) = 0 (4.5)
fir m,n=1,2,..., die mit f? an Stelle von % mit (2.3) identisch

sind. Gleich wie dort folgt aus (4.5)
im Dg(f —f) =0 .

m,n—> oo
Nun sind die Differentiale df” = du® und dfP = dul® + dH auf F,
bzw. F'; harmonisch und konvergieren daher lokal gleichmiflig gegen ein
harmonisches Differential ¢, bzw. ¢, + dH. Wegen lim D(f® — 1) =0

Nn—> ©
[entspricht (2.7)] ist ¢y = ¢, +dH in F,~ F, = K. Die Integrale
H, der ¢, sind also in F, harmonisch und erfiillen bei geeigneter Wahl
der Integrationskonstanten in K die Gleichung H, — H, = H.
Ist die Fliche offen, so mufl den Randbedingungen (4.2) die am Schlul3
von Nr. 2 angegebene Zusatzbedingung (2.1') fiir den «idealen Rand»
beigefiigt werden.
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