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Ein alternîerendes Verfahren
auf Riemannschen Flâchen

von Albert Pfluger, Zurich

1. Einleitung

Eine fundamentale Aufgabe zur Konstruktion Abelscher Intégrale auf
einer geschlossenen Riemannschen Flache R ist die folgende: Zu einer
orientierten nicht zerlegenden Jordankurve F auf R ist eine im Gebiet

R — F eindeutige harmonische Funktion u gesucht, die auf R unbegrenzt
harmonisch fortgesetzt werden kann und dabei langs jeden geschlossenen

Weges F1 die Période 1 hat, der in R — F das linke mit dem rechten Ufer von
F verbmdet. Die Existenz einer solchen Funktion u kann etwa mit der
Ahlforsschen Formulierung des Dirichletschen Prinzips [1] bewiesen werden,

indem man zeigt, da8 unter den eindeutigen exakten Differentialen
a> auf R mit jr,a) F X F' (d. i. die Schnittzahl von F mit Fr) genau
eines mit minimaler Norm existiert; dièses ist harmonisch und sein
Intégral die gesuchte Funktion u. Dièse Méthode ist nicht konstruktiv. Der
klassische Weg fuhrt uber Elementarintegrale dritter Gattung %ah mit
den logarithmischen Singularitaten und Residuen + 1 und — 1 in den
« benachbarten» Punkten a und b. Ihre Superposition entlang einer Punkt-

i=n
reihe al9 a2, an,an+1 ax langs F, d. i. Z %aiai+1 liefert die

i=i
gewunschte Funktion u. Dièse Méthode ist nicht direkt.

Nun hat H. A. Schwarz [2], nachdem er sein alternierendes Verfahren
zur Losung des Dirichletschen Randwertproblems entwickelt und viel-
seitig angewendet hatte, auch zur direkten Konstruktion der obgenann-
ten Funktion u ein alternierendes Verfahren vorgeschlagen, bei dessen

Konvergenzbeweis er aber dann auf Schwierigkeiten gestofien ist und sich
durch Heranziehung von berandeten kompakten Flachen auf andere
Weise behelfen muBte. Das Problem einer direkten Konstruktion der
Potentiale erster Gattung durch Verwendung eines alternierenden Ver-
fahrens ist erst durch Herrn A. Steiner [3] erfolgreich behandelt worden.
Er hat die Schwierigkeit dadurch uberwunden, daB er das Verfahren von
Schwarz zunachst so modifizierte, daB die Konvergenz sichergestellt werden

konnte. Dièse Modifîkation bedingte aber das Auftreten einer addi-
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tiven Konstanten, von der dann noch bewiesen werden muBte, daB sie
verschwindet.

Angeregt durch dièse Arbeit von Herrn Steiner werde ich im folgenden
unter Verwendung des Kalkûls mit der Dirichletschen Bilinearform

DF(u, v) §§F(uxvx + uyvy)dxdy (1-1)

zeigen, daB das ursprûngliche, von H. A. Schwarz in naturlieher Weise
angesetzte Verfahren in bezug auf die durch (1.1) definierte Metrik kon-
vergiert. Ausschlaggebend ist die bekannte Tatsache, daB die auf F ein-
deutigen harmonischen Funktionen mit endlichem Dirichletintegral in
bezug auf das Skalarprodukt (1.1) einen Hilbertraum bilden, wenn
Funktionen, die sich nur um eine Konstante unterscheiden, als âquivalent
betrachtet werden1). Die Méthode làBt sich verwenden, um direkt, ohne
eine kanonische Homologiebasis heranzuziehen, zu jedem singularitâten-
freien exakten Differential auf R ein dazu kohomologes harmonisches
Differential zu konstruieren. Sie gibt also in diesem Falle eine konstruk-
tive Variante zum Dirichletschen Prinzip. Zum SchluB wird noch gezeigt,
daB dieselbe Méthode auch einen Konvergenzbeweis fur das sogenannte
Neumannsehe alternierende Verfahren liefert. Sie kann auch auf offenen
Flâchen verwendet werden.

2. Das Schwarzsche Verfahren

Um unnôtige Komplikationen zu vermeiden, setzen wir voraus, daB F
analytisch sei. Wir bezeichnen F mit Fo und wâhlen einen zweiten ein-
fach geschlossenen analytischen Weg Fx, so daB Fx — Fo auf R
genau zwei Teilgebiete berandet. Das im positiven Sinne umlaufene
Gebiet bezeichnen wir mit Ro, das andere mit Rt. Wird R lângs einem

Ft(i 0, 1) aufgeschnitten, so entsteht eine berandete Flâche Ft mit den
beiden Randkomponenten (rechtes und linkes Schnittufer) Ff und
Fr (i 0, 1).

Nun konstruiert Schwarz eine Doppelfolge von harmonischen
Funktionen v$(i 0, 1; n ~ 0, 1,2,...). Die u^ sind auf F{ harmonisch
und alternierend durch folgende Randbedingungen festgelegt:

%f + 1 auf r+
%f auf F7

(2.1)
w* auf Fq
%f — 1 auf T+

fur w 0,1,2,... und u^ 0.

Vgl. z. B. [4], S. 339-342.
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Wenn das Verfahren konvergiert, d. h. die vff auf Ft lokal gleich-
màBig konvergieren, so sind die Grenzfunktionen u{t) auf Ft(i 0, 1)
harmonisch mit u{0) u{1) auf jB0 und ui0) + 1 u{1) auf B1. Damit
wâre dann offenbar die Aufgabe gelôst. Es genugt aber, die Konvergenz
der Differentiale du^ nachzuweisen. Hiezu setzen wir

— 1 auf

auf

— 1 auf

auf

Rx

Ro

Rx

Bo

(2.2)
I ull>. — 1 auf R,

/(o) _/n

fur n — 1, 2, Die ffl — u^ sind auf Ft eindeutig, stetig und
stûckweise stetig differenzierbar und versehwinden auf den beiden Rand-
komponenten Ff und F~ (i 0, 1). Ûberdies sind die u^ auch auf
dem Rande von Ft harmonisch, da Ft analytisch ist. Unter Verwendung
der Bilinearform (1.1) folgt aus der Greenschen Formel, angewandt
auf JFf,

DFi«\f<t)-<))= S (/S)-^))***£) o«),

oder wegen (2.2)

DR«, «? - <0)) 0 Da(fC, uf - u« 0 (2.3)

fur m,n 1,2,.... Dièse Relationen (2.3) ergeben die Konvergenz
der dvff in folgender Weise.

Zunâehst folgt aus (2.3) fur m n

(2.4)
und

D «> - «» i) D («« - Z) (<°>) (2.5)

Dies liefert die monotone Sequenz

^ D«>) ^ Z>«>) ^ D(u^+1) ^
Es ist also

lim D «>) lim D «") d (2.6)
n—>oo n—>oo

und wegen (2.4) und (2.5)

lim D(u™ - <0)) lim D{uf - u^) 0 (2.7)
n->oo n->oo

8) dw* ist das konjugierte Différentîal zu dw.
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Das Ziel ist der Beweis von (2.10). Wurden neben (2.3) auch die
Relationen D(«g), t#> - uf) 0 und D«>, <0) - u^lt) 0 gel-
ten, so kônnte dieser nach bekannten Verfahren sofort erbraeht wer-
den. Aber hier ist noeh eine weitere Rechnung nôtig. Die Relationen (2.3)
liefern zusammen mit der Symmetrieeigenschaft D(u, v) D(v, u)
nacheinander D«>, uf) D«>, u^lx) D «>, u^Lt) und analog
D(u%\ uff) D(%2+i» ^0))- Beides zusammen ergibt

u\um ,un) — u{um+1, un_x)

und daraus folgt durch Itération

%% % (2.8)

fur m,p=l,2,3,...;i 0,l.
Daher ist D(u£\2p — u$) D

+ D(u$) — 2D(u{^+p) und wegen (2.6) fur beliebige p

lim Z>(*4î+2p - ^m}) ° • (2-9)
7»_> oo

Mit der Dreiecksungleichung ^(m + v) ^ l7!)^) + ^(v) folgt
daraus zusammen mit (2.7)

Km D«> - <l>) 0 » 0, 1 (2.10)
m,n—>oo

Dies bedeutet, da6 die w^ in bezug auf den Distanzbegrifï

d{u, v) VD(u~ v)

eine Cauehy-Folge bilden. Nun sind die u^ wegen der Randbedingungen
(2.1) und des analytischen Charakters der Randkurven Ft auf F% har-
monisch, und deshalb konvergieren die Difïerentiale du^ auf Fl gleich-
maBig gegen ein harmonisehes Difïerential cot. Wegen (2.7) ist aber
co0 co1 in Fo ^ jP1? d. h. es ist ein einziges aufE harmonisehes Difïerential

co konstruiert worden. Fur ein festes p0 e Fo konvergiert

auf Fo gleichmaBig gegen eine harmonische Funktion U mit dU ay,
die beim lîbergang von F£ zu Jfj" den Sprung — 1 erfahrt Dièses u hat
also die in Nr. 1 geforderten Eigenschaften.

Die Méthode ist auch auf beliebige offene Flachen anwendbar, sofern
1.) F wiederum die Flache nicht zerlegt, auch nicht in nichtkompakte
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Teile, und 2.) zu den Randbedingungen (2.1) eine zusàtzliche Bedingung
fur den «idealen Rand» gestellt wird. Ist F irgendein in der Riemann-
schen Plâche R kompaktes Teilgebiet mit dem Rand y und ist

co co(p,y,R —F)

das harmonische MaB von y in bezug auf R —F, so kann dièse Zusatz-
bedingung so formuliert werden: Fur geeignete positive Konstanten Kn
soll in einer Umgebung des «idealen Randes»

\u«>\<Kn. co (2.V)

sein. Dann sind die v$ eindeutig konstruierbar, und man kann zeigen,
daB dann auch die Relationen (2.3) gultig sind.

3. Verallgemeinerung

Es sei R wieder eine gesehlossene Riemannsche Flàche und z x + iy
irgendein zulâssiger lokaler Parameter. Zufolge der konformen Struktur
ist jedem (reellen) Differential co pdx ~\- qdy ein konjugiertes Dif-
ferential co* — qdx -\~ pdy zugeordnet. co ist exakt, wenn seine
àuBere Ableitung dco (qx — py) dxdy uberall auf R verschwindet.
Sind co und co* exakt, so heiBt co harmonisch, d. h. es gibt lokal eine
harmonische Funktion h mit a> dh hxdx + hydy. co heiBt total, wenn
eine eindeutige Funktion / mit df co existiert. Ist œ1 p1dx + q1dy
und eo2 p2dx -f q2dy, so wird ihr inneres Produkt (co1, co2) durch

(<*>!, co2) $$(PiP2 + ?i?2) dxdy
R

definiert. Die positive Quadratwurzel aus (co, co) ist die Norm \\ co \\

von co.

Es ist eine fundamentale Tatsache in der Théorie der harmonischen
Differentiale auf geschlossenen Flâehen, daB zu jedem singularitâten-
freien exakten Differential co0 auf R ein harmonisches Differential <p

existiert, so daB cp — co0 total ist. Dièses <p kann etwa auf Grund einer
kanonischen Homologiebasis aus den Potentialen u der Nr. 1 gewonnen
werden. Einen andern, besonders eleganten Zugang liefert das Diri-
chletsche Prinzip in der Ahlforsschen Begriindung [1]: Man betrachte
die Kohomologieklasse Q in der co0 liegt, d. h. sâmtliche singularitâten-
freien exakten Differentiale co, wo co — co0 total ist. Dann existiert eine
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Folge { o)n } aus Q mit 11 con \\ -> Inf || co || und man zeigt, daB dièse

Minimalfolge stark gegen ein harmonisches Differential <p konvergiert und
<p € Q ist. Unsere Méthode (Nr. 2) kann so modifiziert werden, daB sie
eine direkte Konstruktion einer solchen Minimalfolge liefert. Wir setzen

voraus, daB co0 stetig difïerenzierbar und exakt sei und bezeichnen mit Q
die Klasse der Differentiale co von der Form co co0 + df, wo / eine
stetige Funktion ist und stûckweise glatt in folgendem Sinne : Abgesehen
von der Vereinigungsmenge A endlichvieler analytischer Kurvenbogen,
also auf der offenen Menge R — A ist / stetig differenzierbar und das
iiber R — A erstreckte Dirichletintegral endlich.

Unter Parameterzelle verstehen wir eine Umgebung V und eine zu-
gehôrige konforme Abbildung a, die in einer umfassenderen Umgebung,
welche F (abgeschlossene Huile von F) enthâlt, noch definiert ist und V
in den Parameterkreis K= { 21121 < 1 } uberfiïhrt. Da R kompakt ist,
gibt es eine endliehe Ùberdeckung mit Parameterzellen, die wir fur das

Folgende festgewâhlt und numeriert mit Ft, i 0, 1, 2, k
bezeichnen. Wir definieren fur jede Parameterzelle Vt einen linearen Opera-
tor 0t : Zu a) € Q gibt es in V{ eine stetige Funktion f{ mit df{ co in
Ft. Da fi auf dem Rande von Ft stetig ist, kann man die zugehôrige erste
Randwertaufgabe lôsen, d. h. jene in Vt harmonische und auf V{ noch
stetige Funktion Ft konstruieren, die auf dem Rande von V{ mit ft
libereinstimmt.

Wir setzen
_

co in R — V i
&ia>

dF{ in F,
i 0, 1,2,.. .,fc

0{ a) ist durch co und den Index i eindeutig bestimmt und es gehôrt auch
0{a) zur Klasse Q. Es gilt der

Hilfssatz: Fur jedes ezakte Differential <p mit endlicher Norm, das in V{
harmonisch ist, gilt

((p, w — 0i(o) 0 (3.1)

Beweis: Da co 0iw ist in R — Ft, sobedeutet dieGleichung (3.1),
daB bei Beschrânkung auf Ft und Verpflanzung in den Parameterkreis K{
(<p, co — 0ico)Vi (<p, co — 0i(o)Ki 0 ist. Nungilt co df{, 0tco dF{
und F{ lôst fur den Kreis K{ in bezug auf die Randwerte von f{ das
Dirichletsche Randwertproblem. Es ist also D(Fi)^D(fi) <oo. Ferner
sieht man leicht, daB es eine Folge von stetigen und stûckweise glatten
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Funktionen gn gibt, die im Kreisring { zt | 1 — 1/n < \ zt | < 1 } ver-
schwinden und der Bedingung lim D(gn — /, — Ft) 0 geniigen.

n—>oo

Ofïenbar ist (<p, dgn) 0, woraus sich durch Grenzûbergang dann die
gewiinschte Gleichung ergibt.

Das angekûndigte Konstruktionsverfahren verlâuft nun folgender-
maBen. Ausgehend von dem gegebenen Differential œ0 wird eine Folge von
Differentialen con aus Q gebildet, wo jedes aus dem Vorangehenden durch
Anwenden des Operators &t hervorgeht, und der Index i stândig die
Zahlenreihe 0, 1, 2, k hin und her durchlâuft. Wir setzen also

ft>2fc-l» #0<*>2fc-l «>afc, USW., d. h.

n t 0, 1, 2, .,*
und

*.«>2fc(v+l)-t-l «>2*(v+l)-t> t * — l,fe ~ 2, 2, 1

GemàB (3.1) istdaher (ç?, con — co^^) 0 fur jedes exakte <p endlicher
Norm, das in Vt harmonisch ist, und n 2kv db i mit v 1,2,...,
i o, 1, k. Nun ist wm mit m 2&// ± i in Ft harmonisch und
somit

(o)m, con ~ cow_!) 0 fur m i n (mod 2ifc) (3.2)

Daraus folgt zunâchst mit m n

Es sind also die Normen 11 o>B 11 monoton abnehmend, es existiert

tim\\œn\\=d (3.3)
und es ist »»-><»

lim || a». - a»^ || 0 (3.4)
n—>oo

Weiter folgt aus (3.2) (œm> (on) (cow+1, con_i) fur m — n (mod 2fc);
denn es ist in diesem Falle neben (3.2) auch (con_1? com+l — œm) 0.
Dies ergibt

fur aile m und v. Daher ist

II wM+2v — com ||2 — H œm+2v ||2 + H a)m ||2 — 2(ft>w+2v, coj
-||^+2vH2+ll^ml|2-2||c0m+v||2

und somit fur beliebige v lim || cow+2ï, — œm \\ 0. Zusammen mit (3.4)
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und der Subadditivitât der Norm folgt dann

lim || Mm - con || 0
m,n—>-oo

Die a)n bilden also eine Cauchy-Folge. Fur ein festes i ist cp^ co2kv+t
in Vt harmonisch, und es gilt bei Restriktion auf Vt a fortiori

lim ||«p<;>-ç,<;>||Ft==o

Daher konvergieren die qty in Vt lokal gleichmàBig gegen ein harmo-
nisches Differential <p{l) mit

lim||v<;>-^>||Ft 0 (3.5)
V—>¦ 00

Damit ist in jeder Parameterumgebung V\ ein harmonisches Differential
q>{i) konstruiert worden, das der Bedingung (3.5) genûgt. Fur zwei be-
liebige i und j aus der Indexmenge {0, 1,2, k } gilt aber nun

II <W - W II II co2kv+t - a>2kv+1 || -? 0

fur v -> oo und daraus folgt bei Restriktion auf den Durchschnitt
vt~ vi II <Pi%) — ^0) ïïvi^v °» d- h- die Differentiale <p{i) und <p™

stimmen im Durehschnitt Vt ^ V3 ûberein, sind als harmonische Fort-
setzungen voneinander und definieren ein einziges, auf R eindeutiges und
harmonisches Differential (p. Da die wn eine Cauchy-Folge bilden, ist
wegen (3.5) lim || œn — (p \\Vt 0 fiir i 0,1,2, ,,k, woraus sich
unmittelbar n~>00

lim || a>p-<p\\B O (3.6)

ergibt : Die con konvergieren stark gegen das harmonische Differential cp.

Es ist noch zu zeigen, daB cp — co0 total ist. Man kann leicht zu jedem
geschlossenen Weg F auf R ein Differential tpr konstruieren, so daB

Jrco (ipr, oo) ist fiir jedes exakte Differential co3). Nun ist <*>w+1 — con

total, also auch a)n — co0 und daher (ipr, con — co0) 0. Aus (3.6) folgt
dann (tpr, <p — co0) 0 oder $r((p — co0) 0 fur jeden geschlossenen
Weg F. Also ist cp — co0 total und <p das gesuchte harmonische
Differential.

Es ist mir nicht gelungen, dièses Verfahren direkt auf offene Flâchen zu
ubertragen, da das periodische Hinundherlaufen des Operators <&t auf
denParameterzellen Vt,i 0,1,2, Je sehr wesentlichist. Dagegen
ist es unmittelbar auf einen Kreisbereich B einer offenen Flâche, d. i.
eine zusammenhângende Vereinigungsmenge von endlich vielen Para-

8) Vgl. etwa [5], § 11.
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meterzellen, anwendbar. Man gewinnt dadurch ein in B harmonisehes
Differential cp mit cp — co0 df in B und / 0 auf dem Rande von B.
Schopft man die offene Flache R durch Kreisbereiche aus, so erhalt man
dann ein auf R harmonisehes Differential <p, so da8 cp — co0 auf R
total ist. Damit dièses Ausschopfungsverfahren konvergiere, ist naturlich
notwendig, da6 das gegebene Differential œ0 von endlicher Norm sei.

4. Anwendung auf das Neumannsche alternierende Verîahren

Zum SchluB soll noch gezeigt werden, daB man mit unserer Méthode
auch die Konvergenz des Neumannschen Verfahrens beweisen kann. Es
sei die Riemannsche Flache R der Emfachheit halber wieder gesehlossen,
Fx eine Parameterzelle und a die konforme Abbildung, die den Para-
meterkreis { z | | z \ < 1 } in Fx uberfuhrt. Wir bezeichnen mit R1
bzw. K das a-Bild von { z | | z | ^ 1/2 } bzw. { z | 72 ^ I z I ^ 1 }
und setzen R — Rx Fo, R — F1 Ro. T, sei der Rand von Ft,i=0, 1.

Das Neumannsehe Verfahren lost die Aufgabe, zu gegebener harmo-
nischer Funktion H in K mit

$rodH* O (4.1)

in Fo und Fx je eine harmonische Funktion Ho und Hx zu finden, so dafi
Ho — Hx H ist in K. Hiefur wird eine Doppelfolge von harmonischen
Funktionen v$ in F%, % 0, 1, durch folgende alternierende Rand-
bedingungen konstruiert.

u™ ifil! + H auf To n= 1,2,3,...
u(i) uf - H auf r, <> 0

Man zeigt, daB die u^ in Fx lokal gleichmaBig gegen eine harmonische
Grenzfunktion Ht9i 0,1, konvergieren. Daher ist nach (4.2)
Ho-H1 =H auf K.

Es genugt aber die Konvergenz der du^ und dièse kann durch
eine ahnliche Betrachtung wie in Nr. 2 bewiesen werden. Wegen (4.1)
existiert in R± eine harmonische Funktion h mit dh* dH* langs Fo.
Wir setzen

j h im Innern von Rx
H^\ (4.3)

\ H auf K

Tî ist stuckweise in Rx und K harmonisch, aber nicht stetig, dagegen
sind die Normalableitungen von H langs Fo stetig.
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Wir setzen m « ~v%} auf FQ

I ^n-i+ H auf J?!
(4.4)

!<' aut M.

| <> + ï? auf Fv

Die /£* haben lângs Fo eine Unstetigkeitslinie. Dagegen sind die Difïe-
renzen /?>-/£> und ffl-f^ auf i? stetig, sowie /<?>_/£> aufiî0
una jn — fn__1 ¦— u aui it1. uaner isd ur \jm /n —Jn) — uFl \Jm ,Jn In
und Da(^, /f - /Sii) Djij/S?, /f - /L1^) • Nach der Greenschen
Formel verschwinden aber dièse beiden Ausdrucke, da gemâB (4.4) /^
auf Fo harmonisch und ffl stûckweise auf K und Bt harmonisch ist mit
stetiger Normalkomponente lângs Fo. Es gelten also die Relationen

DR(f0), ffi — f{1)_ DR(f{1\ /^0) — ffi) 0 (4.5)

fur m,n l,2,..., die mit /^ an Stelle von u^ mit (2.3) identisch
sind. Gleich wie dort folgt aus (4.5)

lim DxifM — ff) 0
m,n—>oo

Nun sind die Differentiale djf e^f und ^/ï} d^ + d# auf ^o
bzw. Fx harmonisch und konvergieren daher lokal gleichmâBig gegen ein
harmonisches Differential ç?0 bzw. <px -f dH. Wegen lim D (/^0) — /^) 0

[entspricht (2.7)] ist ^0 ^1 + dll in Fo<^ Fx K. Die Intégrale
Jïj der ç?e sind also in Ft harmonisch und erfûllen bei geeigneter Wahl
der Integrationskonstanten in K die Gleichung Ho — Hl H.

Ist die Flâche offen, so mu8 den Randbedingungen (4.2) die am SchluB

von Nr. 2 angegebene Zusatzbedingung (2.1') fur den «idealen Rand»
beigefûgt werden.
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