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Erreurs de chute dans la résolution de

systèmes algébriques linéaires

par Ch. Blanc et W. Liniger, Lausanne *)

Le développement récent des techniques de calcul numérique a mis
en évidence l'importance des erreurs de chute2), en particulier dans la
résolution de grands systèmes algébriques linéaires. La question a été
déjà étudiée à divers points de vue ; voir, par exemple, [4] et [6]. Il
convient de faire d'emblée la remarque suivante : une étude des erreurs de
chute n'a de sens que si l'on précise très exactement les opérations
arithmétiques effectuées ; en particulier, il faut indiquer à quels moments il
s'introduit dans les calculs des erreurs de chute élémentaires, par abandon
de décimales.

Nous supposerons ici que les calculs sont disposés selon la technique
indiquée dans [5] (il s'agit d'une heureuse adaptation de la méthode de
Gauss, désignée parfois sous le nom de méthode de Cholesky) ; précisons
que lorsqu'on effectue une somme de produits (et cas échéant son quotient
par un nombre), le résultat final seul est arrondi, mais non les résultats
partiels (c'est ce qui se passe en général si l'on calcule avec une machine
de bureau). Nous supposerons enfin que les erreurs de chute élémentaires
sont des grandeurs aléatoires, équidistribuées dans l'intervalle (—J« 10~m,

|-10~m) si l'on arrondit le résultat à m décimales. Cette hypothèse
correspond très bien à ce qui se passe réellement pour la plupart des

systèmes linéaires ; elle n'est pratiquement en défaut que pour des

systèmes spécialement construits ; elle peut du reste être testée, comme
nous le montrerons.

Il sera avantageux de ne pas adopter d'emblée une hypothèse aussi
restrictive sur les erreurs de chute : nous commencerons par admettre
que ce sont des variables aléatoires distribuées d'une manière quelconque,
avec toutefois un support assez petit. Nous montrerons que les erreurs de

*) Institut de mathématiques appliquées de l'Ecole Polytechnique de l'Université de
Lausanne. Recherche subventionnée par le Fonds national suisse de la recherche scientifique.

2) Rundungsfehler, round off errors.
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chute sur les inconnues satisfont à un système linéaire qui ne se distingue
du système donné que par les seconds membres. Leur écart-type sera dès
lors facile â calculer, ainsi que celui des résidus du système.

§1. Résolution du système avec erreurs de chute

Considérons le système linéaire

n

Eatix3 ct i l,...,n (1.1)

et sa transformation par les relations (appliquées dans l'ordre convenable)

(a) btl atl

a

1

(b)

(o)

(d)

(e) dx =^,
(f) d, =y-(cf-

en un système triangulaire

(a) xx + S btl.

(b)

k>\

-Sb,}blk) \<i<k (1.2)

(1.3)

la résolution progressive de ce système (1.3) donne les solutions du
système (1.1).

Supposons maintenant que Ton modifie ce procédé de résolution de la
manière suivante : On continue à se servir des équations (1.2) et (1.3),
mais chaque fois que Ton a calculé une des expressions (à l'exception de

(1.2.a) et (1.3.b)), on lui ajoute une variable aléatoire dont les

propriétés seront précisées ; les calculs suivants utilisent toujours la quantité
ainsi modifiée ; désignons alors par j$tk, ôt, £t les quantités obtenues à la
place des btk, d% et x% ; les variables introduites à l'occasion des divers
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calculs seront désignées par jliiJc, vt, nt. Nous avons donc, à la place des
relations (1.2) et (1.3) :

(a) fia atl
k-l

(b) Ptk atk — Eptj

(c) /?u=/9u«1* + i

(d) P,L=-£-{atL-
Ptt 1=1

(e) «5, =J-Cl + n

(f) d, =j-(c,-
et

(a) |, + E jS,3^

(b) Sn

k>\
(1.4)

(1.5)

Nous supposons que les variables aléatoires jutk, vt et 7rt sont de moyenne
nulle, indépendantes entre elles et de support intérieur à un intervalle
(— e9e). Nous dirons qu'une variable f, fonction des jbt, v et n, est
O(ek) si son support est intérieur à un intervalle (—sr9ef)9 avec
s' O(sk), pour £->0. Nous négligerons dans la suite, dans une
somme, une variable O(s2) vis-à-vis d'une variable O(s). Nous supposons

enfin que e est assez petit pour que le support de /?„ ne contienne pas
l'origine (ce qui est du reste une condition pour que la méthode de résolution

considérée donne un résultat convenable).
Introduisons les variables aléatoires

(a)

(b) - ct
(1.6)

les rjt sont les erreurs sur les xt, les qt les résidus des équations pour les

solutions approchées ; nous nous proposons de déterminer leurs moments
d'ordres un et deux, à partir des moments correspondants des p, v, n.
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Posons encore

.P%xVx + Z pl37l3
7=1

Les relations (1.4) et (1.5) prennent alors la forme

(a) ptl afl

(d) Ptk=--K-(oLtk—Zptip9k), \<Kkft* 7 1

(e) r -J-v

et

(a) £t+ Z Pl3Ç3 -= r,

(b) fn - rn

(1.7)

(1.8)

(1.9)

Or les relations (1.8) et (1.9) fournissent exactement la solution du

système n

^ocl3i3 7l i~= l,...,n (1.10)

d'où, en tenant compte de (1.6),

7=1 7=1

en tenant compte des valeurs tirées des équations (1.7), on a ensuite

n % n %
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en négligeant des variables 0(e2), on peut remplacer ici ocl3 par at} et
f}%3 par bt}, d'où, avec cette approximation,

(1.12)
7=2 3=1

on voit ainsi que les résidus peuvent se calculer linéairement à partir des

erreurs de chute élémentaires ; ensuite, les erreurs rjt sur les inconnues
se calculent en résolvant un système linéaire obtenu en remplaçant dans

(1.1) les seconds membres par les résidus qt.
Comme on a supposé que les erreurs de chute élémentaires sont de

moyenne nulle, on a immédiatement

E Qt - 0

Passons maintenant aux moments d'ordre deux. On a

(1.13)

(1.14)

(1.14)

ce qui permet de déterminer les covariances des rjl à partir de celles des

q% Pour ces dernières, on a simplement, en tenant compte de l'hypothèse
de l'indépendance des erreurs élémentaires :

i<k

(1.15)

b\n

Précisons maintenant le choix des variables aléatoires /li v et n ; nous

supposons pour cela que les calculs donnés par les relations (1.2) et (1.3)
sont faits, pour chacune de ces relations, avec un même nombre de
décimales. Alors les variances figurant dans (1.5) ont des valeurs bien définies

; posons

E ffa

En\ - M4

<Jc
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alors

b%ii + MxZx)

b% S x)

(1.16)

i h < n

Remarquons encore que les valeurs exactes des bik et des a^ restent
pratiquement inconnues ; mais on peut encore, en restant dans les limitet
de l'approximation envisagée, les remplacer par les valeurs approchées
&*et|3..

Pratiquement, on peut tirer entre autre de ces expressions le renseignement

suivant : si l'on a formé le système triangulaire (1.3) et si l'on connaît

l'ordre de grandeur des inconnues, il est possible d'adopter pour la
résolution de (1.3) le nombre de décimales qui est le plus favorable ; ce
nombre fixe la valeur de Jf4 seulement.

§ 2. A propos des hypothèses faites sur les erreurs de chute élémentaires

On peut évidemment construire des systèmes pour lesquels les erreurs
de chute élémentaires montrent une distribution très différente de ce qui
résulterait de nos hypothèses ; mais ceci ne constitue pas une objection
très valable en pratique. Par contre, les considérations précédentes
permettent de tester les hypothèses formulées. Supposons en effet que tous
les calculs sont faits avec m décimales ; on a alors Mk JL 10~2w?

(£=1,2,3,4), et les Erfi et Eç>\ sont de la forme

Eri\ P\- 10-2m Eq\ Q\• 10-2w

Pi et Qi étant indépendants de m ; pour un même système, dont nous
connaissons la solution exacte, nous pouvons dès lors effectuer les
calculs pour diverses valeurs de m, puis calculer les moyennes quadratiques
(sur m) Et et Ft des erreurs et résidus effectifs pris en unités de la
dernière décimale, et enfin comparer les Ei et F€ avec les Pt et Qt. Prenons

par exemple le système
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304 xt — 264 x2 + 96 xs — 16 #4 + a?6 121

— 264 xx + 400 #2 — 280 x3 + 97 #4 — 16 #5 — 63

96 #! — 280 x2 + 401 #3 — 280 xé + 96 x5 33

— 16 »! + 97 x2 — 280 #3 + 400 #4 — 264 x5 — 63

»i — 16 #2 + 96 x3 — 264 #4 + 304 x5 121

dont la solution exacte est a^ x2 #3 #4 #5 1 ; si on le résout
successivement pour m 4,..., 8, on obtient les nombres portés au
tableau ci-dessous :

%

1

2

3

4

5

Pi
3,288

4,519

4,251

3,186

1,661

E{

3,8

4,8

4,2

3,3

1,7

Qi

215

134

105

89

56

Fi
296

88

121

61

44

On constate qu'il y a une bonne concordance, ce qui justifie les
hypothèses formulées sur les erreurs de chute élémentaires3).

Il faudra cependant prendre certaines précautions dans les cas où la
période de la fraction l/au est courte ; il peut arriver alors que les erreurs
de chute sur les blk soient distribuées d'une manière très particulière. En
outre, si akl est nul, il n'y a pas d'erreur de chute sur le calcul de bk2,

donc juk2 0, ce dont il faut tenir compte dans la suite des calculs.

§ 3. Systèmes à solutions aléatoires

Supposons maintenant que les xt et les ct du système
n

xj ci, t l,...,n (3.1)

sont des variables aléatoires, de moyenne nulle ; désignons par sik la
covariance Exixk\ nous supposons que l'on résout le système par la
méthode indiquée au paragraphe 1, en introduisant comme plus haut des

grandeurs aléatoires ju, v et n à chaque calcul ; les considérations du
paragraphe 1 restent valables, si Ton suppose, ce que nous ferons, que
les /*, v, n sont stochastiquement'indépendants des x{ ; il reste dès lors
simplement (en donnant la même signification aux Mk) :

3) L'étude d'autres systèmes a donné des résultats tout à fait analogues.
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7=1

i inM^Ublj + Mzb2tl + M1Usn + M2b2l% Z s0) i h <n
n—1 n

(3 2)

on peut en tirer ensuite les Erjtrjk ; ces covariances se calculent donc
comme si les xt étaient des grandeurs certaines égales aux stt. Il en résulte
en particulier que ces covariances ne dépendent pas de la covariance des

x%, mais seulement de leurs varianees.
Ces considérations trouvent une application dans l'étude des solutions

approchées de certains problèmes. On a montré ailleurs (voir [1], [2], [3])
que l'on peut se placer alors à un point de vue stochastique, en considérant

les données du problème comme aléatoires, la solution l'étant donc
aussi, de même que les erreurs de méthode si l'on adopte une méthode
approchée ; si l'on se propose alors l'étude non seulement des erreurs de
méthode, mais aussi des erreurs de chute, et si le calcul numérique
comporte essentiellement la résolution d'un système algébrique linéaire
(comme c'est par exemple le cas lorsqu'on substitue des différences finies
à des dérivées dans une équation différentielle linéaire), les considérations
précédentes s'appliquent parfaitement.
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