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Erreurs de chute dans la résolution de
systemes algébriques linéaires

par CH. BLaxc et W. LINIGER, Lausanne?)

Le développement récent des techniques de calcul numérique a mis
en évidence 'importance des erreurs de chute?), en particulier dans la
résolution de grands systémes algébriques linéaires. La question a été
déja étudiée & divers points de vue ; voir, par exemple, [4] et [6]. Il con-
vient de faire d’emblée la remarque suivante : une étude des erreurs de
chute n’a de sens que si ’on précise trés exactement les opérations arith-
métiques effectuées ; en particulier, il faut indiquer & quels moments il
s’introduit dans les calculs des erreurs de chute élémentaires, par abandon
de décimales.

Nous supposerons ici que les calculs sont disposés selon la technique
indiquée dans [5] (il s’agit d’une heureuse adaptation de la méthode de
Gauss, désignée parfois sous le nom de méthode de Cholesky) ; précisons
que lorsqu’on effectue une somme de produits (et cas échéant son quotient
par un nombre), le résultat final seul est arrondi, mais non les résultats
partiels (c’est ce qui se passe en général si I’on calcule avec une machine
de bureau). Nous supposerons enfin que les erreurs de chute élémentaires
sont des grandeurs aléatoires, équidistribuées dans l'intervalle (—%-10-™,
1.10-™) si l'on arrondit le résultat & m décimales. Cette hypotheése
correspond trés bien & ce qui se passe réellement pour la plupart des
systémes linéaires; elle n’est pratiquement en défaut que pour des
systémes spécialement construits; elle peut du reste étre testée, comme
nous le montrerons.

Il sera avantageux de ne pas adopter d’emblée une hypothése aussi
restrictive sur les erreurs de chute: nous commencerons par admettre
que ce sont des variables aléatoires distribuées d’une maniére quelconque,
avec toutefois un support assez petit. Nous montrerons que les erreurs de

1) Institut de mathématiques appliquées de I'Ecole Polytechnique de 1’Université de
Lausanne. Recherche subventionnée par le Fonds national suisse de la recherche scienti-
fique.

?) Rundungsfehler, round off errors.
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chute sur les inconnues satisfont & un systéme linéaire qui ne se distingue
du systéme donné que par les seconds membres. Leur écart-type sera dés
lors facile & calculer, ainsi que celui des résidus du systéme.

§ 1. Résolution du systéme avec erreurs de chute

Considérons le systéme linéaire

n

Zagx,=c; , 1=1,...,7n (1.1)
i=1

et sa transformation par les relations (appliquées dans I’ordre convenable)

(@ by=a;,
k—1
(b) by =ay — 2b,b; 12 k>1,
j=1
1
(€) by =5—ay , k>1,
by,
1 t—1 . 1.2
(d) bik == T (aik —‘jibﬁbﬂc) R 1 <1 <k 5 ( )
1
(e) d, = ‘6“1‘1‘01 )
1 i-1 .
® d; = b (c; — 2'byd;) , 1 >1,
i j=1
en un systéme triangulaire
. Zn' b . = d , ) 3
(a) xt +7’:i+1 Z?xﬂ 1 7/<n (1.3)
(b) T, =d, ;

la résolution progressive de ce systéme (1.3) donne les solutions du
systéme (1.1).

Supposons maintenant que ’on modifie ce procédé de résolution de la
maniére suivante : On continue & se servir des équations (1.2) et (1.3),
mais chaque fois que 1’on a calculé une des expressions (4 ’exception de
(1.2.a) et (1.3.b)), on lui ajoute une variable aléatoire dont les pro-
priétés seront précisées ; les calculs suivants utilisent toujours la quantité
ainsi modifiée ; désignons alors par §,;, d,, &, les quantités obtenues & la
place des b,,, d; et x,; les variables introduites & 1'occasion des divers
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calculs seront désignées par u,;, v;, #,. Nous avons donc, & la place des
relations (1.2) et (1.3):

(@) Ba=a,,
k-1
(b)  Bix = @y — Z BB + Hir > 1 =2 k>1,
j=1
1
() Bix =5y + p1z » E>1,
P
1 i-1 ) 1.4
d) B = ‘B‘” (@, "_Zlﬂuﬂjk) + Mix > l<i<k , ( )
i i=
(e) 6, = ~—Lc +
1 ﬂll 1 1>
1 i-1
) 4 = (¢; — 2 B:;0;) + v, 1>1
ﬂii j=1
et
i z‘ 3& = 0; +—m,; <n ,
(a') & +9’=i+1ﬁ ,Ej T <N (1.5)
(b) &, =9, .

Nous supposons que les variables aléatoires u,; , v, et 7, sont de moyenne
nulle, indépendantes entre elles et de support intérieur & un intervalle
(— €, ¢). Nous dirons qu'une variable {, fonction des u, v et =, est
O(¢*) si son support est intérieur & un intervalle (— &, ¢’), avec
¢ = 0(e¥), pour &—>0. Nous négligerons dans la suite, dans une
somme, une variable O(¢?) vis-a-vis d’'une variable O(e). Nous suppo-
sons enfin que ¢ est assez petit pour que le support de §,; ne contienne pas
Porigine (ce qui est du reste une condition pour que la méthode de résolu-
tion considérée donne un résultat convenable).

Introduisons les variables aléatoires

(a) n=§& —

n 1.6
(b) 0, =2a;& —c -9

w1 % ;
j=1

les %, sont les erreurs sur les x,, les g, les résidus des équations pour les
solutions approchées ; nous nous proposons de déterminer leurs moments
d’ordres un et deux, & partir des moments correspondants des u, v, 7.
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Posons encore

01 = 0y
Oy = Qg + Mg » i =2 k>1,
Qg = Pz + Baabbar i<k,
i (L.7)
Vi =€ + Buvi+ 2 Bym;
j=1
T, =0; +m,, r<n ,
T, = 0, .
Les relations (1.4) et (1.5) prennent alors la forme
(@) Pu = ay
k—1 .
(b) &k=am—w{&mm, izk>1,
j=
1
(c) &w=3~%k, k>1,
1
1 -1 ) (1.8)
d) Ba= T(O‘m — 2 BBi) l<i<k
it =1
1
e T, = V1 »
( ) 1 ﬂll 71
1 L .
) = = 3 VZ —_Zﬁiﬂj , 1>1
i i=1
et
a i 2 i i — i i<’ﬂ )
@ ¢ +9’=i+lﬂ =T (1.9)
(b) &, =1, .

Or les relations (1.8) et (1.9) fournissent exactement la solution du
systéme n
205“51-::’}/1-, 7::1,.:.,%, (1‘10)
j=1
d’ou, en tenant compte de (1.6),

n n
Zagn; =p; — o, x; ;
j=1 j=1

en tenant compte des valeurs tirées des équations (1.7), on a ensuite
n i n i
Zoyny = — Zpy; — i 2 pyu®; + Buvi + 2 Bum; (1.11)
i=1 j=2 j=i+1 j=1
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en négligeant des variables O(e?), on peut remplacer ici «,; par a,; et
pi; par b,;, d’ou, avec cette approximation,

n i n i
0= Zaym; = — 2 pyx; — by X pyx; + by, + 2bym 5 (1.12)
i=1 j=2 j=i+1 j=1
on voit ainsi que les résidus peuvent se calculer linéairement & partir des
erreurs de chute élémentaires ; ensuite, les erreurs 7, sur les inconnues
se calculent en résolvant un systéeme linéaire obtenu en remplacant dans
(1.1) les seconds membres par les résidus p,.
Comme on a supposé que les erreurs de chute élémentaires sont de
moyenne nulle, on a immédiatement

Eo;=0, (1.13)
En,=0. (1.14)

Passons maintenant aux moments d’ordre deux. On a
Z g, = Bee (1.14)

ce qui permet de déterminer les covariances des 7, a partir de celles des
o,. Pour ces derniéres, on a simplement, en tenant compte de ’hypothése
de I'indépendance des erreurs élémentaires :

X b,,b,, B i<k,

7 2
j=1

L8, el + b3 Bv; + 2 Byl

ji=1 j

Eo;0. = " (1.15)
—{—bzi,; ExﬁE,u%j, r=k<mn,
j=i+1
n—1 n .
20 En+ b, B, + X aj By, i=k=mn.
j=1 j=2

Précisons maintenant le choix des variables aléatoires ., v et 7 ; nous
supposons pour cela que les calculs donnés par les relations (1.2) et (1.3)
sont faits, pour chacune de ces relations, avec un méme nombre de déci-
males. Alors les variances figurant dans (1.5) ont des valeurs bien défi-
nies ; posons

Eu, =M, , v =k,
Eui, =M, , 1<k,
Ev: =M, ,
En: =M, ,;
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alors

M, Zbby, i<k,
§=
M, Z b+ Myb + M, Z a2
Eoior =1 ' 7 (1.16)
j=i+1
n—1 n
M4.z;bij+M3b:n+M12x? ’ izk:n .
i= j=2

Remarquons encore que les valeurs exactes des b,, et des z; restent
pratiquement inconnues ; mais on peut encore, en restant dans les limitet
de I'approximation envisagée, les remplacer par les valeurs approchées
Bix b &;.

Pratiquement, on peut tirer entre autre de ces expressions le renseigne-
ment suivant : si ’on a formé le systéme triangulaire (1.3) et si ’on con-
nait I’ordre de grandeur des inconnues, il est possible d’adopter pour la
résolution de (1.3) le nombre de décimales qui est le plus favorable ; ce
nombre fixe la valeur de M, seulement.

§2. A propos des hypothéses faites sur les erreurs de chute élémentaires

On peut évidemment construire des systémes pour lesquels les erreurs
de chute élémentaires montrent une distribution trés différente de ce qui
résulterait de nos hypothéses ; mais ceci ne constitue pas une objection
trés valable en pratique. Par contre, les considérations précédentes per-
mettent de tester les hypothéses formulées. Supposons en effet que tous
les calculs sont faits avec m décimales; on a alors M, = % 10—2m
(k=1,2,3,4), etles En} et Ep} sont de la forme

BEqf = P10,  Egt = @-10-m

P, et @, étant indépendants de m ; pour un méme systéme, dont nous
connaissons la solution exacte, nous pouvons dés lors effectuer les cal-
culs pour diverses valeurs de m, puis calculer les moyennes quadratiques
(sur m) K, et F, des erreurs et résidus effectifs pris en unités de la der-
niére décimale, et enfin comparer les £, et F, avec les P, et @,. Prenons
par exemple le systéme
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— 964 2, + 400 z, — 280 2, - 9T 2, — 16 25 — — 63
96 z, — 280 z, + 401 2, — 280 2, + 96 x5 — 33

z; — 162, + 96 23 — 264 2, + 304 25 = 121

dont la solution exacte est x, = x, = 3 = x, = z; = 1; si on le résout

successivement pour m = 4,..., 8, on obtient les nombres portés au
tableau ci-dessous :

i P, B, @ F

1 3,288 3,8 215 296

2 4,519 4,8 134 88

3 4,251 4,2 105 121

4 3,186 3,3 89 61

5 1,661 1,7 56 44

On constate qu’il y a une bonne concordance, ce qui justifie les hypo-
theéses formulées sur les erreurs de chute élémentaires?3).

I1 faudra cependant prendre certaines précautions dans les cas ou la
période de la fraction 1/a,, est courte ; il peut arriver alors que les erreurs
de chute sur les b,, soient distribuées d’une maniére tres particuliére. En
outre, si a,, est nul, il n’y a pas d’erreur de chute sur le calcul de b,,,
donc u,, = 0, ce dont il faut tenir compte dans la suite des calculs.

§3. Systémes & solutions aléatoires

Supposons maintenant que les ; et les ¢; du systéme
n
Zagr;=c¢;, t=1,...,n (3.1)
j=1
sont des variables aléatoires, de moyenne nulle; désignons par s;, la
covariance K x,z,; nous supposons que l'on résout le systéeme par la
méthode indiquée au paragraphe 1, en introduisant comme plus haut des
grandeurs aléatoires u, v et = & chaque calcul ; les considérations du
paragraphe 1 restent valables, si ’on suppose, ce que nous ferons, que
les u, v, = sont stochastiquement indépendants des z,; il reste dés lors
simplement (en donnant la méme signification aux M) :

3) L’étude d’autres systémes a donné des résultats tout & fait analogues.
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i
M,Zb,b,, i<k,

i=1

Eo0,= M42bgi+M3b%i+M128i5+M2bgi 2 8, t=k<mn,

j=1 j=2 j=i+1
n—1 n
j=1 j=2
(3.2)

on peut en tirer ensuite les FE1,7,; ces covariances se calculent donc
comme si les x; étaient des grandeurs certaines égales aux s,,. Il en résulte
en particulier que ces covariances ne dépendent pas de la covariance des
z;, mais seulement de leurs variances.

Ces considérations trouvent une application dans I’étude des solutions
approchées de certains probléemes. On a montré ailleurs (voir [1], [2], [3])
que ’on peut se placer alors & un point de vue stochastique, en considé-
rant les données du probléme comme aléatoires, la solution ’étant donc
aussi, de méme que les erreurs de méthode si I’on adopte une méthode
approchée ; si I'on se propose alors ’étude non seulement des erreurs de
méthode, mais aussi des erreurs de chute, et si le calcul numérique com-
porte essentiellement la résolution d'un systéme algébrique linéaire
(comme c’est par exemple le cas lorsqu’on substitue des différences finies
4 des dérivées dans une équation différentielle linéaire), les considérations
précédentes s’appliquent parfaitement.
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