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Beitriige zur Theorie von Stiitzfunktion

und Radius — Die Radialflichen

von HaNs GIGER, Bern

§1. Einleitung

In der Theorie der Raumflachen lassen sich, wie W. Scherrer in zwei
Arbeiten!) ausgefiithrt hat, neben dem Ortsvektor ¥ und der Fldchen-
normalen 9 mit Vorteil der Stitzvektor P = — [N, x] und die beiden
orthogonalinvarianten Skalare, die Stiitzfunktion p = — (M, x) und

der Radius r = ng, einfilhren. In den beiden Arbeiten werden die
Grundgleichungen der Flichentheorie auf die Stiitzfunktion und den
Radius, sowie auf die relativen Hauptformen und die entsprechenden
Kriimmungsmalle zuriickgefiihrt. Mit der reziproken Stiitzfunktion und
dem Radius als Parameter ergeben sich Gleichungen, die sich durch be-
sondere Einfachheit auszeichnen. Es folgt der Satz, daB eine Fliche,
deren Gauflsche Kriimmung als Funktion dieser Parameter bekannt ist,
nach Vorgabe eines nichtasymptotischen Streifens, eindeutig bestimmt
ist.

Die Untersuchung?) der Fliachen, fiir welche zwischen Stiitzfunktion
und Radius ein funktioneller Zusammenhang besteht und bei denen
daher die angegebene Parameterdarstellung entartet, zeigt, daBl aufler
den Rotationsflichen auch gewisse Gesimsflichen eine solche Funktional-
abhingigkeit aufweisen. In der vorliegenden Arbeit werden diese Gesims-
flichen und die Rotationsflichen zusammenfassend als Radialflichen
bezeichnet.

Im Hinblick auf die Anwendung der erwihnten Grundgleichungen auf
bestimmte Flichenklassen ist eine weitere Untersuchung der Radial-
flaichen nahegelegt. W. Scherrer hat die Vermutung aufgestellt, dal die
konvexen Rotationsflichen die einzigen Radial-Eiflichen darstellen.
Diese Vermutung wird in der vorliegenden Arbeit fiir analytische Radial-

1) W. Scherrer, Stiitzfunktion und Radius I, Comment. Math. Helv. 20 (1947). —
Stiitzfunktion und Radius II, Comment. Math. Helv. 25 (1951).

%) H. Schindler, Beitrage zur Theorie von Stitzfunktionund Radius, Comment.
Math. Helv. 26 (1952).
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Eiflichen bewiesen. Weiter wird gezeigt, dal das Katenoid die einzige
Radial-Minimalfliche darstellt.

Radialflichen ergeben sich ausgehend von einer beliebigen Kegelfliche
mit der Spitze im Ursprung durch folgende Konstruktion: Auf einer
Tangentialebene der Kegelfliche wird eine willkiirliche Kurve € vor-
gegeben. € beschreibt die allgemeinste Radialfliche, wenn die Tangential-
ebene auf der Kegelfliche ohne zu gleiten abrollt, diese also stets lings
einer Erzeugenden beriihrt. Die Rotationsflichen sind in dieser Kon-
struktion enthalten, falls die Gerade als entartete Kegelfliche zugelassen
wird. Diese anschauliche Konstruktion der Radialflichen 148t sich nach
H. Schindler?) leicht analytisch beschreiben, indem man von einer be-
liebigen Raumkurve ausgeht. Wir werden uns auf diese Darstellung be-
ziehen und sie fiir unsere Zwecke geeignet modifizieren. Auf Grund einer
Arbeit von W. Scherrer ?) werden wir zeigen, daf3 es geniigt, von einer
Kurve auf der Einheitskugel auszugehen.

Im folgenden Paragraphen stellen wir die fiir unsere Untersuchung
notwendigen Hilfsmittel aus der Raumkurven- und Fldachentheorie zu-
sammen.

§2. Grundformeln
Es sei

n = y(s) (1)

die auf die Bogenlinge s bezogene Parameterdarstellung einer Raum-
kurve. Die Ableitungen nach s bezeichnen wir mit Strichen. Die Einheits-
vektoren des begleitenden Dreibeins, die Tangente t, die Hauptnormale
1 und die Binormale b sind nun gegeben durch

: Y’ v’ 9]
t = b = ] b = e . 2 .
D i I)//2 "/I)llg ( )
Kriimmung » und Torsion 7 berechnen sich nach den Formeln
w=Vy, =L100107 ’;’,,2] v (3)

Die Frenetschen Grundformeln
' =xn, n=—=xt+ b, b= —tn (4)

definieren die infinitesimale Bewegung des Kurvendreibeins bei einer
Variation des Parameters s, welche sich als infinitesimale Drehung dar-

8) W. Scherrer, Uber das Hauptnormalenbild einer Raumkurve, Comment.
Math. Helv. 19 (1946).
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stellen 1a8t. Achse und Winkelgeschwindigkeit der Drehung sind durch
Richtung und Betrag des Darbouxschen Drehvektors

d=[n,n"]= 1t + xb

. (5)
Vo2 = Va2 4 2

gegeben, welcher in der durch die Vektoren t und b aufgespannten rekti-
fizierenden Ebene liegt. Durch den Ansatz

% = wCoS g ,
| (s) =0 (6)
7 = o sin ¢
fithren wir die Winkelgeschwindigkeit w dieser Drehung und den Nuta-
tionswinkel ¢ ein, welcher die Drehung des Darbouxschen Vektors in der
rektifizierenden Ebene beschreibt.

Im néchsten Paragraphen werden wir die Darstellung der Radial-
flichen nach H. Schindler unseren Zwecken entsprechend modifizieren.
Vorbereitend stellen wir kurz die notwendigen Formeln aus der ange-
fithrten Arbeit 3) von W. Scherrer zusammen. Wir berechnen vorerst die
Bogenlinge v des Hauptnormalenbildes :

v(s) = [ Vn'2ds . (7)
0
Fiir den Betrag der ersten Ableitung der Hauptnormalen ergibt sich aus
(4) und (6)
V2 =V + 12 = w(s) (8)
und damit die Bogenlinge v des Hauptnormalenbildes

v(s) = fw(s)ds . (9)

Wir setzen voraus, dal die Kriimmung » und damit die Winkelgeschwin-
digkeit w der vorgegebenen Raumkurve nicht identisch verschwinde und
denken uns die Parameterdarstellung (1) auf Grund von (9) auf die
Bogenlinge v des Hauptnormalenbildes bezogen. Aus (9) ergibt sich die
Identitat d 1 d

PRy~ (10)

Damit ergeben sich aus (4) und (6) die auf die Bogenlidnge v des Haupt-
normalenbildes bezogenen Frenetschen Formeln

dt dn . db .
Jp = ncose, %-r———tCOSQD—}—bSln(p, Gy = — hsing. (11)
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An Stelle von (5) fiihren wir den normierten Darbouxschen Drehvektor s
ein: dn
SE[n,%]ZtSin(p—{—bCOSQD. (12)

Die Vektoren t und b liegen mit der ersten Ableitung n’ der Hauptnor-
malen und dem normierten Drehvektor in der rektifizierenden Ebene
und lassen sich aus diesen Vektoren linear kombinieren. Aus (12) und
der zweiten Gleichung (11) ergeben sich fiir t und b die Darstellungen

dn , dnl . _dn . dn
t——%—OOS(}? —r[n,‘a“v‘]smfi’, b———d—;sm(p +[n,‘a“?7]003¢- (13)

Schliellich bilden wir noch die Ableitungsgleichungen der orthogonalen

und normierten Vektoren
q A [ dn])
b d 7) b b d’U j bl

indem wir ihre ersten Ableitungen aus den Vektoren dieses rechtsge-
schraubten Dreibeins kombinieren. Aus (11) und (12) erhilt man nach
leichter Rechnung

4y = an
dw ‘W dv
d (dn)\ de dn
‘&5(‘&5)— —® +“J5["’“J;] (14)
d dn]\ _ _ dp dn
w\|V | T dv dv

Multipliziert man die zweite Gleichung (14) skalar mit dem normierten
Drehvektor (12), so folgt

do dn] d®n
7.177:[“’3;;] r (19)
und es ergibt sich
v dn’l d*n
p0) = 9(0) = [, G| G- (16)
Wegen
nE):=1 (17)

ist das Hauptnormalenbild eine Kurve auf der Einheitskugel. In der
Konstruktion der Radialflichen nach H. Schindler treten nur die Vek-
toren t und b auf. Diese Vektoren lassen sich aber ausgehend von einer
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beliebigen Kurve n(v) auf der Einheitskugel ¢), die als Funktion ihrer
Bogenlinge vorgegeben sei, berechnen. Aus (16) ergibt sich zuerst der
Nutationswinkel ¢, und nach (13) lassen sich die Vektoren t und b linear
kombinieren. Thre ersten Ableitungen ergeben sich aus (11).

In der Untersuchung der Radialflichen werden wir von der dreimal
stetig differenzierbaren Parameterdarstellung

x = x(u, ) ‘ (18)

des Ortsvektors der Flache ausgehen. Der Betrag des Ortsvektors oder
Radius ist gegeben durch

r="Vx . (19)

Die Flichennormale und die Stiitzfunktion werden durch

[%,, %,]
e — WD TR 20
n Vix,, ]2 e
und
p=— N, 1) (21)

definiert. Die erste Hauptform der Flichentheorie definieren wir in der
iiblichen Weise :

I =Fdu?® -+ 2Fdudv + Gdv?
E =22 F=zx,3, G = 22 (22)
VA=VEG — F*; do=VAdudv .

do bezeichnet das Flichenelement.

Die zweite Hauptform ist definiert durch
II = Ldu? + 2 Mdudv 4+ Ndv?
(23)
= —RN,x, M=—NRNx,=—Nx, N=—Nx%, -

Die Hauptkrimmungen der Flidche bezeichnen wir mit %, und x,. Die
GauBlsche und die mittlere Kriimmung sind nun gegeben durch

, LN — M?
= mm = gg—p
24
g_atw  LG—2FM 4+ NE (24)
T T2 T T2 EG =

4) Vorausgesetzt wird zweimal stetige Differenzierbarkeit.
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Fiir Kriimmungslinienparameter ¥ = M = 0 gelten nach Olinde Rodri-
gues die Vektorrelationen

N, = —x3x, ,
(25)
gtv =T XXy

§3. Radialflichen

Zur Konstruktion einer Radialfliche kann man nach H. Schindler
von einer beliebigen Raumkurve ausgehen, die im Sinne von (1) als
Funktion ihrer Bogenlinge s gegeben sei. Man berechnet nach (2) ihr
begleitendes Dreibein, verschiebt die Tangente t und die Binormale b in
den Ursprung und wéhlt in der durch diese Vektoren aufgespannten
Ebene eine willkiirliche Kurve €. Ist deren Parameterdarstellung in
rechtwinkligen Koordinaten {x(u), f(u)} gegeben, so 148t sich der Orts-
vektor (18) der Radialfliche durch

¥(u, 8) = a(u)b(s) + flu)t(s) (26)

darstellen. Wir modifizieren diese Konstruktion, indem wir von einer
beliebigen Kurve 1n(v) (17) auf der Einheitskugel ausgehen, die als Funk-
tion ihrer Bogenldnge v gegeben sei. Nach (16) berechnen wir den Nuta-
tionswinkel ¢ (v) und kombinieren die Vektoren t und b gemaf3 (13). An
Stelle von (26) erhalten wir die Parameterdarstellung

x(u,v) =a(u)b(v) + Bu)t(v) . (27)

Die ebenen u-Linien (v = konstant) bezeichnen wir im folgenden als
Meridianlinien, die »-Linien (# = konstant) als Breitenlinien. Die durch
die Vektoren t und b aufgespannte Ebene nennen wir kurz Meridian-
ebene.

Wir schlieSen die Meridianlinien mit identisch verschwindender Kriim-
mung und damit die Radialtorsen, wie sich zeigen wird ®), von den fol-
genden Betrachtungen aus. Die Meridianlinie € ®) sei eine stetige und
stetig gekriimmte Kurve. Wir fassen € als Enveloppe ihrer in der Hesse-
schen Normalform geschriebenen Tangenten

T(u) =xcosu + Bsinu — p(u) =0
auf.

5) Die Kriimmung der Meridianlinie ist mit der ersten Hauptkriimmung x, identisch.
Vgl. (52), (49).
¢) € wird im vierten Paragraphen als regulédr und konvex vorausgesetzt.
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2 & b
\ 1

Aus dem Gleichungssystem 7'(u) =0 und j’(u) = 07) ergeben sich
die Koordinaten des Beriihrungspunktes und damit die Parameterdar-
stellung der Meridianlinie :

x(u) = p(u) cosu — p(u)sin u , (28)
B(u) = p(u) sin w + p (u) cos u .

Die Stiitzgrofie p ist unter den gemachten Voraussetzungen stetig und
zweimal stetig differenzierbar. Nach einer bekannten Formel der Diffe-
rentialrechnung ist -

¢ e=p+p (29)

der Kriimmungsradius der Kurve mit der Parameterdarstellung (28).
Setzen wir die Werte aus (28) in (27) ein, so erhalten wir vorerst
x(u,v) = pBcosu + tsinu) + p(— bsinw -t cos u) . (30)

Wir fiihren zwei neue Vektoren ein

p = bc.osu#—tsmu, 31)
= —bsinu +tcosu ,
die mit b und t in der Meridianebene liegen :
b=pcosu —qsin u , (32)

t =psinu 4-qcosu .

Statt den Ortsvektor der Radialflichen im Dreibein {t, n,b} darzu-
stellen, empfiehlt es sich, die Vektoren {q,n,p} einzufithren. Diese
Vektoren bilden ebenfalls ein rechtsgeschraubtes und orthogonales Drei-
bein, welches die Grundlage der weiteren Entwicklung bilden soll. Damit

7) Die partiellen Ableitungen nach dem Parameter u werden im folgenden durch Punkte
gekennzeichnet.

247



erhalten wir aus (30) und (31) fir den Ortsvektor die Darstellung

x(u,v) =pp +pq . (33)
Fiir den Radius ergibt sich nach (19) aus (33)
r(w) = Vp? + p? . (34)

Die bei einer Variation des Parameters » auftretende infinitesimale Be-
wegung des Systems {q, n, p} 148t sich als Drehung um den normierten
Darbouxschen Drehvektor (12) auffassen. Fithrt man die Vektoren p
und q nach (32) in (12) ein, so erhilt man mit

sm={mgﬂzpwﬂ¢~m+wﬁﬂw—w (35)

die Parameterdarstellung des Drehvektors im neuen System. Wir bilden
jetzt die Ableitungsgleichungen der Vektoren {q, n, p}, indem wir ihre
ersten Ableitungen aus den Vektoren dieses Dreibeins kombinieren. Die
partiellen Ableitungen nach der Bogenlinge » der Kugelkurve n(v) er-
geben sich aus (31) und der Formelgruppe (11):

Qe = — P, nu:O’ P.= 49 (36)
qQp = -+ 1ncos (p — u)
M, = — q cos (p — u) +psin(g—u) | (37)
P, = — nsin (¢ — )

Die Formelgruppe (36) bzw. (37) beschreibt die infinitesimale Bewegung
des Systems {q,n, p} bei einer Variation des Parameters » bzw. v.

Jetzt berechnen wir mit (36) und (37) die partiellen Ableitungen des
Ortsvektors (33), wobei wir nach (29) den Kriimmungsradius der Meri-
dianlinie einfiihren :

X, = p0q,
%, = — {psin(p —u) —pcos(p—u)}n.

Wie man durch Einsetzen der Definitionen (31), (33) und (35) leicht
nachrechnet, gelten die Vektorrelationen

(38)

X, :Q[n’p] >

39
X, = [s5,%], (39)
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welche die durch (36) bzw. (37) beschriebene infinitesimale Bewegung als

Drehung um die durch n bzw. s festgelegte Momentanachse charakteri-

sieren. Die Winkelgeschwindigkeiten beider Drehungen sind gleich eins.
Der Vergleich von (38) mit (34) gibt uns Anla}, durch den Ansatz

p(u) = r(w)-cos p(u) ,
B (w) = r(w)-sin p(u)

den Radius r und den Winkel ¢ zwischen dem Ortsvektor ¥ und dem
Vektor p einzufiihren.

Damit erhalten wir fiir den Ortsvektor (33) und seine partiellen Ab-
leitungen (38) die Darstellungen

(40)

¥(w,v) =7 {pcosyp -+ qsinyp} , (41)
¥, =0q, X, = —rnsin(p —u —p) . (42)

Nun rechnen wir noch (28) und (29) auf die Funktionen r und y um. Wir
setzen (40) in (28) ein und erhalten mit

x(u) =rcos(u+vy),  fu)=rsin(v+ y) (43)

die Polarkoordinaten der Meridianlinie im System {f, n,b}. Bildet man
die erste Ableitung des Radiusquadrats (34) und beriicksichtigt (29) und
(40), so ergibt sich fiir p(u) # 0 mit

r
sin g

-5 {p(w) £ 0} (44)

Q:

die Darstellung des Kriimmungsradius der Meridianlinie.
SchlieBlich gehen wir noch auf eine fiir die weitere Diskussion wichtige
Feststellung ein. Nach unseren Voraussetzungen gilt

1+9p3#0; (45)
denn aus 1 4+ p = 0 folgt, daB u -+ v = konstant und damit nach
(43) tang (v + y) = g% = konstant ist. Entgegen unserer Voraus-

setzung wiire die Meridianlinie eine Gerade.

Jetzt berechnen wir auf Grund von (38) und der Definition (20) die
Flichennormale, iiber deren Orientierung wir sinngeméfl so verfiigen,
daB der Radius nach (40) nicht negativ ist :

N=—1p. (46)
Aus (33) und (46) ergibt sich, dafl die durch (21) definierte Stiitzfunktion
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mit der in (28) eingefiihrten StiitzgréBe iibereinstimmt :

p=— (N, x)=pu) . (47)

SchlieBlich berechnen wir noch die partiellen Ableitungen der Flichen-
normalen (46), wobei wieder (36) und (37) Verwendung finden :

N,=—q, N, = nsin (p — u) . (48)

Kombinieren wir (48) mit (38) und (42), so ergeben sich die Rodrigues-
schen Formeln (25):

9tu—-_— — % X,
mv: - %23:1,
1
155 (
sin (¢ — ) sin (¢ — u)
%2 == " - = 0
psin (p — u) — pcos (p — u) rsin(p — u — )

Die Meridian- und Breitenlinien sind die Kriimmungslinien der Radial-
flichen.

§4. Radialeifléichen

Die in der Einleitung angegebene, von W. Scherrer aufgestellte Ver-
mutung 148t sich wie folgt formulieren : Eine regulire, analytische Ei-
fliche, fiir welche zwischen Stiitzfunktion und Radius ein funktioneller
Zusammenhang besteht, ist notwendigerweise eine Rotationsfliche. Zum
Beweis dieses Satzes berechnen wir aus (39) und (42) vorbereitend die
Koeffizienten der ersten Hauptform (22):

E =x, = ¢*[n, p)* =¢’

F =z, =0 =0 (50)
G =7z% =[s,2]? =risin(p —u — ) ;

VA=VEG— F*= Vo?[s, ]2 = Ve2r2sin® (p — u — y) . (1)

Auf Grund der Definition (24) berechnen wir aus (49) die Gaullsche

Kriimmung sin (¢ — %)

e-rsin(p —u —vp)
Bekanntlich entartet das Parameternetz auf einer Fliche in denjenigen
Punkten, in welchen die Determinante ¥V A verschwindet. Wenn der

K =

(52)
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Kriimmungsradius ¢ der Meridianlinie fiir alle Werte des Parameters u

von Null verschieden ist, verschwindet [s, x] und damit V' A fiir festes
v dann und nur dann, wenn der zugehorige Meridian mit der durch den
Vektor s festgelegten Graden einen Punkt gemein hat. Diese Gerade ist
nach (39) Momentanachse der durch (37) definierten infinitesimalen
Drehung.

Nun unterscheiden wir drei Fille :

1. Die Radialfliche habe fiir irgendeinen Parameterwert v = v, mit
der durch s(v,) bestimmten Drehachse keinen Punkt gemein. Dies be-

deutet, daB [s, x] und damit nach (51) auch die Determinante ¥ A fiir
v=", und alle # von Null verschieden sind, falls der Kriimmungsradius o
der Meridianlinie nirgends verschwindet. Der Meridian » = v, stimmt
aber als regulire Kriimmungslinie mit der von der Meridianebene und
der Eifliche bestimmten Schnitteilinie iiberein. Aus Griinden der Stetig-
keit gelten dieselben Feststellungen fiir eine geniigend kleine Umgebung
| v — vy | <e. Die kongruenten Meridianlinien und die Breitenlinien bil-
den daher, fiir alle 4 und alle zu v, hinreichend benachbarten Parameter-
werte von v, ein regulidres Kurvennetz. Nach (22) ist das Flichenelement
der Radialfliche durch do = V Adudv gegeben. Wir integrieren die
Gaullsche Kriimmung iiber die ausgewihlte Umgebung U der Meridian-
linie v = »;. Aus (51) und (52) ergibt sich bei positivem Flichenelement
sukzessive

{Kdo = [{ KV Adudv = [{ sin (p — u)dudv ,
% B 9

vp+E€ vy +&
fKdo=f{({) sin(p — u)du}de = [ {—cos (p — u) |%}dv =0 .
)} vo—E rg—¢&

Dieses Resultat steht im Widerspruch zur Eigenschaft K >0 der Ei-
flichen. Der Fall 1 kann daher nicht eintreten.

2. Die Radialeifliche wird fiir v = v, von der durch s(v,) festgelegten
Drehachse geschnitten. Dann gilt dasselbe fiir eine hinreichend kleine
Umgebung | v — v, |<e. Der Meridian v = v, stimmt als regulire
Kurve mit der durch die Meridianebene und die Eifliche bestimmten
Schnitteilinie iiberein und wird von der Drehachse in zwei Punkten ge-
schnitten. Die zu den Schnittpunkten [s,x] = 0 gehorigen Parameter-
werte w = u, und % = wu, geniigen nach (51) der Gleichung

[5,2]? =r?sin® (p —u —p) =0 .

Da der Meridian v = v, als Eilinie mit der Drehachse mindestens einen
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vom Ursprung verschiedenen Punkt gemein hat, darf man weiter voraus-
setzen, dal r(u) in einer geniigend kleinen Umgebung | u — %, | <d(v,)
von Null verschieden sei. Aus Griinden der Stetigkeit gilt diese Fest-
stellung entsprechend fiir alle zu v, hinreichend benachbarten Parameter-
werte von v. In der Umgebung | v — v, | <e¢ werden alle Meridiane von
der Drehachse getroffen. Die zu u, und v, hinreichend benachbarten
Parameterwerte der Schnittpunkte miissen daher der Gleichung

sin(p —u —yp) =0
oder
Du,v) =) —u —ypu) —knr =

geniigen. Die Funktion @(u,v) ist in einer gewissen Umgebung des
Schnittpunkts (u,, v,) definiert und besitzt dort die stetigen partiellen
Ableitungen

Qu:“—(l_f—w),
_d
¢v'—-‘ —(‘Z‘?;’"-

Da die Kriitmmung der Meridianlinie nicht verschwindet, ist @, nach (45)
von Null verschieden. Nach den Sitzen iiber implizite Funktionen wird
die Gleichung @ (u,v) = 0 durch die Funktion % = % (v) mit u, = u(v,)
identisch erfiillt.

a) Es verschwinde % nicht identisch. Dann gilt dasselbe fiir
o % s 1 .
dv @, dv 149~

u = % (v) ist daher nicht konstant.

Die Radialflache wird von der Drehachse lings der Kurve x[«(v),v]
geschnitten. In den Schnittpunkten verschwindet der Nenner der GauB-
schen Kriimmung (52). Wegen der vorausgesetzten Regularitit muf3 auch
der Zahler von (52) identisch verschwinden, und die beiden Gleichungen

sin {p(v) —w(®)} =0,  sin {p(v) — u(v) — p[u()]} = 0

sind fiir alle zu v = v, hinreichend benachbarten Parameterwerte von v
erfiillt. Dies ist nur moglich, wenn y ein ganzzahliges Vielfaches von =

ist. Nach (40) folgt dann p[u(v)] = 0 und wegen —%b— =% 0, daB die
Stiitzfunktion und damit nach (29) die Kriimmung der Meridianlinie fiir

alle zu u, hinreichend benachbarten Parameterwerte von % konstant ist.
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Wegen der vorausgesetzten Analytizitit der Eifliche gilt diese Fest-
stellung fiir alle Parameterwerte von ». Die Meridianlinie ist in diesem
Fall ein Kreis mit dem Zentrum im Ursprung des Raumes und die Radial-
fliche nach (33) als Kugelfliche eine spezielle Rotationsfliche.

dg

b) Es verschwinde o identisch. Unter Verwendung von (37) bilden

wir die Ableitung des Drehvektors (35) :

5(v) = p cos (p — u) + gsin (p — u) ,

(53)
ds d .

o=t {— psin (p — w) + qeos (p — w)} .

Wegen —Z—:i = 0 ist s konstant.

Daher folgt mit (39) (x,s), = (x,5,) =0. Nach (34) gilt weiter
(x¥?), = (7%, = 0. Bei unserer Parameterwahl sind durch diese beiden
Bedingungen die Rotationsflichen mit der Drehachse s charakterisiert.
Die der Konstruktion zugrunde liegende Kurve auf der Einheitskugel
fallt nach (14) in diesem Fall mit einem GroBkreis zusammen.

3. SchlieBllich betrachten wir noch den Fall, daB die durch s(v,) fest-
gelegte Drehachse den Meridian » = v, im Punkte % = u, beriihrt.
Die Parameterwerte (u,, v,) geniigen dann nach (51), (38) und (35) den
beiden Gleichungen

[s, x> = 7%(u,) sin? {p(vy) — s — p(%y)} = 0
[s, %, 12 = @®(uo) cos® {p(v) — uo} =0,

da der Ortsvektor x und die Tangente 7' an die Meridianlinie mit der
Drehachse zusammenfallen. Aus der zweiten Gleichung folgt

sin {p(vy) — Ug} = 4+ 1 .

Der Zihler in (52) ist bei verschwindendem Nenner von Null verschieden
und daher die GauBlsche Kriimmung im Berithrungspunkt unendlich.
Dieser Fall kann wegen der vorausgesetzten Regularitidt nicht eintreten.

Damit ist bewiesen, dall eine reguldre, analytische Radialeifliche
Rotationssymmetrie aufweist.

§6. Anhang

Es lassen sich fiir die Radialflichen (27) auch Bedingungen im kleinen
angeben, denen nur die Rotationsflichen geniigen. Wir zeigen, dafl die
Radialflichen konstanter mittlerer Kriimmung Rotationsflichen sind.
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Aus diesem Satz folgt insbesondere, dafl das Katenoid die einzige Radial-
minimalfliche darstellt.
Aus (49) ergibt sich auf Grund der Definition (24) die Darstellung der
mittleren Kriimmung
1 1 sin(p —u)

9H — — + i )
e 7 sin(p—u—1yp)

(54)

Fiir konstantes H ist

’

1
=|2H ——)r
1= (2 )

eine Funktion von u allein. Aus

sin (p — )
sin (¢ — u — ¢)

Il

V4

ergibt sich nach einfacher Umformung die Identitit

D (u)sin p = ¥ (u) cos ¢ ,
D(u) = xcos (u + ) —cosu , Y(u) = yxsin (u + ) —sinu . (55)
Verschwinden @ und ¥ identisch, so folgt mit (55) aus
ycos (u 4+ y) =cosu ,
xsin (u + y) =sinu ,

daB x2 =1 und vy ein ganzzahliges Vielfaches von = ist.

Nach (40) ist daher p(u) = 0 und damit die Stiitzfunktion konstant.
Die Meridianlinie ist daher ein Kreis mit dem Zentrum im Ursprung und
die Radialfliche, bei jeder Wahl der Kurve n(v) auf der Einheitskugel,
nach (33) eine Kugelfliche.

Verschwinden @ und ¥ nicht gleichzeitig identisch, und ist etwa
Y (u) £ 0, so folgt aus (55) nach Separation der Variabeln

cotg p(v) = gi:g = konstant .

Daher gilt %‘5— = 0. Nach (53) ist die Radialfliche in diesem Fall eine

Rotationsfliche.

Zum SchluB untersuchen wir die Nabelpunkte auf den Radialflichen.
Wir zeigen, daf3 Nabellinien auftreten, die jedenfalls bei Radialflichen
ohne Rotationssymmetrie nicht dem Parameternetz der Kriimmungs-
linien angehdren.
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Die StiitzgroBe der Meridianlinie € sei dreimal stetig differenzierbar ;
dann ist ihr Kriimmungsradius nach (29) stetig differenzierbar. Die Para-
meterdarstellung der Evolute eines Meridians v = v, ist mit (33) und (29)
gegeben durch

g(u,vo)zx——gp:~f)p—{—j)q. (56)

Multiplizieren wir den Vektor x vektoriell mit dem normierten Dreh-
vektor (35), so ergibt sich aus (56)

[5,%] = {psin (p — u) + P cos (p — w)} n . (57)

Fiir Nabelpunkte erhilt man nach (49) wegen x,(u) = »,(%, v) die Be-
dingung

P(u,v) = (p — o) sin (p — u) —pcos(p —u) =0, 58)
B(u,v) = — {psin(p — u) + p cos (p — w)} =0,

welche nur fiir Meridiankreise, die zum Ursprung konzentrisch sind,
identisch erfiillt ist. Wir bilden die partiellen Ableitungen der durch (58)
definierten Funktion. Beriicksichtigt man (29), so folgt

D, = — o sin (p — u) ,
dp - . 5%)
@, = =4 {— P cos (p — u) + psin (p — u)} .

Die Evolute v = v, (56) werde von der Drehachse s(v,) im Punkt
% = u, geschnitten. Dann werden die Evoluten aller Meridiane in einer
geniigend kleinen Umgebung | v — v, | <& von der Drehachse geschnit-
ten. Die zu den Schnittpunkten gehorigen Parameterwerte geniigen der

Gleichung (58), da mit [s, ;] = 0 die Klammer auf der rechten Seite
von (57) verschwindet. Die den Schnittpunkten entsprechenden Punkte
auf der Radialfliche sind also Nabelpunkte und umgekehrt.

Nach (59) verschwindet @, (u,v) nur fiir Kreise identisch. Schlieen
wir die Kreise als Meridianlinien aus, so wird die Gleichung (58) nach den
Sétzen iiber implizite Funktionen durch % = % (v) mit u, = u(v,) iden-
tisch erfiillt. x[u(v), v] beschreibt die Nabellinie durch den Punkt
(44, vy) auf der Radialfliche.

Fiir die erste Ableitung der Funktion u = u(v) ergibt sich nach (59),
Dlu(v),v] =0,

du  dy P
dv = dv gsin?(p — u)

(60)
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. . . . du
Da die Kreise allgemein ausgeschlossen wurden, verschwindet —— nur

dv

mit %%— identisch. Nach (53) ist die Radialfliche in diesem Fall eine

Rotationsfliche. Bei Radialflichen ohne Rotationssymmetrie ist daher
% = %(v) nicht konstant, und die Nabellinie fillt nicht mit einer Breiten-
linie zusammen.

Aus den Codazzischen Gleichungen der Flichentheorie folgt, daf eine
Nabellinie, die dem orthogonalen Netz der Kriimmungslinien angehort,
auf einer Kugel oder Ebene verliuft. Die Nabellinien auf den Radial-
flichen geniigen der Nebenbedingung des Satzes im allgemeinen nicht,
und es lassen sich Radialflichen angeben, deren Nabellinien nicht auf
einer Kugel oder Ebene verlaufen.

(Eingegangen den 27. April 1955
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