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Beitrâge zur Théorie von Stûtzfunktion
und Radius — Die Radialflaehen

von Hans Giger, Bern

§1. Einleitung

In der Théorie der Raumflachen lassen sich, wie W. Scherrer in zwei
Arbeiten1) ausgefuhrt hat, neben dem Ortsvektor x und der Flachen-
normalen 5R mit Vorteil der Stutzvektor ty — [5ft, x] und die beiden
orthogonalinvarianten Skalare, die Stûtzfunktion p — (5R, x) und
der Radius r Vx2, einfuhren. In den beiden Arbeiten werden die
Grundgleichungen der Flachentheorie auf die Stûtzfunktion und den
Radius, sowie auf die relativen Hauptformen und die entsprechenden
KrummungsmaBe zuruckgefuhrt. Mit der reziproken Stûtzfunktion und
dem Radius als Parameter ergeben sich Gleichungen, die sich durch be-
sondere Einfachheit auszeiehnen. Es folgt der Satz, daB eine Flache,
deren GauBsehe Krummung als Funktion dieser Parameter bekannt ist,
nach Vorgabe eines nichtasymptotischen Streifens, eindeutig bestimmt
ist.

Die Untersuchung2) der Flachen, fur welche zwischen Stûtzfunktion
und Radius ein funktioneller Zusammenhang besteht und bei denen
daher die angegebene Parameterdarstellung entartet, zeigt, daB auBer
den Rotationsflachen auch gewisse Gesimsflachen eine solche Funktional-
abhangigkeit aufweisen. In der vorliegenden Arbeit werden dièse Gesimsflachen

und die Rotationsflachen zusammenfassend als Radialflachen
bezeichnet.

Im Hinblick auf die Anwendung der erwahnten Grundgleichungen auf
bestimmte Flachenklassen ist eine weitere Untersuchung der Radialflachen

nahegelegt. W. Scherrer hat die Vermutung aufgestellt, daB die
konvexen Rotationsflachen die einzigen Radial-Eiflachen darstellen.
Dièse Vermutung wird in der vorliegenden Arbeit fur analytische Radial-

*) W. Scherrer, Stûtzfunktion und Radius I, Comment Math. Helv. 20 (1947). -
Stûtzfunktion und Radius II, Comment Math Helv 25(1951)

2) H Schindler^ Beitrage zur Théorie von Stûtzfunktion und Radius, Comment.
Math. Helv. 26 (1952).
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Eiflâchen bewiesen. Weiter wird gezeigt, dafi das Katenoid die einzige
Radial-Minimalflâche darstellt.

Radialflâchen ergeben sich ausgehend von einer beliebigen Kegelflâche
mit der Spitze im Ursprung durch folgende Konstruktion : Auf einer
Tangentialebene der Kegelflâche wird eine willkiirliehe Kurve (E vor-
gegeben. (£ beschreibt die allgemeinste Radialflâche, wenn die Tangentialebene

auf der Kegelflâche ohne zu gleiten abrollt, dièse also stets lângs
einer Erzeugenden beriihrt. Die Rotationsflâchen sind in dieser
Konstruktion enthalten, falls die Gerade als entartete Kegelflâche zugelassen
wird. Dièse anschauliche Konstruktion der Radialflâchen lâBt sich nach
H. Schindler2) leicht analytisch beschreiben, indem man von einer
beliebigen Raumkurve ausgeht. Wir werden uns auf dièse Darstellung be-
ziehen und sie fur unsere Zwecke geeignet modifizieren. Auf Grund einer
Arbeit von W. Scherrer 3) werden wir zeigen, da8 es genûgt, von einer
Kurve auf der Einheitskugel auszugehen.

Im folgenden Paragraphen stellen wir die fur unsere Untersuchung
notwendigen Hilfsmittel aus der Raumkurven- und Flâchentheorie zu-
sammen.

§2. Grandformeln
Es sei

9 9(«) (1)

die auf die Bogenlânge s bezogene Parameterdarstellung einer Raumkurve.

Die Ableitungen nach s bezeichnen wir mit Strichen. Die Einheits-
vektoren des begleitenden Dreibeins, die Tangente t, die Hauptnormale
n und die Binormale b sind nun gegeben durch

?L I^Jl. (2)

Krûmmung x und Torsion r berechnen sich nach den Formeln

fvk' **"1 **//f

h-VF. *=[%\]1) ¦ (3)

Die Frenetschen Grundformeln

f xn n' - xt + rb b7 - m (4)

definieren die infinitésimale Bewegung des Kurvendreibeins bei einer
Variation des Parameters s, welche sich als infinitésimale Drehung dar-

8) W. Scherrer, Ûber das Hauptnormalenbild einer Raumkurve, Comment.
Math. Helv. 19 (1946).
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stellen lâBt. Achse und Winkelgeschwindigkeit der Drehung sind durch
Richtung und Betrag des Darbouxschen Drehvektors

b [n,ri] rï + xb
__ (5)

gegeben, welcher in der durch die Vektoren t und b aufgespannten rekti-
fizierenden Ebene liegt. Durch den Ansatz

x co cos <p

(o(s)^0 (6)
r co sin (p

fuhren wir die Winkelgeschwindigkeit co dieser Drehung und den Nuta-
tionswinkel cp ein, welcher die Drehung des Darbouxschen Vektors in der
rektifizierenden Ebene beschreibt.

Im nâchsten Paragraphen werden wir die Darstellung der Radial-
flâchen nach H. Schindler unseren Zwecken entsprechend modifizieren.
Vorbereitend stellen wir kurz die notwendigen Formeln aus der ange-
fuhrten Arbeit 3) von W. Scherrer zusammen. Wir berechnen vorerst die
Bogenlànge v des Hauptnormalenbildes :

v(s) =jVn^ds (7)
0

Fur den Betrag der ersten Ableitung der Hauptnormalen ergibt sich aus
(4) und (6)

Vn^ Vx* + t2 co {s) (8)

und damit die Bogenlànge v des Hauptnormalenbildes

V(8)=jœ(8)d8 (9)
0

Wir setzen voraus, daB die Krûmmung x und damit die Winkelgeschwindigkeit

co der vorgegebenen Raumkurve nicht identisch verschwinde und
denken uns die Parameterdarstellung (1) auf Grund von (9) auf die
Bogenlànge v des Hauptnormalenbildes bezogen. Aus (9) ergibt sich die
Identitât 1

dv co(s) ds

Damit ergeben sich aus (4) und (6) die auf die Bogenlànge v des
Hauptnormalenbildes bezogenen Frenetschen Formeln

dï du -. dh /11X—- n cos cp -t~ — t cos cp + b sin <p ~-j~ -nsin^. (11)
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An Stelle von (5) fuhren wir den normierten Darbouxschen Drehvektor s

ein: r dnl
s n, -j-\ tsinç? + b cosç) (12)

Die Vektoren t und b liegen mit der ersten Ableitung n' der Hauptnor-
malen und dem normierten Drehvektor in der rektifizierenden Ebene
und lassen sich aus diesen Vektoren linear kombinieren. Aus (12) und
der zweiten Gleichung (11) ergeben sich fur t und b die Darstellungen

du
t 5— cos w -

dv

SchlieBlich bilden wir noch die Ableitungsgleichungen der orthogonalen
und normierten Vektoren

dn r dn]}

indem wir ihre ersten Ableitungen aus den Vektoren dièses rechtsge-
schraubten Dreibeins kombinieren. Aus (11) und (12) erhâlt man naeh
leichter Rechnung

d du
W

d Idn\ t
dq> [ dn~\

dv \dv J dv 1 dv J

d l\ dn~\\
___

d<p d\\
dv \[ ' dv\j dv dv

Multipliziert man die zweite Gleichung (14) skalar mit dem normierten
Drehvektor (12), so folgt

und es ergibt sich

Wegen
(n(v)y 1 (17)

ist das Hauptnormalenbild eine Kurve auf der Einheitskugel. In der
Konstruktion der Radialflâchen nach H. Schindler treten nur die
Vektoren t und b auf. Dièse Vektoren lassen sich aber ausgehend von einer
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beliebigen Kurve n(v) auf der Einheitskugel 4), die als Funktion ihrer
Bogenlange vorgegeben sei, berechnen. Aus (16) ergibt sich zuerst der
Nutationswinkel 99, und nach (13) lassen sich die Vektoren t und b linear
kombinieren. Ihre ersten Ableitungen ergeben sich aus (11).

In der Untersuchung der Radialflachen werden wir von der dreimal
stetig differenzierbaren Parameterdarstellung

x x(u,v) (18)

des Ortsvektors der Flache ausgehen. Der Betrag des Ortsvektors oder
Radius ist gegeben durch

r W2 (19)

Die Flachennormale und die Stutzfunktion werden durch

und

p - (31, x) (21)

definiert. Die erste Hauptform der Flachentheorie definieren wir in der
ublichen Weise :

I E du2 + 2Fdudv + Gdv2

E^xl F^=xuxv G xl (22)

VA VEG - F2 do VA dudv

do bezeichnet das Flachenelement.
Die zweite Hauptform ist definiert durch

II ~ Ldu2 + 2Mdudv + Ndv2
(23)

L-=-%>!„ M ^ - W % Nm
Die Hauptkrummungen der Flache bezeichnen wir mit xx und x2. Die
GauBsche und die mittlere Krummung sind nun gegeben durch

___
LN - M2

__ 9cL±x1 __
LG - 2FM + NE

2 "

F* '

2(EG -F2)
4) Vorausgesetzt wird zweimal stetige Differenzierbarkeit.

245



Fur Krummungslinienparameter F M 0 gelten nach Olinde Rodri-
gues die Vektorrelationen

91» ¦= — *a*tt
(25>

§3. Radialflâchen

Zur Konstruktion einer Radialflache kann man nach H. Schindler
von einer beliebigen Raumkurve ausgehen, die im Sinne von (1) als
Funktion ihrer Bogenlange s gegeben sei. Man berechnet nach (2) ihr
begleitendes Dreibein, verschiebt die Tangente t und die Binormale b in
den Ursprung und wahlt in der durch dièse Vektoren aufgespannten
Ebene eine willkurliche Kurve (£. Ist deren Parameterdarstellung in
rechtwinkligen Koordinaten {<x(u), p(u)} gegeben, so laBt sich der Orts-
vektor (18) der Radialflache durch

x(u, s) oc(u)b(s) + P(u)t{s) (26)

darstellen. Wir modifizieren dièse Konstruktion, indem wir von einer
beliebigen Kurve n(v) (17) auf der Einheitskugel ausgehen, die als Funktion

ihrer Bogenlange v gegeben sei. Nach (16) berechnen wir den Nuta-
tionswinkel q>(v) und kombinieren die Vektoren t und b gemaB (13). An
Stelle von (26) erhalten wir die Parameterdarstellung

X(u, v) *(u)b(v) -l fi(u)t(v) (27)

Die ebenen t^-Linien (v konstant) bezeichnen wir im folgenden als

Meridianlinien, die v-Linien (u konstant) als Breitenlinien. Die durch
die Vektoren t und b aufgespannte Ebene nennen wir kurz Meridian-
ebene.

Wir schliefien die Meridianlinien mit identisch verschwindender Krum-
mung und damit die Radialtorsen, wie sich zeigen wird 5), von den
folgenden Betrachtungen aus. Die Meridianlinie (£6) sei eine stetige und
stetig gekrummte Kurve. Wir fassen (£ als Enveloppe ihrer in der Hesse-
schen Normalform geschriebenen Tangenten

T{u) a cos u + p sin u — p(u) 0

auf.

5) Die Krummung der Meridianlime ist mit der ersten Hauptkrummung nx identisch.
Vgl. (52), (49).

6) (£ wird im vierten Paragraphen als regular und kon\ex vorausgesetzt
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Aus dem Gleichungssystem T(u) 0 und T(u) 0 7) ergeben sich
die Koordinaten des Beriihrungspunktes und damit die Parameterdar-
stellung der Meridianlinie :

oc (u) p (u) cos u — p(u) sin u
(}(u) p(u) sin u -{- p(u) cos ^

(28)

Die StiitzgrôBe p ist unter den gemachten Voraussetzungen stetig und
zweimal stetig differenzierbar. Nach einer bekannten Formel der Diffe-
rentialrechnung ist

__ i -
Q p I p y£uj

der Krummungsradius der Kurve mit der Parameterdarstellung (28).
Setzen wir die Werte aus (28) in (27) ein, so erhalten wir vorerst

y v) p(b cos u + t sin u) + P (— b sin u + t cos u) (30)

Wir fûhren zwei neue Vektoren ein

p b cos u +1 sin u
cj — b sin u -j-1 cos %

die mit b und t in der Meridianebene liegen :

(31)

6 p cos ^
t p sin u

q sin

q cos
(32)

Statt den Ortsvektor der Radialflâchen im Dreibein {t,n,b} darzu-
stellen, empfiehlt es sich, die Vektoren {q,n,p} einzufûhren. Dièse
Vektoren bilden ebenfalls ein rechtsgeschraubtes und orthogonales Dreibein,

welches die Grundlage der weiteren Entwicklung bilden soll. Damit

7) Die partiellen Ableitungen nach dem Parameter u werden im folgenden durch Punkte
gekennzeichnet.
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erhalten wir aus (30) und (31) fur den Ortsvektor die Darstellung

x(u,v) =-pp +pq (33)

Fur den Radius ergibt sich nach (19) aus (33)

r(u) Vp^~+~p^ (34)

Die bei einer Variation des Parameters v auftretende infinitésimale Be-

wegung des Systems {q, n, p} lâfit sich als Drehung um den normierten
Darbouxschen Drehvektor (12) auffassen. Fûhrt man die Vektoren p
und q nach (32) in (12) ein, so erhâlt man mit

(v) n, -t-I p cos (9? — u) + q sin (<p — u) (35)

die Parameterdarstellung des Drehvektors im neuen System. Wir bilden
jetzt die Ableitungsgleichungen der Vektoren {q, n, p}, indem wir ihre
ersten Ableitungen aus den Vektoren dièses Dreibeins kombinieren. Die
partiellen Ableitungen nach der Bogenlânge v der Kugelkurve n(v) er-
geben sich aus (31) und der Formelgruppe (11) :

Vu

nv

Pv

- Q cos

+ n

— n

cos

sin

(v-

(v-

n)

4

«)

-P sin (cp — u)

(36)

(37)

Die Formelgruppe (36) bzw. (37) beschreibt die infinitésimale Bewegung
des Systems {q, n, p} bei einer Variation des Parameters u bzw. v.

Jetzt berechnen wir mit (36) und (37) die partiellen Ableitungen des

Ortsvektors (33), wobei wir nach (29) den Krummungsradius der Meri-
dianlinie einfuhren :

Xu ~~ 6q '
(38)

xv — {p sin (<p — u) — p cos (<p — u)} n

Wie man durch Einsetzen der Definitionen (31), (33) und (35) leicht
nachrechnet, gelten die Vektorrelationen

xu g [n, p]\j (39)
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welche die durch (36) bzw. (37) beschriebene infinitésimale Bewegung als

Drehung um die dureh n bzw. s festgelegte Momentanaehse eharakteri-
sieren. Die Winkelgeschwindigkeiten beider Drehungen sind gîeich eins.

Der Vergleich von (38) mit (34) gibt uns AnlaB, dureh den Ansatz

p(u) r(u)-cos xp{u)
(40)

p(u) r (u) • sin xp (u)

den Radius r und den Winkel xp zwischen dem Ortsvektor x und dem
Vektor p einzufiihren.

Damit erhalten wir fur den Ortsvektor (33) und seine partiellen Ab-
leitungen (38) die Darstellungen

X (u, v) r {p cos xp + q sin xp} (41)

xu gq xv — — m sin (99 — u — y>) (42)

Nun rechnen wir noch (28) und (29) auf die Funktionen r und y> um. Wir
setzen (40) in (28) ein und erhalten mit

a(u) r cos (u + xp) P(u) r sin (u + xp) (43)

die Polarkoordinaten der Meridianlinie im System {t, n, b}. Bildet man
die erste Ableitung des Radiusquadrats (34) und beriicksichtigt (29) und
(40), so ergibt sieh fur p (u) ^k 0 mit

^=iï^;-; ^>^°> (44>

die Darstellung des Krûmmungsradius der Meridianlinie.
SchlieBlich gehen wir noch auf eine fur die weitere Diskussion wichtige

Feststellung ein. Nach unseren Voraussetzungen gilt
1 + v # 0 ; (45)

denn aus 1 + ^ 0 folgt, da8 u + ip konstant und damit nach

(43) tang (u + xp) konstant ist. Entgegen unserer Voraus-

setzung wàre die Meridianlinie eine Gerade.

Jetzt berechnen wir auf Grund von (38) und der Définition (20) die
Flâchennormale, uber deren Orientierung wir sinngemâB so verfûgen,
da6 der Radius nach (40) nicht negativ ist :

31 - p (46)

Aus (33) und (46) ergibt sich, daB die durch (21) definierte Stûtzfunktion
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mit der in (28) eingefuhrten StiitzgrôBe ubereinstimmt :

P= -(9t,x)=p(u) (47)

SchlieBlich berechnen wir noch die partiellen Ableitungen der Flâchen-
normalen (46), wobei wieder (36) imd (37) Verwendung finden :

9lu ~ q 9t« n sin (<p - u) (48)

Kombinieren wir (48) mit (38) und (42), so ergeben sieh die Rodrigues-
sclien Formeln (25) :

1 ~

2

1

Q

P

¦ «A

sin (ç

sin
f —

— ^)
p cos

sin

r sin (<

-u)
u — V)

(49)

Die Meridian- und Breitenlinien sind die Krûmmungslinien der Radial-
flâchen.

§4. Radialeiflâchen

Die in der Einleitung angegebene, von W. Scherrer aufgestellte Ver-
mutung lâBt sich wie folgt formulieren : Eine regulâre, analytische Ei-
flâche, fur welche zwisehen Stiitzfunktion und Radius ein funktioneller
Zusammenhang besteht, ist notwendigerweise eine Rotationsflâche. Zum
Beweis dièses Satzes bereehnen wir aus (39) und (42) vorbereitend die
Koeffizienten der ersten Hauptform (22) :

(50)

VEO - F2 IV[s, Xf -= Vq*r* sin2 (<p - u - xp) (51)

Auf Grund der Définition (24) berechnen wir aus (49) die GauBsche

Krûmmune v

K== «n(r-«) (52)
q - r sm ((p — u — y))

Bekanntlich entartet das Parameternetz auf einer Flâche in denjenigen

Punkten, in welchen die Déterminante VA verschwindet. Wenn der
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Krummungsradius q der Meridianlinie fur aile Werte des Parameters u
von Null verschieden ist, verschwindet [s,*] und damit VA fur festes
v dann und nur dann, wenn der zugehôrige Meridian mit der durch den
Vektor s festgelegten Graden einen Punkt gemein hat. Dièse Gerade ist
nach (39) Momentanachse der durch (37) definierten infinitesimalen
Drehung.

Nun unterscheiden wir drei Fâlle :

1. Die Radialflâche habe fur irgendeinen Parameterwert v v0 mit
der durch s(v0) bestimmten Drehachse keinen Punkt gemein. Dies be-

deutet, daB [s,3ê] und damit nach (51) auch die Déterminante VA fur
v—vQ und aile u von Null verschieden sind, falls der Krummungsradius q
der Meridianlinie nirgends verschwindet. Der Meridian v v0 stimmt
aber als regulâre Krummungslinie mit der von der Meridianebene und
der Eiflâche bestimmten Schnitteilinie uberein. Aus Grunden der Stetig-
keit gelten dieselben Feststellungen fur eine genûgend kleine Umgebung
I v — v0 | < e. Die kongruenten Meridianlinien und die Breitenlinien bil-
den daher, fur aile u und aile zu v0 hinreichend benachbarten Parameter-
werte von v, ein regulâres Kurvennetz. Nach (22) ist das Flâchenelement
der Radialflâche durch do V Adudv gegeben. Wir integrieren die
GauBsche Krummung liber die ausgewâhlte Umgebung 31 der Meridianlinie

v Vq. Aus (51) und (52) ergibt sich bei positivem Flâchenelement
sukzessive

J Kdo fj KV A dudv — j$ sin (99 — u)dudv
2t k su

vo+e jrè vo+e

j Kdo J { Q) sin (99 — u)du}dv J {— cos (99 — u) \ea }dv 0

Dièses Résultat steht im Widerspruch zur Eigenschaft K>0 der Ei-
flâchen. Der Fall 1 kann daher nicht eintreten.

2. Die Radialeiflâche wird fur v v0 von der durch $(v0) festgelegten
Drehachse geschnitten. Dann gilt dasselbe fur eine hinreichend kleine
Umgebung | v — v0 | < s. Der Meridian v v0 stimmt als regulâre
Kurve mit der durch die Meridianebene und die Eiflâche bestimmten
Schnitteilinie uberein und wird von der Drehachse in zwei Punkten
geschnitten. Die zu den Schnittpunkten [s, x] 0 gehôrigen Parameter-
werte u u0 und u ux geniigen nach (51) der Gleichung

[5, Xf r2 sin2 (cp - u - xp) 0

Da der Meridian v v0 als Eilinie mit der Drehachse mindestens einen

251



vom Ursprung verschiedenen Punkt gemein hat, darf man weiter voraus-
setzen, da8 r (u) in einer genûgend kleinen Umgebung \u — u0 \ < ô (v0)

von Null verschieden sei. Aus Grûnden der Stetigkeit gilt dièse Fest-
stellung entsprechend fur aile zu v0 hinreichend benachbarten Parameter-
werte von v. In der Umgebung | v — v0 \ < s werden aile Meridiane von
der Drehachse getroffen. Die zu u0 und v0 hinreichend benachbarten
Parameterwerte der Schnittpunkte mussen daher der Gleichung

sin (cp — u — y) 0

oder
<P(u, v) cp(v) — u — tp(u) — kn 0

geniigen. Die Funktion &(u, v) ist in einer gewissen Umgebung des

Schnittpunkts (uQ, v0) definiert und besitzt dort die stetigen partiellen
Ableitungen

^ dtp
v dv

Da die Kriimmung der Meridianlinie nicht verschwindet, ist 0U nach (45)
von Null verschieden. Nach den Sâtzen liber implizite Funktionen wird
die Gleichung 0(u,v) 0 durch die Funktion u u(v) mit u0 u(vo)
identisch erfûllt.

a) Es verschwinde -~- nicht identisch. Dann gilt dasselbe fur7 dv &

du 0,, dw 1

dv ~~
0U

~~~
dv 1 ip

u u(v) ist daher nicht konstant.
Die Radialflâche wird von der Drehachse lângs der Kurve x[u(v),v]

geschnitten. In den Schnittpunkten verschwindet der Nenner der GauB-
schen Krûmmung (52). Wegen der vorausgesetzten Regularitât mu8 auch
der Zâhler von (52) identisch verschwinden, und die beiden Gleichungen

sin {(p(v) — u(v)} 0 sin {<p(v) — u(v) — f[u(v)]} 0

sind fur aile zu v v0 hinreichend benachbarten Parameterwerte von v
erfullt. Dies ist nur môglich, wenn \p ein ganzzahliges Vielfaches von n

ist. Nach (40) folgt dann p[u(v)] 0 und wegen ~=— ^à 0, daB die

Stûtzfunktion und damit nach (29) die Krûmmung der Meridianlinie fur
aile zu u0 hinreichend benachbarten Parameterwerte von u konstant ist.
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Wegen der vorausgesetzten Analytizitât der Eiflâche gilt dièse Fest-
stellung fur aile Parameterwerte von u. Die Meridianlinie ist in diesem
Fall ein Kreis mit dem Zentrum im Ursprung des Raumes und die Radial-
flàche nach (33) als Kugelflàche eine spezielle Rotationsflâche.

b) Es verschwinde -~- identisch. Unter Verwendung von (37) bilden

wir die Ableitung des Drehvektors (35) :

s (y) p cos (y — u) + q sin (<p — u)
(53)ds d(p
v '

~dv ~dv *~ P Sm (9P ~~ ^ + q COS ^ ~ M" '

Wegen -~- 0 ist s konstant.& dv
Daher folgt mit (39) (x, s)v (ï, sj 0. Nach (34) gilt weiter

(X2)v (r2)v ~ 0. Bei unserer Parameterwahl sind durch dièse beiden
Bedingungen die Rotationsflâchen mit der Drehachse 5 eharakterisiert.
Die der Konstruktion zugrunde liegende Kurve auf der Einheitskugel
fâllt naeh (14) in diesem Fall mit einem GroBkreis zusammen.

3. SehlieBlich betrachten wir noch den Fall, da6 die durch s (v0) fest-
gelegte Drehachse den Meridian v v0 im Punkte u u0 beriihrt.
Die Parameterwerte (u0, v0) genugen dann nach (51), (38) und (35) den
beiden Gleichungen

[s, xf r*(u0) sin2 {(p(v0) — u0

[5, Xuf Q2(u0) cos2 {<p(v0) -u0} 0

da der Ortsvektor 3e und die Tangente T an die Meridianlinie mit der
Drehachse zusammenfallen. Aus der zweiten Gleichung folgt

sin {(p(v0) — u0} ± 1

Der Zâhler in (52) ist bei verschwindendem Nenner von Null verschieden
und daher die GauBsche Krummung im Beriihrungspunkt unendlich.
Dieser Fall kann wegen der vorausgesetzten Regularitât nicht eintreten.

Damit ist bewiesen, daB eine regulàre, analytische Radialeiflâche
Rotationssymmetrie aufweist.

§5. Ânhang

Es lassen sich fur die Radialflâchen (27) auch Bedingungen im kleinen
angeben, denen nur die Rotationsflâchen genugen. Wir zeigen, daB die
Radialflâchen konstanter mittlerer Krummung Rotationsflâchen sind.
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Aus diesem Satz folgt insbesondere, daB das Katenoid die einzige Radial-
minimalflâche darstellt.

Aus (49) ergibt sich auf Grund der Définition (24) die Darstellung der
mittleren Krummung

J L «*<?«) (54)
q r sin (cp — u — ip)

Fur konstantes H ist

y ——— I ^j_/2 — — I f\ Q I
eine Funktion von u allein. Aus

sin (w — u)
y sin (9? — u — tp)

ergibt sich nach einfacher Umformung die Identitât

0(u) sin cp W(u) cos <p

0(u) x cos (u + y)) — cos u W(u) — x sin (u + y) — sin ^ (55)

Verschwinden 0 und ¥* identisch, so folgt mit (55) aus

X cos (u -f- y)) cos ^

^ sin (t^ -f- ^) sin w

daB x2 1 und V ^in ganzzahliges Vielfaches von n ist.
Nach (40) ist daher p (u) 0 und damit die Stûtzfunktion konstant.

Die Meridianlinie ist daher ein Kreis mit dem Zentrum im Ursprung und
die Radialflâche, bei jeder Wahl der Kurve n(v) auf der Einheitskugel,
nach (33) eine Kugelflâche.

Verschwinden 0 und W nicht gleichzeitig identisch, und ist etwa
W(u) zjè 0, so folgt aus (55) nach Séparation der Variabeln

0lu)
cotg ç> (v) ^ konstant

¥(11)

Daher gilt -~- s 0. Nach (53) ist die Radialflâche in diesem Fall eine

Rotationsflàche.
Zum SchluB untersuchen wir die Nabelpunkte auf den Radialflâchen.

Wir zeigen, daB Nabellinien auftreten, die jedenfalls bei Radialflâchen
ohne Rotationssymmetrie nicht dem Parameternetz der Krummungs-
linien angehôren.
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Die StiitzgrôBe der Meridianlinie (£ sei dreimal stetig difïerenzierbar ;

dann ist ihr Krummungsradius nach (29) stetig differenzierbar. Die Para-
meterdarstellung der Evolute eines Meridians v v0 ist mit (33) und (29)
gegeben durch

__

x(uyv0) x — QV — PP +PQ

Multiplizieren wir den Vektor x vektoriell mit dem normierten Dreh-
vektor (35), so ergibt sich aus (56)

[s, 3e] {p sin (<p — u) + p cos (q> — u)}n (57)

Fur Nabelpunkte erhàlt man nach (49) wegen xx(u) k2(u, v) die Be-
dingung

0(u, v) (p — p) sin (œ — u) — p cos (œ ~ u) 0

0(u, v) E^ — {p sin (<p — u) -\- p cos (<p — u)} 0

welche nur fur Meridiankreise, die zum Ursprung konzentrisch sind,
identisch erfùllt ist. Wir bilden die partiellen Ableitungen der durch (58)
definierten Funktion. Berxicksichtigt man (29), so folgt

*u — Q sin (<P — v)

dw -
(59)

0V ~~- {— p cos {cp — u) + p sin ((p — u)}

Die Evolute v v0 (56) werde von der Drehachse s(v0) im Punkt
u u0 geschnitten. Dann werden die Evoluten aller Meridiane in einer

genûgend kleinen Umgebung | v — v0 \ < e von der Drehachse gesehnit-
ten. Die zu den Schnittpunkten gehôrigen Parameterwerte genugen der

Gleichung (58), da mit [s, x] 0 die Klammer auf der rechten Seite

von (57) verschwindet. Die den Schnittpunkten entsprechenden Punkte
auf der Radialflâche sind also Nabelpunkte und umgekehrt.

Nach (59) verschwindet &u(u, v) nur fur Kreise identisch. SchlieBen

wir die Kreise als Meridianlinien aus, so wird die Gleichung (58) nach den
Sàtzen tiber implizite Funktionen durch u u(v) mit uQ u(vQ) identisch

erfûllt. x[u(v), v] beschreibt die Nabellinie durch den Punkt
(u0, v0) auf der Radialflâche.

Fur die erste Ableitung der Funktion u u(v) ergibt sich nach (59),

£ (60)
dv dv q sin2 (<p -— u)
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(JtJ
Da die Kreise allgemein ausgeschlossen wurden, verschwindet -=— nur

mit -p- identisch. Nach (53) ist die Radialflâche in diesem Fall eine

Rotationsflâche. Bei Radialflàchen ohne Rotationssymmetrie ist daher
u u(v) nicht konstant, und die Nabellinie fàllt nicht mit einer Breiten-
linie zusammen.

Aus den Codazzischen Gleichungen der Flâchentheorie folgt, da6 eine

Nabellinie, die dem orthogonalen Netz der Krûmmungslinien angehort,
auf einer Kugel oder Ebene verlâuft. Die Nabellinien auf den Radialflàchen

geniigen der Nebenbedingung des Satzes im allgemeinen nicht,
und es lassen sich Radialflàchen angeben, deren Nabellinien nicht auf
einer Kugel oder Ebene verlaufen.

(Eingegangen den 27. April 1955
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