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tîber Mengen von Randwerten
meromorpher Fimktionen

von Kxjbt E. Meieb, Zuoz

Einleitung

Die Funktion f(z) sei meromorph in einem Gebiet G der oberen Halb-
ebene, dessen Rand ein Intervall / der reellen Aehse enthâlt. Sind oc und
P Winkel des offenen IntervalLs (0, ri) und ist x ein Punkt von /, so
fuhren wir folgende Bezeichnungen ein :

sx(oc) sei der von x ausgehende Strahl der oberen Halbebene, weleher
mit der positiven reellen Achse den Winkel a einschlieBt.

wx(a,(5) bezeichne den offenen Winkelraum der oberen Halbebene,
der von den Strahlen sx(oc) und $x(p) begrenzt wird.

Unter 8x(oc) verstehen wir die Menge der Hâufungswerte von /(z) fur
den Fall, daB z auf sx (oc) gegen x strebt. Entsprechend definieren wir die
Hàufungsmenge Wx(oc, p).

Endlich sei die Menge Fx wie folgt erklârt : a ist Elément von Fx,
falls es zwei verschiedene Winkel oc und (5 gibt, so daB weder Sx(oc) noch
SX(P) den Wert a enthàlt.

Diesen Definitionen entspreehend, sind die Mengen 8x(oc) und Wx(oc, /S)

abgeschlossen, Fx hingegen ist eine offene Menge.
Die vorliegende Arbeit enthàlt nun den Beweis zu folgendem

Hauptsatz

Voraussetzung. f(z) sei meromorph in
Behauptung. Es gibt eine Teilmenge Z von / vom MaB 0, so daB in

jedem Punkt x e I — Z einer der folgenden Fâlle verwirklicht ist :

1) f(z) hat in x einen Winkelgrenzwert.
2) f(z) nimmt in jedem Winkelraum wx jeden Wert von Fx unendlich

oft an.

Dieser Satz stellt eine Verschàrfung eines bekannten Satzes von
Plefiner1) dar, in welchem an Stelle der Behauptung 2 die Aussage tritt,
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da6 die zu jedem Winkelraum wx gehôrige Menge der Hâufungswerte
von f(z) identisch ist mit der vollen Ebene.

Im Unterschied zum Satz von PleBner enthàlt nun der in dieser Arbeit
bewiesene Satz eine Aussage, die sich nicht nur auf Hâufungswerte von
f(z) bezieht, sondern auch auf Werte, welehe von dieser Funktion tat-
sâchlich angenommen werden2).

Damit der Inhalt des Satzes etwas klarer zum Ausdruck kommt, fûhre
ich einige Spezialfâlle und Folgerungen an, die auch fur sich nicht ohne
Interesse sind. Unter M ist jeweils eine beliebige Teilmenge von / von
positivem MaB zu verstehen. Ferner bedeutet die Aussage ,,in fast jedem
Punkt", daB eine Menge von Ausnahmepunkten vom MaB 0 zugelassen
werden muB.

Satz 1. Voraussetzungen:

1) f(z) sei meromorph in G.

2) Zu jedem Punkt x e M existieren drei Strahlen, deren zugehôrige
Hâufungsmengen von f(z) paarweise punktfremd sind.

Behauptung: In fast jedem Punkt x von M nimmt f(z) in jedem Winkelraum

wx jeden Wert unendlich oft an.

Satz 2 3). Voraussetzungen:

1) f(z) sei meromorph in G.

2) Zu jedem Punkt x von M gibt es zwei Strahlen, auf welchen f(z)
beschrânkt ist.

Behauptung: In fast jedem Punkt x von M trifft einer der folgenden
Fàlle zu :

1) f(z) hat in x einen endlichen Winkelgrenzwert.
2) In jedem Winkelraum wx befinden sich Pôle von f(z).

Satz 3. Voraussetzungen:

1) f(z) sei meromorph in G.

2) Zu jedem Punkt x von M gibt es zwei Strahlen, auf welchen fur
z -> x die Funktion / (z) gegen 0 strebt.

Behauptung: Es trifft einer der folgenden Fâlle zu :

1) f(z) eeO in G.

2) In fast allen Punkten x von M nimmt / (z) in jedem Winkelraum wx
mit eventueller Ausnahme von 0 jeden Wert an.

2) Sàtze dieser Art sind auch von Collingwood und Cartwright [1] bewiesen worden.
3) Ein Spezialfall dièses Satzes wurde vom Verf. bereits in [4] bewiesen.
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Die Herleitung dièses letzten Résultats erfolgt leicht, indem man sieh
auf einen bekannten Satz von Priwaloff 4) stûtzt, welcher aussagt, daB
eine im Gebiet G regtilâre Funktion identisch gleich Null ist, falls sie auf
einer Menge Mczl von positivem Ma6 ûberall den Winkelgrenzwert 0

besitzt.

Beweis des Hauptsatzes. I. Sâmtliche rationalen Zahlen des offenen
Intervalls (0,n) seien in eine Folge {yT} (r=l,2,3...) angeordnet,
desgleichen sâmtliche komplexen Zahlen mit rationalem Real- und
Imaginârteil : {wp} (g 1, 2, 3... )•

Genugen die naturlichen Zahlen cr und r den Bedingungen 0 <yr— I/o,
yT + ljcr<7z, so verstehen wir unter Ax(a, r) die offene Dreiecksflâche,
welehe durch die Strahlen sx(yr — I/o), sx(yT + I/o*) und die Gerade

3 (z) 1/cr begrenzt wtfd.
P(q, a, t) sei die Menge der Punkte x von /, zu welchen ein Wert a

und zwei Strahlen sx(a), sx(fl) existieren, so daB folgende Bedingungen
erfullt sind :

(1) f(z) nimmt im Dreieck Ax(a, r) nirgends den Wert a an.
(2) yT>2/a9 yT + 2lo<7t.
(3) \a-wp\<l/a.
(4) l/o<oc<p<7i— 1/cr.

(5) | f(z) — wp\ ^ 2/cr, sofern 0<^(z)<lja und z auf einem der
Strahlen ^(a), sx(p) liegt.

Fiir den Fall, daB a oo Ausnahmewert der Funktion / (z) ist, wâre
ein entsprechend abgeàndertes System von Bedingungen hinzuzufùgen.
Damit sich aber der Beweis nicht zu unûbersichtlich gestaltet, schlieBe
ich im folgenden diesen Fall aus. Man erkennt leicht, an welchen Stellen
im Beweis Ergânzungen anzubringen wàren, und daB der zu beweisende
Satz auch unter Zulassung dièses Falles seine Giiltigkeit beibehâlt.

II. Wir betrachten die Menge II aller Punkte x € I, fiir welehe die

Behauptung 2 des zu beweisenden Satzes nicht gilt. In diesem Abschnitt
soll gezeigt werden, daB jeder Punkt x von 77 mindestens einer der Men-

gen P(q, o, t) angehôrt, daB also

II ZP(Q9a9T) (6)

Zu jedem Punkt x von II gibt es einen Wert a € Fx und einen Winkel-
raum wx, so daB f(z) in wx in einer Umgebung von x den Wert a nicht
annimmt. Die naturlichen Zahlen q, a9 r lassen sich nun wie folgt be-

stimmen :

*) Vergl. die Beweisdarstellung in [3]
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Man wâhle zuerst ax und r so, daB yT>2/a1, yr + 2/(y1<?r und das
Dreieck Ax(aly r) ganz im Winkelraum wx liegt. Damit sind die Bedin-
gungen (1) und (2) fur jedes a1 > ax erfullt.

Aus aerx folgt nun die Existenz zweier Strahlen sx(oc), sx(p), sodaB
a nicht Elément von Sx(oc) + 8x(fi) ist. Da dièse Vereinigungsmenge ab-
geschlossen ist, kann man nun a2 > or1 derart bestimmen, daB

ist, sofern 0<%(z)<l/o2 und z auf einem der Strahlen sx(oc), sx(f})
liegt. Bei weiterer VergrôBerung von a2 bleibt dièse Bedingung erfullt
(Bedingung 5).

Nun kônnen wir a ^ a2 endgultig derart festlegen, daB

ist.
Nachdem wir zum SchluB noch die Wahl von q der Bedingung

| wp — a | < l/a entsprechend getrofïen haben, erkennt man leicht, daB
damit nun aile Forderungen (1) bis (5) erfullt sind.

III. Die folgenden Ûberlegungen beziehen sich auf eine beliebig aus-
gewâhlte Menge P(r,s,t).

Wir fûhren zunâchst neue Bezeichnungen ein. Es sei

î
sm —

Zu jeder natûrlichen Zahl X>s erklàren wir ferner die Hilfsfunktion
k2(X) wie folgt :

Ist x ein beliebiger Punkt der reellen Achse, so wird dureh den Winkel
wx(<p — 1/A, (p + 1/A) auf der Geraden %(z) 1 eine Strecke abge-
grenzt. Fur festes A sei nun h2{X) die maximale Lange einer solehen
Strecke, wenn der Wert von cp auf das Intervall

SA SA
beschrânkt bleibt.

IV. Nun seien sâmtliche Paare von rationalen Zahlen des offenen
Intervalls (l/syn— l/s) numeriert. (a^,^) sei das Zahlenpaar mit
der Nummer /u.

Ist nun

T < aF —i-< «M +T<^ -T< ^ +y<71 ~T '
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so verstehen wir unter T(X, fi) die Menge aller Punkte x c P(r, s, t)t
zu welehen es zwei Strahlen sx{a) und 5a.(/3) gibt, so daB neben (5)
(fur q r, a s) noeh folgende Bedingungen erfullt sind :

| a - ^ | < -1
| £ - ^ | < -1 (8)

Mit T(X, /u) bezeichnen wir die abgeschlossene Huile von T(A, ju).

V. In diesem Absehnitt zeige ich, daB jeder Punkt X€P(r,syt)
mindestens einer der Mengen T(À, /u,) angehôrt, daB also

P(r,s,t) i:T(l,iA) (10)

Ist nàmlich x e P(r, s, t), so existieren zwei Strahlen sx(oc) und
sx(P) mit den in Absehnitt I festgelegten Eigenschaften. Man kann nun
zuerst den Wert von A so festsetzen, daB 4&2(A)<&1«sin (fi — a — 2/A).
Dies ist môglich, v/eil in dieser Ungleichung fur A ->oo die linke Seite

gegen 0 strebt, die rechte hingegen gegen den von 0 verschiedenen Wert
^•sin (/? — a).

Man sieht nun leicht, daB anschlieBend \i derart festgelegt werden
kann, daB (8) und (9) erfullt sind. Man hat nur dafur zu sorgen, daB a^
und ftp hinreichend nahe bei oc bzw. /? liegen.

VI. Im folgenden Teil des Beweises sei T(l,m) eine beliebig unter
den T(X,ju) ausgewâhlte Menge.

Fûhren wir die neuen Bezeichnungen

Vl «« ~ Vh <P* «m + VI, <P* Pm- Vh <Pt Pm + V* (H)

ein, so gibt es nun zu jedem Punkt xeT(l,m) zwei Strahlen sx(oc),

sx(P) und einen Wert a, so daB folgendes System von Bedingungen
erfullt ist :

(1*) f(z) nimmt im Dreieek Ax{s,t) nirgends den Wert a an.

(2*) yt>2/s, yt<7t-2/s
(3*) \a — wr\<l/8
(4*) l/s <(px<a<(p2<(pz<P <(f4<7t — 1/5

(5*) \f[z) — wr\ > 2/s, sofern 0<J(z)<l/8 und z auf einem der
Strahlen sx(oc), sjp) liegt.

(6*) ^-^ 2/1, n-n-W
(7*) 4Jc2<kv&in((pz - ç>2)
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VII. Die folgenden Abschnitte enthalten den Beweis dafur, daB f(z)
in fast allen Punkten der Menge T (l, m) einen Winkelgrenzwert besitzt.
Ist dièse Behauptung begrûndet, so lâBt sich der Beweis wie folgt voll-
enden :

Da die obige Aussage fur jede beliebige der abzâhlbar vielen Mengen
jT(A, jli) gilt, ist sie wegen (10) auch richtig fur P(r,s,t). Nun ist aber

P(r,s,t) eine beliebig unter den P(q,o, t) ausgewâhlte Menge. In-
folgedessen darf man jetzt auf Grund von (6) den SchluB ziehen, daB ein
Winkelgrenzwert von f(z) sogar in fast allen Punkten der Menge 77

existiert.
Die sich nun anschlieBende Untersuchung bezieht sich also aussehlieB-

lich auf die Menge T(l,m), die wir im folgenden einfach mit T be-
zeichnen.

VIII. Ist x € T und m(x, R) das MaB derjenigen Teilmenge von T,
welche im Intervall (x — R, x -f R) liegt, so nennt man den Grenzwert

lim rn{x,R)
2R

die Dichte der Menge T im Punkt x 5).

Abgesehen von einer Menge Z vom MaB 0 hat die Menge T in jedem
ihrer Punkte die Dichte 1 5).

Wir nehmen nun an, das MaB von T sei positiv und bezeichnen mit x0
einen beliebigen Punkt der Menge T — Z.

Wegen p\
lim ^-jz— 1

kann man zu jedem e>0 eine Zahl R(e) so festlegen, daB

2R — m(xo,R)<2Re

fur aile R <I R(e) gilt. Wir setzen nun

k3 2 ctg (l/«) (12)

und trefïen die Wahl e0 k2jikz. Zu diesem e0 gibt es nun ein jR0, so
daB 2R — m(xo,R)<Rk2/2ks fiir R^R0.

Das Intervall (x0 — Ro, x0 + Ro) bezeichnen wir im folgenden mit
/0. Nun bestàtigt man leicht folgendes Ergebnis :

Ist x* elo und 2&*>k2/k3 \ x* — xQ |, so enthàlt das Intervall
(#* — ^*, x* + ^*) sicher Punkte von T. (13)

5) Vergl. [2], p. 210—211
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Aus #* c Jo und #* > (k2/2k3) \ x* — x0 | folgt nâmlich

V ^> ù \ X — Xo | — »l(*oi | * ~~ *0 1/ •

IX. Es sei nun Zjtw,. (çvT's) und %(z0) y0 genùge den Bedin-

(14)

+ *i) • (15)

gungen :

Unter diesen Bedingungen beweise ich nun die Existenz einer Vier-
ecksflâche F mit folgenden Eigenschaften :

(a) zoeV.
(b) d(V)<kly0, wobei d(V) den Durehmesser von V bezeichnet.

(c) Auf dem Rand von F gilt : \f(z) — wr\^ 2/s.

Es sei Ci der Schnittpunkt des Strahles s^iyt) mit der Geraden
2f (z) y0 und |0 jener Punkt der reellen Achse, dessen Strahl sço (ç?x)

durch z0 geht (vgl. Fig. 1). Wir setzen |^ £0 — k2y0. Der Strahl
8(o i^i) schneidet die Gerade %(z) — y0 in einem Punkt zf0. Aus (4*) (6*)

Fig. 1

und der geometrischen Bedeutung von k2 k2(l) folgt, daB der Punkt z'o

im Winkelraum wXq(1/s9 n — Ijs) liegt. Dies gilt auch fur fx. Infolge-

dessen ist | z'o — C11 \ £'o — ^o I <22/o-ctg(—j 2/0**3- Wegen (14)

gilt dazu | ££ — x0 | < JR0, also |q € /0. '

Das Intervall (lo>^o) enthâlt nun sicher einen Punkt von T, also auch
einen Punkt £x von T. Mit den Bezeichnungen von Abschnitt VIII gilt
nâmlich | x* — x0 \ <| |^ — x0 | <yok% und 2^* k2y0, also entspre-
chend (13) wirklich 2^* > (k2 \ kz) \ x* — x0 |.

Da |x e T ist, gibt es einen den Bedingungen (4*) und (5*) entspre-
chenden Strahl pt s& (at). Es sei zx sein Schnittpunkt mit der Geraden
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Vo (vgl- Fig. 2). Bezeichnen wir ferner mit Z[ und Z"x die Sehnitt-
punkte der Strahlen s^i^i) bzw. s^((p2) mit der Geraden 3(z) y0,

Fig. 2

so gilt \zl-
Nun ist aber

\

Z'X

- | Zx — zo\ ^ | Z± — Zx\ -\- \ Zt — z0 I.
und nach der Définition von k2 dazu

folglich:

von (16)

Analog beweist man, dafi es im Intervall /0 noch drei weitere Punkte
^2 > ^3 » ^4 von î1 m^ folgenden Eigenschaften gibt : Ihre den Bedingungen
(4*) und (5*) entsprechenden Strahlen p2 Sg2(oc2), Pz — sç%(Pi),

pà sgt (j82) sehneiden die Gerade 3 (z) ~ Vo in Punkten z2, zz, z4, so daB

(17)2b 1

zo

zo\

\ <2&22/o

l< 2*2^0

(z2 liegt
(«a liegt
(z4 liegt

rechts von z0)

links von z0)

rechts von z0) (19)

Die Strahlen Pi,p2>Pz, P* begrenzen nun eine Vierecksflâche F, welche
offensichtlich den Punkt z0 enthâlt. F erfûllt ferner die Bedingung (b).
Da nàmlïch px und pA und ebenso p2 und pz Winkel grôBer als ç?3 — q>2

einschlieBen, folgt auf Grund einer einfachen planimetrischen Ùberlegung
unter Berucksichtigung von (16) bis (19), daB

d(V)< sin — <p2)

und daraus naeh (7*) wirklich d{V) <&i«/0-
Endlich liegt zufolge (15) die ganze Vierecksflâche F im Streifen

<l/5- Nach (5*) gilt daher auf ihrem Rand | f(z) — wr \ > 2/s.

X. |* sei derjenige Punkt der reellen Achse, dessen Strahl sç*(y
durch z0 geht (vgl. Fig. 3). Als Folge von (14) liegt f* im Intervall /0.
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Eine einfache Rechnung ergibt nun, dafi der Winkelraum

w^(yt- l/s,yt + l/s)

die oflEene Kreisscheibe mit dem Mittelpunkt z0 und dem Radius

1

sin —

smyt
enthalt.

Nun liegt im Intervall (|* — fc22/0/2, £* -f- ^2^o/2) sicher ein Punkt
von T und infolgedessen auch ein Punkt f** von T. Die Begrûndung

r r Fig. 3

dieser Behauptung erfolgt wieder leicht auf Grund von (13). Wegen (7*)
ist ferner k2<kt und damit | £** — |* | <fc1t/0/2.

Jetzt betrachten wir die Kreisscheibe K mit Mittelpunkt z0 und Radius
yo^. Man erkennt leieht, daB K vollstândig im Winkelraum

w(**(yt— 1/8, yt + l/s)

liegt und wegen (15) sogar im Dreieck Aç**(s, t). Es gibt folglich einen
Wert a, \ a — wr \ < l/s, den die Funktion f(z) in K nicht annimmt.

Fur das Folgende ist nun die Tatsache von grôBter Wichtigkeit, daB
der Kreis K das im letzten Abschnitt konstruierte Viereck V iiberdeckt.
Dies folgt aus d(V)<Jc1y0 und z0 e V.

XI. Wir betraehten nun wieder das zum Punkt z0 konstruierte Viereck

V. Auf seinem Rande gilt
| f(z) - wr | > 2/s (20)

Nach Abschnitt X gibt es ferner einen Wert a, \ a — wr \ <l/s,
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welchen f(z) im Innern von F nicht annimmt. Es folgt daraus, da8 die
Ungleichung (20) auch fur das Innere von V gûltig bleibt, insbesondere
also fur z z0.

Damit ist also fur aile Punkte z0 des Winkelraumes wXq (<p2, 9?3), welche
den Bedingungen (14) und (15) geniigen | f(z0) —- wr | > 2/s. Die zu
diesem Winkelraum gehôrige Hàufungsmenge WXq ((p2, <p3) ist folglich
nicht die voile Ebene.

Dièse Aussage hat Gultigkeit fur aile Punkte x0 von T, in welchen
dièse Menge die Dichte 1 hat, also nach Abschnitt VIII fur fast aile
Punkte von î7. Aus dem in der Einleitung erwâhnten Satz von Plefiner
folgt damit, da6 f(z) in fast allen Punkten von T (also auch von T) einen
Winkelgrenzwert besitzt.

Nach Abschnitt VII ist damit der Beweis vollendet.
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