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Uber Mengen von Randwerten
meromorpher Funktionen

von Kurt E. MEIER, Zuoz
Einleitung

Die Funktion f(z) sei meromorph in einem Gebiet G der oberen Halb-
ebene, dessen Rand ein Intervall I der reellen Achse enthilt. Sind « und
p Winkel des offenen Intervalls (0, #) und ist z ein Punkt von I, so
fithren wir folgende Bezeichnungen ein :

8,(a) sei der von x ausgehende Strahl der oberen Halbebene, welcher
mit der positiven reellen Achse den Winkel « einschlieBt.

w,(a, f) bezeichne den offenen Winkelraum der oberen Halbebene,
der von den Strahlen s,(«) und s,(f) begrenzt wird.

Unter S,(«) verstehen wir die Menge der Haufungswerte von f(z) fir
den Fall, daB z auf s,(«) gegen x strebt. Entsprechend definieren wir die
Haufungsmenge W_(«, B).

Endlich sei die Menge I', wie folgt erklirt: a ist Element von I',,
falls es zwei verschiedene Winkel « und g gibt, so daB weder S,(x) noch
S,(f) den Wert a enthilt.

Diesen Definitionen entsprechend, sind die Mengen S, («) und W ,(«, B)
abgeschlossen, I', hingegen ist eine offene Menge.

Die vorliegende Arbeit enthilt nun den Beweis zu folgendem

Hauptsatz
Voraussetzung. f(z) sei meromorph in G.

Behauptung. Es gibt eine Teilmenge Z von I vom Mall 0, so daf} in
jedem Punkt z eI — Z einer der folgenden Fille verwirklicht ist :

1) f(2) hat in x einen Winkelgrenzwert.
2) f(2) nimmt in jedem Winkelraum w, jeden Wert von I', unendlich
oft an.

Dieser Satz stellt eine Verschirfung eines bekannten Satzes von
Plefinert) dar, in welchem an Stelle der Behauptung 2 die Aussage tritt,

1) PleBner [5]
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daBl die zu jedem Winkelraum w, gehorige Menge der Haufungswerte
von f(z) identisch ist mit der vollen Ebene.

Im Unterschied zum Satz von PleBner enthilt nun der in dieser Arbeit
bewiesene Satz eine Aussage, die sich nicht nur auf Hiufungswerte von
f(2) bezieht, sondern auch auf Werte, welche von dieser Funktion tat-
séchlich angenommen werden 2).

Damit der Inhalt des Satzes etwas klarer zum Ausdruck kommt, fiihre
ich einige Spezialfille und Folgerungen an, die auch fiir sich nicht ohne
Interesse sind. Unter M ist jeweils eine beliebige Teilmenge von I von
positivem Maf} zu verstehen. Ferner bedeutet die Aussage ,,in fast jedem
Punkt, daBB eine Menge von Ausnahmepunkten vom MaB 0 zugelassen
werden mul.

Satz 1. Voraussetzungen:

1) f(2) sei meromorph in G.

2) Zu jedem Punkt x ¢ M existieren drei Strahlen, deren zugehérige
Héaufungsmengen von f(z) paarweise punktfremd sind.

Behauptung: In fast jedem Punkt « von M nimmt f(z) in jedem Winkel-
raum w, jeden Wert unendlich oft an.

Satz 2 3). Voraussetzungen:

1) f(z) sei meromorph in G.

2) Zu jedem Punkt x von M gibt es zwei Strahlen, auf welchen f(z)
beschriankt ist.

Behauptung: In fast jedem Punkt x von M trifft einer der folgenden
Fille zu :

1) f(2) hat in z einen endlichen Winkelgrenzwert.

2) In jedem Winkelraum w, befinden sich Pole von f(z).

Satz 3. Voraussetzungen:

1) f(z) sei meromorph in G.

2) Zu jedem Punkt x von M gibt es zwei Strahlen, auf welchen fiir
z - x die Funktion f(z) gegen 0 strebt.

Behauptung: Es trifft einer der folgenden Fille zu :

1) f()=0 inG.

2) In fast allen Punkten  von M nimmt f(z) in jedem Winkelraum w
mit eventueller Ausnahme von 0 jeden Wert an.

@

?) Satze dieser Art sind auch von Collingwood und Cartwright [1] bewiesen worden.
3) Ein Spezialfall dieses Satzes wurde vom Verf. bereits in [4] bewiesen.
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Die Herleitung dieses letzten Resultats erfolgt leicht, indem man sich
auf einen bekannten Satz von Priwaloff ¢) stiitzt, welcher aussagt, daB
eine im Gebiet G regulidre Funktion identisch gleich Null ist, falls sie auf
einer Menge M cl von positivem Maf@ iiberall den Winkelgrenzwert 0
besitzt.

Beweis des Hauptsatzes. I. Samtliche rationalen Zahlen des offenen
Intervalls (0, n) seien in eine Folge {y,} (v =1, 2, 3...) angeordnet,
desgleichen sdmtliche komplexen Zahlen mit rationalem Real- und
Imagindrteil: {w,} (¢ =1,2,3...).

Geniigen die natiirlichen Zahlen ¢ und 7 den Bedingungen 0<y,—1/o,
v, + 1/ <=, so verstehen wir unter A4,(c, ) die offene Dreiecksflidche,
welche durch die Strahlen s,(y, — 1/6), s.(y, + 1/o) und die Gerade
3(2) = 1/6 begrenzt wird.

P(p, o, t) sei die Menge der Punkte « von I, zu welchen ein Wert a
und zwei Strahlen s, (x), 8,(B) existieren, so dafl folgende Bedingungen
erfiillt sind :

(1) f(2) nimmt im Dreieck A4,(c, 7) nirgends den Wert ¢ an.

(2) y,>2/o, y,+ 2lo<=.

3) |ea—w,|<1/o.

(4) ljo<a<f<m — 1/o.

(5) |f(z) —w,| = 2/o, sofern 0<J(2)<1/c und z auf einem der
Strahlen s,(a), s,(8) liegt.

Fiir den Fall, da @ =oco Ausnahmewert der Funktion f(z) ist, wire
ein entsprechend abgedndertes System von Bedingungen hinzuzufiigen.
Damit sich aber der Beweis nicht zu uniibersichtlich gestaltet, schliee
ich im folgenden diesen Fall aus. Man erkennt leicht, an welchen Stellen
im Beweis Erginzungen anzubringen wiren, und daf der zu beweisende
Satz auch unter Zulassung dieses Falles seine Giiltigkeit beibehilt.

II. Wir betrachten die Menge I7 aller Punkte x e[, fiir welche die
Behauptung 2 des zu beweisenden Satzes nicht gilt. In diesem Abschnitt
soll gezeigt werden, daf} jeder Punkt x von /7 mindestens einer der Men-
gen P(p, o, 1) angehort, daf also

II=2P(,0,7) . (6)

Zu jedem Punkt z von I7 gibt es einen Wert a ¢ I', und einen Winkel-
raum w,, so dafl f(z) in w, in einer Umgebung von x den Wert @ nicht
annimmt. Die natiirlichen Zahlen g, ¢, 7 lassen sich nun wie folgt be-
stimmen :

4) Vergl. die Beweisdarstellung in 3]
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Man wihle zuerst o, und 7 so, daB y,>2/o,, y, + 2/0, <7 und das
Dreieck 4,(oy, v) ganz im Winkelraum w, liegt. Damit sind die Bedin-
gungen (1) und (2) fiir jedes ¢’ > o, erfiillt.

Aus a € I', folgt nun die Existenz zweier Strahlen s,(«), s,(8), so daB
@ nicht Element von S, («x) + 8,(f) ist. Da diese Vereinigungsmenge ab-
geschlossen ist, kann man nun ¢, > o, derart bestimmen, daB

| {(z) — a|>3/o,

ist, sofern 0<J(2)<1/o, und z auf einem der Strahlen s,(«), 8,(f)
liegt. Bei weiterer Vergroferung von o, bleibt diese Bedingung erfiillt
(Bedingung 5).

Nun kénnen wir ¢ > ¢, endgiiltig derart festlegen, daB3

lo<a<f<m — 1o
ist.
Nachdem wir zum SchluB noch die Wahl von ¢ der Bedingung
| w, — a|<1l/o entsprechend getroffen haben, erkennt man leicht, dal
damit nun alle Forderungen (1) bis (5) erfiillt sind.

ITII. Die folgenden Uberlegungen beziehen sich auf eine beliebig aus-
gewihlte Menge P(r,s,t).
Wir fithren zunéchst neue Bezeichnungen ein. Es sei
.1
sin —
8

(7)

Zu jeder natiirlichen Zahl A>s erkldren wir ferner die Hilfsfunktion
ky(4) wie folgt :

Ist x ein beliebiger Punkt der reellen Achse, so wird durch den Winkel
w,(p — 1/, ¢ + 1/4) auf der Geraden J(z) =1 eine Strecke abge-
grenzt. Fir festes A sei nun k,(A1) die maximale Lénge einer solchen
Strecke, wenn der Wert von ¢ auf das Intervall

1 1

1 1
STASISTT T

b= Sy

beschriankt bleibt.

IV. Nun seien simtliche Paare von rationalen Zahlen des offenen
Intervalls (1/s, 7z — 1/s) numeriert. (,,f,) sei das Zahlenpaar mit
der Nummer u.

Ist nun
1 1 1 1 1 1
TS TSt <h g <bhty<m—F.
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so verstehen wir unter 7'(4, u) die Menge aller Punkte x e P(r, s,?1),
zu welchen es zwei Strahlen s, (a) und s,(8) gibt, so dal neben (5)
(fir o = r, 0 = s) noch folgende Bedingungen erfiillt sind :

1 1
lo‘_“a,u.l<7’ lﬁ“ﬂp.l<7’ (8)

4ky(A) < ky-sin (ﬁ“ — iy, —%—) . (9)

Mit T (A, u) bezeichnen wir die abgeschlossene Hiille von T (4, u).

V. In diesem Abschnitt zeige ich, daB jeder Punkt =« e P(r,s,t)
mindestens einer der Mengen 7'(4, ) angehort, daB also

Pr,s,t)=2T@,p) . (10)

Ist ndmlich xeP(r,s,t), so existieren zwei Strahlen s,(a) und
8,(B) mit den in Abschnitt I festgelegten Eigenschaften. Man kann nun
zuerst den Wert von A so festsetzen, dall 4k,(1) <k,-sin (8 — o — 2/4).
Dies ist moglich, weil in dieser Ungleichung fiir 4 oo die linke Seite
gegen O strebt, die rechte hingegen gegen den von 0 verschiedenen Wert
ky-sin (8 — «).

Man sieht nun leicht, daB anschlieBend u derart festgelegt werden
kann, daB (8) und (9) erfiillt sind. Man hat nur dafiir zu sorgen, dal} o,
und f, hinreichend nahe bei « bzw. f§ liegen.

VI. Im folgenden Teil des Beweises sei 7'(l, m) eine beliebig unter
den 7'(4, u) ausgewihlte Menge.
Fiihren wir die neuen Bezeichnungen

1= oy — 1fl, o= o, + 1/l, @3= 0 — 1/l, @4 =P, + 1/ (11)

ein, so gibt es nun zu jedem Punkt z¢7'(l, m) zwei Strahlen s,(«),
8,(B) und einen Wert a, so dafl folgendes System von Bedingungen er-
fiillt ist :

(1*) f(2) nimmt im Dreieck A4,(s, t) nirgends den Wert a an.

(2%) ye>2s, y;<m—2fs

(3%) |a—w,|<1/s

(4%) 1< <a<@<@;<P<@<m — 1fs

(5*) | f(z) —w,| = 2/s, sofern 0<J(z)<l/s und z auf einem der
Strahlen s,(a), s,(8) liegt.

(6*) go— 1 =2l, @u—@s=2[l

(T*)  4ky<ky-sin (p; — @3)
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VII. Die folgenden Abschnitte enthalten den Beweis dafiir, daB f(z)
in fast allen Punkten der Menge 7'(l, m) einen Winkelgrenzwert besitzt.
Ist diese Behauptung begriindet, so 1it sich der Beweis wie folgt voll-
enden :

Da die obige Aussage fiir jede beliebige der abzahlbar vielen Mengen
T (A, n) gilt, ist sie wegen (10) auch richtig fiir P(r, s, t). Nun ist aber
P(r,s,t) eine beliebig unter den P(p, o, ) ausgewidhlte Menge. In-
folgedessen darf man jetzt auf Grund von (6) den SchluB} ziehen, daf ein
Winkelgrenzwert von f(z) sogar in fast allen Punkten der Menge I7
existiert.

Die sich nun anschlieBende Untersuchung bezieht sich also ausschlie3-
lich auf die Menge 7'(l, m), die wir im folgenden einfach mit 7' be-
zeichnen.

VIII. Ist x T und m(x, R) das MaB derjenigen Teilmenge von 7T,
welche im Intervall (x — R, 4+ R) liegt, so nennt man den Grenzwert

. m(x, R)
AR

die Dichte der Menge 7' im Punkt z 5).

Abgesehen von einer Menge Z vom MaB 0 hat die Menge 7 in jedem
ihrer Punkte die Dichte 1 5).

Wir nehmen nun an, das MaB von T sei positiv und bezeichnen mit x,
einen beliebigen Punkt der Menge 7 — Z.

Wegen m(zy, B)

im——— =1
R—>0 2R

kann man zu jedem ¢>0 eine Zahl R (¢) so festlegen, dafl
2R — m(x,, R)<2Re¢
fir alle R << R(¢) gilt. Wir setzen nun
k, = 2 ctg (1/s) (12)

und treffen die Wahl &, = k,/4k;. Zu diesem ¢, gibt es nun ein R,, so
daBl 2R — m(x,, R)<Rk,/2k, fir R < R,.

Das Intervall (z, — R,, z, + B,) bezeichnen wir im folgenden mit
I,. Nun bestétigt man leicht folgendes Ergebnis :

Ist x*el, und 2*>k,/k,|x* — x,|, so enthidlt das Intervall
(@* — 9%, x* 4 9*) sicher Punkte von T'. (13)

%) Vergl. [2], p. 210—211
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Aus z*el, und 9*> (k,/2k,) | x* — x,| folgt ndmlich
P>2| a* — x| — m(x, | 2* — 25]) -

IX. Es sei nun 2z, ew, (g, ps) und J(z)) =y, geniige den Bedin-
gungen :

Yo <Rolks , (14)

Yo<l1/s(1 + ky) . (15)

Unter diesen Bedingungen beweise ich nun die Existenz einer Vier-
ecksfliche V mit folgenden Eigenschaften :

(@) z,eV. ‘
(b) d(V)<k,y,, wobei d(V) den Durchmesser von V bezeichnet.
(¢) Auf dem Rand von V gilt: | f(z) — w,| = 2/s.

Es sei {; der Schnittpunkt des Strahles s, (p;) mit der Geraden
J(2) =y, und &, jener Punkt der reellen Achse, dessen Strahl s; (¢;)
durch z, ‘geht (vgl. Fig. 1). Wir setzen &, = & — k,y,. Der Strahl
8¢ (¢,) schneidet die Gerade J(z) = y, in einem Punkt z,. Aus (4*) (6%)

p.’ ﬁ: E p4 ﬁ;

ks Yo Fig. 1
£ & Xe

und der geometrischen Bedeutung von k, = k,(l) folgt, daB der Punkt z;
im Winkelraum w, (1/s,7n — 1/s) liegt. Dies gilt auch fiir {,. Infolge-

dessen ist |2z — {1 | = | & — %o | <2y0-ctg(—l-) = Yo-k;. Wegen (14)
gilt dazu | & — % | <R,, also & el,. d

Das Intervall (£}, &) enthdlt nun sicher einen Punkt von 7', also auch
einen Punkt &, von 7'. Mit den Bezeichnungen von Abschnitt VIII gilt
nimlich | z* — x, | <| & — 2, | <yok; und 29* = k,y,, also entspre-
chend (13) wirklich 28* > (k, | k;) | * — |-

Da &, €T ist, gibt es einen den Bedingungen (4*) und (5*) entspre-
chenden Strahl p, = 8¢ («;). Es sei 2, sein Schnittpunkt mit der Geraden

9o

v
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I (2) = yo (vgl. Fig. 2). Bezeichnen wir ferner mit Z; und Z; die Schnitt-
punkte der Strahlen s¢ (¢;) bzw. s, (p,) mit der Geraden J(z) = y,,

FORRC O R OB %,
/

i
Z; | 2. A‘ /z

Xe

Fig. 2 §' g.

sogilt |2z —2|=|2—2Z;| +12;—2|<|Z —Z|+|Z — =]l
Nun ist aber | Z; — 2z, | <k,y, und nach der Definition von k, dazu

| Z{ — Zi | <kyy,, folglich :
| 21 — 20| <2k, (16)
Analog beweist man, daB es im Intervall I, noch drei weitere Punkte

&, &, & von T mit folgenden Eigenschaften gibt : Thre den Bedingungen
P2 = 8¢, (a9), Pz = 8¢, (B1),

(2, liegt links von z;) .

(4*) und (5*%) entsprechenden Strahlen
Ps = 8¢, (B;) schneiden die Gerade J(z) = y, in Punkten z,, 23, 2,, so daB3

(24 liegt rechts von z;) , (17)
(2, liegt links von zy) (18)
(24 liegt rechts von z,) . (19)

| 2o — 20 | <2k,

| 23 — 20 | <2590

| 2a — 2 | <2k2yo

Die Strahlen p,, p,, s, P4 begrenzen nun eine Vierecksfliche V', welche
offensichtlich den Punkt z, enthilt. V erfiillt ferner die Bedingung (b).
Da namlich p; und p, und ebenso p, und p; Winkel grofler a:l.s @3 — Py
einschliefen, folgt auf Grund einer einfachen planimetrischen Uberlegung

unter Beriicksichtigung von (16) bis (19), da@3
4k,y
d(V) < —F22
V) sin (@3 — @,)

und daraus nach (7*) wirklich d(V) <k, y,.
Endlich liegt zufolge (15) die ganze Vierecksfliche V im Streifen

0<J(2)<1/s. Nach (5*) gilt daher auf ihrem Rand | f(z) — w, | > 2/s.

X. &* gei derjenige Punkt der reellen Achse, dessen Strahl sg(y,)
durch z, geht (vgl. Fig. 3). Als Folge von (14) liegt £* im Intervall I,.
231



Eine einfache Rechnung ergibt nun, dafl der Winkelraum

Wer (Yo — 1/, 7¢ + 1/9)
die offene Kreisscheibe mit dem Mittelpunkt z, und dem Radius

. 1
sin —
8

Yo sin 7, = 2y,k,

enthilt.
Nun liegt im Intervall (&* — kyy,/2, &% + k,y,/2) sicher ein Punkt
von T und infolgedessen auch ein Punkt £** von 7. Die Begriindung

Fig. 3

dieser Behauptung erfolgt wieder leicht auf Grund von (13). Wegen (7%)
ist ferner k, <k, und damit | &*¥* — & | <k, y,/2.

Jetzt betrachten wir die Kreisscheibe K mit Mittelpunkt z, und Radius
Yok;. Man erkennt leicht, daB K vollstindig im Winkelraum

weer (P — 1/8, e + 1/8)

liegt und wegen (15) sogar im Dreieck A+ (s,t). Es gibt folglich einen
Wert @, |a — w, | <1/s, den die Funktion f(z) in K nicht annimmt.

Fiir das Folgende ist nun die Tatsache von grofter Wichtigkeit, dafl
der Kreis K das im letzten Abschnitt konstruierte Viereck V iiberdeckt.
Dies folgt aus d(V)<k,y, und z e V.

XI. Wir betrachten nun wieder das zum Punkt z, konstruierte Vier-
eck V. Auf seinem Rande gilt

| f(2) —w, | =2/s . (20)
Nach Abschnitt X gibt es ferner einen Wert a, |a — w,|<1/s,
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welchen f(z) im Innern von V nicht annimmt. Es folgt daraus, daBl die
Ungleichung (20) auch fiir das Innere von V giiltig bleibt, insbesondere
also fiir z = 2.

Damit ist also fiir alle Punkte 2, des Winkelraumes w, (¢,, ;), welche
den Bedingungen (14) und (15) geniigen | f(z,) — w,| > 2/s. Die zu
diesem Winkelraum gehérige Héufungsmenge W, (9,, ;) ist folglich
nicht die volle Ebene.

Diese Aussage hat Giiltigkeit fiir alle Punkte x, von T, in welchen
diese Menge die Dichte 1 hat, also nach Abschnitt VIII fiir fast alle
Punkte von 7'. Aus dem in der Einleitung erwihnten Satz von PleBner
folgt damit, daB f(z) in fast allen Punkten von 7' (also auch von 7') einen
Winkelgrenzwert besitzt.

Nach Abschnitt VII ist damit der Beweis vollendet.
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