
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 30 (1956)

Artikel: Sur la théorie des demi-groupes.

Autor: Thierrin, Gabriel

DOI: https://doi.org/10.5169/seals-23910

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 02.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-23910
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Sur la théorie des demi-groupes
par Gabriel Thierrin, Surpierre (Fribourg)

Dédié à Monsieur 8. Bays pour son soixante-dixième anniversaire

Par demi-groupe, nous entendons un ensemble dans lequel est définie
une opération univoque associative.

Les groupes sont un cas particulier des demi-groupes et il existe
plusieurs manières de caractériser les groupes à partir des demi-groupes.
Nous avons antérieurement utilisé les notions de régularité et de simpli-
fiabilité des relations d'équivalence pour effectuer une telle earaetérisa-
tion ([8], [10], [11]). Dans la première partie de ce travail, nous
poursuivons l'étude des propriétés caractéristiques des groupes au moyen des

équivalences, mais en utilisant cette fois certaines catégories d'équivalences

pouvant être définies dans un demi-groupe.
La seconde partie est consacrée aux demi-groupes D tels que les demi-

groupes D2 sont des demi-groupes simples d'un côté ou des deux côtés.
Des conditions nécessaires et suffisantes sont données pour qu'il en soit
ainsi, et cela en utilisant les notions d'idéaux larges et d'idéaux fermés
([7]). En relation avec cette question, nous étudions les demi-groupes D
vérifiant la relation xD x2D ou DxD Dx2D pour tout x e D.

Quelques théorèmes de décomposition d'un demi-groupe en réunion de

demi-groupes disjoints possédant certaines propriétés font l'objet de la
dernière partie de ce travail.

1. Equivalences dans les demi-groupes et propriétés caractéristiques
des groupes

Rappelons les définitions de quelques équivalences associées à un
complexe quelconque H d'un demi-groupe D. Le quotient à droite ou
résiduel à droite H.' a de H par l'élément a est l'ensemble des éléments
x de D tels que ax eH. L'équivalence principale à droite RH (cf. [4],
[5]) est définie par

^H :a H /b
Le composé à droite Fa de H par a est l'ensemble des éléments x tels que
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a cHx (cf. [9]). L'équivalence 6H (cf. [8]) est définie par

L'équivalence <pH est définie par

a b(<pH) ^
On a les définitions symétriques des quotients à gauche, des composés à

gauche et des équivalences HR, H0, H(p. Une équivalence R est régulière
à droite, si la relation <x 6(jR) entraîne ax bx(R) pour tout
xcD. Une équivalence S est simplifiable à droite, si la relation
a y by(S) entraîne a b(S). On définit d'une manière analogue
une équivalence régulière à gauche ou simplifiable à gauche.

Théorème 1. Pour qu'un demi-groupe D soit un groupe, il faut et il suffit
que ses équivalences régulières à droite et que ses équivalences régulières à

gauche soient respectivement des équivalences 0H et K0.
La condition est nécessaire. Si D est un groupe et si R est une

équivalence régulière à droite, la classe H mod R contenant l'élément neutre
de D est un sous-groupe de D. Le composé à droite Fa de H par a est la
classe A modR contenant a. En effet, si x e Fa9 on a a e Hx. D'où
a x(R) et FaÇ:A. Inversement, si y a(R), acHy, c'est-à-dire

y e Fa. Donc Fa A. On en déduit facilement que R 6H. La
démonstration est symétrique pour une équivalence régulière à gauche.

La condition est suffisante. Soit U l'équivalence universelle. Comme
U est régulière à droite, il existe un complexe H de D tel que l'on ait
U 6H. Soit a un élément quelconque de D. Si xeHa, aeFxi
Fx étant le composé à droite de H par x, et Fx Fy pour tout y € D.
D'où aeFy et yeHa, c'est-à-dire DÇzHaÇzDa. Par conséquent,
D Da pour tout a e D. Comme U est aussi régulière à gauche, on
montre de même que aD D pour tout a e D. Le demi-groupe D est
donc un groupe.

Théorème 2. Pour qu'un demi-groupe D soit un groupe, il faut et il suffit
que pour toute équivalence régulière à droite R± et pour toute équivalence
régulière à gauche R2, il existe une classe Hx mod Rx et une classe H2 mod R2
telles que Von ait Rx cpHi et R2 #2ç>.

La condition est nécessaire. En effet, si Hx et H2 sont respectivement
les classes mod Rx et mod R2 contenant l'élément neutre du groupe, on
a Rx <pHx et R2 B%<p.

Pour montrer que la condition est suffisante, considérons l'équivalence
universelle U qui est régulière. Comme D est la seule classe mod U, on
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a donc Dx Dy, xD ?/2), quels que soient x, y e D. Par conséquent

Dx D2 xD, et #D2 D2 D2x. En particulier,
zD2 D2 D2z pour tout z e D2 et le demi-groupe D2 est un groupe.
L'égalité E étant une équivalence régulière, il existe un élément a tel que
l'on ait E tpa. Si D ~- D2 ^ 0 et si p e D — D2, on a, en désignant
par e l'élément neutre de Z>2, ap ape. D'où

p pe(<pa)

c'est-à-dire p pe, ce qui est impossible. Par conséquent D D2 et
D est un groupe.

Théorème 3* Pour qu'un demi-groupe D soit un homogroupe1), il faut et

il suffit que ses équivalences régulières à droite et simplifiables à droite et que
ses équivalences régulières à gauche et simplifiables à gauche soient respectivement

des équivalences (pH et Ky>.

La condition est nécessaire. Soit dans D une équivalence R régulière à

droite et simplifiable à droite. Si e est l'élément neutre du nodule N de D,
on sait que e appartient au centre de D et que N De eD. Soit M
la classe modJR contenant l'élément e, et posons H Me. Si R*
désigne la trace de l'équivalence R sur N, H est la classe mod i2* dans
N qui contient l'élément neutre e de N. Comme R est régulière à droite,
la relation a b(R) entraîne ae be(R) avec ae € N, be € N.

Par conséquent, ae be(R*) et Hae Hbe, Ha — Hb. Donc
RÇ:(pH. Inversement, si Ha Hb, on a Hae Hbe et ae 6e(jR*).
D'où ae be(R) et aE 6(2?) puisque R est simplifiable à droite. Il
en résulte l'égalité R (pH. On montre de même que si S est une
équivalence régulière à gauche et simplifiable à gauche, il existe un complexe
K tel que S K<p.

La condition est suffisante. L'équivalence universelle U étant régulière
et simplifiable, il existe des complexes H et K tels que l'on ait U cpR

— ^9?. On a alors

quels que soient x,y e D. Par conséquent Hx HD et xif DiT.
Il en résulte que tout élément de fi2) est net à gauche et tout élément de

DK est net à droite. Donc tout élément de HK est net et D est un
homogroupe.

x) Un homogroupe T est un demi-groupe possédant au moins un élément net r, c'est-
à-dire tel que pour tout x ç T, il existe xf> x" e T vérifiant xx' — x"x r. L'ensemble
des éléments nets de T est un groupe N appelé le nodule de T (cf. [2], [8]).
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Corollaire. Pour qu'un semi-groupe2) soit un groupe, il faut et il suffit
que ses équivalences régulières à droite et simplifiables à droite et que ses

équivalences régulières à gauche et simplifiables à gauche soient respectivement

des équivalences <pH et K(p.
En effet, tout semi-groupe, qui est un homogroupe, est un groupe.
Théorème 4. Pour qu'un semi-groupe S soit un groupe, il faut et il suffit

que pour toute équivalence régulière à droite Rx et pour toute équivalence
régulière à gauche R2, il existe une classe Hx mod Rx et une classe H2 mod E2,
telles que Von ait Rx RHi et R2 HiR, RHi et HzR désignant respectivement

Véquivalence principale à droite associée à H1 et l'équivalence principale
à gauche associée à H2.

La condition est nécessaire, d'après P. Dubreil ([5], p. 22). Elle est
aussi suffisante. En effet, si E est l'égalité, il existe un élément a de 8 tel
que E Ra, où Ra désigne l'équivalence principale à droite associée au
complexe formé de l'élément a. Si a n'est pas net à droite, son résidu à

droite Wa (cf. [4], [5]) est une classe modi?a. Mais Ra étant l'égalité,
Wa ne contient qu'un élément w qui est permis à droite, puisque Wa est

un idéal à droite. Mais 8, étant un semi-groupe, ne peut avoir d'élément
permis à droite. Donc a est net à droite. On montre de même que S
contient un élément net à gauche b. Par conséquent, le semi-groupe S,
contenant un élément net ab, est un homogroupe, et donc un groupe.

Désignons par A l'ensemble des demi-groupes D ayant la propriété
suivante (77) : Pour toute équivalence régulière à droite Rx et toute
équivalence régulière à gauche R2 de D, on a Rt RH (équivalence principale

à droite) pour toute classe H mod Rx, et R2 KR (équivalence
principale à gauche) pour toute classe K mod R2.

Théorème 5. L'ensemble A est formé du pseudo-groupe^) d'ordre 2 et des

groupes.
On sait, d'après P. Dubreil ([4], [5]), que les groupes ont la propriété

(77). Soit alors D un demi-groupe ayant la propriété (77), mais n'étant pas
un groupe. Le demi-groupe D contient alors au moins un élément non net
d'un côté. Soit x un tel élément que nous supposons non net à droite par
exemple. (En supposant que D contient un élément non net à gauche, on
arrive au même résultat.) Si E est l'égalité, on a E Rx. Soit Wx le
résidu à droite de l'élément x. Comme Wx est une classe mod Rx — E,
Wx se réduit à un seul élément v qui est permis à droite. Soit y e D,

2) Un semi-groupe est un demi-groupe vérifiant la règle de simplification à droite et à

gauche.
8) Un pseudo-groupe est un demi-groupe D réunion d'un groupe D* et d'un élément

permis w:wx xw w pour tout xe D (cf. [4]).
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y =fi v. L'élément y n'est pas net à droite puisque vD v. D'autre
part, si Wy est le résidu à droite de «/, on a Wy Wx v. En effet,
comme E Ryi Wy ne contient qu'un élément w. Si w ^v, il existe
#' tel que w' y v, ce qui est impossible. Posons Dx D — v.
Pour tout couple d'éléments aXybxe Dx, il existe c tel que axc — bx.

Si tous les éléments de D sont supposés nets à gauche, l'ensemble Dx
est un demi-groupe. En effet, si axbx v, il existe t tel que tv ax.
D'où

axbx ^ftj^ £?; ax v

ce qui est impossible. D'autre part, Dx ne contient qu'un élément, car de

E VR v '. ax v '. bx v
suit

% bx(vR) c'est-à-dire ax bx

La table de multiplication du demi-groupe est alors la suivante

h v On voit facilement que l'on a U ayR, U étant l'équi¬
valence universelle. Mais par hypothèse, on a E aiR,

ll ai ce qui est contradictoire. Par conséquent, D contient au
r? v moins un élément z non net à gauche.

Si ZW est le résidu à gauche de l'élément z, ZW se réduit également à

un seul élément w, puisque E ZR. Comme w est permis à gauche et
v permis à droite, on a v w. Par conséquent, Dx est tel que pour tout
ax,bx€ D, il existe c', d' e D vérifiant axd e"^ 6X. D'où

c^D Dax D pour tout ax e Dx

L'ensemble Dx est un demi-groupe, car si a1b1 v, on a axbxD %!)
— D vD v, ce qui est impossible. D'autre part, 2^ se réduit à un
seul élément. En effet, de

E Rv v .' a± v .' b± v

suit ax 6X. Il en résulte que D est le pseudo-groupe d'ordre 2. On
vérifie aisément que ce pseudo-groupe a la propriété (77).

2. Demi-groupes g-simples

Soient D un demi-groupe et P le demi-groupe des parties de D (cf. [7]).
On sait qu'un idéal à droite de D est une partie M de D (M e P)
vérifiant la condition MD^M. En particulier, D lui-même et la partie
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vide 0 sont des idéaux à droite de D (car, dans P, on a 0D 0). Un
idéal à droite M de D est dit véritable, si Ton a M =£ 0 et M ^ D.

Bans l'ensemble P* des idéaux à droite de D, considérons la relation
d'équivalence J définie en posant

M M'(J) *=± M r, D2 M' ^ D*

Toute classe mod J contient un idéal à droite maximum, appelé idéal à
droite large. Les idéaux à droite larges ont été introduits et étudiés par
P. Dubreil dans [7].

Un demi-groupe D sera dit ,,quadratiquement" simple à droite ou
q-simple à droite, si le demi-groupe D2 est simple à droite, c'est-à-dire si
D2 est un demi-groupe ne contenant pas d'idéaux à droite véritables.

Théorème 6. Pour qu'un demi-groupe D soit q-simple à droite, il faut et

il suffit que tout idéal à droite M ^ 0 vérifie la relation D2QM.
La condition est évidemment nécessaire. Elle est aussi suffisante, car

si N ^ 0 est un idéal à droite de D2, on a ND2<^N. Mais ND2 est un
idéal à droite de D et l'on a donc

N^D2^ ND2 ç N
d'où N D2 et D2 est simple à droite.

Théorème 7. Pour qu'un demi-groupe D soit q-simple à droite, il faut et

il suffit qu'il soit sans idéaux à droite larges véritables.
Si D D2, tout idéal à droite de D est large et le théorème est trivial.

Considérons le cas où D2czD. La condition est nécessaire. Soit M un idéal
à droite large de D, M ^ 0. D'après le théorème 6, on a D2Ç^M. Si

MaD et si x c D — M, xD D2£M. Donc x e (M \ D) ^ (D - D2).
Comme M est large, on a d'après ([7], théorème 8)

(M\D) r, (D — D2)£M
et donc x € M, ce qui est contradictoire. Par conséquent, M D et
D ne contient pas d'idéal à droite large véritable. La condition est
suffisante. Soit N un idéal à droite de D, N ^ 0. Il faut montrer, d'après le
théorème 6, que l'on a D2QN. Supposons que D2Q^N et posons

^2=^ o D2. Alors N2aD2. Soit X l'ensemble des éléments x e D - D2
tels que xDÇ:N2. Comme N2 est un idéal à droite, l'ensemble
N' N2^> X est un idéal à droite, avec N1 aD. Mais

Donc N1 est d'après [7] un idéal à droite large véritable, contre l'hypothèse.
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Théorème 8. Pour qu'un demi-groupe D soit q-simple à droite, il faut et

il suffit qu'il soit sans idéaux à droite fermés véritables 4).

La condition est nécessaire. Si D D2, c'est évident. Soit donc
D2aD et soit N un idéal à droite fermé de D, N =£ 0. D'après le
théorème 5 de [7], N est le résidu à droite de H — D — ND. Comme
ND D2, on a H D — D2. Le résidu à droite de D — D2 étant D,
on en déduit N D.

La condition est suffisante. Si D D2, tous les éléments de D sont
nets à droite et D est simple à droite. En effet, si a est un élément non
net à droite de D, son résidu à droite Wa n'est pas vide et on a WaaD,
car a $ Wa9 puisque a axa2. Mais Wa est un idéal à droite fermé
véritable, contre l'hypothèse. Si B2cD et si N est un idéal à droite de

D, N té 0, on a D2Ç:N et D est g-simple à droite (théorème 6). En effet,
si D2%N, N2 N ^ D2 est un idéal à droite et on a N2D<^N2aD2.
Le résidu à droite WD_N2 est non vide et différent de D. Donc WD_Nt est

un idéal à droite fermé véritable, contre l'hypothèse.

Théorème 9. Tout demi-groupe D, vérifiant la relation xD x2D
pour tout x e D, est réunion de demi-groupes q-simples à droite disjoints 5).

Soit R l'équivalence définie par

Comme xD — x2D, toute classe S mod R est un sous-demi-groupe de

D. Soient x € S, yx e S, y2e S. Alors y yxy2 e S2. De xyD yxD,
on déduit l'existence d'un élément d € D tel que xyd — yxy2 y.
Posons a yd et montrons que a e S. De a yd suit aD ydDÇHyD.
La relation dD d2D entraîne pour chaque t e D l'existence d'un
élément z tel que dt d2z. D'où

yt — xydt xyd2z ydz az

Donc yD £ aD et aD yD. Par conséquent a y (R) et a e S.
Le demi-groupe #2 est simple à droite. En effet, si v e S2, v2 e S2 et il

existe a e 8 tel que v2a y. D'où

wa y avec va e S2

Considérons maintenant l'ensemble 2? des idéaux bilatères du demi-

groupe D. L'ensemble B est évidemment contenu dans l'ensemble P*

4) Les idéaux à droite fermés ont été introduits par P. Dubreil dans [7].
5) Pour l'étude des demi-groupes réunions de demi-groupes simples, voir R. Croisot [3]

et A. H Clifford [1].
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des idéaux à droite de D. Nous pouvons définir l'équivalence J dans
l'ensemble B au lieu de l'ensemble P*. §i N et Nf sont deux idéaux (bilatères),
nous aurons alors

Toute classe mod J contient un idéal maximum qui sera appelé un idéal
quasi-large.

Posons X (D - D*)r,(N\D)rs(N / D).
Pour qu'un idéal N soit quasi-large, il faut et il suffit que Von ait X£ N.

La condition est nécessaire. Si x € X, on a

Si 2^2 .^^ D2, l'ensemble M N2^ X est un idéal de D et l'on a

M N(J). Donc M^N et #€JV.
La condition est suffisante. Il faut montrer que la relation N N' {J)

entraîne Nr^N. On a

Si xeNf r, (D — D2), alors

d'où #€# et tf'CJV.
Un demi-groupe D sera dit g-simple, si le demi-groupe D2 est simple,

c'est-à-dire si D2 ne contient pas d'idéaux véritables.

Théorème 10, Pour qu'un demi-groupe D soit q-simple, il faut et il suffit
que tout idéal M ^ 0 vérifie la relation D2Ç^M.

La condition est évidemment nécessaire. Elle est aussi suffisante. Si

N ^ 0 est un idéal de D2, D2ND2 est un idéal de D et l'on a

d'où N D2 et D2 est simple.

Théorème 11. Pour qu'un demi-groupe D soit q-simple, il faut et il
suffit qu'il soit sans idéaux quasi-larges véritables.

Comme pour le théorème 7, il suffit de considérer le cas où D2aD.
La condition est nécessaire. Soit M un idéal quasi-large de D, M ^ 0.

D'après le théorème 10, on a D2ÇM. Si McD et si xeD — M,
Dx£D2^M. Donc

x e {M \ D) r, (M .• D) r, (D — D2)
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Comme M est quasi-large, on a x € M, ce qui est contradictoire. Par
conséquent M D.

La condition est suffisante. Soit N un idéal de D, N ^ 0. D'après le
théorème 10, il faut montrer que D2^N. Supposons que D2$iV. Si
N2 N ^ D2, alors N2c:D. Soit X l'ensemble des éléments x € D — D2
tels que xDÇ^N2, DxÇ=N2. Comme N2 est un idéal, l'ensemble
Nf N2^ X est un idéal de D, avec N'aD. Mais

(#' \ D) - (Nf .• D)r,{D -
Donc iV7 est un idéal quasi-large véritable, contre l'hypothèse.

Théorème 12. Tout demi-groupe D, vérifiant la relation DxD Dx2D
pour tout x c D, es£ réunion de demi-groupes S{ disjoints, tels que les demi-

groupes 8* soient des demi-groupes simples. De plus l'équivalence R
correspondant à cette partition est régulière et le demi-groupe-quotient DjR est

un demi-treillis.
Soient a, b, c des éléments quelconques de D. Nous avons

(bc)ab(ca) (bca)2eDabD
d'où

D(bca)2D DbcaD£D2abD2<^DabD
et

DbDDaD^DabD
Mais

DabD DababD^DbaD DbabaD^DbDDaD
Donc

DabD DbDDaD (1)
D'autre part, de

DabD DababD^DbaD DbaD DbabaD^DabD
suit

Da&D DbaD (2)

Soit jR l'équivalence définie par

^ y(iî) +=± DxD DyD
D'après (1), on a

D#2/D DyDDxD DxD DxD Dx2D Da;i)

c'est-à-dire

xy x(R)

Par conséquent, toute classe aS^ modiî est un demi-groupe. L'équi-
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valence R est régulière d'après (1) et le demi-groupe-quotient DjR est un
demi-treillis d'après (2) et du fait que DxD Dx2D.

Le demi-groupe 8^ est simple. Soit x c 8t et posons DxD H. On
a HxH H, pour tout xeSt. En effet, HxH^H. D'autre part,
H DxD Dx*D<^DxDxDxD HxH. Si v et weS?, DvD

DwD H et vcH, w e H. Il existe heH, Je e H tels que l'on ait
hvk w. On en déduit DwD DhvkD^DhD. Mais h awb.
Donc DhD DawbD^DwD. D'où

DhD DwD et h w{R).
On montre de même que &=w(i2). Donc heSt, keSt. Comme
v3 € /S^, il existe hf € St, k' e 8t tels que l'on ait

h!vzk' w d'où h'V'V'Vk' w

avec hrv € S^, vk1 e$f. Le demi-groupe $t est par conséquent simple.
La question se pose de savoir si les demi-groupes St de la décomposition

donnée par le théorème 12 ne sont pas des demi-groupes g-simples,
autrement dit de savoir si les demi-groupes #J ne sont pas simples.
L'exemple suivant montre que ce n'est pas le cas en général. Considérons
le demi-groupe D défini par la table de multiplication

On a DxD a Dx2D pour tout x e D. Par
conséquent D 8t est la seule classe de
l'équivalence R. Le demi-groupe 8^ a est un groupe,
donc un demi-groupe simple. Par contre, le demi-

groupe Si {a,b} n'est pas simple, puisque a est

un idéal véritable de £f.

3. Décomposition d'un demi-groupe

Un complexe H d'un demi-groupe D est consistant à gauche, si la relation

ab e H entraîne a e H. Un complexe K est réversible à gauche si

kK rs k1K ^ 0 pour tout couple d'éléments k, k' e K (cf. [5]). A tout
complexe T de D, on peut associer l'équivalence réversible généralisée à

gauche TS (cf. [4], [6]) définie de la manière suivante. On a

a ~ar{TS)

si et seulement s'il existe un nombre fini d'éléments ax,..., an vérifiant6)

aT\ axT |...| anT \ a'T

6) La notation xT \ yT signifie xT rsyT ^ 0.
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Théorème 13. Tout demi-groupe D est réunion d'idéaux à droite consistants

à gauche disjoints, qui sont ses idéaux à droite consistants à gauche
minimaux 7). De plus, l'équivalence associée à cette partition est régulière et
le demi-groupe-quotient correspondant est un demi-groupe dont tous les
éléments sont permis à droite.

Soit jyE l'équivalence réversible généralisée à gauche associée à D et
soit A une classe mod^Z1. On a pour tout x e D et tout a e A

axD 9 aD d'où a axipZ)

ce qui montre que A est un idéal à droite de D.
Soit rs € A. De rsD^rD suit rs r(DE) et r e A. L'idéal à

droite A est donc consistant à gauche.
La classe A est un idéal à droite consistant à gauche minimal de D.

Supposons en effet qu'il existe un idéal à droite consistant à gauche non
vide B avec BaA, et soient beB, ceA — B. On a, puisque

bD\b1D\...\bmD\cD

Les propriétés de jB entraînent alors successivement

ce qui est contradictoire.
D'autre part, tout idéal à droite consistant à gauche minimal M de D

est une classe mod z>27. En effet, si axe M, la classe Mx mod jyE contenant

ax étant un idéal à droite consistant à gauche, l'intersection
V M r\ Mx est aussi un idéal à droite consistant à gauche. D'où, puisque

M et M1 sont minimaux, F M Mx.
La dernière partie du théorème est immédiate.

Théorème 14. Tout demi-groupe D, tel que les relations aD\bD et
bD | cD entraînent aD \cD, est réunion d'idéaux à droite disjoints,
consistants à gauche et réversibles à gauche. De plus, ces idéaux sont les

sous-demi-groupes réversibles à gauche maximaux de D.
D'après le théorème 13, D est réunion d'idéaux à droite consistants à

gauche disjoints qui sont les classes de l'équivalence pZ. Soit A une telle
classe et montrons que aA \ a'A pour tout couple d'éléments a, a' € A,
c'est-à-dire que A est réversible à gauche.

7) Par idéal à droite consistant à gauche minimal M de D, nous entendons un idéal à
droite consistant à gauche non vide M tel que, si N est un idéal à droite consistant à
gauche non vide de D, la relation NÇ1M entraîne N M.

221



Comme A est un idéal à droite, on a aa a'a(DE). Il existe donc une
relation de la forme

aaD | axD |... | anD \ a'aD

ce qui entraîne d'après l'hypothèse du théorème aaD \ a'aD
Mais aDÇ:A. Donc aA\a'A.

Si B est un sous-demi-groupe de D réversible à gauche et si b e B,
b'cB, on a bB\b'B et par conséquent bD\b'D, c'est-à-dire
b =b' (jyZ), ce qui montre que les classes mod^ sont les sous-demi-

groupes réversibles à gauche maximaux de D.
Un demi-groupe A est dit quasi-réversible à gauche si pour tout couple

d'éléments a e A, a' € A, il existe un nombre fini d'éléments

a1,a2,..., an
de A tels que l'on ait

aA | axA \ a2A | | anA | a' A

Remarque. Le théorème 13 et sa démonstration montrent qu'un demi-

groupe est quasi-réversible à gauche si et seulement s'il ne contient pas d'idéal
à droite consistant à gauche véritable.

Théorème 15. Tout idéal à droite consistant à gauche minimal et globalement

idempotent8) M d'un demi-groupe D est un demi-groupe quasi-réversible

à gauche.
Soient m, m1 e M. Les éléments mm et m'm appartiennent aussi à M.

D'après le théorème 13, M est une classe mod^. On a donc un nombre
fini d'éléments x1,..., xn tels que

mmD | xxD \ | xnD \ m'mD

Les éléments x1,..., xn appartiennent à M. Comme M M2, on a

donc

avec ax*M, bx € M,..., an€ M, bn*M. De

mDÇ:M, btDÇ:M,.
suit alors

mM \axM \...\anM \m'M
Théorème 16. Tout demi-groupe fini F est réunion de demi-groupes quasi-

réversibles à gauche disjoints.

8) C'est-à-dire tel que Ton ait M M%.
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En effet, si F n'est pas quasi-réversible à gauche, il est, d'après le
théorème 13 et la remarque précédente, réunion de plusieurs demi-

groupes disjoints Ft. Si l'un des demi-groupes Ft n'est pas quasi-réversible

à gauche, il est de même réunion de plusieurs demi-groupes
disjoints et ainsi de suite. Comme F est fini, on arrivera finalement à des

demi-groupes quasi-réversibles à gauche.
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