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Determinanten
mit iiberwiegender Hauptdiagonale
und die absolute Konvergenz von linearen
Iterationsprozessen”)

von ALEXANDER OsSTROWSKI, Basel

(Paul Finsler zum sechzigsten Geburtstag)

Einleitung

1. Sei A=(a,,) eine quadratische Matrix n-ter Ordnung. Das zu dieser
Matrix gehdrende allgemeine lineare Gleichungssystem kann dann in der
Form geschrieben werden

AEIZ"?” Ez(xls"-:xn): 77:(?!1,---,Z/n), (1)

wo & der gesuchte und 7 der gegebene Vektor ist. Die Striche bei & und %
deuten an, daf & und 7 durch die entsprechenden Spaltenvektoren zu
ersetzen sind.

Wird (1) durch Iteration gelost, so wird eine unendliche Vektorenfolge

Ec(f?, .., ad)) (2)

aufgestellt, die — im Konvergenzfalle — gegen einen Losungsvektor & von
(1) konvergiert. Durch Einsetzen von &, in (1) ergeben sich die Residual-
vektoren

A& —n' =0,  e=0,...,1), (3)
n

i) = Zlaw,xf,"’ — Yy w=1,...,n), (4)
y=

deren , Kleinheit* den Grad der Anndherung an die Losung charakteri-
siert,

*) Diese Arbeit wurde (zum Teil) ausgefithrt im Rahmen eines Forschungsauftrages
des National Bureau of Standards an die American University, Washington D. C.
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2. Im folgenden beschiftigen wir uns zuerst mit der Iteration in
Einzelschritten. Wir nehmen von nun an ein fiir allemal an, daf} fiir alle »

A, =a,#0 (=1,...,n) (5)

gilt. Unter der Einzelschrittiteration verstehen wir eine solche sukzessive
Erzeugung der Vektorenfolge (2), bei der beim Ubergang von &, zu
&,.41 nur eine der Komponenten von &, iiberhaupt gedndert wird, im all-
gemeinen so, dal} die entsprechende Komponente des Residualvektors
zu Null gemacht wird. Ist etwa der Index dieser Komponente &, — wir

nennen N, den x-ten Leitindex —, so wird also 9, = 2" — 2P so
gewihlt, da 74D = 0 wird. Daraus folgt
R
NS N ¢ UL "
61{ - xNK xNK - ANK ’ (6)
R, =19 . (7)

Die einzelnen Komponenten von g, .., errechnen sich nach (6), (7) aus den

Relationen

R,
PO — 00 A =1m) (8)
K

Allerdings bedeutet die Festsetzung (7) in (6) und (8) eine Idealisierung
des Rechenschemas, da man bei der Benutzung der Formeln (6) und (8)
sowieso abrunden wird. Schon deshalb ist es von Interesse, eine Modifi-
kation des Ansatzes (7) ins Auge zu fassen, bei der R, durch die Formel
gegeben wird

R.=q/% , 0<q.<2, (9)

wo g, zwischen 0 und 2 liegt, und dann natiirlich #§*? nicht mehr

notwendig verschwindet. Ist q, = 1, so sprechen wir von unvollstindiger
Relazation, fir g¢,<1 von Unterrelazation (underrelaxation), fiir
q.>1 von Uberrelaxation (overrelaxation). Doch wird der Fall der un-
vollstdndigen Relaxation in dieser Arbeit wohl zum erstenmal systema-
tisch untersucht, so dafl unsere Literaturangaben sich ausschliefilich auf
den Ansatz (7) beziehen.

Die zeitlich erste systematische Veroffentlichung iiber eine Iterations-
verfahren zur Auflosung linearer Gleichungssysteme erfolgte wohl 1845
durch Jacobi [11]%), nachdem ein Jahr vorher Argelander [2] iiber eine

1) Die Zahlen in eckigen Klammern weisen auf die unter den gleichen Nummern im
Literaturverzeichnis am Ende der Arbeit aufgefiihrten Abhandlungen hin.
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Anwendung des gleichen Verfahrens in einem speziellen Fall berichtet
und Gerling noch frither in verschiedenen Werken die GauBschen An-
sitze zur Relaxationsmethode ausfiihrlich erldutert hatte.

Das Jacobische Verfahren wird heute auch als die Iteration in Gesamt-
schritten bezeichnet. Es besteht darin, daf3 aus den Komponenten (2) des
Néherungsvektors &, simtliche Komponenten von &, ., durch die Formeln

1 n

(k+1) __ (k) __
xy. — Z’; (v=1ap.v Ty yp.) (10)
vip

bestimmt werden. Die Konvergenzbedingung fiir dieses Verfahren er-

gibt sich nach von Mises und Geiringer [14] aus der Betrachtung der
Gleichung

Aay, g - - Oy,

Goq Ay ... @y,
=0, (11)

anl an‘z ;"ann

wo die Determinante links aus derjenigen von 4 durch Multiplikation
der Elemente der Hauptdiagonale mit A hervorgeht.

Fiir die Konvergenz des Jacobischen Verfahrens (10) bei jeder Wahl
von &, und % ist notwendig und hinreichend, dafl der absolute Betrag
o(A4) der absolut groiten Wurzel von (11) kleiner als 1 ist. Zugleich kon-
vergieren dann die Komponentenfolgen von &, wie die Abschnitte einer
Potenzreihe mit dem Konvergenzradius o(4).

3. Es kommt bei der Einzelschrittiteration in erster Linie auf die Wahl
der Leitindizes N,, oder, wie wir sagen werden, auf die Steuerung des
Verfahrens an. Fiir diese Steuerung kommen im wesentlichen folgende
drei Moglichkeiten in Frage :

a) Man wéhlt &, unter Beriicksichtigung der Werte der «-ten Resi-
duen, das heiit der Komponenten von p,. Dann spricht man von einer
Relaxationsmethode im engeren Sinn.

b) Man kann N, periodisch alle Werte von 1 bis » in dieser Reihenfolge
unendlich oft durchlaufen lassen. Wir sprechen dann von zyklischer
Steuerung und vom zyklischen Erinzelschrittverfahren?).

¢) Man kann von vornherein die Folge der Werte N, beliebig vor-

?) Eine interessante Abwandlung dieses Verfahrens hat kiirzlich A. C. Aitken [17] an-
gegeben.
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schreiben, indessen so, dafl dabei jeder Index unendlich oft als Leitindex
auftritt. In diesem Fall werden wir von freier Steuerung sprechen.

Anscheinend war Gaul} der erste, der das Iterationsverfahren in Einzel-
schritten anzuwenden pflegte, woriiber wir aus seiner Korrespondenz [7],
aus einem Bericht von Dedekind [5] und vor allem aus Veroffentlichun-
gen von Gerling [10], [10a], [10b] unterrichtet sind. Gaull benutzte die
Relaxationssteuerung, und zwar wihlte er als Leitindex den Index, der
den groBten absoluten Betrag von 4, in (6) liefert. Uber ein Jahrhundert
spiter wurde eine analoge Relaxationsvorschrift durch Southwell [28]
entdeckt, der N, so wihlt, dafl | rg’,")c | maximal ist. Von Southwell riihrt
auch der Name Relazation her.

Die ersten eingehenden Veroffentlichungen iiber das Einzelschritt-
verfahren fiir Matrizen von definiten quadratischen Formen rithren von
C. L. Gerling [10], C. A. Schott (1855) [26], Seidel (1874) [27] und
P. A. Nekrassoff (1884) [15] her.

Dabei ist die von Seidel vorgeschlagene Relaxationsvorschrift aller-
dings eine andere als diejenigen von GauBl und Southwell, da Seidel die-
jenige Komponente des Residualvektors zu Null zu machen sucht, bei
der dies die stdrkste Verkleinerung eines gewissen quadratischen Aus-
drucks bewirkt.

Vor allem aber hat Seidel einen Beweis fiir die Konvergenz seines Ver-
fahrens bei jeder Wahl von &, und # fiir definite symmetrische Matrizen
gegeben, den man als durchaus korrekt ansehen kann, wenn auch die
SchluBliiberlegungen von Seidel etwas vage ausklingen.

4. Das zyklische Einzelschrittverfahren ist anscheinend zuerst in einer
Abhandlung von Nekrassoff diskutiert worden (1884) [15], und zwar fiir
definite quadratische Formen, und sodann 1892 [13] zusammen mit
Mehmke im allgemeinsten Falle.

Trotzdem wird das zyklische Einzelschrittverfahren heute ziemlich
allgemein als das ,,Seidelsche Iterationsverfahren“ bezeichnet, wahrend
Seidel in seiner Abhandlung ausdriicklich die zyklische Steuerung nicht
empfiehlt, vielleicht, weil sein Konvergenzbeweis nur die Relaxations-
steuerung voraussetzt.

Im Falle des zyklischen Einzelschrittverfahrens haben zuerst 1929
von Mises und Geiringer [14] fir definite quadratische Formen einen
Konvergenzbeweis gegeben. Allerdings ist ihre Fassung dieses Beweises
offensichtlich ergénzungsbediirftig. Obgleich diese Fassung wiederholt
reproduziert wurde, ist sie wohl erst bei Schmeidler [24] mit geniigender
Strenge durchgefiihrt worden.
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5. Einen auf ganz anderer Grundlage beruhenden Beweis fiir die Kon-
vergenz des zyklischen Einzelschrittverfahrens hat Reich [23] gegeben
und zugleich bewiesen, daf} fiir eine symmetrische, aber nicht definite
Matrix das Verfahren (bei geeigneter Wahl des Ausgangsvektors) diver-
giert. Reich benutzt das folgende, zuerst von Nekrassoff [15], [16] ge-
gebene und seitdem wiederholt, zum Beispiel von Cesari {3] und R. J.
Schmidt [25] wiederentdeckte Kriterium fiir die Konvergenz des zykli-
schen Einzelschrittverfahrens bei jeder Wahl von &; und 7.

Es moge die Matrix 4 in der Form dargestellt werden :

A=L+D+ R, (12)

wo in L alle Elemente auf der Hauptdiagonale und rechts davon ver-
schwinden, in R die Elemente der Hauptdiagonale und links davon ver-
schwinden, wihrend D eine Diagonalmatrix ist, deren Hauptdiagonale
mit derjenigen von A iibereinstimmt. Dann lautet das Nekrassoffsche
Konvergenzkriterium fiir die zyklische Einzelschrittiteration dahin, dafl
die absoluten Betrige aller Wurzeln der Gleichung

| (L+ D)A+ R[=0 (13)

kleiner als 1 sind. Die Gleichung (13) ist offenbar die Fundamental-
gleichung der Matrix — (L 4+ D)~'R. Der absolute Betrag der absolut
groBten Wurzel von (13) kann dann als das Maf} fiir die Konvergenz des
zyklischen Einzelschrittverfahrens benutzt werden. Wir wollen diesen

absoluten Betrag im folgenden als die Nekrassoff-Zahl N, von A be-
zeichnen3),

6. Bereits von Gaul} (siehe Gerling [10], p. 392) ist eine Verallgemeine-
rung der Einzelschrittiteration vorgeschlagen worden, bei der beim
Ubergang von &, zu &, ., nicht nur eine Komponente, sondern eine Gruppe
von Komponenten von &, abgedndert wird. Sind die Indizes dieser Kom-
ponenten etwa m,, ..., m,, so werden wir sie als akfive und alle iibri-
gen Indizes als passive Indizes bezeichnen. Im folgenden werden « und y
stets durch alle aktiven und B durch alle passiven Indizes beim «-ten
Schritt laufen. Es wird nun festgesetzt :

gt e g0 | (14)

3) Bei der Diskussion dieser GroBe ist die folgende von Nekrassoff [15] gegebene Rela-
tion sehr niitzlich:

a12 a23 ... an 1
Mdg. . Ay = »
all ) ann

1
WO Ay, Ag,...s Ag—1 die n— 1 Wurzeln von T | (L + D)A + R| sind.
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wihrend die den aktiven Indizes entsprechenden Komponenten von
&,.+1 aus den entsprechenden Teilgleichungen von (1) bestimmt werden.
Setzt man allgemein

gt g0 — gto (15)

50 bestimmt man die 6 aus den g Gleichungen

4,80 + Za,, o = — o, (16)
Y+
sofern sie auflosbar sind.

Derartige Iterationen werden nach dem Vorschlag von v. Mises und
Geiringer als Gruppeniterationen bezeichnet.

Um auch hier der Moglichkeit der unvollstindigen Relaxation Rech-
nung zu tragen, verallgemeinern wir die obige Vorschrift dahin, daf} die
2yt und 6% sich immer noch aus den Gleichungen (14) und (16)
bestimmen, wihrend (15) durch

oy = a2 + 4 6 (17)

ersetzt wird. Die Konstanten ¢!® sind hier positive Zahlen, die auf jeden
Fall den Bedingungen

0<q®<2 (18)
geniigen sollen.

Wird die allgemeine Gruppeniteration betrachtet, so besteht das
Problem der Steuerung darin, bei jedem Schritt g sowie die aktiven In-
dizes « zu wihlen. Wird diese Wahl nur durch die Bedingung einge-
schrinkt, dafl jeder Index unendlich oft aktiv ist, so sprechen wir auch
hier von ,freier Steuerung®.

7. Wir werden im folgenden eines der charakterisierten Iterationsver-
fahren als absolut konvergent fiir die Matrix A bezeichnen, wenn es bei
fester Wahl der Leitindizes bzw. der aktiven Indizes und der Konstanten
7., ¢ fiir eine beliebige Wahl des Anfangsvektors &, und des kon-
stanten Vektors # konvergiert und konvergent bleibt, wenn die Elemente
von A mat beliebigen Faktoren vom absoluten Betrag 1 multipliziert werden.

Offenbar wird die absolute Konvergenz eines Iterationsverfahrens durch
solche Kriterien sichergestellt, in denen die Elemente von 4 nur mit
ihren absoluten Betrigen auftreten, wihrend zum Beispiel die Bedingung
der Definitheit der als symmetrisch vorausgesetzten Matrix 4 fiir » > 2
diesen Charakter nicht hat.

In der Tat sind fiir die Konvergenz des zyklischen Einzelschrittver-
fahrens mehrere Kriterien aufgestellt worden, in denen nur die |a,, |
vorkommen. Hierher gehoren zum Beispiel :
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1. Das Zeilensummenkriterium. Das zyklische Einzelschrittverfahren
konvergiert, wenn

2la, |<|a,l (w=1,...,m) (19)

yv=1
vl
gilt. (Nekrassoff [13], [16].)

2. Das Spaltensummenkriterium. Das zyklische Einzelschrittverfahren
konvergiert, wenn

2la,l|<la,] v=1,...,n) (20)
ILT:
gilt (Mehmke [12i [13]).

Beide Kriterien sind oft wiederentdeckt worden, vgl. zum Beispiel [4],
14], [9].

Im folgenden soll nun das allgemeinste Kriterium fiir die absolute
Konvergenz der zyklischen Einzelschrittiteration aufgestellt werden,
aus dem sich durch einfache Spezialisierungen sowohl (19) und (20), als
auch eine Reihe von weiteren analogen Kriterien ergeben. Zugleich wird
sich herausstellen, daf3 auch das allgemeinste Kriterium fiir die absolute
Konvergenz des Jacobischen Verfahrens (10) genau ebenso lautet.

Dies ist deshalb sehr bemerkenswert, weil im allgemeinen die Kon-
vergenzbereiche der Jacobischen und der Einzelschrittiteration sich nur
teilweise iiberdecken.

8. Wir setzen im folgenden

lap, | = oy, (w,v=1,...,n) (21)

und bezeichnen als die Begleitmatrixz zu A die Matrix

X11 — 19 e — X1n

— gy Kop Rk — Xap 929

AB == = ( )
- “’ﬂl - “n2 DRI (Xnn

Eine Matrix vom Typus (22) werden wir als eine eigentliche M-Matrix
oder M-Matrixz schlechthin bezeichnen, wenn ihre Diagonalelemente
positiv?), ihre Determinante positiv und die Determinanten aller ihrer

1) Die Positivitat der Diagonalelemente ist eine Folge der beiden anderen Definitions-
eigenschaften einer M-Matrix. Siehe den Satz IX in der Nr. 34 am Schlusse dieser Arbeit.

Andererseits 148t sich die Annahme, daf8 die Determinanten aller Hauptminoren nicht
negativ sind, in zwei Richtungen abschwéchen. Man kann diese Annahme durch eine der
beiden folgenden ersetzen :
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Hauptminoren aller Ordnungen nicht negativ sind. Eine Matrix, deren
Begleitmatrix eine M-Matrix ist, bezeichnen wir als eine eigentliche H-
Matrix oder H-Matrix schlechthin.

Wir haben verschiedene Eigenschaften der H- und M-Matrizen bereits
in einer fritheren Abhandlung [17] bewiesen. Im folgenden werden wir
weitere Tatsachen iiber diese Matrizen benotigen, vor allem den folgenden

Satz I. Notwendig und hinreichend, damit A eine H-Matrix ist, ist, daf
kein Diagonalelement von A verschwindet und daf die nicht-negative Matriz

X &
g 2 ,,,
X11 *11
0‘21 O “27&
“”v A . - -
Q Soma — E = “22 0622 (23)
R
“nl (xn2 0
Kpn Kpn

die Maximalwurzel o,<<1 hat.

Zur Erlauterung sei daran erinnert, dafl nach einem Satz von Perron
[21] eine nicht negative Matrix (das heil3t eine Matrix mit nicht negativen
Elementen) eine nicht negative Fundamentalwurzel besitzt, die nicht
kleiner ist als der absolute Betrag jeder anderen Fundamentalwurzel.
Diese Wurzel nennt man die Maximalwurzel der Matrix.

Die Maximalwurzel o, von (23) soll im folgenden als die Jacobische
Konstante der Matrix A bezeichnet werden, und zwar auch dann, wenn
o4 =1 ist.

9. Wir werden nun beweisen, daf} die Bedingung fiir die absolute Kon-
vergenz der zyklischen Einzelschrittiteration fiir die Matrix 4 darin be-

1. Die Hauptminoren aus einer Hauptrethe sind nicht negativ, wobei unter einer Haupt-
rethe von Hauptminoren eine solche Sequenz von n Hauptminoren der Ordnungen
1,2,3,...,n verstanden wird, daB jedes Element dieser Sequenz zugleich ein Haupt-
minor des néchstfolgenden Elementes ist.

I1. Sowohl die Diagonalelemente als auch alle Hauptminoren der Ordnungen n — 2,
n—4,... (also gleicher Paritdt mit n) sind nicht negativ.

DaB jede der Bedingungen I, II (verbunden mit der Positivitit von | Ap|) fiir eine
M -Matrix charakteristisch ist, hat kiirzlich Herr Kotelanski [11a] bewiesen, allerdings in
anderer Einkleidung und unter Beschrénkung auf den Fall, daB alle «,, (u # ») positiv
sind. Im Buche von Gantmacher [10c] findet sich die entsprechende Tatsache bewiesen
nur unter der Annahme oy, = 0, zugleich unter Vereinfachung des Beweises von
Kotelanski. Andererseits iibertrégt sich der auf II beziigliche Beweis von Kotelanski ohne

weiteres auch auf den Fall %y =0.
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steht, da3 4 eine H-Matrix ist. Wir beweisen allerdings wesentlich mehr.
Diese Bedingung ist bereits notwendig fiir die Konvergenz des Einzel-
schrittverfahrens fiir die Begleitmatrix 4p von 4 bei jeder Wahl von &,
und 7. Andererseits konvergiert, wenn diese Bedingung erfiillt ist, das
Einzelschrittverfahren und sogar allgemeiner dasjenige der Gruppen-
iteration fiir die Matrix A bes freier Steuerung ; man darf dabei sogar in
einem gewissen Umfang unvollstindige Relaxation zulassen. Genauer wer-
den wir die folgenden Sétze beweisen :

Satz II. Se:

myy — Mye — My,
— My My e — My,

M — (24)
— My, — My . . m,,

eine Matriz, bet der die Elemente der Hauptdiagonale positiv und die iibrigen
Elemente nicht positiv sind. Konvergiert das zyklische Einzelschrittverfahren
(mit dem Ansatz (7)) fir diese Matrix fiir jede Wahl des Ausgangsvektors
&1, 80 tst M eine M-Matrix®).

Satz III. Sei A etne H-Matrix und o, thre Jacobische Konstante. Set t,
etne beliebige positive Zahl <1 wund t, und t beliebige positive Zahlen mat

1 —oy

o< —F
2 <171 o,

o <t<1. (25)
Dann konvergiert die Einzelschrittiteration und allgemeiner die Gruppen-
iteration bei freter Steuerung fir jede Wahl von &; und n. Daber ist auch die
unvollstindige Relaxation mit den folgenden Einschrinkungen zugelassen :
Bei der Einzelschrittiteration miissen die Faktoren q, in (9) der Bedingung

h=¢. =141 (k=1,2,...) (26%)

gendigen. Bei der Gruppeniteration miissen die Faktoren ¢ in (17) der Be-
dingung genilgen

g — 1] =t , (26%)
baw., wenn nur Unterrelazation zugelassen wird, das heift alle ¢@ <1

bleiben, der Bedingung
1 =2¢%=¢. (263)

%) II héngt zusammen mit dem Satz VI von Stein und Rosenberg in [28a], und der
Beweis von II lieBe sich durch Benutzung dieses Satzes abkiirzen.

183



Setzt man
T, =2]rP |, (27)

o

wo die Summation iber alle beim x-ten Schritt aktiven Indizes x erstreckt
wird, so konverguert -
ZT, . (28)
K =1
In diesem Satze ist insbesondere ein Resultat von H. Geiringer [9],
p- 377, enthalten, bei dem die Folge der Leitindizes aus Gruppen von je
n Elementen besteht und jede dieser Gruppen eine Permutation von
1,2,...,n ist.

10. Die zu den obigen Siatzen analogen Aussagen im Falle der Jacobi-
schen Iteration lassen sich im Satze zusammenfassen :

Satz IV. Notwendig und hinreichend, damit das Jacobische Verfahren
(10) fir die Matriz A absolut konvergiert, ist, daf} A eine H-Matrix ist.
Dann qult zugleich fir die in Nr. 2 eingefithrte Grofle o(4):

o(d) =3, . (29)

Eine dhnliche Rolle wie in (29) fiir die Jacobische Iteration spielt die
Jacobische Konstante ¢, von 4 auch fiir die zyklische Einzelschrittitera-
tion. Namentlich ist die Nekrassoff-Zahl N, von 4 hochstens gleich a4 .
Indessen ist diese Tatsache nur ein Spezialfall eines wesentlich allgemei-
neren Sachverhalts, der sich auf eine allgemeinere Klasse von linearen
Iterationsverfahren bezieht.

Werden die Elemente einer Matrix 4 mit verschiedenen nicht nega-
tiven Zahlen =< 1 multipliziert, so nennen wir die so entstehende Matrix
eine abgestumpfte Teilmatrix von A (truncated part of A), entstanden aus
A durch den Proze3 des Abstumpfens (truncation).

Es werde nun die nicht singulidre Matrix A abzihlbar unendlich oft als
Summe von zwei abgestumpften Teilmatrizen U,, V,,

A=U+V, (=1,2,...), (30)

dargestellt, wobei die Determinante von U, nicht verschwindet. Wir be-
trachten dann die Folge linearer Operationen :

§/ = HKE, + (E —H )A—l ' » HK = U;c—l VK' (31)
k+1 K K n

und fragen, wann die so entstehende Iteration konvergiert.
Der Ansatz (31) fdllt in die Klasse der von G. E. Forsythe [5a] als
allgemeine (nicht stationére) lineare Iterationsprozesse bezeichneten Pro-
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zesse. Ein solcher Prozef3 wird durch den Ansatz
beir = H &+ (B —H)A Yy (k=1,2,...) (32)

gegeben, in dem aber H, eine beliebige Matrix n-ter Ordnung ist. Sind
alle H, miteinander identisch = H, so spricht man von einem stationd-
ren linearen Iterationsprozef3. In diesem letzteren Falle ist fiir die Kon-
vergenz des Prozesses fiir eine beliebige Wahl von &, und # notwendig
und hinreichend, dafl die absoluten Betridge aller Fundamentalwurzeln
von H Kkleiner als 1 sind. Eine analoge Konvergenzbedingung fiir den all-
gemeinsten nicht stationdren linearen IterationsprozeB3 wird in der Nr. 30
hergeleitet.

Wird nun im Ansatz (31) eine feste Zerlegung (30) zugrunde gelegt, so
entsteht eine Klasse von stationdren Iterationsprozessen, in die zum Bei-
spiel die zyklische Einzelschrittiteration gehort. Diese Iteration ent-
spricht dem Ansatz U =L 4+ D, V = R in den Bezeichnungen von
(12). Dabei wird allerdings in Abénderung der Bezeichnungen der Nr. 2
mit &, ., der Vektor bezeichnet, der aus & nach Ausfihrung des voll-
stindigen Zyklus von n Einzelschritten entsteht.

In die gleiche Klasse gehort die zyklische Gruppeniteration, bei der die
n Komponenten z,,...,x, ein fir allemal in £ Gruppen zerlegt werden
und nacheinander auf die Komponenten der einzelnen Gruppen die
Gruppeniteration angewandt wird, wobei die Reihenfolge der Gruppen
auch fest bleibt. Es ist leicht zu sehen, dall das Resultat der Ausiibung
eines vollstdndigen Zyklus dieser Iterationen gleichfalls in der Form (31)
geschrieben werden kann, wobei sogar insbesondere die Diagonalelemente
von V alle verschwinden. Hierher gehoren auch die von H. Geiringer [9],
p. 373-376, diskutierten Iterationsprozesse.

Fiir die Iterationsprozesse vom Typus (31) gelten nun die beiden fol-
genden Sitze, mit denen der Satz IT und der Kern des Satzes III weit-
gehend verallgemeinert werden :

Satz V. Es sei A eine Matrix mit positiven Diagonalelementen und
reellen micht positiven Elementen auferhalb der Hauptdiagonale. Qilt fir A
die Zerlegung

A=U+V

1n zwes abgestumpfte Teilmatrizen U, V, wo U eine M-Matriz ist und alle
Diagonalelemente von V verschwinden, so ist fir die Konvergenz des statio-
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ndren linearen Iterationsprozesses
§:<+1:H5,I<+(E“H)A"l77, ) H=-U1},
fiir beliebige &, und n notwendig, daf3 A eine M-Matrix ist ®).

Satz VI. Es set A eine H-Matrix n-ter Ordnung. Dann konvergiert der
Tterationsprozef3 (31) fiir eine beliebige Folge der Zerlegungen (30), sofern
daber die Diagonalelemente von V, wverschwinden, und es gilt fir jedes
e>0:

| §K+1 - §K | = 0((GA + E)K) (K ——>OO) . (33)

11. Die Beweise der angegebenen Sétze beruhen auf den Eigenschaften
der H- und M-Matrizen. Wir stellen in Nr. 12 einige Hilfsséitze aus einer
fritheren Abhandlung des Verfassers zusammen, von denen im folgenden
Gebrauch gemacht wird. Der Hilfssatz D der Nr. 13 iiber einparametrige
Scharen von M-Matrizen ist die Grundlage des Beweises des Satzes I, der
in Nr. 15 erbracht wird. In Nr. 14 werden verschiedene einfache Kriterien
fiir H-Matrizen zusammengestellt, die in den Anwendungen unserer Re-
sultate niitzlich sein diirften. In den Nummern 16, 17 wird ein einfacher,
aber recht niitzlicher Hilfssatz iiber nicht negative Matrizen bewiesen,
aus dem ein neues Analogon der Gerschgorinschen Kreise zur Abgrenzung
der Eigenwerte (Satz VII, Nr. 18) hergeleitet werden kann. Der wichtige
Hilfssatz F der Nummern 19 bis 20 fiihrt sofort zum Beweis der Sitze V
(Nr. 20), IT und IV (Nr. 21). Der Beweis des Satzes III zieht sich durch
die Nummern 22-27 hin, wihrend in Nr. 28 im AnschluB daran der
lineare Charakter der Konvergenz im Falle der Relaxation aufgewiesen
wird. In den Nummern 29, 30 wird ein allgemeines Konvergenzkriterium
fiir nicht stationédre lineare Iterationsprozesse hergeleitet (Satz VIII,
Nr. 30). Endlich wird in der Nr. 33 der Satz VI aus dem in den Nummern
31,32 entwickelten Hilfssatz G gefolgert. Der Satz IX, der in der Nr. 34
formuliert und bewiesen wird, bezieht sich auf die charakteristischen
Eigenschaften einer M-Matrix.

Mit dem Hilfssatz H (Nr. 35) und dem Satz X (Nr. 36) wird in einem
gewissen Umfang die Frage beantwortet, inwiefern fiir eine M-Matrix
der nicht negative Typus ihrer Inversen charakteristisch ist. Endlich
zeigen wir in den Nummern 37, 38, dal aus unseren Sétzen die Konver-
genz des sogenannten Hardy-CroBschen ,,Verfahrens der sukzessiven Kom-
pensation® fiir einen kontinuierlichen Balken in sehr allgemeinen Féllen
unmittelbar folgt.

%) Der Beweis von V lieBe sich stark abkiirzen durch Benutzung des Satzes VI in [28a].
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§ 1. Eigenschaften von M- und H-Matrizen (Nrn. 12-18)

12. Wir stellen zunichst einige Eigenschaften von M-Matrizen zu-
sammen, von denen im folgenden Gebrauch zu machen sein wird?).

Hilfssatz A. Sez

My — My — My,
—m m e — My,
M — 21 22 2 | (34)
- mnl I ng ¢ o0 mnn
ewne M-Matrix. Gilt dann fir eine Matriz A = (@)
ey, | =my, lay, | =m,, (wH#viu,v=1,...,n), (35)
so gilt
4]l =z[M[>0.

Dies ist ein Teil von Satz I unserer oben zitierten Abhandlung [17],
p. 69. In A steckt eine Art Monotonteprinzip: Die Determinante von
M wird nicht verkleinert, wenn die Elemente von M monoton wachsen,
jedoch so, daf3 die Elemente auferhalb der Hauptdiagonale nicht positiv
werden. Zugleich bleibt dabei M eine M-Matrix, wie man sich sofort
iiberzeugt, wenn man A auf die Hauptminoren von M anwendet.

Daraus folgt aber offenbar, wenn man alle m,,,, die zugleich auBerhalb
der Hauptdiagonale und auBlerhalb eines festen Hauptminors von M lie-
gen, durch Nullen ersetzt :

Hilfssatz B. In einer M-Matriz sind alle Hauptminoren aller Ordnungen
positiv.

7) Wir benutzen diese Gelegenheit, um einige sinnstorende Versehen zu berichtigen, die
sich in unsere Abhandlung [17] eingeschlichen haben; p. 70, 9 Zeile von oben, lies | h l

statt hF#’ p. 73, Formel (13), lies |h | statt h sowie Z' anstatt 2'.' p- 73, 4. Zexle
v=1 p=1
vip S
von unten, lies 1881 statt 1899; p. 76, in der Formel (18), ist da.s Produktzelchen rechts
wegzulassen; p. 86, in der Formel (11, 1), ist links Yu durch L und rechts 1 durch

M zu ersetzen; p. 96, 6. Zeile von unten, lies —:—: statt i—: . Endlich ist auf p. 74 der Satz IV
versehentlich fiir belicbige uneigentliche M-Determinanten formuliert worden. Es ist daher
P. 74 in der 13. Zeile von oben nach ,,Jede‘* einzuschalten: ,eigentliche oder irreduzible
uneigentliche**. Ferner ist der vorletzte Absatz auf p. 74, von ,,Es sei . .. bis ,,charakteri-
siert* ganz zu streichen und ebenso p. 87 der erste Absatz der Nr. 13, also von ,,Ist nun . ..*
bis ,,M-Determinante ist<.
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Die Tatsache B steckt implizite in den Uberlegungen auf p. 78 von
[17], ohne indessen dort ausdriicklich formuliert worden zu sein.

Hilfssatz C. Die tnverse Matrix zu einer M-Matrixz hat durchweg nicht
negative Elemente. Gelten fiir eine Matrixz A die Relationen (35), so werden
dve Elemente von A~ majorisiert durch diejenigen von M1,

Dies ist der erste Teil von Satz III unserer Abhandlung [17], p. 71.

13. Hilfssatz D. Es mdgen in der Matrix

611 h— 012 « o — Cln
— Co1 Coo — Gy
C (k) = " (36)
— Cn - cn2 .o Cun

die n? Elemente stetig von einem reellen Parameter k abhingen, der ein ge-
wisses zusammenhingendes (offenes oder abgeschlossenes oder halboffenes) In-
tervall J durchliuft, und es mogen fir alle « aus J die Relationen gelten:

|C) | #0, ¢,,>0, ¢, =20 (uFv;u,v=1,....n) (37

Ist dann C(k) fiir etn ky aus J eine M-Matriz, so gilt dasselbe fir alle «
aus J . '

Zum Bewetis nehmen wir an, dafl C(k,) fir ein «, aus J keine M-Matrix
sei. Es sei etwa, um Ideen zu fixieren, «,>«k,. Dann gibt es, wenn wir
Kk von k, bis k, wachsen lassen, ein «, derart, daf} bei «, die Eigenschaft
von C, eine M-Matrix zu sein, ,,zum erstenmal aufhort®. Dies bedeutet,
dafl C(«x) im offenen Intervall (k,, x,) noch durchweg eine M-Matrix ist,
wihrend dies fiir das Intervall (xq, k, + &) fiir beliebig kleines ¢>0
nicht mehr stimmt. Da dann links von «, die Determinanten von C'(«)
und von allen Hauptminoren = 0 sind, gilt dasselbe auch fiir « = «,.
Wegen (37) ist aber dann | C(k,) | >0, so daBl C(k,) eine M-Matrix ist.
Nach der obigen Tatsache B sind aber die Determinanten aller Haupt-
minoren von C(k,) positiv, und daher ist C(k,) auch in einer gewissen
rechtsseitigen Umgebung von «, eine M -Matrix. Mit diesem Widerspruch
ist der Hilfssatz D bewiesen.

Offenbar ist durch D zugleich das folgende allgemeine Prinzip be-
wiesen :

Es moge durch endlich viele nur von den absoluten Betrdgen der Elemente
abhdingige Bedingungen eine Klasse von Matrizen n-ter Ordnung definiert
werden, in der alle Matrizen stetig zusammenhdngen und reguldr sind. Ent-
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hilt diese Matrizenklasse eine H-Matriz, so sind simtliche Matrizen der
Klasse H-Matrizen.

14. Wir stellen noch verschiedene, nur von den absoluten Betrigen der
Elemente abhiingige Kriterien zusammen, durch die gewisse Klassen von
H-Matrizen gekennzeichnet werden.

Jede der folgenden Bedingungen a) bis h) ist hinreichend, damit die
(n xn)-Matrix 4= (a,,) eine H-Matrix ist.

Wir setzen

n n
Zy=Zlay| . S=Z|a,l. (3

a) Ks ist viw vip

Z,<|a,| (u=1,...,n) . (39Y)
b) Es ist

S,<la,| (u=1,...,n) . (392)
c) Es qult fiir eincx mit 0 < <1

Z;‘jS}[“<|aW| (p=1,...,n) . (40)

d) Es gilt fiir ein « mit 0 < x < 1 und alle Paare verschiedener Indizes

Y, U
Z, S‘lj"‘ Ze S < Al @ | - (41)

In den Relationen (40) und (41) darf man die Produkte vom Typus
Zy, 8,7% durch die Summen ersetzen: «Z, + (1 — «)S

@
e) Man setze fiir esn p>1
ZP =[2|a, ", SP=[2]a,[|]?. (42)
v=1 v=1
vaFp v p
Es gilt dann fir q = - L i etne der beiden Relationen :
n 1 L 1
2 Iawtl‘l<1 ’ > Iaﬂmul'1<1 ' (43)
SEEIRNGEE
( (p)
2 s
f) Man setze
mM:N[a’X(Ia’;Ll':'°-a|a’p,p,—1|’lam,l.+1|>'--’ia’pm|) (1“': 1,...,7&) * (44)
Es gilt " m
p) K <1. (45)

p=1 | G | +my,
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Natiirlich gilt dasselbe, wenn man Zeilen mit Kolonnen vertauscht.

g) Man setze

Max | 2% | —m , Max |2 |= M. (46)
p>v | Cpp p<v | Qup
Es gilt
m M
<M < . B 47
m AFmy ~aFmr ) (47)

Eine édquivalente Formulierung erhdlt man, wenn man in (46) a,,
durch a,, ersetzt.

h) Man seize

1
—|L] Z1ay,
P a5 v>1| w
1
Py = a [Zlayxlpx+zlaﬂll] (h=2,...,m). (48)
up | k<p A>p

Dann gilt
Pu<l  (u=1,...,m) .9 (481)

15. Beweis des Satzes I (vgl. Nr. 8). Man beachte, dafl eine M-Matrix
durch Multiplikation ihrer Zeilen mit positiven Zahlen wieder in eine
M-Matrix iibergeht, so daB 4 dann und nur dann eine H-Matrix ist,
wenn in den Bezeichnungen von (21) bis (23) £ — Q eine M-Matrix ist.
Man betrachte die Schar der Matrizen

Cle) = E — k0 (ogxgl—). (49)
04
Nach der Definition von ¢, verschwindet die Determinante | A — Q|
fir A>o0, nicht, so daB

|E—xQ[%0 (0§K<-—1-) (50)
04
gilt. Ist nun ¢,<1, so gilt (50) sicher fir 0 <« <1, und da C(0)

eine M-Matrix ist, gilt dies nach dem Hilfssatz D der Nr. 13 auch fir
k=1, so daf3 A eine H-Matrix ist.

8) Vgl. fiir die Kriterien a) bis g) die Abhandlungen [18], [19], [20].

) Das entsprechende Kriterium fiir die Konvergenz des zyklischen Einzelschrittver-
fahrens ist von Nekrassoff in [13], [16] gegeben worden, zugleich mit verschiedenen Ver-
allgemeinerungen. Daf8 daher dieses Kriterium auch fiir den H-Charakter der Matrix 4
hinreichend ist, folgt aus dem Satz II.
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Wird umgekehrt A als ein H-Matrix vorausgesetzt, so ist die Deter-
minante | B — Q| positiv, und dasselbe gilt nach dem Hilfssatz A von
Nr.12mit 0 =« <1 fir | £ —«Q|. Dann bleibt die Determinante

| AE — 2]+0 fur A =1, so daB o,<1 sein muB. Damit ist der
Satz I bewiesen.

16. Wir werden im folgenden als eine positive Diagonalmatrix eine
Matrix bezeichnen, deren Diagonalelemente alle positiv sind, wihrend
alle Elemente auflerhalb der Hauptdiagonalen verschwinden. Es sei
ferner daran erinnert, dafl eine Matrix K reduzibel heit, wenn sie sich
durch geeignete kogrediente Umstellung der Zeilen und Kolonnen auf

die Form bringen liaf3t (g g) » wo @ und R quadratische Matrizen sind,

wihrend O aus lauter Nullen besteht. Ist K nicht reduzibel, so heit K
vrreduzibel. K und K’ sind beide zugleich reduzibel oder beide zugleich
irreduzibel. Unter der Benutzung dieser Bezeichnungen liafit sich der
folgende Hilfssatz formulieren :

Hilfssatz E. Ist K = (k,,) eine nicht negative Matrix mit der Maximal-
wurzel a, so lift sich fiir jedes positive ¢ eine solche positive Diagonalmatrix
P mit den Diagonalelementen p, = p,, finden, daf in der nicht negativen
Matriz PKP-! in jeder Kolonne die Elementensumme o -+ ¢ nicht iber-
steigt. Ist aber K irreduzibel, so lift sich P so wdhlen, dafl in PK P! jede
der Kolonnensummen den Wert ¢ hat.

17. Beweis des Hilfssatzes E. An den in Nr. 8 erwihnten Perronschen
Satz ankniipfend, hat Frobenius [6], p. 459, bewiesen, dall wenn eine
nicht negative Matrix K = (k,,) irreduzibel ist, zu ihrer Maximalwurzel ¢
ein positiver Eigenvektor (py, ps,..., p,) von K’ gehort, so dafl

n
2k,,p,=o0p, , Pu>0 (w=1,...,n) (51)

v =1

gilt. Aus (51) folgt
Zpk,pt=0 (u=1,..,m),
v=1

womit die Behauptung von E fiir irreduzible Matrizen bewiesen ist.
Wir diirfen von nun an annehmen, dafl die Behauptung von E fiir alle
Matrizen niedrigerer Ordnung als n bewiesen ist. Ist nun K reduzibel, so

gjog) schreiben, wo O aus Nullen besteht,

wihrend @ und R quadratische Matrizen sind.

kann man K in der Form (
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Ist m die Ordnung von R, so kann man nach der Annahme m positive

Zahlen p, ,..4,...,p, und n —m positive Zahlen ¢,,...,q,_,, S0
finden, daf
n—m &
2 gk, =0+ (u=1.....,n —m) , (52)
v=1 2
X phkypi<o4+e (p=n-—m+1,... 0 (53)
v=n—m+1

gilt. Setzt man dann

L4 B 2u
Max 2 pvkva[l-lzua Q:_8~+1, pp.:qu (,u:l,...,n—m),

p=1,...,n—m yv=n—m+1

so folgt aus (52)

ﬁpvkmpljlga—%e (u=1,....,n —m),
und dies zusammen mit (53) liefert den Beweis von E.
Die dem Hilfssatz E analoge Tatsache fiir Zeilensummen folgt durch
den Ubergang zu transponierten Matrizen.

18. Aus E folgt leicht der

Satz VII. Man erseize in der Matrix A alle Diagonalelemente durch
Nullen und alle iibrigen Elemente durch thre absoluten Betrdige. Hat die
entstehende Matrix R die Maximalwurzel o, so liegen alle Fundamental-
wurzeln von A in der Gesamtheit der Kreisel?)

A —ay, | =0 (w=1,...,m) . (54)

Beweis. Sei ¢ eine beliebige positive Zahl. Man wende das Lemma E
auf die Matrix B an und bestimme die positive Diagonalmatrix P so,
daB die Kolonnensummen in PRP-! die Grofle o + ¢ nicht iibersteigen.
Die entsprechende Matrix PAP-! hat die gleichen Fundamentalwurzeln
und die gleichen Diagonalelemente wie 4. Wendet man daher auf P4 P-!
den Satz von Gerschgorin an, so folgt, dagl alle Fundamentalwurzeln von
4 in den Kreisen um die a,, mit dem Radius o + ¢ liegen. Wegen der
Willkiir von ¢ folgt die Behauptung nunmehr sofort.

10) Der Satz VII ist ein gewisses Analogon zum Satz von Gerschgorin, fiir den sowie fiir
die anschliefende Literatur auf den Bericht von O. TauBky-Todd [29] verwiesen sei.
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§ 2. Charakterisierung der absolut konvergenten Iterationsverfahren
(Nrn. 19— 28)

19. Hilfssatz F. Es ses
A=U+7V (55)

etne Zerlegung der Matrixz A mit nicht verschwindenden Diagonalelementen
in die Summe von zwei abgestumpften Teilmatrizen, wobei U eine H-Matrix
ist und alle Diagonalelemente von V verschwinden. Man bilde die ent-
sprechende Zerleqgung von Ay in (22)

Ap=Up+ Vg (56)
und setze

H=—-U'V; H=—-UzV,. (57)

Seien 9o und ¢ die Fundamentalwurzeln von H und H mit mazimalen
absoluten Betrdgen.

Dann wird H majorisiert durch H:

HH, (58)

p 18t reell und = 0 und es qult
leol =0 - | (59)

Ist o<1 oder o,<1, sogilt
o =o,u<l1. (60)

20. Beweis. Werden die Zeilen von 4 und damit von U und ¥V mit von
Null verschiedenen Konstanten multipliziert, so werden H und H nicht
gedindert und ebenso bleiben g,, o und o, unverindert. Wir koénnen
daher von Anfang an annehmen, daf} alle Diagonalelemente von 4 und
U gleich 1 sind. g, und p sind bzw. die Wurzeln mit maximalen absoluten
Betrigen der Gleichungen

AU+ V[=0, |AUg+Vp|=0,

die wir in der Form

E+<U—E>+~}V|:o, (61)

1
E+(UB_E)+7VB

=0 (62)

schreiben kénnen.
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Da—;~ die Wurzel mit dem minimalen absoluten Betrag der Gleichung
| B+ (Ug — E) + AVg| = 0 ist, folgt, daB keine der Matrizen der

Schar

eine verschwindende Determinante hat. Und da fiir « = 0 die Matrix

(63) nach der Annahme eine M-Matrix ist, folgt aus dem Hilfssatz D

von Nr. 13, daB} alle Matrizen (63) M-Matrizen sind. Andererseits aber ist
1

| o]

satz A die Determinante von (63) keine Wurzel mit dem absoluten Be-

(63) sicher keine M-Matrix mehr fiir k= , da sonst nach dem Hilfs-

1 . .
trag o] haben konnte. Daher verschwindet die Determinante von (63)
fir —I_:’T , und wir sehen, dal ¢ = 0 ist.

Ist p =0, | V5| = 0, so sind die Matrizen (63) M -Matrizen fiir alle
positiven «, und nach dem Hilfssatz A von Nr. 12 kann die Gleichung (61)
nur fir 4 = 0 befriedigt werden. Da aber dann | V' | = 0 ist, folgt in
diesem Falle g, = 0.

Ist aber >0, so folgt aus dem Hilfssatz A, daBl (61) sicher nicht

befriedigt werden kann, solange [—;11—|< X ist, so daf} (59) auch in diesem
Falle gilt. ¢

Da U eine H-Matrix ist, wird nach dem Hilfssatz C, U-! durch Ug'
majorisiert, woraus (58) folgt.

Nehmen wir nun an, dal ¢ <1 ist, so ist nach dem Hilfssatz A die
Matrix (63) fir « = 1 eine M-Matrix, und daher ist die Determinante
von B+ 0(Ug — E)+ 0Vp fir |0| <1 nicht 0. Dann hat aber die
Gleichung | AE + Uz — E + Vi | = 0 keine Losungen vom absoluten
Betrage =1, und wir sehen, daB} o, <1 ist.

Nehmen wir aber an, dafl o, <1 ist, so haben die Matrizen der Schar
E+s(Ug—E)+sVg (O <s <—6£—) (64)
4

von Null verschiedene Determinanten, und da s = 0 einer M-Matrix
entspricht, sind alle Matrizen (64) M-Matrizen. Hitten wir nun

>0y , —_—
0 A Q<GA’

194



so konnte man eine Zahl s so finden, daf3

1 1

—_ << —, 1<s

e 04

gilt, und da die entsprechende Matrix (64) eine M-Matrix ist, erhalten
wir noch eine M-Matrix, wenn wir in (64) den Faktor s bei Uz — E

durch 1 und den Faktor s bei Vg durch —;— ersetzen. Dann aber wire

1
E+(UB"E)+-Q—VB #0,

entgegen der Definition von p. Damit ist der Beweis des Hilfssatzes F
vollendet.

Der Satz V (vgl. Nr. 10) folgt unmittelbar aus dem Hilfssatz F und
dem Satz I der Nr. 8, der ja bereits in der Nr. 15 bewiesen wurde, da im
Konvergenzfalle die Zahl g fiir die Matrix H = — U~V kleiner als 1
sein mufl und dann auch ¢, <1 folgt.

21. Aus dem Hilfssatz F folgen aber auch die Sétze IT und IV (vgl. die
Nrn. 9 und 10) sofort.

Beweis des Satzes II. Man wende unter den Annahmen des Satzes I
den Hilfssatz F an und bilde U = Ug aus M, indem man alle Elemente
von M rechts von der Hauptdiagonale durch Nullen ersetzt. Hier ist

nach Voraussetzung g, = p<1, und daher o, <1, so da M nach
Satz I eine M-Matrix ist.

Beweis des Satzes IV. Man wende den Hilfssatz F an, indem als U die
aus Diagonalelementen von 4 bestehende Diagonalmatrix genommen
wird. Dann ist das zugehorige p gerade gleich o, . Konvergiert das Jacobi-
sche Iterationsverfahren fiir 45, so lduft es nach dem an die Gleichung
(11) ankniipfenden Kriterium darauf hinaus, dal ¢ = o, <1 ist, und
nach dem Satz I ist 4 eine H-Matrix. Zugleich folgt (29) aus (59). Ist aber
A eine H-Matrix, also o, = p<1, so konvergiert das Jacobische Ver-
fahren fiir Ay und daher wegen (29) absolut.

22. Beweis des Satzes I1I (vgl. Nr. 9). Offenbar kommt es darauf an, zu
zeigen, dafl unter den Bedingungen des Satzes die Folge der Residual-
vektoren g, gegen 0 konvergiert. Ist & = (z,,..., #,) die Losung von
(1), so hat die Verschiebung des Ursprungs um & den Effekt, daB in (1)
der Vektor 5 verschwindet, wihrend die durch (3) gegebenen Residual-
vektoren sich nicht &ndern. Wir kénnen daher n = 0 annehmen. Werden
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dann die Zeilen von 4 mit festen, von 0 verschiedenen Faktoren multi-
pliziert, so werden die Komponenten von p, in (4) mit denselben festen
Faktoren multipliziert. Man kann so erreichen, daf} alle a,=A4,=1
werden.

Werden ferner die Komponenten z, von & vermoge x, = p, 2, trans-
formiert, wo die p, nicht verschwinden, so werden die Kolonnen von 4
mit entsprechenden Faktoren multipliziert, wihrend die Residual-
vektoren sich nicht éndern. Nach dem Hilfssatz E der Nr. 16 kann aber
auf diese Weise erreicht werden, dal die Summen der absoluten Betrige
in den Kolonnen von A—F# fiir ein beliebig kleines positives ¢ die
Schranke o, 4+ ¢ nicht iibersteigen. Und man kann dieses ¢ so klein
wihlen, daBl die Ungleichungen (25) noch richtig bleiben, wenn in ihnen
o4 durch o, 4 ¢ ersetzt wird. Wir konnen daher ohne Beschrankung der
Allgemeinheit iber A annehmen, daf fir ein konstantes s:

A4, =a, =1 rv=1,...,n),
n
2la,|<s r=1,...,nm), (65)
p=1
pFv
1 —s
t, < 115’ s<it<l (66)

gilt.

Bei der Beurteilung der ,,GroBe* eines Vektors werden wir anstatt der
,,Euklidischen Linge“ von dem Jordanschen ,.écart“ Gebrauch machen.
indem wir fiir den Vektor ¢ = (z,,...,2,) setzen

[ Cli=lz] 4+ lz].

Offenbar gilt auch fiir diese Grof3e die Dreiecksungleichung. Es sei ferner
daran erinnert, daB im folgenden «x und y durch sdmtliche aktiven und p
durch sdmiliche passiven Indizes laufen.

Wir setzen nun fir jedes « = 1,2, ...

Ty = >) l T((XK) I (67)
o

und wollen zuerst zeigen, daf3 eine positive, nur von s, ¢, ¢, und ¢, ab-
hingige positive Konstante u existiert, derart dafl fir « =1,2,...

| ogrili — QL = — w7, , (68)

| rt) — 0| < 27, (69)

gilt. (69) wird in der Nr. 24 bewiesen, wihrend der Beweis von (68) sich
bis zur Nr. 26 hinzieht.
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23. Wir benutzen im folgenden die Bezeichnungen der Nr. 6.
Um zu einer Abschitzung der GroBe der Zahlen §,, die sich aus den
Gleichungen (16) bestimmen, zu gelangen, setzen wir

My, = | @y, | (wF7v), My, = 0 (u=1,...,n), (70)
wo nach (65)

n

2y, = v=1,...,n) (71)
p=1
ist, und denken uns beim «-ten Schritt die Gréen 4, berechnet aus dem
linearen System

A, = yzmayAy + (72)

das beim x-ten Schritt dem System (16) entsprechend gebildet ist.
Dann folgt aus dem Hilfssatz C der Nr. 12

| 680 = 4, . (73)
Setzen wir konform mit (67)
ZAa:O', ZI.T&K)IZT, (74)
o o

wo der einfacheren Schreibweise halber der Index « bei ¢ und 7 weg-
gelassen wird, so folgt aus (72)
g

\%

T . (75)

Durchlduft nun, wie schon in Nr. 6 gesagt, 8 alle passiven Indizes, so gilt

2Xmg, Ay =2 A, Emy, — 22 m, A,
x B (43 p=1 x Y

und daher, wegen (71), (72), (74),

Z'Z'mﬁaz]a_é_so—a+r. (76)
a B
Aus (4) folgt, wenn x von 1 bis n lauft,
n
Tﬂcﬂ) _ Tff) — ($§f+1) — ng)) _*_vflaw(xgxﬂ) — xik)) . (77)
v

24. Ist hier u ein passiver Index 8, so folgt aus (14) und (17)
A 9 = Tagq® o
und daher wegen (261), (262), (73)

[ | — 0| S D — 0| S (L) Emg Ay . (T8)
o4
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Wird hier iiber alle passiven Indizes # summiert, so ergibt sich wegen (76)
gt = 20 < (1 + 1) ZEmg, A, < (1 + &) (so — o+ 7) . (79)
;)a die Ausdﬁiicke rechts in (78;3 rficht negativ sind, folgt zugleich aus (79)
| =Pl =1+ t)so—o+2) (g=1), (80)
womit, wegen
seo—oc+r1=171—(1—8o=71— (1 —8)t=87,

(69) bewiesen ist.

In (78), (79) und (80) ist, wenn nur Unterrelaxation zugelassen wird,
der Faktor 1 4 #, durch 1 zu ersetzen.

Fiir ¢ = 1 konnen wir offenbar die ¢® mitfiihren :

2|ty — 2{ | < ¢¥(s0— o+ 1) g=1). (79")
B
25. Ist dagegen u in (77) ein aktiver Index «, so folgt

T&H—l) ¢(K) — q(a) 6(«) + Z%y q('}') 6(:()
YFa
1100 + agy 401 + £ (@ — 4 a5
Y

Wegen (16) ist hier der Faktor in der ecklgen Klammer gleich — 7%,
so daf3 wir schliefllich erhalten

A (1 ) = 26 — ) a8 81
Y
und daher wegen (262), (73), (72):

| rE ] — 11— g || 10| = 26, Zmyyd, = 26,(4, — | 7P ]) . (82)
Y

Hier ist allerdings der Faktor 2%,, der die aus (262) folgende Schranke
fir |¢® — ¢® | darstellt, durch den aus (26%) folgenden Faktor
(1 —1%) zu ersetzen, wenn dabei nur die Unterrelaxation zugelassen wird.
Im Falle der Einzelschrittiteration (g = 1) kann (82) durch

& =1 =P P =0 (g=1) (82')
ersetzt werden. Summiert man (82) iiber «, so folgt, wegen (74),
Z'| r&tD | — Z'[ % | SZ(| ¢@ — 1| —1)| 79| 4+ 2ty(c — 1) . (83)

I-I1er sind dle Faktoren |q® — 1| — 1, wegen (26%), <— (1 —1t,),
wihrend, wenn nur die Unterrelaxation zugelassen wird, wegen (26°),
[¢® — 1| — 1= —¢¥W<—1t ist.
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26. Daher folgt durch Addition von (79) und (83)

l@x+1|1"|9x|1é—(1—t2)7+2t2(0—7)+(1+t2)(80"“0+T)=

=~a(1+s)(i;§-—t2>, (84)

und da hier der letzte Klammerfaktor nach (66) positiv ist, folgt schliel3-
lich wegen (75) die Relation (68) mit
u= (1 —s—1t(1+s)).

Wird nur die Unterrelaxation in Betracht gezogen, so ist (84) zu er-
setzen durch

’QK+1I1—_IQK|1é—tT‘JF(l—t)(G”‘T)‘!“SO'*—O'—I—‘t
=—0cft—8) =—7u, u>0. (85)

Fir g = 1 endlich, also im Falle eines Einzelschrittes, folgt durch
Addition von (79') und (82')

ol —lech 4P o —o+ 1)+ (1 —g | — 17 .
Hier ist der Ausdruck rechts fiir ¢ <1 gleich
— @1 — 8o = — g1 —9)7
und fir ¢®>1 gleich
2@ — v —¢¥(1 —8)o = (@O (1L + ) — 2)7 .

Wegen (26') und (66) folgt schlielich auch in diesem Kalle die Relation
(68) mit

. 1 —s
usz[tl(l —8), (1 +_8)(1—|—8 ——t2)]. (86)
27. Aus (68) folgt nunmehr, dafl die nicht negativen Groen |, |,
gegen einen Qrenzwert o konvergieren. Die demnach konvergente un-

endliche Reihe

o0

2(!90'1—|90+1|1)=l9‘1_9

o=1
ist eine Majorante von o
wlt, ,
o=1

so daBl die Reihe (28) konvergiert. Setzen wir
ge =2 T4 , (87)

sogilt ¢, | 0 (k »>o0).
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Sei nun f ein beim x-ten Schritt passiver Index, und es sei A die erste
ganze Zahl >k, so daB f beim A-ten Schritt aktiv wird. Dann folgt

nach (69)
A-1 A-1
| ) — | S TP — | S 2X 7, < 26

og=K o=K

K
|70 ] < 2¢+ |7V .
Da aber § beim A-ten Schritt aktiv ist, gilt
l"fal)l ST S8 =8,
so daB3 wir schlieB8lich erhalten
| 759 | < 3e, . (88)
Fiir die beim «-ten Schritt aktiven Indizes « gilt

|| =1, <e
so daB *
o |1 = (Bn — 2)e, , (89)

K 2

o, — 0 folgt, womit der Beweis des Satzes III vollendet ist.

28. Im Falle der Relaxationsvorschrift etwa vom Southwellschen
Typus!') kann man iiber die Geschwindigkeit der Konvergenz etwas
mehr aussagen. Werden beim «-ten Schritt die g, aktiven Indizes so
gewihlt, daB die | 7% | die groBten sind, so gilt

g
Ty g"’i‘l@xll ’

und daher, wenn wir von der unvollstindigen Relaxation absehen, so
daBl t;, =1, t,=0, u =1 — s gesetzt werden kann,

l@x+1|1§<1“‘%(1”—3))|@x|1 . (90)

Die Konvergenz ist hier wenigstens vom sogenannten linearen T'ypus, und
zwar, wie man leicht sieht, auch vor der Transformation, durch die s
nahe an o, herangebracht wurde.

11) In diesem Falle ist fiir eine positive symmetrische Matrix und ¢ =1 der Konver-
genzbeweis von Temple [30] erbracht worden.

200



§3. Verallgemeinerungen und Ergiinzungen (Nrn. 29-38)

29. Wir betrachten nunmehr den allgemeinsten nichtstationiren
linearen Prozef} zur Auflosung von (1) :

£y =H &+ (B —H)A'y  (k=1,2,...). (91)

Bei der Untersuchung der Konvergenz eines solchen Prozesses darf man
7 = 0 annehmen, da dies durch eine Translation erreicht werden kann,
sofern | 4| # 0 ist, so daf} es sich um die Bedingung dafiir handelt, dag,

K::HK‘HK—*I"'HI (92)
gesetzt, fir einen beliebigen Vektor £ stets

limG & =0 (93)
gilt. Dabei kann man allerdings nicht mehr, wie im Falle eines stationé-
ren Prozesses, wo alle H, gleich sind, die Fundamentalwurzeln der H,
benutzen.

Wir fiihren folgende Definitionen ein : Fiir eine Matrix 4 = (a,,) ver-
stehen wir unter A(4) = A4,(4) die Quadratwurzel aus der groBten
Fundamentalwurzel der Matrix 4 A*; A,(A4) soll die grote unter den

»,Zeilensummen® 2| a,, | bedeuten und analog 4,(4) die grote unter
n

v=1
den , Kolonnensummen*“ X' | Ay |. Ferner setzen wir fiir den Vektor
E= (21, 2y,...,2,): #=1
= —_ ]/ 2 .. i, 2 ,
€1 =1¢1, |y 244 | 2, | (94)
[éhi=lx |+ -+ 2|, |€&le=Max|z,]|.
®
Dann gilt, wie bekannt und leicht zu sehen ist,
| A& |, =4,4)|¢], (@P=1,2,00). (95)

Man sieht ebenso leicht ein, daBl 4,(4) die kleinste Konstante ¢, ist,
fir die |4¢& |, <c¢c,|¢&'|, fir jeden Vektor £ ist. Daraus folgt aber
wiederum die Ungleichung

4,(AB) = 4,(4) 4,(B) , (96)

die iibrigens fiir p = 1 oder co auch durch direkte Rechnung sofort zu
bestitigen ist.

30. Nunmehr ist die folgende Tatsache leicht zu beweisen :
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Satz VIII. Notwendig und hinreichend, damit der nicht stationdre
Iterationsprozef (91) fiir jede Wahl von &, und n gegen die Losung & von (1)
konvergiert, ist daf} A,(H . H,_,...H,) >0 (x —o0) gilt, filr einen der
drei Werte von p.

Bemerkung. DafBl die Bedingungen A4,(G,) -0 (k —o0) fir p =1,
2,00 #dquivalent sind, folgt direkt aus den leicht beweisbaren Unglei-
chungen

1
Vn

Beweis. DalB3 die Bedingung hinreichend ist, folgt aus (95). Es moge
nun umgekehrt (93) fiir jeden Vektor & gelten. Sei &, fiir jedes « ein
Vektor mit | &, |, =1 und |G, & |, = 4,(G,). Sind 2, 2, ... 2
die Komponenten von &, , so gilt

A;(4) € 4,(4) <nd;(4d) (G =1,00) . (97)

n
! 7/
GK 5:( =2 xg:c) Gx My >
v=1

wo 7, die Koordinatenvektoren sind. Daher gilt, da | 2% | <1 ist,

wegen G, 7, — 0 (x —o0) ,
4,6 =6G& ], =Z |Gy |, >0 (k >o0)
v=1
w.z. b. w.

Korollar. Fir die Konvergenz von (91) ist hinreichend, daf fiir ein festes
g mit 0<qg<<l und einen der Indizes p = 1, 2,00 fiir alle x

A,H)<Sqg (k=1,2,...) (98)

gilt. In der Tat ist mit (98) wegen (96) das Kriterium des Satzes VIII
erfiillt 12).

P

31. Hilfssatz G. Seien P = (p,,) eine nicht negative Matrix der Ord-
nung n mit der Maximalwurzel o<1 und A, (k =1,2,...) eine Folge
von Matrizen, die simtlich durch P majorisiert werden. Es sei jedes A, in
eine Summe von zwei abgestumpften Teilmatrizen U, V,, A, =U,~+ V,
zerlegt, derart, dafy E — U, nicht singuldr ist. Man bilde die Matrizen

H.o=(E—-U)'V, (k=12,...) (99)

und die Produlkte .
G.=HH, .. H, . (100)

12) Der Ubergang vom Kriterium des Satzes VIII zum Fall der stationdren Iteration
kann mit Hilfe des Theorems 1 von We. Gautschi [8] leicht hergestellt werden.

202



Dann sind die absoluten Betrige der Fundamentalwurzeln der H, héchstens
gleich o und die absoluten Betrdge der Fundamentalwurzeln der @, hichstens
gleich o* . Ferner entspricht jedem positiven ¢ <1 — o eine nur von P und
¢ abhdngige Konstante C derart, daf3

A4,@) =Cle+eF (k=1,2,...;p=1,2,00)  (101)
gult.

32. Beweis. Nach dem Hilfssatz E der Nr. 16, angewandt auf P’, 148t
sich fiir ein beliebiges positives ¢<1 — p eine Diagonalmatrix @ mit
den positiven Diagonalelementen g¢,,...,q, so bestimmen, daf3

A (QPQ1) =s <o+ e<1 , (102)

gilt. Ist dann die Summe der absoluten Betrige der Elemente der »-ten
Zeile in den Matrizen QU,Q1, QV,.Q1, QH, Q' bzw. u,,v,, h,, so gilt

w, +v, <s<1 .
Ferner gilt

QHQ'=(E —QUQ)QV.e", (E—-QUEMQHLQ=QV.Q*,
QHQ' =QV.Q'+ QULHQRHL™ ,

und daher, wenn die Elemente der Matrizen QH,Q?, QU,Q, QV Q™

bzw. mit &,,, u,, v,, bezeichnet werden,

n
h“v——-—-vyv +;\§1'u”)\kM (w,v=1,...,m) ,

n
Ihy.vl élvyvl +Az"lup)\”h/\v| ’
=1
und, wenn iiber » = 1,..., n summiert wird,
n
h, = v, +x§1hA | - (103)

Sei b= A,(QHQ*') =Maxh,=h,, dann folgt aus (103) fiir
u=m wegen u, <s<<l: F

h=v,+ hu, ,
Vpn U L=y =V
hé*r:—a—;:, 1_’&%1“—1““"‘—— l-——-um :1 8,
h=A,QHQ™") S A, QPQY) =s<e+e, (104)
und ferner wegen (96)
A,QG.Q™) = (o + &) (k=1,2,...). (105)
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Aus (104) folgt nach der bekannten Frobeniusschen Ungleichung, dafl
die Fundamentalwurzeln von QH, Q- und daher auch von H, absolut
< ¢ + ¢ und daher =< g sind; aus (105) folgt ebenso, da3 die Funda-
mentalwurzeln von G, absolut =(p + ¢ und daher =< o sind. Ist
ferner der Quotient der groten der Zahlen ¢, durch die kleinste gleich c,
so folgt aus (105)

A, G) = 4,@) A, @ N(e+ &) =cle+ e (k=1,2,...),

woraus, wegen (97), die Behauptungen (101) sofort folgen.

33. Der Satz VI (vgl. Nr. 10) folgt nunmehr leicht. Es geniigt wiederum
anzunehmen, dal # = 0 und alle Diagonalelemente von A4 gleich 1
sind. Wendet man den Hilfssatz G der Nr. 31 auf 4, = F — 4 und die
Matrix P = FE — Ay an, so folgt aus (58) und (101)

A H,..H)< A H....H) <C(e+¢f (x«=1,2,...),

wenn allgemein H, = — U, .V, = gesetzt wird.

K

Dann folgt aber die Behauptung des Satzes VI und namentlich die
Relation (33) aus (95), angewandt auf H, ...H,.

34. Satz IX. Se: A eine Determinante vom Typus

“11 - “12 .o - aln
- “21 0622 DR - 0‘2n

A= , (106)
— (an I 06n2 o0 (xnn

wo simtliche oy, = 0 und simtliche koaxiale Unterdeterminanten, ebenso
wie die Determinante A selbst micht negativ sind. Ist dann eines der Dia-
gonalelemente o, = 0, so verschwindet A und zugleich verschwindet jeder
der n! Terme in der Entwicklung der Determinante A .

Beweis. Da die Behauptung fiir » = 1 trivial ist, diirfen wir beim
Beweis annehmen, daf3 der Satz fiir kleinere Werte von n bereits bewiesen
ist.

Unbeschadet der Allgemeinheit kénnen wir annehmen, daf «,; = 0
ist. Bekanntlich entspricht jeder Permutation P der » Indizes 1,2,..., 7
ein Term der Determinante 4, den wir mit 7', bezeichnen wollen. Unter
diesen Permutationen wollen wir vor allem diejenigen herausgreifen, die
einen n-gliedrigen Zyklus C, darstellen. Ist etwa

Cn = (Kl’Kza ey Ky 1, Kn) s
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sogilt To, = — o 4, %ppe, = 0. In der Tat, der diesem Term nach
der allgemeinen Determinantentheorie zugeordnete Vorzeichenfaktor ist
(— 1)*-*, wihrend von den n Faktoren der Faktor (— 1)® beigesteuert
wird. Wir haben nun

A=3Tq + 2 Tp (107)
Cn P*x

wo die erste Summe iiber alle n-gliedrigen Zyklen erstreckt wird, wihrend
in der zweiten Summe die Permutationen P* jedesmal wenigstens zwei
Zyklen enthalten. Ist nun eine Zyklenzerlegung der Permutation P* etwa

P*=(0,0,...C

so moge der Index 1 etwa im Zyklus C, stecken. Das dem Zyklus C,
entsprechende Produkt der «,, steckt aber dann mit einem gewissen
Vorzeichen in einer koaxialen Unterdeterminante von A4, in der auch das
Element «,; vorkommt und auf die daher unser Satz bereits angewandt
werden darf. Daher verschwindet dieses C, entsprechende Produkt und
daher gilt auch 7',y = 0 fiir jedes P*.

Nunmehr sind aber alle Terme rechts in (107) < 0, woraus, wegen
4 = 0 folgt, daB jedes der 7', = 0 ist, und der Satz IX ist bewiesen 13).

m >

35. Hilfssatz H. Sei 4 eine Matrix vom Typus

“11 - “12 e - Cxl,n
— g1 Koy e — Xap

A= , (108)
— Xn1 — Ko 6. Xnn

wo far p+v samtliche «,, =0, alleo,, reell sind und | A |+ 0 ist.

I. Gibt es dann einen Vektor &(xy, ..., x,) mit nicht negativen x,, so
dap alle Komponenten des Vektors AE' positiv sind, so ist A eine M-Matriz.

II. Gibt es einen Vektor &(x,) mit nicht negativen und wicht similich
verschwindenden x, derart, daf} alle Komponenten von AE' nicht megativ
sind, und ist die Matrix A irreduzibel, so ist A eine M-Matrix.

13) Man iibersieht leicht, daB die gleiche Uberlegung einen etwas allgemeineren Satz

beweist: Eine Determinante A4 = (a‘w) 1aBt sich in der Form darstellen

A=ZXTg, +Zed4,...4
C

. m ?

wo die T'¢,, alle Terme von A4 durcnfllaufen, die n-gliedrigen Zyklen entsprechen, wihrend
in der zweiten Summe rechts die Koeffizienten ¢ gewisse ganze Zahlen sind und die Aus-
driicke A4,, 4 y» -+ +» 4,, koaxiale Unterdeterminanten von A . Natiirlich ist in der zweiten
Summe rechts jedes Glied von der Gesamtdimension n in bezug auf die a ,» und die Ge-
samtheit der in den entsprechenden Faktoren vorkommenden Indizes stimmt mit der Ge-
samtheit aller Indizes 1, 2,...,n iiberein.
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Bewers. Wir zeigen zuerst, daB, wenn alle Komponenten z, von ¢
positiv sind und diejenigen von A&’ nicht negativ, dann 4 sicher eine
M-Matrix ist. In der Tat dndert sich der Charakter einer M-Matrix nicht,
wenn ihre Kolonnen durch positive Zahlen dividiert werden. Dies be-
deutet aber, dafl wir von vornherein alle x, = 1 voraussetzen kénnen.

n
Die Komponenten von 4 & werden dann zu den Ausdriicken «,, — 2 «,,..
o py

v=1
vt

Sind diese Summen nicht negativ, so folgt daraus nach dem bekannten
Hadamardschen Satz, dafl 4 und alle Hauptminoren von 4 nicht nega-
tiv sind. Wegen | A | £ 0 ist damit nach der Definition der Nummer 8
der M-Charakter von A erwiesen.

Um nunmehr den Teil I des Hilfssatzes zu beweisen, beachte man, daf3
unter den Voraussetzungen dieses Teiles die Komponenten von 4 & positiv
bleiben, wenn die z, um hinreichend kleine Betréige variiert werden. Da
sie aber nicht negativ sind, kann man sie dabei simtlich positiv machen,
und die Behauptung von I ergibt sich aus dem Obigen unmittelbar.

Unter den Voraussetzungen des Teiles IT des Hilfssatzes konnen wir
durch kogrediente Vertauschung von Zeilen und Kolonnen erreichen,
daf} die verschwindenden z, die Indizes k£ 4 1,...,n haben, wihrend
die ersten z, (v = 1,..., k) sdmtlich von 0 verschieden sind. Wire nun

k<n, so wiren die n —k letzten Komponenten von A& gleich
k

—Zu,x, (k=%k+1,...,n). Da sie aber nach Annahme =0 und
y=1
die x,...,2, positiv sind, folgt daraus «,, =0 @=1,...,k;

u=k-+1,...,n), sodaB 4 reduzibel wire. Daher verschwindet keines
der z,, und unsere Behauptung folgt aus dem Obigen.

Korollar. Ist fir eine reelle Matrix A vom Typus (108), wo fir u+v
sdmtliche o,, = 0 sind und | A |+ O ist, die Inverse A= nicht negativ,
so ist A etne M-Matrix.

Bildet man in der Tat die Zeilensummen von 4-1, so hat fiir den aus
diesen Zeilensummen gebildeten Vektor & der Vektor A&’ sdmtliche
Komponenten = 1, so dafl die Behauptung aus dem Fall I des Hilfs-
satzes H folgt14).

36. Aus dem Hilfssatz H 148t sich nunmehr ein Kriterium fiir den
M-Charakter einer reellen Matrix A = (a,,) herleiten, bei dem keine An-
nahmen iiber die Vorzeichen der a,, zugrunde gelegt werden.

14) Fiir den Fall, daB sowohl die Determinante | 4 | als auch sémtliche « , (u &+ )
in (108) positiv sind, ergibt sich aus einem Satz von Herrn Kotelanski, [11a], p. 502, da8
die Matrix A4 bereits dann eine M-Matrix ist, wenn eine ganze Zeile oder eine ganze Kolonne
von A-! aus nicht negativen Elementen besteht.
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Satz X. Es sei A eine reelle (n Xn)-Matrix mit der Eigenschaft, daf so-
wohl A=Y als auch (A 4 AE)™ fur alle hinreichend groPen A lauter nicht
negative Elemente hat. Dann ist A eine eigentliche M-Matrix.

Beweis. Nach dem Hilfssatz H geniigt es, zu beweisen, da8 alle Ele-
mente von 4 auflerhalb der Hauptdiagonale < 0 sind. Da man durch
kogrediente Vertauschungen von Zeilen und Kolonnen jedes Element
von 4 in die letzte Kolonne bringen kann, geniigt es, unsere Behauptung
fiir die Elemente der letzten Kolonne von A zu beweisen.

Wir schreiben nun | 4 + AE| als eine gerinderte Determinante

buy %
Y *

wo B = (b,,) eine quadratische Matrix (n — 1)-ter Ordnung ist. Wer-
den die Determinante von B mit | B| und die den Elementen b, ent-
sprechenden adjungierten Minoren von B mit B,, bezeichnet, so liefert

die bekannte Entwicklung einer einfach gerinderten Determinante fiir
| A+ AE | den Ausdruck

n—1
|A +AE| =2|B|— X B,,2,y, .
uw,v=1
(Vgl. Kowalewski, Determinantentheorie, 1. Aufl., 1909, p. 90.) Daher
folgt fiir das zu y, gehorende algebraische Komplement C(y,) von
A+ AE

|4 4+ AE| =

n-—1
C’('y,,)z——iwa# v=1,...,n—1).

Damit ergibt sich aber aus unserer Annahme
n—1

2Bz, =0 (A>2g,v=1,...,n — 1) .
=1

'L_.
Entwickeln wir hier den Ausdruck links nach fallenden Potenzen von A,
so beginnt B,, mit A*-2, wihrend die B,, fir x4+ hochstens vom
Grade » — 3 sind. Daher liefert die obige Ungleichung fiir 4 —oo

2, "2 L O(n3) <0 (A —>o0) ,

woraus z, <0 (v=1,2,...,n — 1) folgt.
Wir sehen, daB3 in der Tat alle Elemente von A auflerhalb der Haupt-
diagonalen nicht positiv sind, womit der Satz X bewiesen ist.

37. Die Einzelschrittiteration, wie sie durch die Formeln (6) bis (9)
der Nr. 2 beschrieben wird, 143t sich auch auffassen als die Iteration des
Residualvektors g,, wie er durch (3) und (4) definiert ist. Wir wollen der
Einfachheit halber im folgenden Ay = 4,=1 (u=1,...,n) vor-
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aussetzen. Es ergibt sich dann aus (8) und (9)
79D =18 — qea,y, Y. (w=1,...,m). (109)

Um (109) vektortheoretisch zu interpretieren, fithren wir die zu A
gehorenden Kolonnenmatrizen ein :

0 0 a,, 0 0
o ... 0 a., O0 ... O
4,=10 ... 0 1 O ... 0] (v=1,...,m), (110)
0 0 a,, O 0
0 0 a o ... O

wobei also die »-te Kolonne in 4, mit der »-ten Kolonne in 4 iiberein-
stimmt, wihrend alle iibrigen Kolonnen von 4, aus Nullen bestehen.
Dann 148t sich offenbar (109) in der Form schreiben

Ocr1 = (B — ¢, 4y,) 0 - (111)
Man beachte andererseits, da3 wenn | 4 | + 0 ist, durch geeignete Wahl
von £, sich o] = A& — 1’ einem beliebigen Vektor gleichmachen 1i6t.
Wenn daher das Einzelschrittverfahren bei einer geeigneten Steuerung
fiir die Matrix A4 fiir jede Wahl von &, konvergiert, bedeutet dies, daB die
durch (111) definierte Vektorenfolge o, fiir jede Wahl des Anfangsvektors
0: gegen 0 konvergiert. Ist daher 4 insbesondere eine H-Matrix und ge-
niigen die g, der Bedingung (26!) des Satzes III, so konvergiert die durch
(111) erzeugte Vektorenfolge g, fiir jede Wahl von g, gegen 0, sofern die
Folge der Leitindices NV, so gewiahlt wird, daf3 dabei jeder Index unend-
lich oft auftritt.

38. Aus dem obigen Resultat ergibt sich nun insbesondere, dafl das
sogenannte Hardy-Crof3sche Verfahren der sukzessiven Kompensation
fiir einen kontinuierlichen Balken (Hardy-Cross Balancing Process for a
Continuous Beam) stets konvergiert, wenn dabei jede Stiitze unendlich
oft benutzt wird 15).

In der Tat, im Falle des Hardy-Crofschen Verfahrens, wie es von
Oldenburger [16a] formuliert wird, hat man zu setzen

a,=1, a,_ ,,=0,, ,.,=7,, 4,=0 (lu—r|>1) (v=1,...,n), (112)

15) Die Konvergenz des Hardy-CroB8schen Verfahrens ist von R. Oldenburger [16a] in
dem speziellen Falle bewiesen worden, da das Verfahren abwechselnd auf alle Stiitzen
mit geraden, und sodann auf alle Stiitzen mit ungeraden Nummern in einer festen Reihen-
folge angewandt wird.
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wobei

o,=s,(1-T,) (v=2,...,n), v,=r,T, @=1,...,n—1) (113)
gilt fiir geeignete 7', r,, s,, die den Bedingungen

0<T, <1, 0=<r<l, 0<s<l @w=1,...,n) (114)

geniigen. Dann ist die Kolonnensumme der (nicht negativen) Elemente
von A auflerhalb der Hauptdiagonalen offenbar gleich

o, +1,<1—-T,+T,=1 @=2,...,n—1)

und gleich 7, <1 oder o,<1 bzw. fiir v =1 oder v = n. Daher ist
die zugehorige Matrix 4 nach dem Kriterium b) von Nr. 14 eine M-Matrix.
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