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Determinanten
mit ûberwiegender Hauptdiagonale

und die absolute Konvergenz von linearen
Iterationsprozessen*)

von Alexander Ostrowski, Basel

(Paul Finsler zum sechzigsten Oeburtstag)

Einleitung

1. Sei A (afJLV) eine quadratische Matrix n-ter Ordnung. Das zu dieser
Matrix gehôrende allgemeine lineare Gleiehungssystem kann dann in der
Form geschrieben werden

Aè' r]f, Ç=(xl9...,xn)9 r]= (yi,...,yn) >

wo | der gesuehte und rj der gegebene Vektor ist. Die Striche bei f und rj
deuten an, dafi f und rj durch die entsprechenden SpaltenTéktoven zu
ersetzen sind.

Wird (1) durch Itération gelôst, so wird eine unendliche Vektorenfolge

aufgestellt, die - im Konvergenzfalle - gegen einen Lôsungsvektor i von
(1) konvergiert. Durch Einsetzen von ÇK in (1) ergeben sich die Residual-
veJctoren

A^ - r,'= q'k QK=(r[K\...,ri*) (3)

r£> Za^x^ - yM (fi 1,...,»), (4)

deren J?Kleinheit" den Grad der Annâherung an die Lôsung charakteri-
siert.

*) Dièse Arbeit wurde (zum Teil) ausgefuhrt im Rahmen eines Forschungsauftrages
des National Bureau of Standards an die American University, Washington D. C.
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2. Im folgenden beschâftigen wir uns zuerst mit der Itération in
Einzelschritten. Wir nehmen von nun an ein fur allemal an, daB fur aile v

Av avv^O (v=l,...,n) (5)

gilt. Unter der Einzelschrittiteration verstehen wir eine solche sukzessive

Erzeugung der Vektorenfolge (2), bei der beim Ùbergang von ÇK zu
Sk+i nur e^ne der Komponenten von ÇK uberhaupt geandert wird, im all-
gemeinen so, daB die entsprechende Komponente des Residualvektors
zu Null gemacht wird. Ist etwa der Index dieser Komponente NK - wir
nennen NK den K-ten Leitindex -, so wird also ôK x^+1) ~ x^\ so

gewàhlt, daB r(£+1) 0 wird. Daraus folgt

RK f%>K ¦ (7)

Die einzelnen Komponenten von gK+1 errechnen sich nach (6), (7) aus den
Relationen

r(K+i) r(.) _a^J^_ (^ i,..., n) (8)

Allerdings bedeutet die Festsetzung (7) in (6) und (8) eine Idealisierung
des Rechenschemas, da man bei der Benutzung der Formeln (6) und (8)
sowieso abrunden wird. Schon deshalb ist es von Interesse, eine Modifi-
kation des Ansatzes (7) ins Auge zu fassen, bei der RK durch die Formel
gegeben wird

^ (9)

wo qK zwischen 0 und 2 liegt, und dann naturlieh r(^+1) nieht mehr

notwendig verschwindet. Ist qK ^ 1, so sprechen wir von unvollstândiger
Relaxation, fur qK<l von Unterrelaxation (underrelaxation), fur
qK>I von Ûberrelaxation (overrelaxation). Doch wird der Fall der un-
vollstândigen Relaxation in dieser Arbeit wohl zum erstenmal systema-
tisch untersucht, so daB unsere Literaturangaben sich ausschlieBlich auf
den Ansatz (7) beziehen.

Die zeitlich erste systematisehe Verôffentlichung tiber eine Itérations-
verfahren zur Auflôsung linearer Gleichungssysterne erfolgte wohl 1845

durch Jacobi [11]1), nachdem ein Jahr vorher Argelander [2] uber eine

1) Die Zahlen in eckigen Klammern weisen auf die unter den gleichen Nummern im
Literaturverzeichnis am Ende der Arbeit aufgefûhrten Abhandlungen hin.
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Anwendung des gleichen Verfahrens in einem speziellen Fall berichtet
und Gerling noch fruher in verschiedenen Werken die GauBschen An-
sâtze zur Relaxationsmethode ausfûhrlich erlautert hatte.

Das Jacobische Verfahren wird heute auch als die Itération in Gesamt-
schritten bezeichnet. Es besteht darin, daB aus den Komponenten (2) des

Nâherungsvektors fK sâmtliche Komponenten von £K+1 durch die Formeln

bestimmt werden. Die Konvergenzbedingung fur dièses Verfahren er-
gibt sich nach von Mises und Geiringer [14] aus der Betraehtung der
Gleichung

A alx a12 al
a,21

anl an2 Xann

wo die Déterminante links aus derjenigen von A durch Multiplikation
der Elemente der Hauptdiagonale mit A hervorgeht.

Fur die Konvergenz des Jacobischen Verfahrens (10) bei jeder Wahl
von f und rj ist notwendig und hinreichend, daB der absolute Betrag
o(A) der absolut grôBten Wurzel von (11) kleiner als 1 ist. Zugleich kon-
vergieren dann die Komponentenfolgen von gK wie die Abschnitte einer
Potenzreihe mit dem Konvergenzradius a (A).

3. Es kommt bei der Einzelschrittiteration in erster Linie auf die Wahl
der Leitindizes NK, oder, wie wir sagen werden, auf die Steuerung des

Verfahrens an. Fur dièse Steuerung kommen im wesentlichen folgende
drei Môglichkeiten in Frage :

a) Man wâhlt NK unter Beriicksichtigung der Werte der *-ten Resi-
duen, das heiBt der Komponenten von qk. Dann spricht man von einer
Relaxationsmethode im engeren Sinn.

b) Man kann NK periodisch aile Werte von 1 bis n in dieser Reihenfolge
unendlich oft durchlaufen lassen. Wir sprechen dann von zyklischer
Steuerung und vom zyklischen Einzelschrittverfahren2).

c) Man kann von vornherein die Folge der Werte NK beliebig vor-

2) Eine intéressante Abwandlung dièses Verfahrens hat kiirzlich A. C. Aitken [1] an-
gegeben.
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schreiben, indessen so, daB dabei jeder Index unendlich oft als Leitindex
auftritt. In diesem Fall werden wir von freier Steuerung spreehen.

Anscheinend war GauB der erste, der das Iterationsverfahren in Einzel-
schritten anzuwenden pflegte, worliber wir aus seiner Korrespondenz [7],
aus einem Bericht von Dedekind [5] und vor allem aus Verôffentlichun-
gen von Gerling [10], [10a], [10b] unterrichtet sind. GauB benutzte die
Relaxationssteuerung, und zwar wàhlte er als Leitindex den Index, der
den grôBten absoluten Betrag von ôK in (6) liefert. tîber ein Jahrhundert
spâter wurde eine analoge Relaxationsvorsehrift durch Southwell [28]
entdeckt, der NK so wàhlt, daB | rffl J maximal ist. Von Southwell riihrt
auch der Name Relaxation her.

Die ersten eingehenden Verôffentlichungen uber das Einzelschritt-
verfahren fur Matrizen von definiten quadratischen Formen rûhren von
C. L. Gerling [10], C. A. Sehott (1855) [26], Seidel (1874) [27] und
P. A. Nekrassoff (1884) [15] her.

Dabei ist die von Seidel vorgeschlagene Relaxationsvorschrift aller-
dings eine andere als diejenigen von GauB und Southwell, da Seidel die-

jenige Komponente des Residualvektors zu Null zu machen sucht, bei
der dies die stârkste Verkleinerung eines gewissen quadratischen Aus-
drucks bewirkt.

Vor allem aber hat Seidel einen Beweis fur die Konvergenz seines Ver-
fahrens bei jeder Wahl von £x und rj fur definite symmetrische Matrizen
gegeben, den man als durchaus korrekt ansehen kann, wenn auch die
SchluBiiberlegungen von Seidel etwas vage ausklingen.

4. Das zyklische Einzelschrittverfahren ist anscheinend zuerst in einer
Abhandlung von Nekrassoff diskutiert worden (1884) [15], und zwar fur
definite quadratische Formen, und sodann 1892 [13] zusammen mit
Mehmke im allgemeinsten Falle.

Trotzdem wird das zyklische Einzelschrittverfahren heute ziemlich
allgemein als das ,,Seidelsche Iterationsverfahren" bezeichnet, wàhrend
Seidel in seiner Abhandlung ausdrucklich die zyklische Steuerung nicht
empfiehlt, vielleicht, weil sein Konvergenzbeweis nur die Relaxationssteuerung

voraussetzt.

Im Falle des zyklischen Einzelschrittverfahrens haben zuerst 1929

von Mises und Geiringer [14] fur definite quadratische Formen einen
Konvergenzbeweis gegeben. Allerdings ist ihre Fassung dièses Beweises
offensichtlich erganzungsbedûrftig. Obgleich dièse Fassung wiederholt
reprcduziert wurde, ist sie wohl erst bei Schmeidler [24] mit geniigender
Strenge durchgefuhrt worden.
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5. Einen auf ganz anderer Grundlage beruhenden Beweis fur die Kon-
vergenz des zyklischen Einzelschrittverfahrens hat Reich [23] gegeben
und zugleich bewiesen, da8 fur eine symmetrische, aber nicht definite
Matrix das Verfahren (bei geeigneter Wahl des Ausgangsvektors) diver-
giert. Reich benutzt das folgende, zuerst von Nekrassoff [15], [16] ge-
gebene und seitdem wiederholt, zum Beispiel von Cesari [3] und R. J.
Schmidt [25] wiederentdeckte Kriterium fur die Konvergenz des
zyklischen Einzelschrittverfahrens bei jeder Wahl von ix und rj.

Es môge die Matrix A in der Form dargestellt werden :

A L + D + R (12)

wo in L aile Elemente auf der Hauptdiagonale und rechts davon ver-
schwinden, in R die Elemente der Hauptdiagonale und links davon ver-
schwinden, wàhrend D eine Diagonalmatrix ist, deren Hauptdiagonale
mit derjenigen von A iibereinstimmt. Dann lautet das Nekrassoffsche

Konvergenzkriterium fur die zyklische Einzelschrittiteration dahin, dafi
die absoluten Betrâge aller Wurzeln der Gleichung

\{L + D)X + B\ 0 (13)

kleiner als 1 sind. Die Gleichung (13) ist offenbar die Fundamental-
gleichung der Matrix — (L + D)~XR. Der absolute Betrag der absolut
grôBten Wurzel von (13) kann dann als das MaB fur die Konvergenz des

zyklischen Einzelschrittverfahrens benutzt werden. Wir wollen diesen
absoluten Betrag im folgenden als die Nekrassoff-Zahl NA von A be-

zeichnen3).

6. Bereits von GauB (siehe Gerling [10], p. 392) ist eine Verallgemeine-
rung der Einzelschrittiteration vorgeschlagen worden, bei der beim
Ûbergang von £K zu fK+1 nicht nur eine Komponente, sondern eine Gruppe
von Komponenten von £K abgeândert wird. Sind die Indizes dieser Kom-
ponenten etwa m1,..., mg, so werden wir sie als alctive und aile iibri-
gen Indizes als passive Indizes bezeichnen. Im folgenden werden oc und y
stets durch aile aktiven und (3 durch aile passiven Indizes beim /c-ten

Schritt laufen. Es wird nun festgesetzt :

3) Bei der Diskussion dieser GrôBe ist die folgende von Nekrassoff [15] gegebene Relation

sehr nùtzlich :

2 2 2 —
CTi2 g23 • • • ani

Al A2. An_! — ~ ~
«il • • • «nw

wo Au A2,..., An_i die n — 1 Wurzeln von -y | {L + D)K + R \ sind.
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wàhrend die den aktiven Indizes entsprechenden Komponenten von
£*h-i aus den entsprechenden Teilgleichungen von (1) bestimmt werden.
Setzt man allgemein

so bestimmt man die ô^ aus den g Gleichungen

4a#> + 27a^«>=-#> (16)

sofern sie auflôsbar sind.
Derartige Iterationen werden nach dem Vorschlag von v. Mises und

Geiringer als Gruppeniterationen bezeichnet.
Um auch hier der Môglichkeit der unvollstândigen Relaxation Kech-

nung zu tragen, verallgemeinern wir die obige Vorschrift dahin, daB die
x£+1) und ô^ sich immer noch aus den Gleichungen (14) und (16)
bestimmen, wâhrend (15) durch

a£+i> a£> + <#> ô™ (17)

ersetzt wird. Die Konstanten q^ sind hier positive Zahlen, die auf jeden
Fall den Bedingungen

0 <(£*>< 2 (18)

genugen sollen.
Wird die allgemeine Gruppeniteration betrachtet, so besteht das

Problem der Steuerung darin, bei jedem Schritt g sowie die aktiven
Indizes oc zu wâhlen. Wird dièse Wahl nur durch die Bedingung einge-
schrânkt, daB jeder Index unendlich oft aktiv ist, so sprechen wir auch
hier von ,,freier Steuerung".

1. Wir werden im folgenden eines der charakterisierten Itérationsver-
fahren als absolut konvergent fur die Matrix A bezeichnen, wenn es bei
fester Wahl der Leitindizes bzw. der aktiven Indizes und der Konstanten
qK, q^ fur eine beliebige Wahl des Anfangsvektors |x und des

konstanten Vektors rj konvergiert und konvergent bleibt, wenn die Elemente

von A mit beliebigen Faktoren vom absoluten Betrag 1 multipliziert werden.
Offenbar wird die absolute Konvergenz eines Iterationsverfahrens durch

solche Kriterien sichergestellt, in denen die Elemente von A nur mit
ihren absoluten Betrâgen auftreten, wâhrend zum Beispiel die Bedingung
der Définitheit der als symmetrisch vorausgesetzten Matrix A fur n > 2

diesen Charakter nicht hat.
In der Tat sind fiir die Konvergenz des zyklischen Einzelschrittver-

fahrens mehrere Kriterien aufgestellt worden, in denen nur die | a^v \

vorkommen. Hierher gehôren zum Beispiel :
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1. Das Zeilensummenknterium. Das zyklische Einzelschrittverfahren
konvergiert, wenn

v=l

gilt. (Nekrassoff [13], [16].)

2. Das Spaltensummenkriterium. Das zyklische Einzelschrittverfahren
konvergiert, wenn

£| Vl<|aw| (*= i,...,^) (20)

gilt (Mehmke [12], [13]).
Beide Kriterien sind oft wiederentdeckt worden, vgl. zum Beispiel [4],

Im folgenden soll nun das allgemeinste Kriterium fur die absolute
Konvergenz der zyklischen Einzelschrittiteration aufgestellt werden,
aus dem sich durch einfache Spezialisierungen sowohl (19) und (20), als
auch eine Reihe von weiteren analogen Kriterien ergeben. Zugleich wird
sich herausstellen, da8 auch das allgemeinste Kriterium fur die absolute
Konvergenz des Jacobischen Verfahrens (10) genau ebenso lautet.

Dies ist deshalb sehr bemerkenswert, weil im allgemeinen die Kon-
vergenzbereiche der Jacobischen und der Einzelschrittiteration sich nur
teilweise uberdecken.

8. Wir setzen im folgenden

I Vl <V ([*,*= 1,...,*) (21)

und bezeichnen als die Begleitmatrix zu A die Matrix

(\n oc12 ocln

AB=\
~~ *" "" ' ' ' ~ *2"

I (22)

Eine Matrix vom Typus (22) werden wir als eine eigentliche M-Matrix
oder M-Matrix schlechthin bezeichnen, wenn ihre Diagonalelemente
positiv4), ihre Déterminante positiv und die Determinanten aller ihrer

*) Die Positivitat der Diagonalelemente ist eine Folge der beiden anderen Definitions-
eigenschaften einer M-Matrix. Siehe den Satz IX m der Nr. 34 am Schlusse dieser Arbeit.

Andererseits laBt sich die Annahme, dafi die Determinanten aller Hauptmmoren meht
negativ sind, in zwei Richtungen abschwachen. Man kann dièse Annahme durch eine der
beiden folgenden ersetzen •
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Hauptminoren aller Ordnungen nicht negativ sind. Eine Matrix, deîen
Begleitmatrix eine M-Matrix ist, bezeichnen wir als eine eigentliche H-
Matrix oder H-Matrix sehlechthin.

Wir haben verschiedene Eigenschaften der H- und If-Matrizen bereits
in einer fruheren Abhandlung [17] bewiesen. Im folgenden werden wir
weitere Tatsachen iïber dièse Matrizen benôtigen, vor allem den folgenden

Satz I. Notwendig und hinreichend, damit A eine H-Matrix ist, ist, dafl
hein Diagonalelement von A verschwindet und dafl die nicht-negative Matrix

I 0

*21

ocn

<*ln \

\ ^L 5* o /

(23)

die Maximalwurzel aA < 1 hat.
Zur Erlâuterung sei daran erinnert, da6 nach einem Satz von Perron

[21] eine nicht négative Matrix (das heiBt eine Matrix mit nicht negativen
Elementen) eine nicht négative Fundamentalwurzel besitzt, die nicht
kleiner ist als der absolute Betrag jeder anderen Fundamentalwurzel.
Dièse Wurzel nennt man die Maximalwurzel der Matrix.

Die Maximalwurzel aA von (23) soll im folgenden als die Jacobische
Konstante der Matrix A bezeichnet werden, und zwar auch dann, wenn
aA ^ 1 ist.

9. Wir werden nun beweisen, dafi die Bedingung fur die absolute Kon-
vergenz der zyklischen Einzelschrittiteration fur die Matrix A darin be-

I. Die Hauptminoren aus einer Hauptreihe sind nicht negativ, wobei unter einer Haupt-
reihe von Hauptminoren eine solche Sequenz von n Hauptminoren der Ordnungen
1, 2, 3,..., n verstanden wird, daô jedes Elément dieser Sequenz zugleich ein Haupt-
minor des nàchstfolgenden Elementes ist.

II. Sowohl die Diagonalelemente als auch aile Hauptminoren der Ordnungen n — 2,
n — 4,... (also gleieher Paritât mit n) sind nicht negativ.

Dafî jede der Bedingungen I, II (verbunden mit der Positivitât von | AB \) fur eine
M-Matrix charakteristisch ist, hat kiirzlich Herr Kotelanski [Ha] bewiesen, allerdings in
anderer Einkleidung und unter Beschrânkung auf den Fall, daB aile a^v (jx ^ v) positiv
sind. Im Bûche von Gantmacher [10c] findet sich die entsprechende Tatsache bewiesen
nur unter der Annahme a^v ~ 0, zugleich unter Vereinfachung des Beweises von
Kotelanski. Andererseits iibertrâgt sich der auf II beziigliche Beweis von Kotelanski ohne
weiteres auch auf den Fall oc — 0.
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steht, daB A eine //-Matrix ist. Wir beweisen allerdings wesentlich mehr.
Dièse Bedingung ist bereits notwendig fur die Konvergenz des Einzel-
schrittverfahrens fur die Begleitmatrix AB von A bei jeder Wahl von £t
und rj. Andererseits konvergiert, wenn dièse Bedingung erfullt ist, das
Einzelschrittverfahren und sogar allgemeiner dasjenige der Gruppen-
iteration fur die Matrix A bei freier Steuerung ; man darf dabei sogar in
einem gewissen Umfang unvollstàndige Relaxation zulassen. Genauer wer-
den wir die folgenden Sâtze beweisen :

Satz IL Sei

mil — mi2 • • • — min

— m21 m22 — m2n
M (24)

— mnl ~mn
eine Matrix, bei der die Elemente der Hauptdiagonale positiv und die ubrigen
Elemente nicht positiv sind. Konvergiert das zyklische Einzelschrittverfahren
(mit dem Ansatz (7)) fur dièse Matrix fur jede Wahl des Ausgangsvektors

fl5 so ist M eine M-Matrix5).

Satz III. Sei A eine H-Matrix und aA ihre Jacobische Konstante. Sei tx

eine beliebige positive Zahl < 1 und t2 und t beliebige positive Zahlen mit

k< 7 » aA<t<l (25)

Dann konvergiert die Einzelschrittiteration und allgemeiner die Gruppen-
iteration bei freier Steuerung fur jede Wahl von ^ und r\. Dabei ist auch die

unvollstàndige Relaxation mit den folgenden Einschrânkungen zugélassen:
Bei der Einzelschrittiteration mussen die Faktoren qK in (9) der Bedingung

t1^qK^\+î% (ic =1,2,...) (261)

genûgen. Bei der Oruppeniteration mussen die Faktoren q^ in (17) der

Bedingung genûgen

\qK — i | ^s c2 > vZD ;

bzw., wenn nur Unterrelaxation zugélassen wird, das heifit aile q^ ^ 1

bleiben, der Bedingung

U?^L (263)

5) II hàngt zusammen mit dem Satz VI von Stein und Rosenberg in [28a], und der
Beweis von II lieôe sich durch Benutzung dièses Satzes abkûrzen.
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Setzt mon
rK E\r™\, (27)

(X

wo die Summation ûber aile beim K-ten Schritt aktiven Indizes oc erstreckt

wird, so konvergiert w

SrK (28)

In diesem Satze ist insbesondere ein Résultat von H. Geiringer [9],
p. 377, enthalten, bei dem die Folge der Leitindizes aus Gruppen von je
n Elementen besteht und jede dieser Gruppen eine Permutation von
1,2,...,% ist.

10. Die zu den obigen Sâtzen analogen Aussagen im Falle der Jacobi-
schen Itération lassen sich im Satze zusammenfassen :

Satz IV. Notwendig und hinreichend, damit das Jacobische Verfahren
(10) fur die Matrix A absolut konvergiert, ist, dafi A eine H-Matrix ist.
Dann gilt zugleich fur die in Nr. 2 eingefûhrte Grôfie a (A):

a(A)^aA. (29)

Eine âhnliche Rolle wie in (29) fur die Jacobische Itération spielt die
Jacobische Konstante aA von A auch fur die zyklische Einzelschrittitera-
tion. Namentlich ist die Nekrassoff-Zahl NA von A hôchstens gleich aA.
Indessen ist dièse Tatsache nur ein Spezialfall eines wesentlich allgemei-
neren Sachverhalts, der sich auf eine allgemeinere Klasse von linearen
Itérationsverfahren bezieht.

Werden die Elemente einer Matrix A mit verschiedenen nicht nega-
tiven Zahlen ^ 1 multipliziert, so nennen wir die so entstehende Matrix
eine abgestumpfte Teilmatrix von A (truncated part of A), entstanden aus
A durch den ProzeB des Abstumpfens (truncation).

Es werde nun die nicht singulâre Matrix A abzâhlbar unendlich oft als
Summe von zwei abgestumpften Teilmatrizen UK, VK,

A UK+VK (*= 1,2,...) (30)

dargestellt, wobei die Déterminante von UK nicht verschwindet. Wir be-
trachten dann die Folge linearer Operationen :

&+i HJ'K + {E- HJA-W HK=- V'KX VK (31)

und fragen, wann die so entstehende Itération konvergiert.
Der Ansatz (31) fâllt in die Klasse der von G. E. Forsythe [5a] als

allgemeine (nicht stationâre) lineare Iterationsprozesse bezeichneten Pro-
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zesse. Ein solcher ProzeB wird durch den Ànsatz

fK+1 HKïK + (E-HK)A-W («=1,2,...) (32)

gegeben, in dem aber HK eine beliebige Matrix n-ter Ordnung ist. Sind
aile HK miteinander identisch H, so spricht man von einem stationâren

linearen Iterationsprozefi. In diesem letzteren Falle ist fur die Kon-
vergenz des Prozesses fur eine beliebige Wahl von fx und rj notwendig
und hinreichend, da6 die absoluten Betràge aller Fundamentalwurzeln
von H kleiner als 1 sind. Eine analoge Konvergenzbedingung fur den all-
gemeinsten nicht stationâren linearen IterationsprozeB wird in der Nr. 30

hergeleitet.

Wird nun im Ansatz (31) eine feste Zerlegung (30) zugrunde gelegt, so
entsteht eine Klasse von stationâren Iterationsprozessen, in die zum Bei-
spiel die zyklisehe Einzelschrittiteration gehôrt. Dièse Itération ent-
spricht dem Ansatz U — L + D, V R in den Bezeiehnungen von
(12). Dabei wird allerdings in Abanderung der Bezeiehnungen der Nr. 2

mit ÇK+1 der Vektor bezeichnet, der aus ÇK nach Ausfûhrung des voll-
stândigen Zylclus von n Einzelschritten entsteht.

In die gleiche Klasse gehôrt die zyklisehe Gruppeniteration, bei der die
n Komponenten xt,..., xn ein fur allemal in h Gruppen zerlegt werden
und nacheinander auf die Komponenten der einzelnen Gruppen die
Gruppeniteration angewandt wird, wobei die Reihenfolge der Gruppen
auch fest bleibt. Es ist leicht zu sehen, da8 das Résultat der Ausubung
eines vollstandigen Zyklus dieser Iterationen gleichfalls in der Form (31)
geschrieben werden kann, wobei sogar insbesondere die Diagonalelemente
von V aile verschwinden. Hierher gehôren auch die von H. Geiringer [9],
p. 373-376, diskutierten Iterationsprozesse.

Fur die Iterationsprozesse vom Typus (31) gelten nun die beiden fol-
genden Sâtze, mit denen der Satz II und der Kern des Satzes III weit-
gehend verallgemeinert werden :

Satz V. Es sei A eine Matrix mit positiven Diagonalelementen und
reellen nicht positiven Elementen aufierhalb der Hauptdiagonale. Oilt fur A
die Zerlegung

A U+V
in zwei abgestumpfte Teilmatrizen U, V, wo U eine M-Matrix ist und aile
Diagonalelemente von V verschwinden, so ist fur die Konvergenz des statio-
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nâren linearen Iterationsprozesses

£+1 HS'K + (E- H)A-*fi' H - II-* V

/&r beliebige £ x tmd! notwendig, dafi A eine M-Matrix ist6).

Satz VI. l?s sei J. eine H-Matrix n-ter Ordnung. Dann konvergiert der

Iterationsprozefi (31) /&r eme beliebige Folge der Zerlegungen (30), sofern
dabei die Diagonalelemente von VK verschwinden, und es gilt fur jedes

£>0:
+ *)*) (* -> oo) (33)

11. Die Beweise der angegebenen Sâtze beruhen auf den Eigenschaften
der H- und itf-Matrizen. Wir stellen in Nr. 12 einige Hilfssâtze aus einer
friiheren Abhandlung des Verfassers zusammen, von denen im folgenden
Gebrauch gemacht wird. Der Hilfssatz D der Nr. 13 uber einparametrige
Seharen von Jf-Matrizen ist die Grundlage des Beweises des Satzes I, der
in Nr. 15 erbracht wird. In Nr. 14 werden verschiedene einfache Kriterien
fur iï-Matrizen zusammengestellt, die in den Anwendungen unserer Re-
sultate nûtzlich sein diirften. In den Nummern 16, 17 wird ein einfacher,
aber recht niitzlicher Hilfssatz ûber nicht négative Matrizen bewiesen,
aus dem ein neues Analogon der Gerschgorinschen Kreise zur Abgrenzung
der Eigenwerte (Satz VII, Nr. 18) hergeleitet werden kann. Der wichtige
Hilfssatz F der Nummern 19 bis 20 fuhrt sofort zum Beweis der Sàtze V
(Nr. 20), II und IV (Nr. 21). Der Beweis des Satzes III zieht sich dureh
die Nummern 22-27 hin, wâhrend in Nr. 28 im AnschluB daran der
lineare Charakter der Konvergenz im Falle der Relaxation aufgewiesen
wird. In den Nummern 29, 30 wird ein allgemeines Konvergenzkriterium
fur nicht stationare lineare Iterationsprozesse hergeleitet (Satz VIII,
Nr. 30). Endlich wird in der Nr. 33 der Satz VI aus dem in den Nummern
31,32 entwickelten Hilfssatz G gefolgert. Der Satz IX, der in der Nr. 34

formuliert und bewiesen wird, bezieht sich auf die charakteristischen
Eigenschaften einer M-Matrix.

Mit dem Hilfssatz H (Nr. 35) und dem Satz X (Nr. 36) wird in einem
gewissen Umfang die Frage beantwortet, inwiefern fur eine if-Matrix
der nicht négative Typus ihrer Inversen charakteristisch ist. Endlich
zeigen wir in den Nummern 37, 38, daG aus unseren Sâtzen die Konvergenz

des sogenannten Hardy-CroBschen ,,Verfahrens der sukzessiven Kom-
pensation" fur einen kontinuierlichen Balken in sehr allgemeinen Fâllen
unmittelbar folgt.

6) Der Beweis von V lieôe sich stark abkiirzen durch Benutzung des Satzes VI in [28 a].
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§1. Eigenschaften von M- und iï-Matrizen (Nrn. 12-18)

12. Wir stellen zunâchst einige Eigenschaften von M-Matrizen zu-
sammen, von denen im folgenden Gebrauch zu machen sein wird7).

Hilfssatz A. Sei

M=[ ~ " j (34)

-mnl -mn2 mnî

eine M-Matrix. Gilt dann fur eine Matrix A (a^)

so gilt

Dies ist ein Teil von Satz I unserer oben zitierten Abhandlung [17],
p. 69. In A steckt eine Art Monotonieprinzip : Die Déterminante von
M wird nicht vericleinert, wenn die Elemente von M monoton wachsen,
jedoch so, dafi die Elemente aujierhalb der Hauptdiagonale nicht positiv
werden. Zugleich bleibt dabei M eine M-Matrix, wie man sich sofort
uberzeugt, wenn man A auf die Hauptminoren von M anwendet.

Daraus folgt aber offenbar, wenn man aile m^vi die zugleich auBerhalb
der Hauptdiagonale und auBerhalb eines festen Hauptminors von M lie-
gen, durch Nullen ersetzt :

Hilfssatz B. In einer M-Matrix sind aile Hauptminoren aller Ordnungen
positiv.

7) Wir benutzen dièse Gelegenheit, um einige sinnstôrende Versehen zu berichtigen, die
sich in unsere Abhandlung [17] eingeschlichen haben; p. 70, 9. Zeile von oben, lies | h \

n n ^
statt h ; p. 73, Formel (13), lies | h \ statt h sowie 27 anstatt £\ p. 73, 4. Zeile

von unten, lies 1881 statt 1899; p. 76, in der Formel (18), ist das Produktzeichen rechts
wegzulassen; p. 86, in der Formel (11, 1), ist links y durch m y und rechts 1 durch

8-t Sa
M zu ersetzen; p. 96, 6. Zeile von unten, lies — statt —. Endlich ist auf p. 74 der Satz IV

s2 st
versehentlich fur beliebige uneigentliche M-Determinanten formuliert worden. Es ist daher
p. 74 in der 13. Zeile von oben nach ,,Jede" einzuschalten : ,,eigentliche oder irreduzible
uneigentliche". Ferner ist der vorletzte Absatz auf p. 74, von ,,Es sei ..." bis ,,charakteri-
siert" ganz zu streichen und ebenso p. 87 der erste Absatz der Nr. 13, also von ,,Ist nun ..."
bis ,,M-Déterminante ist".
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Die Tatsache B steckt implizite in den tîberlegungen auf p. 78 von
[17], ohne indessen dort ausdrûcklich formuliert worden zu sein.

Hilfssatz C. Die inverse Matrix zu einer M-Matrix hat durchweg nicht
négative Elemente. Gelten fur eine Matrix A die Relationen (35), so werden

die Elemente von A'1 majorisiert durch diejenigen von M-1.
Dies ist der erste Teil von Satz III unserer Abhandlung [17], p. 71.

13. Hilfssatz D. Es môgen in der Matrix

Cll C12 • • • Cln

C(k)=\
~C21 °22 ¦" ~C2"

] (36)

cnl cn2 cni

die n2 Elemente stetig von einem reellen Parameter k abhàngen, der ein ge-
wisses zusammenhângendes (offenes oder abgeschlossenes oder halboffenes)
Intervall J durchlâuft, und es môgen fur aile k aus J die Relationen gelten :

^ \K) I 7^ u > cfifi>u •> c^v u vA6 ^ v p? v — i, n). \ôi)

Ist dann C(k) fur ein k0 aus J eine M-Matrix, so gilt dasselbe fur aile k
aus J.

Zum Beweis nehmen wir an, daB C (kx) fur ein kx aus J keine M-Matrix
sei. Es sei etwa, um Ideen zu fixieren, /c1>/c0. Dann gibt es, wenn wir
k von k0 bis kx wachsen lassen, ein k2 derart, daB bei k2 die Eigenschaft
von C, eine M-Matrix zu sein, ,,zum erstenmal aufhôrt". Dies bedeutet.
daB C(k) im offenen Intervall (k0, k2) noch durchweg eine M-Matrix ist,
wâhrend dies fur das Intervall (k0 k2 + s) fur beliebig kleines e > 0

nicht mehr stimmt. Da dann links von k2 die Determinanten von C(k)
und von allen Hauptminoren ^ 0 sind, gilt dasselbe auch fur k — k2

Wegen (37) ist aber dann | C(k2) \ >0, so daB C(k2) eine M-Matrix ist.
ISTach der obigen Tatsache B sind aber die Determinanten aller
Hauptminoren von C(k2) positiv, und daher ist C(k2) auch in einer gewissen
rechtsseitigen Umgebung von k2 eine M-Matrix. Mit diesem Widerspruch
ist der Hilfssatz D bewiesen.

Offenbar ist durch D zugleich das folgende allgemeine Prinzip
bewiesen :

Es môge durch endlich viele nur von den absoluten Betràgen der Elemente

abhângige Bedingungen eine Klasse von Matrizen n-ter Ordnung definiert
werden, in der aile Matrizen stetig zusammenhàngen und regulâr sind, Ent-
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Mit dièse Matrizenklasse eine H-Matrix, so sind sâmtliche Matrizen der
Klasse H-Matrizen.

14. Wir stellen noch verschiedene, nur von den absoluten Betrâgen der
Elemente abhângige Kriterien zusammen, durch die gewisse Klassen von
H-Matrizen gekennzeichnet werden.

Jede der folgenden Bedingungen a) bis h) ist hinreichend, damit die
(n xw)-Matrix A (a^) eine H-Matrix ist.

Wir setzen n n

£ip — Zj i a^v | o^ z, i aVfX i (ooj
v=l v=l

a) Es ist vi ** v^

b) Es ist

Sft<|a^| (jm= l,...,n) (392)

c) 2?s griZf /ttr em oc mit 0 ig a ^ 1 :

^ ^"a < I «^ I (^ 1,. w) (40)

d) .Es gilt fur ein a mit 0 <Loc ^L l und aile Paare verschiedener Indizes
v, [à :

^ $/!ra ^? ^ï~a<I aix[x \\ aw\ • (^i)

In den Relationen (40) und (41) darf man die Produkte vom Typus
Z* $Jt~~a durch die Summen ersetzen : ocZ^ + (1 — o^S^.

e) Jfaw setze fur ein p>l

f [ Z | V n^ &p [ i | aVfl \*]T (42)

V-}r/Lt Vf fX

7)
Es qilt dann fur a ——— eine der beiden Relationen :

1 * p — 1

S-

f Man setze

m^ Max (| aMl |,..., | «w_i |, | «w+i I, ¦ • •, I %J) (ji 1,..., n) (44)

Es 9ilt n mm^ <1 (45)
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Natiirlich gilt dasselbe, wenn man Zeilen mit Kolonnen vertauscht.

g) Man seize

Es gilt

Max
fJL>V

m<M

m Max
fl<V

m

"fit*

M

M

m)n M)n '

(46)

(47)

Eine aquivalente Formulierung erhâlt man, wenn man in (46) a
durch avv ersetzt.

h) Man seize

1

an
1

K<fJL

(48)

Dann gilt

15. Beweis des Satzes I (vgl. Nr. 8). Man beachte, daB eine M-Matrix
durch Multiplikation ihrer Zeilen mit positiven Zahlen wieder in eine
M-Matrix ûbergeht, so daB A dann und nur dann eine H-Matrix ist,
wenn in den Bezeichnungen von (21) bis (23) E — Q eine M-Matrix ist.
Man betrachte die Schar der Matrizen

C{k) E - 0 <:* <> — (49)

Nach der Définition von aA verschwindet die Déterminante | XE — Q \

fur A > aA nicht, so daB

1

\E - (50)

gilt. Ist nun oA<l9 so gilt (50) sicher fur 0 g k ^ 1, und da (7(0)
eine M-Matrix ist, gilt dies nach dem Hilfssatz D der Nr. 13 auch fur
k 1, so daB A eine jBT-Matrix ist.

8) Vgl. fur die Kriterien a) bis g) die Abhandlungen [18], [19], [20].
9) Das entsprechende Kriterium fur die Konvergenz des zyklischen Einzelschrittver-

fahrens ist von Nekrassoff in [13], [16] gegeben worden, zugleich mit verschiedenen Ver-
allgemeinerungen. Dafi daher dièses Kriterium auch fur den H-Charakter der Matrix A
hinreichend ist, folgt aus dem Satz II.
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Wird umgekehrt A als ein H-Matrix vorausgesetzt, so ist die
Déterminante | E — Q | positiv, und dasselbe gilt nach dem Hilfssatz A von
Nr. 12 mit 0 ^ k <^ 1 fur | E — kQ |. Dann bleibt die Déterminante
| KE — Q | + 0 fur A ^ 1, so daB or4<l sein muB. Damit ist der
Satz I bewiesen.

16. Wir werden im folgenden als eine positive Diagonalmatrix eine
Matrix bezeichnen, deren Diagonalelemente aile positiv sind, wàhrend
aile Elemente auBerhalb der Hauptdiagonalen verschwinden. Es sei
ferner daran erinnert, daB eine Matrix K reduzibel heiBt, wenn sie sich
durch geeignete kogrediente Umstellung der Zeilen und Kolonnen auf

die Form bringen lâBt I
Q p wo Q und R quadratisehe Matrizen sind,

wàhrend 0 aus lauter Nullen besteht. Ist K nicht reduzibel, so heiBt K
irreduzibel. K und K' sind beide zugleich reduzibel oder beide zugleich
irreduzibel. Unter der Benutzung dieser Bezeichnungen lâBt sich der
folgende Hilfssatz formulieren :

Hilfssatz E. Ist K (k^) eine nicht négative Matrix mit der Maximal-
wurzel a, so lafit sich fur jedes positive e eine solche positive Diagonalmatrix
P mit den Diagonalelementen p^ p^ finden, da/3 in der nicht negativen
Matrix PKP-1 in jeder Kolonne die Elementensumme a + s nicht ûber-
steigt. Ist aber K irreduzibel, so lâfit sich P so wâhlen, dafl in PKP~1 jede
der Kolonnensummen den Wert a hat.

17. Beweis des Hilfssatzes E. An den in Nr. 8 erwàhnten Perronschen
Satz ankniipfend, hat Frobenius [6], p. 459, bewiesen, daB wenn eine
nicht négative Matrix K= (k^) irreduzibel ist, zu ihrer Maximalwurzel a
ein positiver Eigenvektor (plt p2,..., pn) von K' gehôrt, so daB

vv p GK=l,...,n) (51)

gilt. Aus (51) folgt

womit die Behauptung von E fur irreduzible Matrizen bewiesen ist.
Wir diirfen von nun an annehmen, daB die Behauptung von E fur aile

Matrizen niedrigerer Ordnung als n bewiesen ist. Ist nun K reduzibel, so

kann man K in der Form o r> I schreiben, wo 0 aus Nullen besteht,
\A M]

wàhrend Q und R quadratisehe Matrizen sind.
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Ist m die Ordnung von R, so kann man nach der Annahme m positive
Zahlen pn-m+i,..., pn und n ~ m positive Zahlen qx,..., qn__m so

finden, da8

n—m o

^<7+^r (^ 1....,»- m) (52)

2 VvKfxV^1 ^a + £ (jti n — m + 1, w) (53)

gilt. Setzt man dann

n 2%
Max Z pvKfji^l=u> ^^ h 1, P[, Q% (jm 1,.. .,n — m),

so folgt aus (52)

txPÏL1 £o + € (fi 1, n — m)

und dies zusammen mit (53) liefert den Beweis von E.
Die dem Hilfssatz E analoge Tatsache fur Zeilensummen folgt durch

den tîbergang zu transponierten Matrizen.

18. Aus E folgt leicht der

Satz VII. Man erseize in der Matrix A aile Diagonalelemente durch
Nullen und aile ûbrigen Elemente durch ihre absoluten Betrâge. Hat die
entstehende Matrix R die Maximalwurzel a, so liegen aile Fundamental-
wurzeln von A in der Gesamtheit der Kreise10)

| A — a^ | ^ a (ii 1, n) (54)

Beweis. Sei e eine beliebige positive Zahl. Man wende das Lemma E
auf die Matrix R an und bestimme die positive Diagonalmatrix P so,
daB die Kolonnensummen in PRP-1 die GrôBe a + e nicht ubersteigen.
Die entsprechende Matrix PAP~X hat die gleichen Fundamentalwurzeln
und die gleichen Diagonalelemente wie A. Wendet man daher auf PAP~X
den Satz von Gerschgorin an, so folgt, daB aile Fundamentalwurzeln von
A in den Kreisen um die a^ mit dem Radius a + e liegen. Wegen der
Willktir von s folgt die Behauptung nunmehr sofort.

10) Der Satz VII ist ein gewisses Analogon zum Satz von Gerschgorin, fur den sowie fur
die ansehlieBende Literatur auf den Berieht von O. Taufiky-Todd [29] verwiesen sei.
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§ 2. Charakterisierung der absolut konvergenten Iterationsverfahren

(Nrn. 19—28)

19. Hilfssatz F. Es sei

A U + V (55)

eine Zerlegung der Matrix A mit nicht verschwindenden Diagonalelementen
in die Summe von zwei abgestumpften Teilmatrizen, wobei U eine H-Matrix
ist und aile Diagonalelemente von V verschwinden. Man bilde die ent-
sprechende Zerlegung von AB in (22)

und seize

H - U-i

(56)

(57)

Seien g0 und g die Fundamentalwurzeln von H und H mit maximalen
absoluten Betràgen.

Dann wird H majorisiert durch H :

H « H (58)

g ist reell und ^ 0 und es gilt

\ Qo I ^ Q •

/s£ g < 1 oder o^ < 1, «so <7i7£

g ^oA<\ (60)

20. Beweis. Werden die Zeilen von A und damit von U und V mit von
Null verschiedenen Konstanten multipliziert, so werden H und H nicht
geàndert und ebenso bleiben @0, g und aA unveràndert. Wir kônnen
daher von Anfang an annehmen, daB aile Diagonalelemente von A und
U gleich 1 sind. £0 und g sind bzw. die Wurzeln mit maximalen absoluten
Betràgen der Gleiehungen

|A17+F| O, \WB+VB\ 0

die wir in der Form

0

{UB-E)+TVB

(61)

(62)

sehreiben kônnen.
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Da— die Wurzel mit dem minimalen absoluten Betrag der Gleichung

| E + (UB — E) + XVB | 0 ist, folgt, daB keine der Matrizen der
Schar

E + (UB - E) + kVb ; (o^k <Y~r) (63)

eine verschwindende Déterminante hat. Und da fiir k 0 die Matrix
(63) nach der Annahme eine M-Matrix ist, folgt aus dem Hilfssatz D
von Nr. 13, daB aile Matrizen (63) M-Matrizen sind. Andererseits aber ist

(63) sicher keine M-Matrix mehr fur #c= -—r da sonst nach dem Hilfs-
I Q I

satz A die Déterminante von (63) keine Wurzel mit dem absoluten

Betrag -j—r haben kônnte. Daher verschwindet die Déterminante von (63)
I Q I

fur -—r- und wir sehen, daB q ^ 0 ist.

Ist q 0, | VB | 0, so sind die Matrizen (63) M-Matrizen fiir aile
positiven k und nach dem Hilfssatz A von Nr. 12 kann die Gleichung (61)

nur fur X 0 befriedigt werden. Da aber dann | V \ 0 ist, folgt in
diesem Falle g0 0.

Ist aber q>0, so folgt aus dem Hilfssatz A, daB (61) sicher nicht

befriedigt werden kann, solange yj-r < — ist, so daB (59) auch in diesem
Falle gilt.

' ' e

Da U eine jff-Matrix ist, wird nach dem Hilfssatz C, U"1 durch U^1
majorisiert, woraus (58) folgt.

Nehmen wir nun an, daB q < 1 ist, so ist nach dem Hilfssatz A die
Matrix (63) fur k 1 eine M-Matrix, und daher ist die Déterminante
von E + 6(UB — E) + 0 VB fur | 0 | g 1 nicht 0. Dann hat aber die
Gleichung | XE + UB — E + VB \ 0 keine Lôsungen vom absoluten
Betrage ^ 1, und wir sehen, daB oA<l ist.

Nehmen wir aber an, daB aA < 1 ist, so haben die Matrizen der Schar

(64)

von Null verschiedene Determinanten, und da s 0 einer M-Matrix
entspricht, sind aile Matrizen (64) M-Matrizen. Hàtten wir nun

1 1

e>*A ' 7^ '
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so kônnte man eine Zahl s so finden, daB

— l
Q aA

gilt, und da die entsprechende Matrix (64) eine M-Matrix ist, erhalten
wir noch eine M-Matrix, wenn wir in (64) den Faktor s bei UB — E

durch 1 und den Faktor s bei VB durch — ersetzen. Dann aber wàre
Q

1+{UB-E)+jVs
entgegen der Définition von g. Damit ist der Beweis des Hilfssatzes F
vollendet.

Der Satz V (vgl. Nr. 10) folgt unmittelbar aus dem Hilfssatz F und
dem Satz I der Nr. 8, der ja bereits in der Nr. 15 bewiesen wurde, da im
Konvergenzfalle die Zahl g fur die Matrix H — U'1 V kleiner als 1

sein muB und dann auch aA < 1 folgt.

21. Aus dem Hilfssatz F folgen aber auch die Sâtze II und IV (vgl. die
Nrn. 9 und 10) sofort.

Beweis des Satzes II. Man wende unter den Annahmen des Satzes II
den Hilfssatz F an und bilde U UB aus M, indem man aile Elemente
von M rechts von der Hauptdiagonale durch Nullen ersetzt. Hier ist
nach Voraussetzung g0 g < 1, und daher aM < 1, so daB M nach
Satz I eine M-Matrix ist.

Beweis des Satzes IV. Man wende den Hilfssatz F an, indem als U die
aus Diagonalelementen von A bestehende Diagonalmatrix genommen
wird. Dann ist das zugehôrige g gerade gleich aA. Konvergiert das Jacobi-
sche Iterationsverfahren fur AB, so lâuft es nach dem an die Gleichung
(11) anknûpfenden Kriterium darauf hinaus, daB g aA<l ist, und
nach dem Satz I ist A eine iï-Matrix. Zugleich folgt (29) aus (59). Ist aber
A eine I/-Matrix, also aA g < 1, so konvergiert das Jacobische Ver-
fahren fur AB und daher wegen (29) absolut.

22. Beweis des Satzes III (vgl. Nr. 9). Offenbar kommt es darauf an, zu
zeigen, daB unter den Bedingungen des Satzes die Folge der Residual-
vektoren gK gegen 0 konvergiert. Ist f (xl9..., xn) die Lôsung von
(1), so hat die Verschiebung des Ursprungs um f den Efïekt, daB in (1)
der Vektor r\ verschwindet, wâhrend die durch (3) gegebenen Residual-
vektoren sich nicht ândern. Wir kônnen daher rj 0 annehmen. Werden
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dann die Zeilen von A mit festen, von 0 versehiedenen Faktoren
multipliziert, so werden die Komponenten von qk in (4) mit denselben festen
Faktoren multipliziert. Man kann so erreichen, daB aile avv=Av~l
werden.

Werden ferner die Komponenten xv von £ vermôge xv pvx!v trans-
formiert, wo die pv nicht verschwinden, so werden die Kolonnen von A
mit entsprechenden Faktoren multipliziert, wâhrend die Residual-
vektoren sich nicht ândern. Nach dem Hilfssatz E der Nr. 16 kann aber
auf dièse Weise erreicht werden, daB die Summen der absoluten Betrâge
in den Kolonnen von A—E fur ein beliebig kleines positives e die
Schranke aA + s nicht iibersteigen. Und man kann dièses e so klein
wàhlen, daB die Ungleichungen (25) noch richtig bleiben, wenn in ihnen
aA durch aA + s ersetzt wird. Wir kônnen daher ohne Besehrânkung der
Allgemeinheit ûber A annehmen, dafi fur ein konstantes s:

Av avv 1 (v 1,..., n)
n

Z\allv\<s (v l,...,n) (65)

t2 < ] ~ * s<t<l (66)

gilt.
Bei der Beurteilung der ,,GrôBe" eines Vektors werden wir anstatt der

,,Euklidischen Lange" von dem Jordanschen ,,écart" Gebrauch machen.
indem wir fur den Vektor f (zx,..., zn) setzen

Offenbar gilt auch fur dièse GrôBe die Dreiecksungleichung. Es sei ferner
daran erinnert, daB im folgenden <x und y durch sâmtliche aktiven und /?

durch sâmtliche passiven Indizes laufen.
Wir setzen nun fur jedes k 1,2,...

rK £ | f£> | (67)
a

und wollen zuerst zeigen, daB eine positive, nur von s, t, tx und t2 ab-

hângige positive Konstante u existiert, derart daB fur k 1, 2,...
I e«+ili — I &Ji ^ — u*k » (68)

l^+i) __r^)| ^2rK (69)

gilt. (69) wird in der Nr. 24 bewiesen, wahrend der Beweis von (68) sich
bis zur Nr. 26 hinzieht.
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23. Wir benutzen im folgenden die Bezeichnungen der Nr. 6.

Um zu einer Abschâtzung der GrôBe der Zahlen <5a, die sich aus den
Gleichungen (16) bestimmen, zu gelangen, setzen wir

m/iv I afiv I (jh * v) > mw 0 (jm 1, w) (70)

wo nach (65) n

Zm^^s (v=l,...,n) (71)

ist, und denken uns beim /c-ten Schritt die GrôBen Aai berechnet aus dem
linearen System

A H tu A -f- I t^ 1 (72)
y

das beim /c-ten Schritt dem System (16) entsprechend gebildet ist.
Dann folgt aus dem Hilfssatz C der Nr. 12

| <5£° |^4*. (73)

Setzen wir konform mit (67)

oc oc

wo der einfacheren Schreibweise halber der Index k bei g und r weg-
gelassen wird, so folgt aus (72)

g ^ r (75)

Durchlaufb nun, wie schon in Nr. 6 gesagt, /? aile passiven Indizes, so gilt

a 0 a ja=1 a y

und daher, wegen (71), (72), (74),

ZZinp^Aa ^so - a + r (76)
a /3

Aus (4) folgt, wenn /i von 1 bis n lâuft,

v=l

24. Ist hier ^ ein passiver Index /?, so folgt aus (14) und (17)

und daher wegen (261), (262), (73)

# (78)
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Wird hier iiber aile passiven Indizes /? summiert, so ergibt sich wegen (76)

Aa ^ (1 + t2)(sa - a + r) (79)
0 P P oc

Da die Ausdrûcke rechts in (78) nicht negativ sind, folgt zugleich aus (79)

rp | â (1 + <2)(sa - a + r) (g 2: 1) (80)

womit, wegen

sa — <r+T=T—(l— 5)cr^ r — (1— s)r n,
(69) bewiesen ist.

In (78), (79) und (80) ist, wenn nur Unterrelaxation zugelassen wird,
der Faktor 1 + t2 durch 1 zu ersetzen.

Fiir g 1 kônnen wir offenbar die q^ mitfuhren :

271 r|r+1) | - 27| #> | ^ ^a)(5cr - or + t) (flr

25. Ist dagegen ju in (77) ein aktiver Index oc, so folgt

y+a y
Wegen (16) ist hier der Faktor in der eckigen Klammer gleich — r**K

so dafi wir sehlieBlich erhalten

e+1) - (1 - e>) W S (q'P - qf) aay ty (81)
Y

und daher wegen (262), (73), (72) :

I r<f+1) I ~ I 1 ~ é? II tf I £ *h2n*,Ay 2^2(Ja - | t£> |) (82)

Hier ist allerdings der Faktor 2t2, der die aus (262) folgende Schranke
fur | q{^ — q{P | darstellt, durch den aus (263) folgenden Faktor
(1 — t) zu ersetzen, wenn dabei nur die Unterrelaxation zugelassen wird.
Im Falle der Einzelschrittiteration (g 1) kann (82) durch

I #+1) I - I 1 ~ ^ II #> 1 0 fo=l) (82^)

ersetzt werden. Summiert man (82) ûber #, so folgt, wegen (74),

271 #+1> | - 271 #> | £ 27(| q™ - 1 | - 1) | #> | + 2t2(a - r) (83)
a a a

Hier sind die Faktoren | g^a) — 1 | — 1, wegen (262), ^ — (1 — t2),

wâhrend, wenn nur die Unterrelaxation zugelassen wird, wegen (263),

[ ^> — 11 — 1 — g<r>^— ^ ist.
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26. Daher folgt durch Addition von (79) und (83)

e«+i li - I e« li ^ - (1 - h) r + 2«,(a - T) + (1+ y (sa - or + T)=

(84)

und da hier der letzte Klammerfaktor nach (66) positiv ist, folgt schlieB-
lich wegen (75) die Relation (68) mit

Wird nur die Unterrelaxation in Betracht gezogen, so ist (84) zu er-
setzen durch

I Qk+i li — I Qk li ^ — tr + (1 — *)(<* — ^) + ** — 0 + r
— o(t — s) <: — tu u>0 (85)

Fur g 1 endlich, also im Palle eines Einzelschrittes, folgt durch
Addition von (79') und (82')

I ftn.1 li - I & li ^ ËHso - a + r) + (| 1 - gjW | _ X)t

Hier ist der Ausdruck rechts fur q^ ^ 1 gleich

und fur q^ > 1 gleich

i)T._ gf)(i - s)a ^ (q^(l +s)~ 2)r

Wegen (261) und (66) folgt schlieBlich auch in diesem Falle die Relation
(68) mit r /l-« \1

u Min^(1 -s),(l + s)(j^j - *2jj (86)

27. Aus (68) folgt nunmehr, daB die nicht negativen GrôBen | qk |x

gegen einen Grenzwert q konvergieren. Die demnach konvergente un-
endliche Reihe ^

^(1 Qa 11 - I Qa+l\l) \Q\l- Q

a=l
ist eine Majorante von ^

nSxa
(7=1

so daB die Reihe (28) konvergiert. Setzen wir

sogilt eK^ 0 (k ->cx>).
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Sei nun ji ein beim #c-ten Schritt passiver Index, und es sei A die erste

ganze Zahl >#c, so daB /? beim A-ten Schritt aktiv wird. Dann folgt
nach (69)

I r(*) r(*) | < y I r(<7+l) r<<*) I < 9 F r < 9P

Da aber fi beim A-ten Schritt aktiv ist, gilt

so daB wir schlieBlich erhalten

\tf\<3eK. (88)

Fiir die beim #c-ten Schritt aktiven Indizes oc gilt

y I r(*) I r < c^ \roc I — tk 8k y

so daB a

\QK\1£(3n-2)eK (89)

^ -> 0 folgt, womit der Beweis des Satzes III vollendet ist.

28. Im Falle der Relaxationsvorschrift etwa vom Southwellschen
Typus11) kann man iiber die Geschwindigkeit der Konvergenz etwas
mehr aussagen. Werden beim /c-ten Schritt die gK aktiven Indizes so

gewâhlt, daB die | r^ \ die grôBten sind, so gilt

und daher, wenn wir von der unvollstândigen Relaxation absehen, so
daB t1= l, t2 0, u 1 — s gesetzt werden kann,

e* li • (9°)

Die Konvergenz ist hier wenigstens vom sogenannten linearen Typus, und
zwar, wie man leicht sieht, auch vor der Transformation, durch die s

nahe an oA herangebracht wurde.

11 In diesem Falle ist fur eine positive symmetrische Matrix und q 1 der Konver-
genzbeweis von Temple [30] erbracht worden.
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§ 3. Verallgemeinerungen und Ergânzungen (Nrn. 29-38)

29. Wir betrachten nunmehr den allgemeinsten nichtstationâren
linearen ProzeB zur Auflôsung von (1) :

Ci HkSk + (E~ BK)A^rif (k 1, 2,...) • (91)

Bei der Untersuchung der Konvergenz eines solchen Prozesses darf man
r\ 0 annehmen, da dies durch eine Translation erreicht werden kann,
sofern \ A \ =£0 ist, so daB es sich um die Bedingung dafûr handelt, daB,

GK HKHK^ ...H, (92)

gesetzt, fur einen beliebigen Vektor | stets

f 0 (93)

gilt. Dabei kann man allerdings nicht mehr, wie im Falle eines stationà-
ren Prozesses, wo aile HK gleich sind, die Fundamentalwurzeln der Hv
benutzen.

Wir fuhren folgende Definitionen ein : Fur eine Matrix A (a^) ver-
stehen wir unter A (A) A2(A) die Quadratwurzel aus der grôBten
Fundamentalwurzel der Matrix A A* ; A^A) soll die grôBte unter den

n
,,Zeilensummen" £ | a^v \ bedeuten und analog AX{A) die grôBte unter

v=l n
den ,,Kolonnensummen" £ \ a v \. Ferner setzen wir fur den Vektor

(94)
If li l«i !+•••+ l^nl | f L Max | ^ |

Dann gilt, wie bekannt und leicht zu sehen ist,

\A?\P£A,(A)\('\, (p= l,2,oo). (95)

Man sieht ebenso leicht ein, daB AP(A) die kleinste Konstante cp ist,
fur die | A Çf \p ^ cp \ £7 \P fur jeden Vektor | ist. Daraus folgt aber
wiederum die Ungleichung

AP(AB) ^AP(A)AV(B) (96)

die iibrigens fur p 1 oder oo auch durch direkte Rechnung sofort zu
bestàtigen ist.

30. Nunmehr ist die folgende Tatsache leicht zu beweisen :
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Satz VIII. Notwendig und hinreichend, damit der nicht stationàre

Iterationsprozefl (91) fur jede Wahl von Çt und r\ gegen die Losung £ von (1)
konvergiert, ist dafi A2t(HKHK_1... Ht) ->• 0 (k ->oo) gilt, fur einen der
drei Werte von p.

BemerJcung. Da8 die Bedingungen AP(GK) ->0 (k ->oo) fur p 1,

2,oo àquivalent sind, folgt direkt aus den leicht beweisbaren Unglei-
chungen

^ (t l,oo) (97)

Beweis. DaB die Bedingung hinreichend ist, folgt aus (95). Es môge
nun umgekehrt (93) fur jeden Vektor | gelten. Sei £K fur jedes k ein
Vektor mit | (K \9 1 und | ^ ^ |, A9(GK). Sind ^>, 4K>, x^
die Komponenten von ÇK, so gilt

wo r]v die Koordinatenvektoren sind. Daher gilt, da | x^ | ^ 1 ist,
wegen GK r\v -> 0 (#c ->oo)

A9(GK) | GK^rK \v ^ £ | GKr[v \p —> 0 (k ->oo)

w. z. b. w.

Korollar. .P-ttr die Konvergenz von (91) is£ hinreichend, daji fur ein festes

q mit 0<q<l und einen der Indizes p 1, 2, oo fur aile k

gilt. In der Tat ist mit (98) wegen (96) das Kriterium des Satzes VIII
erfûllt12).

31. Hilfssatz G. Seien P (p^) eine nicht négative Matrix der Ord-

nung n mit der Maximalwurzél q<\ und AK (k 1, 2,...) eineFolge
von Matrizen, die sâmtlich durch P majorisiert werden. Es sei jedes AK in
eine Summe von zwei abgestumpften Teilmatrizen UK, VK, AK UK + VK

zerlegt, derart, daji E — UK nicht singular ist. Man bilde die Matrizen

HK (E - Î7J-1 VK (jc 1,2,...) (99)

und die Produkte
GK HKHK_1...H1 (100)

1S) Der tTbergang vom Kriterium des Satzes VIII zum Fall der stationàren Itération
kann mit Hilfe des Theorems 1 von We. Gautschi [8] leicht hergestellt werden.
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Dann sind die absoluten Betrâge der Fundamentalumrzeln der HK hôchstens

gleich q und die absoluten Betrâge der Fundamentalvmrzeln der 0K hôchstens

gleich qk Ferner entspricht jedem positiven e < 1 — q eine nur von P und
s abhangige Konstante G derart, da/3

AP{OK) ^C(Q + e)K (k 1, 2,... ; p 1, 2,oo) (101)
gilt.

32. Beweis. Nach dem Hilfssatz E der Nr. 16, angewandt auf Pf, lâBt
sich fur ein beliebiges positives e < 1 — q eine Diagonalmatrix Q mit
den positiven Diagonalelementen qx,..., qn so bestimmen, daB

A^iQPQ-1) - s ^ e + e<l (102)

gilt. Ist dann die Summe der absoluten Betrâge der Elemente der v-ten
Zeile in den Matrizen QUKQ"\ QVKQr\ QHKQ~X bzw. uv, vv, hv, so gilt

Ferner gilt

und daher, wenn die Elemente der Matrizen QHKQ~X, QUKQ-X, QVKQ~~X

bzw. mit hpV, u^ v^v bezeichnet werden,

V +

M v v
und, wenn ûber v 1,..., n summiert wird,

A^l (103)
à—x

Sei h= Ao0(QHKQ-1) M&xhtl hm, dann folgt aus (103) fur
m wegen um ^ s < 1 : **

h ^vm + hum

h<r Vm
L - um ~ 1 - «« 1 - »•

A AjiQHxQ'1) ^ ^(«(Ç-PQ"1) «<e + e > (104)

und ferner wegen (96)

AJQGxQ-1) ^(Q + e)K (« 1, 2,...) (105)
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Aus (104) folgt nach der bekannten Frobeniusschen Ungleichung, daB
die Fundamentalwurzeln von QHKQ~X und daher auch von HK absolut

^ q -f- e und daher ^ q sind ; aus (105) folgt ebenso, daB die
Fundamentalwurzeln von OK absolut <(q + e)K und daher ^ qk sind. Ist
ferner der Quotient der grôBten der Zahlen q^ durch die kleinste gleich c,
so folgt aus (105)

A^{GK) â AO0(Q)AO0(Q-1)(q + e)K c(q + e)K (k 1, 2,...)
woraus, wegen (97), die Behauptungen (101) sofort folgen.

33. Der Satz VI (vgl. Nr. 10) folgt nunmehr leicht. Es genûgt wiederum
anzunehmen, daB t] 0 und aile Diagonalelemente von A gleich 1

sind. Wendet man den Hilfssatz G der Nr. 31 auf AK E — A und die
Matrix P E — AB an, so folgt aus (58) und (101)

wenn allgemein HK — U~1VK gesetzt wird.

Dann folgt aber die Behauptung des Satzes VI und namentlich die
Relation (33) aus (95), angewandt auf HK H1.

34. Satz IX. Sei A eine Déterminante vom Typus

~ OC,

— #„

(106)

wo sàmtliche oc^ ^ 0 und sâmtliche koaxiale Unterdeterminanten, ebenso

wie die Déterminante A selbst nicht negativ sind. Ist dann eines der
Diagonalelemente ocvv 0, so verschwindet A und zugleich verschwindet jeder
der n! Terme in der Entwicklung der Déterminante A.

Beweis. Da die Behauptung fur n 1 trivial ist, diirfen wir beim
Beweis annehmen, daB der Satz fur kleinere Werte von n bereits bewiesen
ist.

Unbeschadet der AUgemeinheit kônnen wir annehmen, daB ocn 0

ist. Bekanntlich entspricht jeder Permutation P der n Indizes 1, 2,..., w

ein Term der Déterminante A, den wir mit TP bezeichnen wollen. Unter
diesen Permutationen wollen wir vor allem diejenigen herausgreifen, die
einen w-gliedrigen Zyklus Cn darstellen. Ist etwa

^n Ve! > K2> • • •? Kn-1> Kn) »
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so gilt TCn — aKlK%... ocKnKl ^ 0. In der Tat, der diesem Term nach
der allgemeinen Determinantentheorie zugeordnete Vorzeichenfaktor ist
(_ i)»»-ij wahrend von den n Faktoren der Faktor (— l)n beigesteuert
wird. Wir haben nun

A^ZTCn + ZTP* (107)
Cn P*

wo die erste Summe uber aile w-gliedrigen Zyklen erstreckt wird, wahrend
in der zweiten Summe die Permutationen P* jedesmal wenigstens zwei
Zyklen enthalten. Ist nun eine Zyklenzerlegung der Permutation P* etwa

P Cx C2... Cm

so moge der Index 1 etwa im Zyklus Cx stecken. Das dem Zyklus Cx
entsprechende Produkt der oc^ steckt aber dann mit einem gewissen
Vorzeichen in einer koaxialen Unterdeterminante von A, in der auch das
Elément #n vorkommt und auf die daher unser Satz bereits angewandt
werden darf. Daher verschwindet dièses Cx entsprechende Produkt und
daher gilt auch Tp* 0 fur jedes P*.

Nunmehr sind aber aile Terme rechts in (107) ^ 0, woraus, wegen
4^0 folgt, daB jedes der TCn 0 ist, und der Satz IX ist bewiesen13).

35. Hilfssatz H. Sei A eine Matrix vom Typus

-«21 «22 -^ (108)

#W1 #n2 • • • ®"ni

wo /&r /te 4= v sâmtliche oc^ ^ 0, «Zfe a^ reell sind und \ A | 4= 0 i^.
I. Gibt es dann einen Vektor £(zl9..., xn) mit nicht negativen xv, so

da/3 aile Komponenten des Vektors A f ' positiv sind, so ist A eine M-Matrix.
II. Gibt es einen Vektor |(#y) mit nicht negativen und nicht sàmtlich

verschwindenden xv derart, dafi aile Komponenten von AÇf nicht negativ
sind, und ist die Matrix A irreduzibél, so ist A eine M-Matrix.

13 Man ubersieht leicht, dafi die gleiche Ûberlegung einen etwas allgememeren Satz
beweist : Eine Déterminante A — (»„„) lafit sich in der Form darstellen

A=ZTCn+ZcAkAl. ,Am
Cn

wo die Tçn aile Terme von A durchlaufen, die w-gliedrigen Zyklen entsprechen, wahrend
m der zweiten Summe rechts die Koeffizienten c gewisse ganze Zahlen sind und die Aus-
drucke Ai A* A koaxiale Unterdeterminanten \on A. Naturlich ist m der zweitenk7 i* 7 m
Summe rechts jedes Ghed von der Gesamtdimension n in bezug auf die », und die Ge-
samtheit der in den entsprechenden Faktoren vorkommenden Indizes stimmt mit der Ge-
samtheit aller Indizes 1, 2,. n uberem.
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Beweis. Wir zeigen zuerst, daB, wenn aile Komponenten xv von f
positiv sind und diejenigen von A£r nicht negativ, dann A sicher eine
M-Matrix ist. In der Tat ândert sich der Charakter einer M-Matrix nicht,
wenn ihre Kolonnen durch positive Zahlen dividiert werden. Dies be-
deutet aber, da8 wir von vornherein aile xv 1 voraussetzen kônnen.

n
Die Komponenten von A |' werden dann zu den Ausdrûcken oc^ — £ <x

Sind dièse Summen nicht negativ, so folgt daraus nach dem bekannten
Hadamardschen Satz, daB A und aile Hauptminoren von A nicht negativ

sind. Wegen | A | ^ 0 ist damit nach der Définition der Nummer 8

der M-Charakter von A erwiesen.
Um nunmehr den Teil I des Hilfssatzes zu beweisen, beachte man, daB

unter den Voraussetzungen dièses Teiles die Komponenten von A | positiv
bleiben, wenn die xv um hinreichend kleine Betrâge variiert werden. Da
sie aber nicht negativ sind, kann man sie dabei sâmtlich positiv machen,
und die Behauptung von I ergibt sich aus dem Obigen unmittelbar.

Unter den Voraussetzungen des Teiles II des Hilfssatzes kônnen wir
durch kogrediente Vertauschung von Zeilen und Kolonnen erreichen,
daB die verschwindenden xv die Indizes k + 1,..., n haben, wâhrend
die ersten xv (v 1,..., k) sâmtlich von 0 verschieden sind. Wâre nun
k<n, so waren die n — k letzten Komponenten von AÇf gleich

k

—Zoc^Xy (fi k + !,...,?&). Da sie aber nach Annahme ^ 0 und

die xl9..., xk positiv sind, folgt daraus oc^ 0 (v l, ...,&;
^ k + 1,..., n), so daB A reduzibel wâre. Daher verschwindet keines
der xv, und unsere Behauptung folgt aus dem Obigen.

Korollar. Ist fur eine réelle Matrix A vom Typus (108), wo fur fx^v
sâmtliche oc^ ^ 0 sind und \ A \ 4= 0 ist, die Inverse A"1 nicht negativ,
so ist A eine M-Matrix,

Bildet man in der Tat die Zeilensummen von A~x, so hat fur den aus
diesen Zeilensummen gebildeten Vektor £ der Vektor A£f sâmtliche
Komponenten 1, so daB die Behauptung aus dem Fall I des
Hilfssatzes H folgt14).

36. Aus dem Hilfssatz H lâBt sich nunmehr ein Kriterium fur den
M-Charakter einer reellen Matrix A (a^) herleiten, bei dem keine An-
nahmen uber die Vorzeichen der a^ zugrunde gelegt werden.

14) Fiir den Fall, dafi sowohl die Déterminante \ A \ als auch sâmtliche a {ji + v)
in (108) positiv sind, ergibt sich aus einem Satz von Herrn Kotelanski, [lia], p. 502, daB
die Matrix A bereits dann eine M-Matrix ist, wenn eine ganze Zeile oder eine ganze Kolonne
von A~x aus nicht negativen Elementen besteht.
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Satz X. Es sei A eine réelle (nxn)-Matrix mit der Eigenschaft, dafi so-
wohl A-1 als auch (A + XE)~X fur aile hinreichend grofien X lauter nicht
négative Elemente hat. Dann ist A eine eigentliche M-Matrix.

Beweis. Nach dem Hilfssatz H genugt es, zu beweisen, dafî aile
Elemente von A auBerhalb der Hauptdiagonale <^ 0 sind. Da man durch
kogrediente Vertauschungen von Zeilen und Kolonnen jedes Elément
von A in die letzte Kolonne bringen kann, genugt es, unsere Behauptung
fur die Elemente der letzten Kolonne von A zu beweisen.

Wir schreiben nun | A + XE | als eine gerânderte Déterminante

Vv Z

wo B (b^) eine quadratische Matrix (n — l)-ter Ordnung ist. Wer-
den die Déterminante von B mit | jB | und die den Elementen b^v ent-
spreehenden adjungierten Minoren von B mit B^ bezeichnet, so liefert
die bekannte Entwicklung einer einfach gerànderten Déterminante fur
| A + XE | den Ausdruck

\A + XE\ =z\B\-nSBllvxilyv

(Vgl. Kowalewski, Determinantentheorie, 1. Aufl., 1909, p. 90.) Daher
folgt fur das zu yv gehôrende algebraische Komplement C(yv) von
A + XE

C(yv)= -ZB^ (v=l,...,n-l)
Damit ergibt sich aber aus unserer Annahme

ZB^ ^0 (X>X0,v= l,...,n - 1)

Entwickeln wir hier den Ausdruck links nach fallenden Potenzen von X,

so beginnt Bvv mit Xn~2, wâhrend die B^v fur ja t v hôchstens vom
Grade n — 3 sind. Daher liefert die obige Ungleichung fur X -> oo

xvXn~2 + O(Xn~*) ^0 (X ->oo)

woraus xv ^0 (v 1, 2, n — 1) folgt.
Wir sehen, dafi in der Tat aile Elemente von A auBerhalb der Haupt-

diagonalen nicht positiv sind, womit der Satz X bewiesen ist.

37. Die Einzelschrittiteration, wie sie durch die Formeln (6) bis (9)
der Nr. 2 beschrieben wird, làBt sich auch auffassen als die Itération des

Residualvektors qk, wie er durch (3) und (4) definiert ist. Wir wollen der
Einfachheit halber im folgenden a^ A^ 1 {fx 1,..., n) vor-
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aussetzen. Es ergibt sich dann aus (8) und (9)

<+1) r™ - qK%SK r%l Q* 1,..., n) (109)

Um (109) vektortheoretisch zu interpretieren, fuhren wir die zu A
gehôrenden Kolonnenmatrizen ein :

/'O 0 alw 0 0\

(v= l,...,n) (110)

0

0

0

0

0

0

0

0

av~lv
1

av+lv

anv

0

0

0

0

0

0

0

Oi

wobei also die v-te Kolonne in Av mit der v-ten Kolonne in A uberein-
stimmt, wahrend aile ubrigen Kolonnen von Av aus Nullen bestehen.
Dann laBt sich offenbar (109) in der Form schreiben

Q'K+1 {E-qKâNK)Q'K (111)

Man beachte andererseits, daB wenn | A | £ 0 ist, durch geeignete WahJ

von fx sich q[ A£[ — rf einem beliebigen Vektor gleichmachen laBt.
Wenn daher das Einzelsehrittverfahren bei einer geeigneten Steuerung
fur die Matrix A fur jede Wahl von fx konvergiert, bedeutet dies, daB die
durch (111) definierte Vektorenfolge qk fur jede Wahl des Anfangsvektors

Qi ëeëen ® konvergiert. Ist daher A insbesondere eine H-Matrix und ge-
nugen die qK der Bedingung (261) des Satzes III, so konvergiert die durch
(111) erzeugte Vektorenfolge qk fur jede Wahl von qx gegen 0, sofern die
Folge der Leitindices NK so gewahlt wird, daB dabei jeder Index unend
lich oft auftritt.

38. Aus dem obigen Résultat ergibt sich nun insbesondere, daB das

sogenannte Hardy-CroBsche Verfahren der sukzessiven Kompensation
fur einen kontinuierlichen Balken (Hardy-Cross Balancing Process for a
Continuons Beam) stets konvergiert, wenn dabei jede Stutze unendhch
oft benutzt wird15).

In der Tat, im Falle des Hardy-CroBschen Verfahrens, wie es von
Oldenburger [16a] formuliert wird, hat man zu setzen

avv=l, av_lv=av, av+lv=rv, aflv=0 (\p—v\>l) (1^=1,...,^), (112)

15) Die Konvergenz des Hardy-CroBschen Verfahrens ist von R. Oldenburger [16a] m
dem speziellen Falle bewiesen worden, daô das Verfahren abweehselnd auf aile Stutzen
mit geraden, und sodann auf aile Stutzen mit ungeraden Nummern m emer festen Reihen
folge angewandt wird.
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wobei

av sv(l-Tv) (v=2,...,n), rv rvTv (v=lf...,n-l) (113)

gilt fur geeignete Tv, rv, sv) die den Bedingungen

O^î^l, O^rv<l, O^sv<l (v= l,...,n) (114)

genugen. Dann ist die Kolonnensumme der (nicht negativen) Elemente
von A auBerhalb der Hauptdiagonalen oflfenbar gleich

av+ rv<l~Tv+Tv=l (i> 2,..., n - 1)

und gleich tx < 1 oder an < 1 bzw. fur v 1 oder v w. Daher ist
die zugehorige Matrix A nach dem Kriterium b) von Nr. 14 eine M-Matrix.
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