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Uber die Struktur

der Burnsidegruppen mit zwei Erzeugenden
und vom Primzahlexponenten p >3

von HENrIcH MEIER-WUNDERLI, Ziirich

Die Frage nach der Struktur der freien Gruppen mit zwei Erzeugenden
und vom Exponenten p wurde von Burnside!) erstmals zum Gegenstand
von Untersuchungen gemacht. Ob die Burnsidegruppen fiir p>3 end-
liche oder unendliche Ordnung haben, ist ein bisher ungelostes berithmtes
Problem der allgemeinen Gruppentheorie?).

Eine der Hauptaufgaben, die sich im Hinblick auf das eben erwihnte
Problem von Burnside stellt, ist nach P. Hall die Bestimmung des zur
Primzahl p und Gewicht w gehorenden Dimensionsdefektes o2 .

Es sei F' die freie Gruppe aus zwei freien Erzeugenden «, und o,.
F? sei der von den p-ten Potenzen in F erzeugte Normalteiler. Ferner sei
F =H,DH,DH,> ... die bekannte absteigende Zentralreihe von F und
F[F?» = BYD BY D BYD - -. die entsprechende Reihe von F/F?.

Mit d,, bezeichnen wir die Wittsche Anzahl?) der freien Erzeugenden
der freien Abelschen Gruppe H,/H,, , und mit d die Anzahl der Basis-
elemente in der elementaren Abelschen Gruppe B} /B} , .

Dann setzen wir mit P. Hall

&2 =d, — & .

Nimmt man als Erzeugende von H,/H,  , die in Paragraph 1 definier-
ten Basiskommutatoren vom Gewicht w, so bezeichne d,,,,,, die

1) W. Burnside, On an unsettled question in the theory of discontinuous
groups, Quart. J. Math. 33 (1902), p. 230—238.

%) R. Baer, The higher commutator subgroups of a group, Bull. Amer. Math.
Soc. 50, 3 (1944), p. 143-160. Vgl. ebenda weitere Literatur zum Burnsideproblem.

8) E. Witt, Treue Darstellung Liescher Ringe, J. reine angew. Math. 177 (1937),
p. 152-160.
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Anzahl der Basiskommutatoren, die in der Komponente «; das Gewicht
w; (¢ = 1, 2) haben?).

Wihlt man als Basiselemente der elementaren Abelschen Gruppe
B/ By, ., ebenfalls Basiskommutatoren, so verstehen wir unter df,, ,,,
die beziiglich dieser Basis genommene analoge Anzahl.

Ist df,, ,,, von der Wahl der Kommutatorbasis unabhingig, so er-
weist sich der Ansatz

dp

— __ &P
(wg,wy) d(wg,wl) 6(w2,w1)

als noch zweckmaéfiger.
Unser Hauptresultat lautet dann : Setzt man

t=amod6 (¢a=1,2,3,4,—1,6),

80 gilt die Formel

1
6&’1’_’_1_3):—3‘?(““—27"'—312) T=O,l,2,...,p"“2.

Als Korollar unseres Hauptsatzes beweisen wir ferner: Die Klasse ¢
der Burnsidegruppen vom Exponenten p>3 st stets = 2p — 15).

§ 1. Basiskommutatoren

Die freien Erzeugenden «,, a5, ..., «, einer freien Gruppe F' (n > 2)
bilden in dieser Anordnung eine Eindeutigkeitsbasis fiir die Faktor-
Kommutatorgruppe von F. Wenn wir diese Bedeutung der freien Erzeu-
genden von F hervorheben wollen, so nennen wir sie auch Basiskommu-
tatoren vom Gewicht 1. An Stelle von o; schreiben wir dann P, ;
(j=1,2,...,n). Ferner sagen wir, P, ;, gehe P, ; voran (in Zeichen
P, ;< P,;) dann und nur dann wenn ¢<(j. Statt P, ; schreiben
wir auch P;.

Wir definieren induktiv, was wir unter der geordneten Reihe der
Basiskommutatoren P, ; (j=1,2,...,d,(n)) vom Gewicht ¢ ver-
stehen wollen.

Zu diesem Zweck diirfen wir annehmen, die Basiskommutatoren vom
Gewicht < ¢ seien bereits erklirt und vermoge einer Anordnungsrela-
tion ,,< * wohlgeordnet.

1) w
t

1 r
d(wlsw2""’w7) =—?_'U—t%n”(t) E__l[ _@1 ﬂl (ié:lwi=w); ’m=(w1,'w2,...,w1)-

) DaB die Klasse ¢ der Burnsidegruppen fiir p > 3 stets > 2p — 2 ist, folgt aus
einem Satz von J. 4. Green, On groups of odd prime-power exponent, J. London
Math. Soc. 27 (1952), p. 476-485.
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Dann definieren wir : Die Basiskommutatoren vom Gewicht ¢ haben
alle die Gestalt P, ;= [P, ;, P, ;] mit den folgenden Eigenschaften

(i) a+b=c
(i) e=b>1
(i) Ist a =0, sosoll P, ;< P,

(iv) Ist a>b und also P, , =[P, ;, P;,], so soll entweder P,
= P, ; sein oder P, , < p, ;.

(V) a,Ic< Pc,i (1 a<c)
(vi) Ist P,,=1[P;,P,,] und P, ,=[P,;, P,,;], so gilt
pP,;< P,,, wenn entweder P, < P,, oder P, < P,, falls
Pe,s = Pb,a"

Es gilt nun der iiberaus wichtige Satz ¢)

1. Satz. Die Basiskommutatoren vom Gewicht <c liefern eine geord-
nete Eindeutigkeitsbasis der freien nilpotenten Gruppe der Klasse ¢ und mit
der Erzeugendenzahl n.

Das heif3t jedes Element aus # mod H,,, hat eindeutig die Gestalt

Z1, Z1, Z1,n Ze,1 PTe, Ze,d —
Pl,ll Pl,22"'Pl,1'n .--Pc,l .Pc,zzuoo.Pcfdcc ( m<xi,1<w) . (l)

Insbesondere hat also jedes Element aus H /H,, , eine und nur eine
Darstellung in der Form

de
IT Py (—oo<m, ;<o) . (2)
k=1

Zur Herleitung der Form (2) geniigen die Kommutatorregeln (mod H,,)

[z, yz] = [=, y]l=, 2]

[y, 2] = [=,2][y, ?] (3)
[, y,2] = [=, [y, 2]] [, 2, y]

[z, y]7' = [y, ]

Im Hinblick auf spitere Anwendungen sollen noch einige spezielle
Basiskommutatoren néher betrachtet werden. Wir beginnen mit dem
Kommutator

[Py, Py, Pyy..., P,]=[P,,rP,] .

r

6) M. Hall, A basis for free Lierings and higher commutators in free groups,
Proc. Amer. math. Soc. 1 (1950). = H. Meter-Wunderli, Note on a basis of P. Hall for
the higher commutators in free groups, Comment. Math. Helv. 26 (1952), p. 1.
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Ebenso soll [P,,rP,,sP,] ein Symbol sein fiir den Kommutator
[[Py, r Py], s Py].

Wir bilden nun weiter die folgenden Basiskommutatoren :
[P;, 7Py, [P,,sP,]] = B
OLs<r;r4+s+2=¢)

[sz rP,, [P,, 8P], [P,, tPl]] = Bs,t
r>o>s<t<r+s+1;r+s+t+3=0¢)
[Py, 7Py, [Py, sP,y, [Py, tP]]] = B, ,
t<s;st+t<r—1;r4+s8+t+ 3=c¢c)

Wir fragen nun nach der Darstellung (2) des Kommutators

[Py, 7Py, Py, s P]
mit r +s + 2 =c.

Zieht man nach den Regeln (3) die s Faktoren P, nach vorne durch,

so erhidlt man mod H, .,

[Py, 7Py, Py, sPy]= II [P,, (r + s — t) Py, [Py, tP,]] (&) .
t=0

In diesem Produkt sind die Faktoren mit 2¢{<7r 4 s bereits Basis-
kommutatoren B,. Die iibrigen lassen sich als B;' mit v =r +s — ¢
schreiben. So erhdlt man die gesuchte Darstellung :

r+8—1
r—1 (8)[ 2 ] (8)__8 )
[Py, rP,, P,,sP,]=IOB,Y I BY ‘-t (4)

t=0 t=r

§ 2. Ein Satz {iber die Exponenten in der Hallschen Identitit ?)

Entwickelt man die Potenz (P{*P;*)" in F mit =z,,2,>0 und
n=2,3,... mod H,, , gemill der Normalform (1), so ist das Resultat
eine Identitdt der Gestalt

f(n) f(n) f(n)
(PP = H P, e o s 00 , (5)
c=1

Dies ist die bekannte Hallsche Identitét und es gilt der fundamentale
Satz von Hall :

Die Exponenten in (5) sind von der Form

min (c n)

o — (Z) al®) (2, @) (6)

k-—l

?) P.Hall, A contribution to the theory of groups of prime-power order,
Proc. London Math. Soe. II. Ser. 36 (1933), p. 29-95.
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Uber die Polynome a, ; in (6) gibt der folgende Satz AufschluB.

2. Satz: Die o) in (6) sind ganze rationale Polynome in den Un-
bestimmiten ([*) und (3*). Die natirlichen Zahlen w und v genilgen der
Ungleichung 1 <u <c—k+ lresp. 1 <v<<e—k-+1.

Beweis. Wir benutzen den Durchzieh- und Labeling-Proze von
P. Hall. Ahnlich wie bei Hall schreiben wir die Potenz links in (5) formal

in der Gestalt
n
H P(lg:l) P(19’2)' . .P(199x1) Pgeyl) P(29’2)~ .. P;Q)x2) . (7)

e=1

Das Symbol (g, ) von P, oder P, heiflt Label von P, oder P, ; es
beschreibt die Stellung von P, oder P, innerhalb des Produktes (7) ein-
deutig.

Man gewinnt nun die Form (5) dadurch, indem man in (7) zuerst alle
P,, dann alle P,, dann alle [P,, P,] = P, , usw., kurzum alle iiber-
haupt im DurchziehprozeB auftretenden Basiskommutatoren P, ; ihrer
Anordnung gemidll an die zugehorige Stelle in (1) bringt, durch eine
Reihe von elementaren Transformationen der Form

.SR ...=...RS[S,R] ... . (8)

Um den Proze eindeutig zu machen, werde z. B. festgesetzt, dall von
zwei gleichen Basiskommutatoren zuerst der am weitesten links an seine
richtige Stelle in (1) geriickt wird.

Ist P, ; der r-te Basiskommutator in (1), so nennen wir den eben ge-
schilderten ProzeB, der P, ; an die richtige Stelle bringt, den r-ten
Schritt.

Es ist klar, dafl in jedem Schritt die induzierten Kommutatoren in (8)
Basiskommutatoren sein miissen. Da das Gewicht von [S, R] grofler
ist als dasjenige des durchzuziehenden Elementes R, so gelangt man
nach einer endlichen Anzahl von Schritten zur gesuchten Darstellung.

Jedem im Prozel auftretenden Kommutator [P, ;, P, ;] ordnen wir
nun ein Label zu. Man erhilt es, indem man mit den als schon gegeben
gedachtem Label L(P,,) und L(P, ;) von P, ,resp. P, ; das Symbol
(L(P, ;), L(P, ) bildet.

Dadurch wird jedem Kommutator in (8) ein Label zugeordnet. Da kein
Kommutator mehr als einmal mit demselben Label auftreten kann, gibt
der zu [P, ;, P, ;] in (5) gehorige Exponent gerade die Anzahl der
verschiedenen Label von [P, ;, P, ;] an.

Daher bleibt also nur iibrig, die Bedingungen dafiir zu ermitteln, dank
deren ein Kommutator mit vorgegebenem Label im Durchziehprozef3 (8)
wirklich auftritt.
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Wie wir beweisen werden, sind diese Bedingungen derart, dafl man
daraus auf die im Satz 2 geschilderten Eigenschaften von (6) schliefen
kann.

Wie bei Hall heilen wir ein System von Bedingungen C, denen die
Unbestimmten 4,, 4,,..., 4, zu geniigen haben, ein System von Be-
dingungen /7, wenn I erzeugt werden kann mittelst logischer Summen-
und Produktbildung aus einem System von elementaren Bedingungen
der Form A;<A4; oder A, = 4,.

Es ist klar, daf} die logischen Operationen der Summen- bzw. Produkt-
bildung ein System von /7 Bedingungen wieder in ein ebensolches iiber-
fithren.

Ist P, der i:-te Kommutator in (1), so bezeichnen wir die Bedingungen
dafiir, dafl ein P, mit vorgegebenem Label in (8) auftreten kann mit £, ;
entsprechend sollen mit @;; diejenigen Bedingungen bezeichnet werden,
die garantieren, dafl der Basiskommutator P, mit gegebenem L(P;)
nach Ausfithren gewisser Operationen (8) links vom Basiskommutator
P; mit vorgegebenem L (P;) auftritt.

Wie bei Hall zeigt man : (i) Die im r-ten Schritt in (8) entstehenden Be-
dingungen E und Q werden gewonnen mittelst logischer Summen- und Pro-
duktbildung aus schon bestehenden E und Q.

Im O-ten Schritt haben wir die £ und ¢ zu studieren der Form: £,
E,, Qi1s Q125 @215 @22

Zunichst sind £, und E, leer. Die Bedingungen ¢,, und @,, sind dqui-
valent mit ¢,<<p, oder g, = p; und 7,<7;.

Die Bedingungen @,, und §,, sind dquivalent mit p; << p, bzw. 0,<<p;.

Im 0-ten Schritt sind also alle £ und ¢ /7-Bedingungen, und zwar, was
wesentlich ist, zwischen den p allein und den 7 allein. Aus (i) folgt daher :
(ii) Die E und Q des r-ten Schrittes sind II- Bedingungen zwischen den o
allesn und den 7 allein.

Genauer konnen wir noch sagen : Die £ und @ des 0-ten Schrittes ent-
halten hochstens dann I7-Bedingungen fiir 7, und 7;, wenn erstens
0; = p; und wenn zweitens (g,, 7;) und (g;, 7;) Label desselben Kom-
mutators vom Gewicht 1 sind, d. h. also Label von P, oder P,. Wegen
(i) folgt daher: (iii) Die E und Q des r-ten Schrittes enthalten hochstens
dann II- Bedingungen fir v, und t;, wenn a) o; = o; und b) (o;, 7;) und
(0;, T;) zwei Label von P, oder P, sind.

Es sei L, ., = ((01, 1), (025 T2)s - - -5 (05 Tc)) Label eines Kommuta-
tors vom Gewicht ¢. Dies bedeutet nach (ii), daB3 zwischen den p allein
und den 7 allein gewisse //-Bedingungen bestehen miissen. Setzt man
e = (0, 05,.-.,0,) und heiBen o und g  &quivalent, wenn fiir o, <p,
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oder g, = p; in g stets auch p;<p; oder g; = g; in ¢ fiir alle Index-
paare ¢, j, so folgt aus der Definition der 7//-Bedingungen, dafl auch
Ly . = ((01, 7y), - - -, (0,5 7,)) wirklich Label desselben Kommutators
ist.

Es moge ¢ genau k verschiedene g, enthalten und es sei

0i, T 04, <0+ - <0y -

HeiBt man jetzt zwei Label dquivalent, wenn ¢ ~ g, so erhilt man eine
Klasseneinteilung aller Label in fremde Klassen. In der Klasse N von

L, . gibt es dann nach vorhin (Z) Systeme von Label, die sich vonein-

ander nur durch die g unterscheiden, d. h. in einem System ist ¢ konstant.

Zur Bestimmung der Anzahl aller Label unseres Kommutators in der
Klasse N hat man also nur die Anzahl aller Label in N zu bestimmen mit
festem p.

Nun wirken nach (iii) die £ und @ nicht auf alle v, sondern nur auf ge-
wisse Blocke der = etwa b,,b,,...,b,. Zwei t rechnen wir zum selben
Block gehorig, wenn (iii) @ und b erfiillt ist. Ist b, = (zf,..., 7)), so
schreiben wir v = (b,, b,,..., b,) und heilen v und 7’ dquivalent, wenn
b,~b; (t=1,2,...,s). Wiederum ergibt sich wegen (ii), (iii) und aus
der Definition der II-Bedingungen, dal mit L, , auch L, ., Label unseres
Kommutators ist.

Enthilt b, genau k; verschiedene 7 und ist also etwa

! ) T
75, <7< 0 <Tj

so gibt es in der Klasse von L, . mit festem g gerade

i (3) o (“’2)
1=1 (k‘l t=r+1 ki

Label mit dquivalenten z. Dabei nehmen wir an, die Blocke seien so
numeriert, daB etwa alle 7 in b, (: =1,2,...,r) natiirliche Zahlen
L undin b, (¢ =r 4+ 1,...,8) natiirliche Zahlen < z, sind; denn
die 7 in einem Block gehoren zu Label die alle entweder zu P, oder zu P,
gehoren.

Die Anzahl aller Label mit festem g in N ist also eine endliche Summe
von Aggregaten der angegebenen Form. Also ist die Anzahl aller Label

"“i 1 r+1 )

150



Summiert man iiber alle Label-Klassen, deren p genau k verschiedene

o, aufweist, so erhiilt man das Glied (Z) a) in (6). Der erste Teil von
Satz 2 ist damit bewiesen.

Nun ist k; stets kleiner oder hochstens gleich der maximalen Anzahl
der iibereinstimmenden g,. Diese ist << ¢ — k + 1. Dies ist der zweite
Teil von Satz 2.

§ 3. Ein Satz iiber nilpotente Gruppen der Klasse ¢ < p. 8)

Der Inhalt dieses Abschnittes ist der Beweis des folgenden Satzes :
3. Satz. G = {P,, P,,..., P,} sei eine nilpotente Gruppe der Klasse
c<p mit den folgenden Higenschaften :

(i) 9= {P,, P,.s,..., P,) ist Normalteiler von G(GV=Q).
(i) G9GEHY st zyklisch von unendlicher Ordnung.
(i) G (@ =1,2,..,7) ist eine Zentralkette von Q.
Dann ist G* = {P{*P3*...P{} mit z,,7,,..., x, = 0 mod p.
Beweis: Aus (i) und (ii) folgt G¥— (PP, . P} mit
(—oo<x;<00).
Der Satz ist richtig fiir die im Zentrum gelegene Gruppe G™. Wir

diirfen daher vollstindige Induktion nach fallenden ¢ vornehmen und
also die Hypothese machen, es sei

@QC+V)P = (PFitr. P} mit %,.,,...,2, =0modp

und Normalteiler von G.

Wir berechnen die p-te Potenz (x-! P,z)? mod (Q“+V). Es ist zunichst
x1P,x = P,[P;, ] mit [P,, x]cG®*V nach (iii).

Jetzt betrachten wir die Hallsche Identitét, die zu dieser p-ten Potenz
gehort. Wegen c<p sind nach (6) alle Exponenten f%) = 0 mod p.
Das heifit es ist also

(z 1P,z = P{[P,,xclP...[ PP....
Wegen (iii) und nach Induktionsvoraussetzung folgt daher

21 P? ¢ = P? mod (Q“™V) |

8) In dieser Form wurde der Satz von P. Hall erstmals ausgesprochen.
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d. h. P? liegt im Zentrum von G/(G“*V)?. Somit ist die Gruppe
N = (P2, (@)
Normalteiler von ¢ und wegen (i) und (ii) von der Gestalt
N = {P{ Py, . P77} mit x;, %;44,..., % = O0mod p .

Da G von der Klasse ¢<p, hat jede p-te Potenz der Elemente in
G wegen der Existenz der Eindeutigkeitsbasis und nach der Induk-
tionshypothese iiber G*+V die Form der Elemente in N. Es folgt also
N = (@9». (w.z.b.w.)

Setzt man wie in der Einleitung F/F? = B?, so folgt aus Satz 3, dafl
die Ordnung von BZ/B? ., gleich p®» ist, vorausgesetzt, daB w<p.
Fiir die G in Satz 3 braucht man nur die Gruppen {P;, P,.,,..., P,}
zu wihlen, wobei P,, P,,..., P, die Basiskommutatoren vom Gewicht
<p bedeuten.

Damit ist bewiesen

o =0 fir w<p,
also auch
0oy oy = 0 fir w, +w,;<p . (9)

Besonders niitzlich fiir unsere Anwendungen ist noch der folgende
4. Hilfssatz. Ist xCH, und yCHpg, so hat man die Kongruenzen

[z, 4] = 1mod H,,,z Hy 4
[2?, y?] = 1 mod H .5 Hy g

Beweis. Es ist zunichst [z, y?] = (v [y, «])?y?. Nach dem Be-
weis von Satz 3 folgt aber

(¥ [y~ «]* = y® mod Ha+ﬁ+('p-—1)ﬁ HY .6
denn die Klasse von H,,g/H, ¢ ist <p. Somit gilt
(%, 9?1 = 1 mod Hyypg HZ, 5 .

Dies ist die erste Kongruenz in Hilfssatz 4.

Die zweite Kongruenz ergibt sich durch zweimalige Anwendung der
ersten. (w.z.b.w.)
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§4. Uber die Struktur der Gruppe H,, , F?/H,, ,

Wir rechnen in diesem Abschnitt mod H,,_,. In diesem Sinne diirfen
wir H, als Abelsche Gruppe behandeln und H, als nilpotente Gruppe der
Klasse c<p.

Zum Studium der Gruppe H,, ,FP/H,, , gehen wir aus von H,.
H, geniigt nimlich den Voraussetzungen des Satzes 3. Man hat als
Gruppen G nur die Gruppen zu bilden {P;, P,,,,..., P,} (i >3),
wobei P,, P,,..., P, die aufsteigende Reihe der Basiskommutatoren
bedeutet vom Gewicht w = 2 an bis zum Gewicht w = 2p — 2. Dann
gind (i)—(iii) erfiillt nach Satz 1.

Setzt man D = H,, ,H}, so ist also nach Satz 3°9)

D/H,, ,= {P3* P{*...P"} mit xz,,%,,...,2, =0modp (10)

und es folgt, dafl man zur Ermittlung von Dimensionsdefekten vom
Gewicht w mit p <w << 2p — 2 stets mod D rechnen darf, was wir
im folgenden fast immer tun werden.

In diesem Sinne hat jedes Element aus F' die Gestalt

P Pyt Pge. . . Pl7 (—oo<@y, ,<00; 0 < %3, 4 ..., 2, <P) .
Bildet man hiervon die p-te Potenz nach (5), so ergibt sich
(p)
Pre pres [T K.Y = PP™ PP% J(x,, @y, ..., @) . (11)
i

Hier sind die K; Kommutatoren in den Erzeugenden P, und vom Ge-
wicht > p in diesen Komponenten. Die K, vom Gewicht 2 <w<p
in den Komponenten P, haben nach (6) Exponenten, die durch p teilbar
sind, so dal man sie mod D weglassen kann.

Wir wollen nun iber die Struktur der h-Bestandteile der p-ten Potenz
(11) den folgenden Satz beweisen :

b. Hilfssatz. (i) Es st fir x;, =r, ¢ =1, 2) mod p

h(2y, Z, T3y ..., 2,) =h(ry, s, %3, ..., 2,) mod D .
(ii) Ber gegebemen gamzen Zahlen 0 < x,, %y,...,2,<p und x, #*0
gibt es eindeutig bestimmie ganze Zahlen 0 < Yy, Y5, ..., Y, <P, So daf

h(xy, 2y, %3,...,2,) =1, Y, Y5,...,¥,))"*mod D .

%) Die Idee dieser Konstruktion geht auf Hall zuriick, der sie wohl erstmals zur Be-
stimmung von 65 ) 6;; 41 und 62 1o anwandte (Dezember 1949). Seine Methode versagte
aber damals beim Versuch der Bestimmung von dg +3> Was mir mit Hilfe von Satz 2, 5,
10 und 11 im Juni 1950 gelang (Brief an Prof. Speiser, 5. Juni 1950).
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Beweis. (i) Ist eine Folge von Satz 2 und (10). In der Tat, da nimlich
h(zy, z,, ..., x,) nach Definition ein Produkt aus Basiskommutatoren
K, darstellt in den Erzeugenden P,, P,,..., P, und vom Gewicht
= p in diesen Erzeugenden, diirfen wir annehmen, K, enthalte gerade
die Komponenten P, ,P,,..., P,, und es sei K; vom Gewicht c,,,

l

ml‘) mz’

in P, ,sodaB Xc, =c>p.
i=1
Wir betrachten nun den zu K; gehorigen Hallschen Exponenten a{)

in (6). Er nimmt, wie man aus dem Beweis zu Satz 2 sofort abliest, die
Gestalt an (12)

o) = X [@p [Ty [T, 1. . [Ty ] [X,] = 1T (x"'i) P 1S X Uy S Oy

wm; \ Um;
und da wegen ¢ <2p —2 und k =9p folgt, daB ¢ —k + 1<p,
ergibt sich auch 1 < #,,, <p. Hieraus ergibt sich unmittelbar (i).
(ii) Zum Beweis von (ii) verfahren wir so. Es ist mod H,,_,

(P1 P’z’z Pgs. . .ng)zl == P;ﬂx pzzma. . ‘Pgif‘xfro(wl;yz,-.-.yi_l) ,

wo Cy..p. .. 4., ein Polynom in den Unbestimmten z,, y,,..., ¥,
bedeutet. Wahlt man bei gegebenen z; (: =1, 2,...,7) in (ii) die y,
(t=2,3,...,r) gemill der Kongruenz
Yo%, = Z, mod P
Yi%s + Clupiger iy =% modp (0= 3,4,...,7),
8o ist y,; im angegebenen Bereich eindeutig bestimmt.

Bildet man die p-te Potenz der obigen Kongruenz, so folgt nach (i)
(P} P3** hy

s = Ppm Ppvemh, . mod D .

,ﬂe,---,ﬂr)) T1,%2,..

Die linke Seite ist aber gleich

Pi™ PR¥a®s (h, ) -l mod D

s¥2s-

und I7 ist ein. Produkt aus Basiskommutatoren der Form [[z?, y7],.. ]
und [[A, 27],...]. Nach Hilfssatz 4 sind diese Kommutatoren in H,,H%
enthalten. Somit folgt

(h(lsuatuuyr))xl = h(xls xz, ooy x’l‘) mOd D .

Damit ist Satz 5 vollstindig bewiesen.
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Es ist hier noch eine Bemerkung am Platze. Da nimlich wegen (6) der
Exponent von K; in (11) durch p teilbar wird, wenn K, in den P, das
Gewicht < p hat, so braucht man mit P, nur bis zu den Basis-Kommu-
tatoren vom Gewicht <p zu gehen. Enthilt ndmlich K, ein P; vom
Gewicht > p, so kann es in den P, mod H,,_, hochstens das Gewicht
p — 1 haben. Ein solches P, liefert somit nur Beitrige in D.

Die h-Bestandteile der Potenzen (11) liegen alle in H,D/D. Dies ist
eine elementare Abelsche Gruppe vom Exponenten p.

Mit D’ bezeichnen wir die Gruppe s, D}, die von allen &
und von D erzeugt wird. Es gilt der

3o s Zr)?

6. Hilfssatz. D’ ist Normalteiler von F und D'|D ist eine Abelsche
Gruppe vom Exponenten p.

Beweis. Wir haben nur noch zu zeigen, dal D’ Normalteiler von F'.
Wir zeigen, daBl D’ Normalteiler von F mod D.
Es sei h ein h-Bestandteil und es gelte

(P% P2, Ptryp = Pros pravj, mod D .

(Z1,%25...,%y)

Dann folgt durch Transformation mit xCF :
(PP, o] Pye [Py, a]...)P = (PP [PYY, x])? (P [Py2, x])P -2 he,

d. h. es ist
PP71 PPas pk = PPE1 fkk PO pkkx. g-1hg

wenn h*, h** und A*** h-Bestandteile bedeuten. Da das Gewicht dieser
h**, p***>p  folgt nach Hilfssatz 4 [h**, P}**] = 1 mod H,, HY.
Somit folgt A* = A**h***.2~1hx mod D, d. h. xz—1hz gehort zu D’
mod D. Also ist D’ Normalteiler von F'.
Mit D" bezeichnen wir die Gruppe {P}, P}, D’}. Dann gilt der

7. Hilfssatz. D" ist Normalteiler von F und D"[D’ ist eine freie Abelsche
Gruppe.

Beweis. Wir berechnen die plte Potenz (2~1P,z)? mod D’. Wegen
1P x = P,[P,, z] folgt x~'Plx = P} mod D'. Das heilt P? und
P? liegen beide im Zentrum von F/D’. Also ist D" Normalteiler von F
und D"/D’ ist Abelsch. Da D’'c H, ist D"/D’ frei Abelsch.

Damit ist der Satz bewiesen.
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8. Satz. Es st

FrH, [H,, ,= {P™ P% h}1 h):.. .h;ﬂ P3s Pis...Pr}
(1, %3y .., 2, =0mod p ; 0 4, 4,,...,4,<p)

Beweis. D"/H,, , enthdlt nach Konstruktion alle p-ten Potenzen
der Elemente aus F/H,, ,. Wie man aus der ermittelten Normalform
der Elemente in D’/H,, , abliest, ist diese Gruppe in H,, ,F?/H,,
enthalten. Somit folgt D" = H,,_,F?. (w.z.b. w.)

Aus den Sitzen 5 bis 8 ergibt sich der wichtige

9. Satz. Zur Besttmmung wvon Dimensionsdefekten im  Bereich
0<<w<2p— 2 hat man nur die Gruppe D’|D zu betrachten. oF, ist

gleich der Anzahl aller h(l, x,, 5,...,2,) und h(0,1, x,,...,2,) mit
0L x,...,x,<p n H,D|D, die mod H,, ,D voneinander unabhingig
sind.

Wir wenden uns nun ganz dem Studium der Defektgruppe D'[|D zu.
Wir haben zu diesem Zweck die Hallsche Identitit der p-ten Potenzen
der Gestalt

(P, P3* P3»...Pyr)?

0<x,x,...,x,< ,'I,UP,, < — 1 13
(P, Pgs Pjs... PP 0< 2, 2 p;w(P,)<p—1) (13)

zu bilden. Dies denken wir uns formal in den Unbestimmten z,, z,, ..., z,
durchgefiihrt, d. h. wir denken uns zu jedem auftretenden Kommutator
von Gewicht w > p in den P, das a!) in (6) in Unbestimmten

Xy, Byye .o, Ly
nach Paragraph 2 bestimmt. Dann gewinnt man das generelle
k(l,z,,...,2,)

und das generelle #(0,1, z,,..., x,).

Da D’|D nach Satz 6 eine Abelsche Gruppe vom Exponenten p ist,
diirfen wir wegen Satz 2 das generelle 2 mod D folgendermaflen behan-
deln (c —k + 1<p):

(i) Man schreibe jedes al) als ganzzahliges, mod p reduziertes Polynom.
Jede Potenz 2" mit n > p wird also reduziert nach der immer giiltigen
Kongruenz zP = x mod p.

(ii) Jetzt ordne man nach den verschiedenen Monomen m; in den z;,
die bet der Reduktion (i) in den Exponenten entstanden sind, d. h. man

156



schreibe % als ein Produkt von Potenzen, deren Exponenten die vonein-
ander verschiedenen Monome m, sind.

Das generelle o (1, z,,..., z,) nimmt dann mod D die Gestalt an

h(l,zy,...,2,)=€Me?... €e*mod D , (14)
wobei m,, m,,..., m, die im Prozef (i) und (ii) entstandenen verschie-
denen Monome bedeuten.

Analog schreibt sich das generelle A(0,1, z;,..., ,) in der Form
h((): 1,.’1;3,..., r) — 8+1 ?42—2 e,:-f-t ’ (15)
wobei m,, m,,..., m, Monome in z,,z,,...,x, sind.

Es gilt jetzt der grundlegende

10. Satz. Die Defektgruppe D'|D wird wvon den Elementen e,
(t=1,2,...,8 + 1) erzeugt.

Beweis. Da h; ¢ {e,, e,,...,¢,,,} haben wir nur zu zeigen, dafl auch
e; C {hy, hy,..., h,}. Dies ergibt sich sofort aus dem folgenden

11. Hilfssatz. Wenn in einer Abelschen Gruppe vom Exponenten p Ele-

mente der Form h(x,,x,,...,%,) = €[ €3*...€1 gegeben sind, wober
My, My, . .., m, simtliche Monome in ,, Zy,..., %, UNd T, Zy,..., %,
unabhdngig voneinander die Zahlen von 0 bis p — 1 durchlaufen, so sind
€1 €y, ..., ¢, in der von den h(x) erzeugten Gruppe enthalten.

Beweis. Schreibt man 4 in der Form

R
k(xuxz’---a x,)=f11f2 ”’fp—-l fp

und gibt man z, die Werte 0,1,...,p — 1, so kann man, weil die
Determinante der Exponenten von Null verschieden ist, die

fi (i=l,2,...,p)

auflosen und durch die %(x) ausdriicken. Die f, haben dieselbe Gestalt
wie die A(x), aber die Exponenten sind nur Monome in z,, z,, ..., z,.
Wiederholt man das Verfahren mit «,, usw., so erhélt man schlieBlich
€1, €,...,¢, durch die h(x) ausgedriickt.

§ 5. Uber die Struktur der freien nilpotenten Gruppen der Klasse c.

Satz 1 ist die wichtigste Aussage iiber die Struktur der freien nilpoten-
ten Gruppen. Achtet man bei einem vorgelegten Kommutator nicht nur
auf sein Gewicht, sondern auch auf seinen Typus, so kommt man zu

157



Aussagen, die besonders im Hinblick auf das Problem von Burnside
niitzlich sein kénnen.

F sei wie immer die freie Gruppe mit P, und P, als freien Erzeugenden.
Ein Kommutator K heillt vom Typus (w,, w,), wenn er in der Kompo-
nente P, das Gewicht w,, in der Komponenten P, das Gewicht w, be-
sitzt.

Sind K und L Kommutatoren aus ¥ mit den Typen (w,,w,) resp.
(vg, v1), s0 sagen wir, K und L seien vom gleichen Typus, wenn w, = v,
(¢ =1, 2). Der Typus (v,, v;) von L heillt groBer als der Typus (w,, w,)
von K, wenn (v,,v,) # (w,, w;) und v, > w, ¢+ =1, 2).

Wir kénnen jetzt den Satz behaupten

12. Hilfssatz. Die Normalform (1) eines Kommutators K vom Typus
(w,y, wy) tst etn Produkt aus Basiskommutatoren, deren Typen = (w,, w,)
sind.

Beweis. Da der Satz fiir die Kommutatoren vom Typus (w,, w;) mit
w, + w, = 2 richtig ist, dirfen wir vollstindige Induktion nach w, + w,
= w>2 machen und also annehmen, ein Kommutator K vom Typus
(wy, wy) mit w, + w, <w sei darstellbar in der Form K = K*K**
wobei K* ein Produkt aus Basiskommutatoren vom Typus (w,,w,)
darstellt, wihrend K** ein Produkt aus endlichvielen Kommutatoren
vom Typus > (w,,w,) bedeuten soll.

Wir haben zu beweisen, daB die Induktion unter diesen Voraus-
setzungen funktioniert. Es sei K ein Kommutator vom Typus (w,, w,)
und w, + w, = w. Ist K = [L, M], so ist fiir L und M die Induk-
tionsvoraussetzung erfiillt. Das heilit es ist K = [L* L** M* M**].
Nun verwenden wir die bekannten Identitdten

@) (%, y2) = (2, 2) (2, yF ,
(b) (zy,2) = (z,2) (¥, 2) ,
(c) (, y~L 2V (y, 2L, @) (2, 2L, y)* = 1 .

Aus (a) und (b) folgt sofort K = [L*, M*].... Punkte bedeuten im
folgenden immer ein Produkt aus endlich vielen Kommutatoren, deren
Typen grofler sind als die Typen der angeschriebenen Kommutatoren.
Wendet man (a) und (b) auf [L*, M*] an, so folgt, daB wir uns auf die
Betrachtung des Falles beschrinken diirfen, wo K = [P;, P,;], mit P;
und P, als Basiskommutatoren. Da w >2 sei etwa P, = [P;, P,] und
P, > P, > P,. Dann folgt aus (¢) K = [P, P;, P,]1"'[P,, P;, P,]...

158



Fiar [Py, P;] und [P, P,] gilt wieder die Induktionsvoraussetzung,
das heift

[P,,P,]=IP,... und [P, P,]=1IIP,... .

Aus (a) und (b) folgt daher K =IT[P,,, P,]*II [P,, P,]... Beachtet
m n

man jetzt, dafl die Basiskommutatoren P,,, P,, P,, P, alle nach P,
kommen im Sinne der Anordnung der Basis-Kommutatoren, so fiihrt
eine Fortsetzung des Verfahrens nach endlich vielen Schritten zur ge-
suchten Darstellung von K. Denn es gibt ja nur endlichviele Kommu-
tatoren der Gestalt [P,,, P;,] und [P,, P,], wenn die Indizes der
Basiskommutatoren in jedem Schritt erhoht werden. (w.z.b.w.)

Mit H,, ,, bezeichnen wir die Gruppe, die aus allen Kommuta-
toren vom Typus > (w,, w,) erzeugt wird. Diese Gruppe ist offensicht-
lich Normalteiler von F und wir wollen die Struktur dieses Normalteilers
nidher beschreiben.

Aus Satz 1 und Hilfssatz 12 ergibt sich der

13. Satz. Sei N die freie nilpotente Gruppe der Klasse ¢ mit zwei Er-
zeugenden und P, , P, ...., P, die aufsteigend geordnete Reihe der
Basiskommutatoren von N vom Typus = (w,, w,). Dann ist die Gruppe
Niwy 0y die von allen Kommutatoren vom Typus = (w,, w,) in N er-
zeugt unrd, Normalteiler von N und von der Gestalt

—_— X Z
N(w2,w1) —_— {P:::i Pmi. . 'Pﬂfl}

mit —oco<x,<oco (t=1,2,...,1).

Im Gegensatz zu den Faktorgruppen F/H, , ist die Faktorgruppe
F|H,,, ,, fir w, + w,>2 nicht nilpotent ; hingegen ist die Kommu-
tatorgruppe von F[H, ., nilpotent von der Klasse c=max {w,,w,} — 1.

§ 6. Uber die Struktur der e.

Wir wollen die Struktur der e-Elemente in Satz 10 genau bestimmen.
Wir gehen aus von (1, z,, «;,...,2,) in (14). & ist Endresultat eines
Durchziehprozesses, der die p-te Potenz

P, P®...P*...P, Phr. .. P&

1 4
in die Form (1) iiberfiihrt. Er ist genau so zu erkliren wie in Paragraph 2,
nur haben wir hier r > 2 Erzeugende P,, P,,..., P,. Das hei}t man
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hat nacheinander die Basiskommutatoren in den Erzeugenden
p,P,,... P,

ihrer Anordnung gemi} Paragraph 1 an die richtige Stelle in (1) zu iiber-
fiihren.

(a) Die e sind also zunichst Produkte aus Basiskommutatoren @, ,
vom Gewicht ¢ > p in den Erzeugenden P,, P,,..., P,. Das heif3t
sie haben die Gestalt

e= II Q7% .
H =41

Ist etwa m = zj!...z{! das Monom, das zu e gehort in (14) mit
2 <<ty <---<t; K r, so folgt aus dem Beweis von Satz 2 (vgl.
etwa (12)), daB alle @, ; Basiskommutatoren in den Komponenten
P, P, .., P, (und eventuell P,) sein miissen (und nur in diesen),
wobei noch das Gewicht w,, von P, in @, ; (k=1,2,...,1) der Be-
dingung w;, >a; (k=1,2,...,1) geniigen muB.

(b) Mit e* bezeichnen wir diejenigen e in Satz 10, die wenigstens einen
Kommutator ¢, ; vom Typus (w,,w;) mit 1 << w,<p enthalten.

Jedenfalls gehoren die e in (15) nicht zu den e*. Denn aus (a) folgt, daB
alle e in (15) Produkte aus Basiskommutatoren in den Erzeugenden
P,, P,,..., P, darstellen. Da P, Komponente von jedem P,, P;,..., P,
ist und ¢ > p sein mufl, folgt w,(@, ;) = p, wenn wir mit w,(¢) das
Gewicht von @ in P, bezeichnen.

Ein e* aus (14) enthélt ein ¢, ;, dessen Typus (v,, v;) der Bedingung
1 <v,<p geniigt, d. h. es ist fiir dieses @, ;

l
1 <k2wz(Pik)‘wik =10 <P . (16)
=1

(c) Da also das in (b) betrachtete @), ; hochstens v, Komponenten aus
der Reihe P,, P;,..., P, enthalten kann, ergibt sich fiir e* die Gestalt
e*=11Q, ;..., wobei alle @, , die Komponente P, mindestens

?
(p — v,)-fach enthalten. Zum Beispiel tritt ein @, ; auf der Gestalt
Qp,j = [Pip wio‘Pp wil‘P cos Wy Pi;_l: (wi; — 1) Pi;]

2'1 3.
und wir wollen zeigen, daf das zugehorige a, ;== 0 mod p. Zu diesem
Zweck haben wir den zu @, ; gehorigen Hallschen Exponenten zu be-
stimmen. Nach der Methode in Paragraph 2 bilden wir das generelle

Label LQ,,.
Es hat die Gestalt

((Qla Tl)a (927 Tz)a ° vy (Qp’ Tz)))
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und wir haben nun die E-Bedingungen zu formulieren. Sie lauten, wie
m
man sich sofort iiberlegt, wenn noch X w, = w,, gesetzt wird,
k=0

01 <<Qx<<QP3<<: - <Qwin+1
Ql<9wm+2 <me+3<' © <QUJ1n+1+1 (7n - O’ ]‘9 s l - 2)
91<le_1+2<' <Oy -

Da die g alle verschiedenen Zahlen von 1 bis p sein miissen, folgt
0; = 1. Da aullerdem zwischen den 7 keine Bindungen bestehen, ist die
Anzahl aller Label, die den obigen Bedingungen geniigen, gegeben durch

-1
(p__l) 7 (p~—1—~wm_]_> A W S e I
Cim i

. 1
wio m=1 wy 2 2 ¢

Wegen 1 <w, <p—1—w,_; ist a, ;7= 0mod p.

Aus dem Bewels zu Satz 2 folgt weiter, dal die ¢, ;, abgesehen von
der Anordnung genau dieselben Komponenten P,, P, , Pz,, ey Py
gleich oft enthalten miissen. Die @, ; haben daher alle denselben Typus.
Uberhaupt folgt allgemein aus (a), dap e* ein Produkt ist aus Kommuta-
toren, deren Typen = (vy,v,), wenn @, ; den Typus (v,, v,) besitzt.

Die e* sind also neben der Bedingung (16) noch dadurch charakteri-
siert, daf3

I l
p_zwik+2w(Pik)wik:v2+vl (p <o, +v, < 2p—2), (17)
k=1 k=1

worin w(P;;) das Gewicht von P, bedeutet.

Die Bedingungen (16) und (17) konnen als die Existenzbedingungen
der e* angesprochen werden. Denn zu gegebenem Typus (v,,v,) mit
1 <wv,<p und p < v, + v, <2p — 2 gibt es, wie aus unsern Uber-
legungen hervorgeht, genau soviele e* als es verschiedene Losungen gibt
von (16) und (17).

(d) Man betrachte nun Elemente ¢ mit den folgenden Eigenschaften :
(i) ¢ liegt tn der Defektgruppe D'[D.

(i) t=T*1mod H,_,, D, wobes T ein Produkt aus Basiskom-
mutatoren bezeichnet, die alle denselben Typus (v,,v,) haben.

Wir bezeichnen die verschiedenen Losungen von (16) und (17) bei ge-
gebenem Typus (v,, »;) im Bereich

(p<ve+v, <2p—2;1<0v,<p)

mit ]I(”v oy
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Wir wollen jetzt eine Methode angeben, mit deren Hilfe man unter
gewissen Voraussetzungen die Unabhingigkeit der e*-Elemente beweisen
kann. Es gilt ndmlich das folgende Kriterium : Um zu beweisen, daf8 bei
gegebenem Typus (vy, v,) mit 1 < v, <k die II7, , , Elemente e* vonein-
ander unabhdingig sind, geniigt es zu zeigen, daf es zu jedem festen Typus
tm Bereich (1 <v,<k<p;p<Lv,+v,<2p— 2) sicher II?

(” 3”1)
Elemente T vom Typus (vy,v,) ¢ibt, die modH, ., D fuoneina?:der
unabhdingig sind.

Beweis. Da nach (a) und (c¢) die e* mit v,>% und alle nicht — e*
die Basiskommutatoren vom Typus (v,, v;) mit 1 v, <<k gar nicht
als Faktoren enthalten kénnen, folgt aus dem Erfiilltsein des Kriteriums
und der Bedeutung der e in Satz 10 die Unabhingigkeit aller e* vom
Typus (v, v,) mod H, ,, .,D. (w.z b.w.)

Ist das Kriterium erfiillt, so folgt aus Satz 1 die Unabhéngigkeit aller
e*mit (1 <v, <k<p;p <v,+ v; <2p — 2). Das heif3t es ist dann

14 — P
6(”2,01) =1

(vg,vy) °

(18)

Wir werden im nachfolgenden Paragraphen die Anzahl IIf, . fir
1 <wv, <3 berechnen und das Kriterium in diesem Bereich in den
Paragraphen 8 bis 12 als erfiillt nachweisen, so dafl wir nach den vorigen
Bemerkungen zu einer Bestimmung der Dimensionsdefekte (18) fiir

v, = 1,2, 3 gelangen werden.
§ 7. Berechnung der Zahl I77, , ., , (v=1,2,3;0<7<p—2) .

Die Zahl II7, ,,._,, ist nach Paragraph 6 gleich der Anzahl der ver-
schiedenen Losungen der Gleichungen (16) und (17), denen wir die Form
geben

q
(1) >) wz(Pik) =v<p
q

k=1

2 <iy iy < -+ <4, K1) (19)
(ii) p——q—}—Z’w(P‘k)-—:p-{—r XVl x Vg x = Y =
k=1

1.Fall. v»=1. Dann folgt aus (19) ¢ =1, also w,(P;) =1 und
w(P;) = v+ 1. Dadurch ist P, eindeutig bestimmt und es folgt

”?Lw:-n =1. (20)

2.Fall. v = 2. Wir unterscheiden zwei Fille (a) und (b).
(a) Hier sei ¢ = 1. Dann folgt aus (19)
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Das heifit P, ist ein beliebiger Basiskommutator vom Typus (2, v — 1).
Solcher gibt es nach Witt fiir v > 2 gerade d, ,_,, .
(b) Hier sei ¢ = 2. Dann folgt

wy(P;) = wy(P,) =1 und w(P,)+ w(P,)=1714 2.

iy
Die letztere Gleichung besitzt wegen 4, < ¢, und also w(P;) < w(P,)
|7
gerade 3

P, eindeutig bestimmt. Also gibt es in diesem Sonderfall genau [t _{2— 2]
Losungen fir 7 > 0.

Aus (a) und (b) folgt wegen d(z’t_l) — [%] ’

Losungen. Fiir jede Wahl von w(P; ) ist dann P; und

IIf, ooy = [a——;ir—} (tr=amod 2; a=1,2) (21)

3.Fall. v=3. Essei t=amod6 mit a =1,2,3,4, —1,6.

(@) ¢=1. Dannist w,(P,) =3 und w(P;)= 7+ 1. Das heil3t
P, ist ein beliebiger Basiskommutator vom Typus (3, v — 2). Nach
Witt gibt es daher d; ., Losungen, falls 7 > 3

2
d(3,r—2):[T 6 T] . (22)

(b) ¢ = 2. Dann folgt

wy(Py,) + we(Py,) =3 und w(P,) +w(P;)=7v+2.

Wegen 1, <14, ist w(P;) <w(P;). Sei

P

und w,(P;) = 1. Dann ist P; eindeutig bestimmt, wéhrend P; nur
dem Typus nach bestimmt ist. Also gibt es in diesem Fall
74+2
=]
E d(2,r—-k)

k=1

verschiedene Losungen.
Ist w,(P;) =2, sosei

w(Pi1)=z+2—k(k=["g2]+1, ...,1—1) .

Dann ist P; bestimmt aber P; nur bis auf den Typus (2, v — k). Also
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gibt es in diesem Fall _—
E d(2 r—k)

T+2] 11
Losungen. -
Im ganzen haben wir also X'd, , ;, Losungen fir 7 > 2. Nun ist
nach Witt k=1

t—k+1
Somit folgt 1 -2
b d(2,r~~k) - [—4—] . (23)
k=1

(¢) ¢=3. Dann ist w,(P;) + wy(Py) + wy(P;) =3 und also
w( ,k) =1 (k=1,2,3). Weiter ist w(P;) + w(Py) + w(P,)=1t+3.
Aus 1, <7, <y folgt w(P;) <w(P;) <w(P,;), das heifit wir haben

die ganzzahligen Losungen der Ungleichungen

w(Pil) Sw(Py) <7+ 3 —w(P; J— w(P,)

zu bestimmen. Da jede Losung die P, (k = 1, 2, 3) eindeutig festlegt,
ist die Anzahl der Losungen dieser Ungleichung gleich der Anzahl der
verschiedenen Losungen in Kommutatoren P, , P, , P,

Eine leichte Rechnung liefert fiir diese Anzahl die Werte

(t+a)(r+6—a)
12

(t+a)(r+ 6 —a)
12

(@=1,2,3,4),

(24)

+1(@=—1,86)

Summiert man fiir festes a die Formeln in (22) bis (24), so erhilt man
die gesuchte Anzahl ITf, , . .. Es resultiert die merkwiirdige Formel

1

H(%,p-f-Z——m = .é*!— (a —!_ 27 + 31:2) (25)

(r=amod6; a=1,2 3,4, —1,6)

§8. 0 pyey fiir T=0,1,2, ..., p—2.

Wir berechnen das Element ¢*, das zum Monom xz, gehort mod H,,, D
Es hat offenbar die Gestalt

e* =[P,,(p — 1) P,Jmod H, ,D . (26)
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Da D’ Normalteiler von F nach Satz 6 gehort mit e* auch der Kom-

mutator [e*, x] zu D’. Aus (26) ergeben sich daher sofort die weiteren
Elemente in D'|D :

[e¥, =P 1 =[P, (p+7v—1)P,Jmod H, ., , D . (27)
Setzt man 7' (t) = [P,, (p + T — 1)P,], so erkennt man, daB die
T fir t=0,1,...,p — 2 alle voneinander unabhingig sind mod D.

Wir haben also das Kriterium in Paragraph 6 als erfiillt nachgewiesen
und es folgt nach Paragraph 6 :

pse-ny =G pyey (t=0,1,...,p—2). (28)

§9. 05, p19(r=0,1,2,...,p—2)
Wir wollen zeigen, dafi das Kriterium in Paragraph 6 auch im Fall
k = 2 erfillt ist. Das heif}t wir beweisen : Fiir jedes 7 =0,1,...,p — 2

gibt es in H, D/H, . ,D sicher IIf, ., , voneinander unabhingige
Elemente 7', die alle Produkte aus Basiskommutatoren vom Typus
(2,p + v — 2) sind.
Wir beginnen mit 7 = 0. Wir berechnen das zum Monom 2 gehorige
e*. Nach Paragraph 6 folgt
5]
2
ex=II [P,,(p—2—1)P,, [Py, I1P]]*”'mod H,,,D .
1=0
Die Hallschen Exponenten a,; berechnen wir nach der Methode von

Paragraph 2. Es sei ((gy, 71),- .-, (05, T,)) das generelle Label des oben
angeschriebenen Faktors. Dann lauten die £ Bedingungen

1 <01<0:< - <0p1 P50 01<0p 1 <Opy1<' " <@ XP .

Da nach Paragraph 2 alle o, (¢ =1,2,...,p) verschiedene Zahlen
von 1 bis p darstellen, folgt ¢, = 1. Zur Erfiillung der obigen Bedin-

gungen hat man dann offenbar (fl’; 11) Moglichkeiten, d. h. es gibt,

wie man sofort iiberlegt, ebensoviele Klassen nach den ¢. Da die p alle
verschieden sind, gibt es keine Bindungen zwischen den 7, d. h. es gibt
in jeder Klasse x? Label. Somit folgt a, ; = (— 1)’** mod p.

Das gesuchte e* hat also die Gestalt

[*F]

2

e*(a2) = II [P, (p — 2 —1) Py, [Py, 1P]]""""" mod H,,,D. (29)
=0

p+1
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Nun sei 1 <7 <p— 2. Dann findet man durch Kommutatorbil-
dung mit den im vorigen Paragraphen gefundenen Elementen 7'(7) die
weiteren

T(T>l):[P25(p — 2 4 Z)Pl’[Pz’(T"'l)Pl]] (l= 1$2""s T) . (30)

Wieder ist klar nach Satz 1, daf3 diese 7'-Elemente voneinander un-
abhéngig sind mod D.

Im Falle der ungeraden v haben wir also im Bereich 0 <7 < p — 2
gerade IT}, ,. . ,, unabhingige Elemente T' angeben konnen vom Typus
2,9+t —2).

Nun sei 7 gerade und >0. Ersetzt in (26) das Element P, durch den
Kommutator [P,, (r — 1) P,, P,], so erhilt man wieder ein Element
aus D' mod D, viz. [[P,, (v — 1) Py, P,], (p — 1) P,].

Durch Benutzung der Formel (4) erhilt man fiir den vorstehenden
Kommutator die Darstellung

p+r— a]
57 [ e .
B, p+r+1 0
l 0 l T—1
Wegen (30) kann man die Elemente B, ({ =0,1,...,7 — 1) elimi-
nieren. So gewinnt man ein 7'-Element der Gestalt
-3
[=5-] |
I B
l=1
das man wegen p # 2mod D in der Gestalt
p+r—3
2
I ByY modH,,,.,D (v=2,4,....,p —3) (31)

l=7

schreiben kann. Damit haben wir in jedem Fall die gewiinschte Anzahl
von unabhingigen Elementen 7' im Typus (2,p + v — 2) angegeben.
Damit ist nach Paragraph 6 bewiesen

0,prr-2 = UG pirg(T=0,1,...,p —2) . (32)
§10. 05 5, . 3 (r=0,1,...,p—2) .
Wie im vorigen Paragraphen zeigen wir : Fiir jedes 7=0,1,...,p — 2

gibt esin H, D/H, .. ,D sicher IT} , . ;, voneinander unabhéin-
gige Elemente 7', die Produkte sind aus Basiskommutatoren vom Typus

(33p+7—3)
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Wir beginnen mit 7 = 0 und berechnen das zu x3 gehorige e*. Es hat
die Gestalt

e*=[P,,(p—3)P,,2P,]... modH,,D . (33)

Nun sei 7 > 2. Aus dem Element (26) erhidlt man durch Kommu-
tatorbildung die weiteren 7'-Elemente

[Py, (p— 1) Py, Py, P\, P, T, (34)

wobei 7 — 2 unter den P;, immer gleich P, sein sollen, die restlichen

gleich P,. Durch Einfiigen von eckigen Klammern in (34) kann man
immer auf genau eine Weise erreichen, dafl der obige Kommutator zu

einem Basiskommutator wird. Man gelangt auf diesem Wege zu (; ) von-

einander unabhingigen Elementen 7 vom Typus (3,p + v — 3).
Es bleibt also noch zu zeigen, daB es fiir 7 > 1 sicher

T 1
H(z:;’p+.t__3)—“ (2) :?;—1(57‘{‘0/)

von den schon konstruierten unabhingige Elemente 7' vom Typus
(3,p+ v — 3) gibt.

Wir haben bisher die Elemente 7' in (29) und (31) noch nicht benutzt
zur Ableitung von neuen Elementen 7'. Dies wollen wir jetzt tun.

Nach (29) und (31) gibt es fiir gerade ¥ mod H, .., D ein T der Ge-
stalt

Topn= II [Py,(p+k—2—1)P,,[P,, lpl]](_l)l .

Durch Kommutatorbildung gewinnt man Elemente 7' der Gestalt
[Tw,y, [Py, (v—k—1) Py]]mod H,, D (k=0,2,4,...,<7v—1). (35)

Wir wollen zeigen, dal3 alle diese 7-Elemente voneinander und auch
von den fritheren T'-Elementen unabhingig sind. Den Beweis fithren wir
0, indem wir die Elemente in (35) in der Form (1) schreiben und zeigen,
dafl diese Elemente in den Basiskommutatoren

[P, (p—2) Py [Py, kP11, [P, (v—1—k) P,]] (k <T—1—F)
[Pz: (p—2) Pp[[Pz, kP,], [P,, (T—l““k)P1]]](k>T—-1 — k)

B

E,r—1—-k —

voneinander unabhéngig sind.
Wegen 0 <t<<p—2 ist 1—1—k<p—3 in (35). Dies be-
deutet, daB die Elemente By ,_;_; bei der Uberfiihrung in Normalform
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nur von 7' (vgl. 35) herriihren kénnen, und zwar nur vom ersten Faktor,
der die Gestalt hat [P,, (p — 2) P, [P,, k P,]].

Setzt man
Bm,-r——1~m (m < T—1— m)
Coiocrem= (m=0,1, ..., 7—1)
Bm,r—l—m BT——-I~1)Z,W& (m >1—1— m) (36)
so nehmen die Elemente in (35) mit Beachtung der Rechenregeln (3) die
simple Form an (37)

[T.[Py(z—k—1)P,]] =C4 ., 1 ... mod H, , D(k=0,2,4,...<tr—1)

p+r+1

Da die C} , , ; voneinander und auch von den fritheren schon kon-

struierten 7' unabhingig sind mod D, folgt die Existenz von [T %2— 1]

weiteren 7' vom Typus (3,p + v — 3) fir = > 1.
Die Fille 7 = 0, 1 sind also als erledigt zu betrachten und wir diirfen
jetzt 7 > 2 voraussetzen. Es ist unsere Aufgabe, zu zeigen, dal es noch

‘ T T+1
v (3)-[75]

weitere unabhingige 7' gibt vom Typus (3, p + 7 — 3). Diese Aufgabe
wird in Paragraph 11 fiir ungerade, in Paragraph 12 fiir gerade t gelost.

§1l. t=2n+4+1>2.
Wir betrachten die spezielle p-te Potenz (P, P32 P3*)? mit
P,=[Py,(vr—1—k)P,,[Py,kP]] (k=0,1,...,9—1)

r) "[t+l]: 2t+a—3

und
g:H(%,p+'c—3)_* (2 9 31

und berechnen das zum Monom z,x, gehorige e*.
Es ergibt sich zunichst

p—3

2
eX(xpxy) = I[Py, (p — 2 — 1) Py, [Py, I P,]]"

=0

P—2
II [Py, 1Py, [P, (p—2—1) P,]]"...mod H, D .

=21

2

¢, ist nach der Methode in Paragraph 9 zu bestimmen. Man findet fir
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_ p—3 p—1 . _p—1 o
l=0,1,..., 3 denWert(l+1) undfurl——————2 yeesp — 2

den Wert (p —1 ) . Es folgt also
p—1—1
p—2
e*(x,x,) = 11 [Pk7 (p—2—1) Py, [Py, Pl]](_l)l+1 mod H, ...D. (38)
1=0
Wir behaupten, dafl die e*(z,z,) (k=10,1,2,...,9 — 1) in den
Elementen C,, ., , (m=1,3,5,...,29 — 1) voneinander und also

auch von den fritheren 7' unabhéngig sind.
Nach der Formel (3) folgt (fiir I<p — 2)

t—-2—2k (p-z—l) q (p—2——l)__(p~2-—l )
Peo(p—2=O) P = I Ppf I P )7t (3

und es bedeutet

Pk+8:[Pzr(p_l'"T*3~'l~(k+8))P1:[P23(k+8)P1]] 3

Da I<p — 2 konnen bei der Uberfiihrung von e*(x,x,) in die
Form (1) die Elemente C,, ,_;_,, fiir festes k nur herriihren von

Pk+8:[P2:(p_—2)P1:[P27(k'+'8)P1]]'
Das heiflt es muf} fiir festes k
e=1—1—k—12>20 (40)

sein. Da wir (38) nur in bezug auf die Elemente C,,, , . ,,(m =1,...,9)
genau bestimmen wollen, ist es wichtig zu entscheiden, welchem Bereich
das ¢ angehort. Wir zeigen, dafl ¢ <7 — 2 — 2k. Zusammen mit (40)
bedeutet dies I >k + 1 oder v — 2m >k + 1. Diese letztere Un-
gleichung ist bestimmt richtig, wenn sie fiir die maximalen Werte von
m und k erfiillt ist. Da max (m) =¢g und max (k) =g — 1 folgt
7 > 3g und dies ist gleichbedeutend mit ¢ < 3. Da 7 ungerade und
also @ = 1,3, —1 ist dies eine richtige Ungleichung.
Wir koénnen daher (40) ersetzen durch

e=2m—1—k; 0<Le<1r—2—2k. (40)*

Somit folgt schliefllich die Darstellung

e¥* == QI}I C(g,,;f;f}tzm) k=2 =0,2 4 <qg—1
(xkx2) - 2m—1,1—2m ( - ¢ o= ’ H L g ) (41)
m=k"+1
e* T s SN =2k —1=1,3, ... <g—1
(T ,) == omet,omzm  *Corr—1,r—2k ( =1,3,...<g—1)

m=k'
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Der Faktor C,;/ _, . o3 In e*(x,x,) fiir ungerade k riihrt her vom
letzten Faktor in (38) fiir [ = p — 2. Dieser ist ndmlich gleich B, , ,
fir v — 1 — k>k. Diese Ungleichung ist fir £t =0,1,...,9 — 1 er-
fiilllt, so daB man also B}, ; =0 ., 074 ;4 Wirklich durch Cyeori
ersetzen darf.

Bezeichnet man den Exponenten von C,,_; . s, in e*(z,x,) mit
diyam M=1,2,...,9;k=0,1,...,9 — 1), so hat man zum Be-
weis der Unabhingigkeit aller e*(x,x,) zu zeigen, daB || d;_, || %= 0
mod p. Substituiert man ¢ fiir ¥ + 1 und % fiir m, so nimmt unsere
Determinante die Gestalt an

_(p—T—2+2Fk\ .
d,.k_.( 9k — g )(z<2k)
dy = 2 (t = 2k) (42)
di = 0 (t>2k)
;und wir wollen ihren Wert bestimmen.
Zu diesem Zweck multiplizieren wir die i-te Zeile mit
1—2 .
Pio=1I (p—1+1) @©=2,3,....,9—1).
1=0

Dann kann man aus der % -+ l-ten Spalte den Faktor p,, ausklam-
mern (k=0,1,...,g — 1). Das heillt es ist

g—1

H Pzz
|dix| = | e (43)
H P
1=0
mit
b = Zki— (e<2k) , ep=20=2k), e;,=0(0>2k) . (44)
Wir definieren, von |e; | = |¢; |V ausgehend, eine Determinante

| e; |™ folgendermaBen: Man erhilt |e, | aus |e,|™, indem
man zur m -+ 21 — 1-ten Zeile von | e, |™ das —2 (2m — 1)-fache
der m 4 21 — 2-ten Zeile addiert (I =1,2,...).

e kann folgendermafen definiert werden

1—1! (2 —¢—1
o 1 — 1

) (k=1,e4+1,...,g;2=1,2,...,m).. (45)



Ist e=m —1+4+* k=m — 1+ k* so gilt

m . m—1! (2k—m—l

1 )(i*=1,3,...;z’*<2k*) ,

' m—1

)(i*=2,4,...;i*<2k*) .

An allen Stellen, wo ¢{? nicht definiert ist, soll eine Null stehen. Eine
leichte Induktion nach m > 2, beweist sofort die Richtigkeit der an-
gegebenen Darstellung von | e,, [ und es folgt || e |@] = || e || -

Aus (45) folgt ¢ 11

I e || = I 55—
* 1o 20—1!

21’—}—30',——3 <_‘L’-

Da 2<7<p—2 und g= 3

|| dy || 55 0 mod p.

ist die Determinante

§12. r=2n<2.

Wir gehen analog vor wie im Fall der ungeraden z. Wir betrachten

die Gestalt der e*(x,z,) in (38) lediglich hinsichtlich der Elemente

Com—1,1-2m (m =1,2,...,9—1;m= 1—) . Fiir gerade 7 bedeutet g die

2
27+a
3!

Die Bedingung (40) hat auch hier Geltung, und wir wollen wieder
untersuchen, unter welchen Umstinden & <<7— 2 — 2k. Dies ist
gleichbedeutend mit der Frage, wann die Elemente C,,_, ., ,, fiir
m=1,2,...,9 —1 dem ersten Produkt in (39) angehoren. Als Be-
dingung ergibt sich @ <{4. Da v gerade, ist dies nur in den Fillen
a = 2,4 stets der Fall.

Fir a =6 und k <g — 1, gehort C,,_, , 5, ebenfalls dem ersten
Produkt an, denn hier ergibt sich als Bedingung a < 6. Es gehort aber
Com,zeom fir m=¢g —1 und k=g — 1 zum zweiten Produkt in
(39). Man findet hier ¢ =2m — 1 —k =g — 2, also k 4 ¢ = 29 — 3.
Aus (39) folgt

Zahl

p—2—10 __(p—2—h\(—1)lt1
[Pyys (p—2— ) Pl = (05752 070 707)

andererseits tritt aber offensichtlich noch das Element C.l, . ,

an anderer Stelle auf, ndmlich herriihrend vom letzten Faktor in (38)

M
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(!l = p — 2). Das hat zur Folge, daB gesamthaft C,,_;, , ,, nur mit
dem Exponenten
_(p—2-—1
g—2

auftritt, denn 7 + 1 =g ist fiir @ = 6 ungerade.
Die endgiiltige Darstellung der e* lautet daher

(p 2—74+2m

2m—1—k ) (1.'-—1 k (pzz) . r .
(xkxz)——HCZm”Zm O 00 (k—2k=0,2,...<g—1)

m=k’+1
(46)
g (e 4 I Com i Bl )
eX(x,2,) = 1T Cp,2 7100 O,f‘;lo (k=2k'—1=1,3,...<g—1)
m=k’+1

Fiir k = 0 hat man noch den zusitzlichen Faktor C,_, o hinzuzufiigen.
Schreibt man das Symbol d,, ,, fiir den Exponenten von C,,_, , .,

in e*(x,x,), so haben wir wiederum zu beweisen, daBl || d;,; ,, ||

(k=0,1,...,9—1;m=1,2,...,9) nicht durch p teilbar ist.
Entwickelt man |d;,,,,, | nach der ersten Zeile und addiert man in

der als Faktor auftretenden Unterdeterminante die 2-te Zeile zur ersten,

die 3-te zur 2-ten usw., so wird die letzte Spalte = 0 mod p bis auf das

Glied
ie ; _(p—2\_ (p—2
g’g -t____g g___l :

Es ist daher, wenn man noch k + 1 =17 und m = k setzt

Haall=—o((ZZ2) = (P Z7)) ewll (1)

Die Determinante |e;, | des Grades g — 2 ist definiert durch

(p——z+1+2k
€ir =

o4 1 —i ) (6 < 2k) e=p—1+2k(i=2k) e,,=0(i>2k) (48)

Setzt man ;

p=I(p—1+2+1)

k=0

und multipliziert man die ¢ 4 2-te Zeile von |e,, | mit p; (2 = 0), so
kann man aus der k-ten Spalte den Faktor p,, (k=0,1,...,9 — 3)
herausgeben. Da diese Faktoren fir 7 <p — 2 und

_ 27t+4a
3!

kleiner als p und groler als 0 sind, geniigt es, die Determinante | f;; |
zu betrachten, viz.
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p—1t+1 +2k
21—

fa="" (<2k), fa=p—t+2k (i=2k), [;,=0(>2k), (49)
die aus e;, durch Abspaltung dieser Faktoren hervorgeht.

Erklirt man | f;, |™ analog wie im vorigen Paragraphen, so beweist
man durch vollstindige Induktion nach m (> 2) die Richtigkeit der
fo]genden Formeln :

FE= g1 2k' (k=1.2,...9-2) (50)
(i—1)! (p—7+i+1) (2.’““’3) +it(*

(m)__ 1—1 . 1—2 .

fix ok (k=i,i+1,...;1=2,3,...,m)

Setzt man weiter ¢ =m — 1 4%, bk =m — 1 + k*, so gilt

=i (57 e (57

fm— 57 (i=m,m+2,...; 1 <2k
o 2 i) (P e () (51)
fiw'= 2k — 2!

(t=m+1m+3,...;i" <2k

An den nicht definierten Stellen ist 0 zu setzen. Aullerdem haben wir
die Faktoren p,, und p,;,.;, ! =0,1,...,9 — 3), die man fiir m = 2, 3
vor die Determinante | f,;, |® bzw. | f;, |® nehmen kann, unterdriickt,
da sie im Bereich (1, p — 1) liegen.

Aus (50) folgt jetzt

—% 1l
[l d;x || = const ||f,-k|(”—2)| const% {I 71 (p—1+20).
Da
21+ a
2<tr<p—2 und g¢g= ST

ist || d; || = 0 mod p.

§ 13. Uber die Klasse der Burnsidegruppen.
Aus

O pir-9<dapi-n (=P —2)
ergibt sich als Korollar : Die Klasse ¢ der Burnsidegruppen vom Expo-
nenten p>=5 ist >2p — 2.
Die Resultate der vorangehenden Abschnitte erlauben aber eine Ver-
schirfung dieser Aussage.
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Rechnet man nidmlich in der Faktorgruppe F|H,,H,,, so ist die
Gruppe H, Abelsch und die Kommutatorgruppe H, wird zu einer nil-
potenten Gruppe der Klasse 3< p. Man kann daher alles in Paragraph 4
Gesagte wortlich iibernehmen. Insbesondere hat man nur die p-ten
Potenzen zu betrachten der Gestalt:

(P, P22 Po . PP (0< 2y, &y,...,2,<p;w(P,) <p) .

Bedenkt man weiter, dall nach den Ergebnissen der vorangehenden
Abschnitte alle e-Elemente mod H,, ,H, , H}/H,, ,H,, voneinan-
der unabhéngig sind, so ergibt sich als Korollar

or

(v,p

Man bestitigt aber leicht, dafl wegen p — 1 = 6m oder 6m + 4
stets

+r—v)<n(pv,p+r-—v) (T =P — 1, v=1,2, 3) .

G e 5y<dgpirs @ZT;7=p—1).

Ebenso verifiziert man nach unserer Methode leicht, daB 63 = ITf; 4— 2
und also & 5y <ds 4. Damit ist der Satz bewiesen :

14. Satz. Die Klasse ¢ der Burnsidegruppen vom HExponenten p>3
st = 2p — 1.

(Eingegangen den 19. Mérz 1953.)
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