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A property of bounded analytic functions

H. G. EcGLESTON

A well known theorem of Fatou [4] asserts that if f(z) is a bounded
regular function defined in [z]|<1, then the radial limit lim f(re’®)

r>1
where r tends to unity through real values less than one exists for all 6

except for a set of at most zero measure, 0 < 0<2nx. We denote the
set of all points at which this limit exists by F(f), see [3].

For any point { of |z| = 1 the cluster set of f(z) at &, C(f; {), is
defined to be the set of all complex numbers w such that there exists a
sequence {z,} with the three properties

|2, ]<1 mn=1,2,...; 2z, > ¢ f(z,) »>w .

The set of points ¢ for which C(f; ) is a single point will be denoted
by G(f).

It is trivial that F(f)>G(f). The object of this note is to show that
the set of points in F(f) and not in G(f) is a set of the first category.
This result has a similar appearance to the theorem of E. F. Collingwood
[3], concerning the sets of points S(f) and I(f).!) But both the content
and method of proof are different from those of Collingwood.

The connection of this result with Fatou’s theorem is that it enables
us to disprove a natural conjecture. Since sets of zero measure and sets
of first category can to some extent be regarded as interchangeable?2)
one might suppose that the set F(f) would contain all of |z| =1
except a set of first category. In fact not only is this false but it is even
true that F(f) itself need only be a set of first category. As concrete
examples of such functions f(z) there are,

(A) a Blaschke product

0 -0, __ |»
f(Z) _— H ze _I V[ ,
v=1 1 — 22,
where |z, | <1, amp z,=10,, 2 (1 —|2,]|)<co and the points z, are
v=1

1) See [3], p. 177, for definitions.
%) See [8], p. 77.
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so distributed that the closure of their union contains the whole circum-
ference |z| = 1.

(B) a certain function g(z2) which maps |z|<1 onto a bounded
simply connected domain whose prime-ends are all of diameter greater
than some positive number §. The existence of such functions has been
established by F. Frankl [5]. ¢(2), unlike the Blaschke product of (A),
is univalent.

For both the function f(z) of (A) and ¢(z) of (B) and for every ¢ of
| 2] = 1, the cluster set at { does not reduce to a single point. This is
obvious for the function g¢(z) since the cluster set of g(z) at ¢ is a
prime end of the domain onto which ¢(z2) maps |z |<1. For the func-
tion f(z) of (A), the radial limit exists for almost all § and is of modulus
unity (see [7], p. 196). But for any ¢ there is a subsequence of zeros of
f(z) that tends to {. Thus for almost all {of |z| = 1, C(f; {) has dia-
meter greater than or equal to unity. But the set of { for which the dia-
meter of C(f; () is greater than or equal to unity is a closed set, and
thus contains the whole of |2 | = 1.

We shall refer to a point that belongs to the set F(f) as a Fatou
point and a point that belongs to G(f) as a convergence point. We
prove next the theorem :

Theorem. If a non-constant, regular and bounded function f(z) defined
wm | 2| <1 is such that for a certain arc y of |z | =1, the set F(f) is of
second category on every subarc of v, then all points of y except at most those
of a set of first category belong to G (f).

It is sufficient to show that, given any positive number ¢, and any
subarc y, of y, there is a subarc of y; say y, such that if { belongs to y,,
then the diameter of C(f; {) is less than ¢. For suppose that this had
been established then it would follow that the set of points { on
| 2] = 1 for which the diameter of C(f; {) is greater than or equal to
¢ would not contain any interval of | 2| = 1 in y and, since this set is
clearly closed, it would be non-dense in y. We allow ¢ to assume a se-
quence of positive values decreasing to zero and we conclude that the
set of points ¢ for which the diameter of C(f; {) is positive is a set of
first category in p. This is the statement of the theorem.

Suppose then that y, is a given subarc of y which we shall assume
without real loss of generality to be a small arc of |z| = 1. Denote by
D, the part of |z | <1 bounded by y, and by the linear segment joining
the endpoints of y, and denote by E, = f(D,) the set of values assumed
by f(z) as z varies in D,.
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If E, is of diameter less than & then any subarc of y, (strictly interior
to y,) will serve as the arc y,.

Otherwise select a point p, of £, and let K, and L, denote respectively
the subsets of D, for which

| f) —pil=¢/2, |f(2) —pi| = ¢/4.

Since the values taken by f(z) at the set of points z where f'(z) =0
form an enumerable set, we can select p, such that for every point of K,
and L,;, f'(z) # 0. We also choose p, so that its distance from the com-
ponent of the complement of £, which contains the point at infinity, is
less than ¢/8.

Under the above circumstances each of K, and L, consists of the
intersection of |z|<1 with an at most enumerable set of arcs whose
end points belong to |z | = 1.3)

Let k,(r) denote the union of all the arcs of K, that are completely
contained in the annulus, 1 —r <|z| <1, and define [,(r) simi-
larly. For any arc « of K, let p(x) be the projection of x in 0<|2z|<1
from the point z = 0 onto the circumference |z| = 1 by means of the
radii argz = constant. p(x) is a subinterval of ¥ which may be open or
closed or semi-open. Further write

hi(r) = U pla) ;. my(r)= U plx) .
o€ kq(7) a€ly(r)

Let r; be a sequence of positive numbers decreasing to zero and write

H, = n hy(r) ; M, = N my(r;) .
i=1 i=1

Now if ¢ e H, the radius vector joining z = 0 to z = { intersects
K, in a sequence of points whose closure contains the point [ ; for if this
were not the case, there would be a segment of the radius say ¢, dis-
joint from the set K,. Choose the integer ¢ so large that r; is less than
the distance of ¢ from ¢,. Since (e H,ch,(r;) there is an arc « of
k,(r,) that intersects the radius joining z = 0 to z = {. Moreover by
the definition of k,(r,), « must meet segment {{, and this is a contra-
diction which establishes the statement above.

It follows that if ¢ belongs to H,~ M, it does not belong to F(f) i. e.

HA~M,~F(f)y=0. (1)

Next consider the set %,(r;). This is the union of an at most enumerable

2) This follows because f'(z) # 0 for ze€ K, or ze L, and by applications of Koebe’s
lemma; see [4], [2], p. 96. A similar argument is used in [9], p. 247.
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sequence of intervals p(x) of y,. If A,(r;) is dense in y,, so is the set
obtained from &,(r,) by replacing p(x) by the same arc without its end
points ; i. e. if A,;(r;) is dense in y, it contains an open subset of y, also
dense in y,. Thus finally if each h,(r;), ¢ =1, 2,... is dense in y,, then
H, = nhy(ry)
i=1

contains a (5 set dense in y,. By a similar argument applied to M, we
see that either one of the sets &,(r,), m,(r,) is not dense in the whole
of y or the set N, the union of the complements of H, and M,in |z| =1
is of first category on y,. But (1) implies F(f)c N and F(f) is by hypo-
thesis of second category ; thus this situation cannot arise and at least
one of the sets A,(r;), m,(r;), 1 = 1,2,... is not dense in the whole
of y,. .

Suppose then that the set %,(r;) contains no point of the closed sub-
arc ff of y;. Let f, be the arc which is the middle third of the arc 8. Denote
the circle | z| = 1 — r; by 7 and suppose that f, is the arc {z |z = e,
0 <0, <0 <0,<2n. Let X be the set of points

2|1 —r,<|2|<1,0,<ampz <0,} .

By the definition of 8, any arc of K, which meets X must also meet 7',
for if this were not so, the arc of K, concerned would belong to k,(r,)
and some point of §, would belong to &,(r;). If there were infinitely
many such arcs then there would be a point say 2z, of 7' such that every
neighbourhood of z, contains points of infinitely many arcs of K,. But
K, is closed and thus z,e K,. But this implies that f'(z,) = 0 and thus
there cannot be infinitely many arcs of K, with points in every neigh-
bourhood of z,. Thus only a finite number of arcs of K, meet X .

Hence there is a point of g8,, say {,, and a positive number § such that
every point of K, is distant at least d from (,. Select two points {’, {” of
| 2] =1 whose distances from ¢, are less than §. Denote the small arc
of |z| = 1 whose end points are ¢’ {” by y(1) and let D (1) be the part
of |z|<1 bounded by (1) and the linear segment joining {’ to {”.

Since D (1) does not meet K, there are two possibilities ; (i) the set of
values £ (1) taken by F (z) in D(1) is contained in the circle whose centre
is p, and whose radius is ¢/2, or (ii) the set of values £ (1) is exterior to
this circle.

If it had been one of the sets m,(r;) that was not dense in the whole
of y, then we should have been led to similar conclusions except that the
&/2 would be replaced by ¢/4. We can cover both cases without needless
repetition by retaining the &/2 in (i) and replacing it by ¢/4 in (ii).
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If (i) holds we have an arc y(1) which is a subarc of y, and has all the
properties that we required of the arc y,.

If (ii) holds we repeat the argument. That is to say we find a point p,
of E(1), an arc y(2) contained in y(1) and corresponding sets D(2) and
E (2) such that either

(i) E(2) is contained in the circle centre p, and radius /2 or

(ii) E(2) is contained in the exterior of the circle centre p, and radius
¢f4.

If (i) holds y(2) will serve as the arc y,. Otherwise we repeat the argu-
ment,

Since every pair of points of the sequence p,, p,,... are at a distance
of at least /4 apart and since all these points are contained in the bounded
set of values taken by F(z) in |z|<1, only a finite number of repeti-
tions of the argument are possible. We are eventually led to case (i) and
to an arc with the required properties.

This completes the proof of the theorem.

Remark. To see that the Blaschke product f(z) of (A) and the function
g(2) of (B) are such that their Fatou sets F(f) and F(g) are of first
category we have only to observe that to any set of second category on
|z| = 1, there always corresponds an arc such that the set is of second
category at each point of the arc?). Now if F'(f) (or F(g)) was of second
category we could find an interval of |z| = 1 as described above. In
this interval the set G(f) (or G(g)) would, by the theorem, be of second

category. However this is not so since we know that G(f) and G(g) are
void.
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