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The associated form of a variety
over a field of prime characteristic p

by S. V. Keshava Hegde, Bangalore (India)

Introduction

Wei-Liang Chow and van der Waerden in a publication [1] hâve intro-
duced the associated form of an irreducible variety F. If d is the dimension

of F, the associated form F(u) is defined as an irreducible form in
u0, %, un, depending on d generic hyperplanes u{1), n{d), such
that F (u) becomes zéro as soon as the hyperplane u is specialised so as to
contain one of the points of intersection of u{1), uid) with F. The
form F (u) is symmetric or antisymmetric in the d + 1 sets of variables

u, u{1), u{d).
André Weil in his "Foundations of Algebraic Geometry" [2] gave new

définitions of the fundamental notions of algebraic geometry. In parti-
cular, he introduced the notions of algebraically disjoint and of linearly
disjoint fields and he proved the theorem ([2], Th. 5, p. 18) : An extension
k(x) ofa, field k and the algebraic closure k of k are linearly disjoint if and

only if k is algebraically closed in k(x), and k(x) separably generated
over k.

W.-L. Chow used the characteristic form in his investigation of "Algebraic

Systems of positive cycles in an algebraic variety" [3]. In the
introduction of his paper he mentioned, without prof, the following property
of the characteristic form : If the variety is separably generated then the
associated form has no multiple factors.

We shall investigate quite generally, how the characteristic form, which
is irreducible in K, factorises in an extension field L of K, and how this
factorisation is related to the splitting of F into varieties V^, F2,
irreducible over L. In particular Chow's assertion mentioned above will
be proved.

1. Définitions and notations

Let us take an arbitrary field k as ground field. We shall assume k to be

of characteristic p. The universal extension field Q is obtained from k by
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adjunction of a countable number of indeterminates and algebraic closure.
Ail coordinates of points and ail coefficients of équations are always
taken from Q.

Let K, L,... stand for intermediate fields which contain k and are
contained in Q. Thèse intermediate fields are always supposed to be

generated by the adjunction of a finite number of éléments to k.
An intermediate field L is said to be separably generated over K, if L

is generated from K by adjunction of algebraically independent éléments
and separable algebraic functions of thèse éléments.

A séries of n coordinates p1, p2,..., pn from Q is called a point of the

affine space En, and a point of the projective space 8n is a ray of the affine
space En+l consisting of ail points (ojp0, cop1,..., (opn), where
(p0,. pn) ^ (0, 0,... 0) is a fîxed point of Rn+1 and co runs over
ail the éléments of JQ.

A variety is the set of ail points of Rn or Sn which satisfy a finite System
of algebraic équations.

t*iPl>P2y • • • > Pn) ° OT fk(Po> Pl> • • • y Pn) 0

where fk shall be polynomials in the first case, forms in the second case
with coefficients from Q. We shall suppose that the set is non-empty.

If a variety can be represented as a union of two proper parts (sub-
varieties), it is said to be divisible. The variety is indivisible if such a

représentation is not possible.

If the équations that define the variety hâve their coefficients in K,
the variety is called a variety over K. It is irreducible over K if it does not
split into proper parts which are again varieties over K. By définition an
indivisible variety remains irreducible over any extension field, i. e., it
is absolutely irreducible.

A point P is said to be a spécialisation of a point X with respect to a
field K, if ail équations f(x19..., xn) 0 with coefficients from K,
or in the projective case ail homogenous équations f(xQ, xx,..., xn) 0,
which are valid for the point X, remain valid if X is replaced by P.

An irreducible variety V over K has always a gêneric point X such that
ail points of V can be obtained by spécialisation (with respect to K) of X.
The generic point is uniquely determined by V except for isomorphisms.
That is, in the affine case the coordinates xx,..., xn are uniquely
determined except for a field isomorphism applied to ail xk, which leaves
the éléments of K unaltered. In the projective case the xk are uniquely
determined only up to a common factor eo. We may number the coordinates

so that x0 ^ 0 and then normalise co so that x0 1. The non-
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homogeneous eoordinates xx,..., xn of the point X are then uniquely
determined but for an isomorphism. The number of the algebraically
independent eoordinates among the so normalised xk is called the dimension

of V.
The above terminology is in accordance with the suggestions of van

der Waerden in one of his récent papers [4].
If V Vt+ F2 H [- Fr, and ail the imbedded Vt are left out and

the rest hâve the same dimension then the variety is aid to be unmixed
or pure.

We shall call with André Weil [2] an extension K (X) of a field K
regular over K or a regular extension of K if K (the algebraic closure of K)
and K(X) are linearly disjoint over K.

2. The associated form of a variety

Let F be an irreducible variety of dimension d over a field K in the
projective space Sn.

Let u{1),..., u{d) be hyperplanes with indeterminate eoordinates
u^K The indeterminates u{p shall be algebraically independent over K.
The hyperplanes intersect F in a finite number of points X(1),..., Xig),
conjugate over K.

Now we take in addition a further séries of indeterminates,

uk(h 0,1,...,%)
The produit,

P - /7(tt04"> + %4V) +...+«„ #>) (1)
î

is a symmetric function in X(1),..., X{0).
In case of characteristic zéro the product is rational in

In this case we write P Q(u, u{1),... u{d)).
In case of characteristic p a £>e th power of the product P is rational

and we write, taking e to be the lowest possible exponent,

P« G(M,w<1>,...,^>), (q pe). (2)

Q is intégral in u and rational in ua),..., w(d). We can, therefore?
write

^u™,...9uW) (3)
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where A and B dépend only on u{1),..., u{d), while F is intégral in
u, u(1),..., uid), and contains no more faetors depending only on
u{1),...,u{dK

Q is irreducible in K (u{1),..., uid)) [u] and hence F is irreducible in

For, if F is reducible in JT[><*>,..., <uld\ u]9 let F GH, where G
A IA \and H both contain u. Consequently, Q ~ GH (^ $1/7, contrary

to hypothesis. '
The irreducible form # is called the associated form of V.
We shall now show that a permutation of the variable séries

u, u{1), u{2),..., u{d) leaves F unaltered up to a factor ± 1.
The condition,

F(v, «<*>,. .,t?w>) 0

is necessary and sufficient in order that the hyperplanes v, v{1),..., v{d)

hâve a point in common with F ([5] § 36, p. 157).
In the same way the condition,

F(vM,v,...,v<d>) 0

(with v and v{1) interchanged) is necessary and sufficient in order that
v, v{1),..., v(d) hâve a point in common with F. The two conditions
being équivalent, and both forms F(u, u{1),..., u{d)) and

being irreducible, they must be proportional :

F(u{1>, u,..., u™) y F(u9 u^\ u<d))

where y is a constant. The square of a transposition being identity, y2

must be equal to 1, so y can only be + 1 or — 1. The same is true for ail
transpositions of two of the d + 1 séries u, u{1),..., uid).

Since every permutation is a product of two transpositions, it follows
that every permutation leaves F invariant but for a factor i 1 •

In the following we shall be concerned only with the associated forms
of varieties over a field K of characteristic p, where p is a prime number.

3. The behaviour of the associated form over an extended field

Let F be irreducible over a field K and d be the dimension of F. Then
over any extension Lof K, F is an unmixed variety of dimension d.

This theorem, which is proved by Hodge and Pedoe ([6], §11, Th. 1,
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p. 69) for the case of a field of characteristic zéro, is also true for the case
of a field of characteristic p > 0, since the conditions mentioned in the
proof of the above theorem are independent of the characteristic of
the field.

Let the field K be of characteristic p. The associated form F defined in
§ 1 is irreducible over K.

Let L K(t1,... ,ts) be a purely transcendental extension. That is,
let tx 18 be algebraically independent over K. Now we shall prove

Theorem 1. A purely transcendental extension L K(tl9... ,t8) leaves

F and V irreducible.

Proof : Suppose F could be factorised in K(t) [u], e. g.

By a well known theorem of Gauss ([7] I, § 23) this factorisation would
imply a factorisation in K[t, u] — K[t] [u], say

F(u) G(t,u)-H(t,u)
where G and H are polynomials in t and u. Putting ail tt 0, we would
obtain a factorisation of F(u) in K, which is impossible, i. e. F(u) cannot
be factorised in K(tl9... 9t8) L.

If F were reducible, the points of intersection X(v) would split up into
the generic points of Vx, generic points of V2 and so on. This implies a

factorisation of F(u), as will be shown in the proof of theorem 4.

Theorem 2. A transcendental extension L of K, in which the form F can
be factorised into h factors,

F (u) Gx (u) G2 (u)... Gh (u), (in L [u])

always contains an algebraic extension A, in which F (u) can be factorised
in the same way :

F{u) CF^u) F2(u).. .Fh(u), (in A[u\)

so that thefactors F^ are not essentially différent front Gr

Proof : For the sake of convenience, the u} and u^ ofour earlier notation
will be replaced by uf^ and u^. Let F be of order g and let h be any
integer greater than g which we can choose once and for ail. Let us fix
(d + 1) (n + 1) integers rl0 such that

0 ^ r00 < r01 < • • • < r0n < r10 < • • • < rln< • • • < rd0 < • • • < rdn
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Let 0{u{p) be any polynomial in the u^ such that no u^ appears to a

power greater than g and let (p(t) be the polynomial in t obtained by
replacing u^ in 0 (u(}l)) by t to the power ¥w (i — 0,..., d ; j — 0,..., n).
Consider now a term in &(u(7l)) in which u\%) has exponent gt3. From this
we get a term in cp (t) with the exponent E Qt3 ¥*i. Another term in
0(u(jl)) in whieh u{3%) has exponent atJ leads to a term in t with exponent
E at3 krii and since Ql01=k g < k, ol3^g <k we hâve E q13 krv —

Eol3 W%i if and only if at3 q13 for i 0,..., d ; j 0,1,..., n.
Therefore, the set of coefficients of 0 (u^) must exactly be the same as
the set of coefficients of <p(t).

Now let L be any extension of K over which the associated form F(u)
becomes reducible,

F(u) F(u«»,uW,... u^) /7ff,(«<°>, u^,..., ««>) nG3(u)

Let the corresponding polynomials in t be

If G3 is the leading coefficient of g3(t), i. e., the coefficient of the
highest power of t, we may write g3(t) C3 f3 (t), where f3 (t) hâve

h

leading coefficient 1. Hence f(t) IIC3 f3(t). The set of coefficients of

g3 (t) is the same as the set of coefficients of G3 (u). Hence we can write
h

G3(u) CjFjiu) and F(u) IIC3F3(u) corresponding to the above

équation in t. 7==1

Now each coefficient of f3(t) is a symmetric function of the roots and
hence lies in the root field B of the polynomial f(t) over K. The coefficients
of f3 (t) also lie in L, because they are quotients of coefficients of g} (t).
Hence they lie in the intersection field A of B and L. Thus the theorem
is proved.

Theorem 3. F can be split into absolutely irredudble factors
F CF\-F\.. ,F\ with coefficients in an algebraic extension field of K.

Proof: If F can be factorised, let us write F FXF2. If Fx or F2
can be factorised we shall continue the factorisation until we arrive at
absolutely irreducible factors : F GtG2.. .Gh.

By theorem 2, the G3 may be replaced by F3 with coefficients from an
algebraic extension A. Thus we get :

F — nF, jFo F
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The Fj are absolutely irreducible, because they are proportional to
the G,.

Some of the factors may be repeated. In this case we shall write

F CFql1'Fq2*...F%h

Later on we shall see that F can hâve repeated faetors only if F is the
q th power of a form Fo without repeated faetors, q being a power of
the characteristie p. So the décomposition of F into absolutely
irreducible factors must hâve the form,

F ^CF\F\...F\
Theorem 4. Let Lbe any extension ofK.Let V Vt + F2 +.. .+ Vh

be the décomposition of V in L. Let Ft,..., Fh be the associated forms of
Vi> • • • » yn* Then the décomposition of F in L[u] is

Proof: We hâve, F V1 + F2 + • ¦ • + Vh, where Fl5 F2,..., Vh

are irreducible over L and they are of the same dimension. The points of
intersection X{v}(v= 1,2,..., g) are split up into generic points of
Vt, generic points of F2 and so on.

So ifF1 and F2 are the associated forms of Vx and F2 the linear factors
of F are partly contained in Ft and partly in F2 and so on.

Hence F can only be

F =^

Corollary 1. // F is absolutely irreducible then F is a power of a prime
form.

Proof: Suppose F can be expressed in some extension L of if as a

product of différent factors, say, F F1F2 having no prime factor in
common. If Fx is factorised into linear factors as in (1), it must contain
with every factor ail conjugate linear factors as well. Now ail points of
intersection of F with the hyperplanes u{1),..., uid) are conjugate,
because F is irreducible over L. Hence Ft contains ail prime factors of
(1), each once at least. The same holds for F2. Hence F1 and F2 hâve
factors in common, against hypothesis. Thus, F can only be a power of
a prime form in L.

In the spécial case when F has no multiple factors, F FXF2*. .Fh.
By Theorem 4, each of the prime factors Fx,..., Fh defines a separate
variety. Thèse sub-varieties cannot be further subdivided, since the
associated forms are irreducible.
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Conversely, to every irredueible part of F corresponds a prime factor
of F. For, if to an irredueible part of F corresponds a factor of F whieh
is again factorisable into separate factors we arrive at a contradiction.

To each factor of F corresponds exactly one irreducible part of F.
Hence the number of factors is the same. Therefore, we hâve :

Corollary 2. If F has no repeated factors, the décomposition of F is
F F1Fi...Fh. In this case to every prime factor of F corresponds an
irreducible part of V and conversely. The number of factors is equal to the

number of irreducible parts.

Corollary 3. // F is absolutely irreducible and F has no repeated factors,
F is absolutely irreducible.

Corollary 4. // F is absolutely irreducible or a power of an absolutely
irreducible factor, then V is absolutely irreducible.

Proof : Suppose F is reducible over some extension L of K, say into
Fx and F2.

Let F1, F2 be the corresponding associated forms ; then by Theorem 4,

F FI1-FI2 contrary to hypothesis.

Theorem 5. // L Q is chosen so that F factors into absolutely
irreducible factors F F*1... F%h, then V décomposes into absolutely
irreducible varieties in û.

Proof : To each absolutely irreducible factor F3 or to a power of an
absolutely irreducible factor F* corresponds a part V} of F according to
Theorem 4.

Now, by coroliary 4 thèse V3 are indivisible (i. e., absolutely
irreducible) parts of F.

This concludes the proof of theorem 5.

4. The case oî a purely inséparable extension fleld

Now we shall consider the case of a purely inséparable extension of a
field K. A purely inséparable extension of K of characteristic p is defined
as an extension L in which every élément is a peth root ofan élément ofK.

Theorem 6. The variety V remains irreducible in a purely inséparable
extension of K.

Proof : Let p be the characteristic of K and let the algebraic extension
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L be purely inséparable. Then L consists only of pe th roots (which are
unique) of éléments of K.

If F were reducible over L, there would be a product of forms G and H
with coefficients in L, such that GH contains F but neither G nor H con-
tains F. Now q pe can be so chosen as a power of £> such that the gth
powers of ail coefficients of G and H are in L. By the well known rule,
(a + b +.. )« a« + 6« + it follows that <7<* and H* are forms
with coefficients in K. Now the form

(GH)* G^#*

contains F, but neither G5 nor Hq contains F. This is impossible since F
is irreducible over K.

Now let q pe hâve the same meaning as in formula (2), § 1. We
shall prove

Theorem 7. /n a suitable, purely inséparable extension Ko of K the

form F becomes equal to F\, where Fo has no multiple factors any more.

Proof : The formula (2) in § 2 implies that Q contains the indeter-
minates u0,..., un only in the gth power.

The same holds good for F on account of (3) § 1. Now on account of
the possibility of interchanging it follows, that F also contains the u^
only in the gth power.

Therefore, F is a qih power of a form in uk and v^p with coefficients
from a field jBT0, which arises out of K by the adjunction of the gth roots
of ail coefficients of F. Thus we hâve

F F%. (4)

Formula (3) now becomes

pq=4 fo ¦ <5>

By (1), § 1, the product P has no multiple factors. Hence the left side
of (5) and therefore, also the right side contains every factor exactly q
times ; it follows that Fo contains every linear factor of P only once, i. e.,
Fo does not contain multiple factors. This concludes the proof of Theorem

7.

Theorem 8. // q 1, the variety V is separably generated, i. e., ail X
are separable algebraic functions of d independent éléments.

In the proof 2 cases will be distinguished.
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Case 1. We suppose K to be an infinité field. In the case of a field of
characteristic p an irreducible polynomial f(t) of one variable t is inséparable

if and only if it may be written as a polynomial in tp.

Suppose e — 0, i. e., q pe 1. By (1) § 1 and (5), FQ is a product
of différent linear factors :

Now if we normalise x0 1, we obtain

u0 -f- u^x^ + u2x^ + • • • + Un^ as factors.

Now consider Fo as a polynomial in one variable u0. This polynomial
is a product of linear factors

ail différent. Consequently & — (% œj^ + ^2 a4v) + • • 4- %n o;(nv))

is separable with respect to the field, K (%,..., un ; ^(1),..., ^(d!)).
Let F be defined over a field K. We shall enlarge the field K by the

adjunction of n2 indeterminates tlk, where i and k take ail values from
1 to n. Let the enlarged field K(ttlc) be denoted by K'. By Theorem 1,

V is still irreducible with respect to K1. We shall first prove our theorem
with respect to K'.

We hâve proved that

is separable with respect to the field K(ulf..., un ; w(1)5..., u{d)).
Tn this enunciation, the indeterminates uk and v$ may be replaced
by any other set of indeterminates. Now replace,

uk by tBk(lc l,... ,n; e d -\- l)

^l) by new indeterminates zt (i 1,. d).

It foliows that,
~ $e ^1^1 + ^2^2 H !" ***** (6)

is separable with respect to the field K' (zt,..., zd), where X is any
one of the points of intersection of V with the hyperplanes

», + *.i*i + *t«*2 + h *.«** 0 (7)

Now the problem may be simplified by a linear transformation of the
coordinates xt,..., xn :
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(i l,...,n) (8)

Equations (6) and (7) now simplify to

*. + yt 0

- #. y.

Hence yt,...,yd are equal to — zx,..., — zd, and yd+1 ye= — êe
is a separable fonction of the indeterminates zx,..., zd.

The same holds, if d + 1 is replaeed by any one of the numbers
d-f-2,d + 3,...,n. Hence yd+1,..., yn are separable functions of
zl9..., zd. Also yl9..., yd are separable functions of zl9..., zd9 for
they are equal to — zl9..., —- zd. So ail yt are separable functions of
zl9..., zd. Solving (8) with respect to the xk, it is seen that also xl9... 9xn

are separable functions of the indeterminates zx,..., zd.
Thus the theorem 8 is true provided K' [equal to K(ttk)] is taken as

a field of constants instead of K. Now we hâve to pass from K ' to K.
Let e be anyone of the numbers, d + 1,..., n. We hâve an algebraic

équation defining ye as an algebraic function of yx,..., yd :

The coefficients of this équation are rational functions of the ttk, but
they may be made intégral rational. To express this, we shall write

Now we can show that X is a generic point of F over K(ttk) :

Vu ' • • > Va are algebraically dépendent on xl9..., xn by (8) ; and
Pi> • • • 9 Vn are algebraically dépendent on yl9..., yd by (10). By solving
(8) we see that xl9... 9xn are dépendent on yx,..., yn. Hence xl9... ,xn
are algebraically dépendent on yx,..., yd. Therefore #x, #2,..., xn are
équivalent to yx,..., yd.

That is, the degree of transcendency of X over K(ttk) is d. Hence X
is a generic point of V over K(ttk).

The équations (8) and (9) or (10) may be interpreted in another way.
We hâve considered z1,..., zd as indeterminates and xt,..., xn
as algebraic functions of zl9... 9 zd. We may also start with a generic
point X of F, define yx,..., yn by (8) and define zl9... 9zd by z% —yt.
The équations (9) remain valid in this interprétation, because ail
algebraic équations, valid for one generic point of F, remain valid for any
other generic point. This means : if yx,... ,yd and ye are substituted
from équation (8) into (10), we get an identity in the tlk :
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fê(ttktZttkxk) O (11)

Such an identity remains valid, if the ttk are specialised to t'tk, and the y€

accordingly to y\ Et'tkxk.
Thus we get,

fe(t'ik>yi>--->y'<i>ye) o• (12)

Let Ae be the coefficient of the highest power of ye in (10) and De the
discriminant of (10), considered as an équation for ye. Ae does not vanish,
nor does De, because the équation is separable. Ae and De are polynomials
in tlk and yly..., yd, and upon substitution of (8) they become
polynomials in ttk and xl9..., zn. Further, let D be the déterminant of the
ttk(i =l,...,n;*=l,...,tt). n

Now spécialise ttk into t'ih so that D II A6De remains ^ 0, where

t[k are éléments of K. Equation (12) now shows that ail ye and hence ail
xx,..., xn are separable algebraic functions of y[,..., yfd. This
complètes the proof of theorem 8 for case 1.

Case 2. Now, let K be a finite field and hence perfect. In this case the
theorem follows from the following1)

Lemma: xx,..., xd can be numbered in such a way that xd+1,..., xn
are separable algebraic functions of xx,..., xd.

Theorem 9. // F is separably generated then q pe 1 (i. e., e 0,
where e is the exportent).

Proof: By Kronecker's substitution, F(u) is replaced by f(t), where
f(t) t^ + at «»-i + a2 ^~2 + + Ow.

Suppose it contains only tq. Then we can write,

f(t) t™* + ax t^-v* + • • • + an

an

Now gr(v) is separable, otherwise it could be written as a polynomial
in iP.

Hence there is a separable extension L in which g(v) is a product of
différent linear factors :

g(v) (V - vx) (v ~ v2) (v — vj
In L let the variety be V=V1+V2-i h Vh where Vly V2,...,Vh

^ For a proof see [8], p. 620, § 1
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are irredueible. Then,

By Kronecker's substitution this is replaced by

i.e.,
V

In L every fk(t) is a product of some factors (tq — vv). Hence in L^q
every fk(t) is a product of some factors (t — wv)fl where vv wqv. That
is, in Lllq, we hâve fk(t) {fk(t)}Q, where fk(t) is a product of différent
linear factors.

Now suppose V k were reducible in a larger fîeld L*,

vk v*a + v*t2

Then, Fk F^x F^2, where F^ and F%2 hâve no factors in com-
mon. That is

fk /m * /L » where /^ and /^2 hâve no factors in common. We hâve then
/^ is a product of some factors (ta — vv), where vv is in L and /Jx is in

L. Similarty, /|2 is also in L contrary to hypothesis.
Hence Vly V2, • • •, Vh are absolutely irredueible over L.
Now we shall prove the

Lemma: If V is absolutely irredueible and separably generated over L,
then L is algebraically closed in L (X).

Proof2) : Suppose there were an élément oc in L(X), algebraic over L
and not in L. oc being separable over L, the conjugate éléments

oc, oc', are ail différent. That is a ^ oc and

L(ol)9±L(ol') (i)

Now extend the isomorphism of L(oc) to L(X), so as to obtain an isomor-
phism L(X) ^ L(X') as follows :

Let xx,..., xd be algebraically independent and let xd+1 ,...,#„
be algebraic functions of x1,..., xd. Define the isomorphism as follows :

L(ocf xl9..., xd) ^ L(ocf, xx,...,xd)

2) I owe the proof of this Lemma to Prof. B. L. van der Waerden.
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L(X) is algebraic over L(oc9 xlt..., xd), hence this isomorphism can
be extended to

L(X) g* L(Xf) - (Proof in [7], I, § 35). (ii)

X is a point of F and of degree of transeendency d. F remains irreducible
over L(oc). Henee X is a generic point of F with respect to L(a).

Because of the isomorphism (ii), X' too is a generic point of F. As
before, we conclude : Xr is a generic point with respect to L(oc).

That is, X and X' are generic points of F with respect to L(oc). Hence
there is an isomorphism :

L(oc)(X) >L(oc)(Xf) (iii)

The éléments of L(oc) remain fixed

and

oc is in L(X). Hence oc f(X). Applying (ii) we get a' f(Xf).
Applying (iii) we hâve,

Hence oc oc' contrary to hypothesis.
Now we can complète the proof of theorem 9 that was interrupted by

this Lemma.
Tt is given that F is separably generated over K,i.e., the coordinates

of X are separable algebraic functions of d independent éléments. They
arealso independent over the algebraic closure K of K, and hence
independent over L. It foliows that Vx, the absolutely irreducible part of F
is also separably generated over L.

Now by the theorem ([2], Th. 5, p. 18) :

— An extension L(X) of a field L is regular over L, if and only if L
is algebraically closed in L(X) and L(X) is separably generated over
L, — we hâve that L(X) L(xd,..., xn) is regular over L, i. e.,

L(X) and L are linearly disjoint over L. That is, every set of linearly
independent éléments in L (X) over L is still linearly independent over L.
Hence also L(ttk, X) and X(ttk) are linearly disjoint over L(ttk), where

ttk are defined as in the proof of theorem 8.

Now it can be proved that Fx corresponding to V1 is a product of
différent linear factors and hence q is equal to 1.

For, if not suppose,
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Ft F*. Then also, ft /£ and we should hâve,

/o(S/i> • • • > Vd> Vd+i)* 0 i. e., fo(yl9 ...,yd, yd+1) 0

Putting g' g/p, where gr' degree of /0 and gr degree of fl9 this
would mean a linear dependence between,

with respect to L{tik). Hence there is also a linear dependence with
coefficients from L(tik). This means yd+1 has degree gr(<g) at most
with respect to L(tik, y19..., yd)9 contrary to hypothesis.

Lastly, we shall show that pe 1 with respect to L leads to the resuit
pe 1 with respect to K also. We hâve,

F F1F2...Fh in L (F irreducible in i£)

-F7! cannot be written as f(up,... ; hence i^ is a product of différent
linear factors :

Hence F is a product of différent linear factors. Hence pe 1 with
respect to K.

I am deeply indebted to Prof. Dr. B. L. van der Waerden for his kind
guidance and helpful advice throughout the course of this work.
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