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The associated form of a variety
over a field of prime characteristic p
by S. V. Kesuava Heepg, Bangalore (India)

Introduction

Wei-Liang Chow and van der Waerden in a publication [1] have intro-
duced the associated form of an irreducible variety V. If d is the dimen-
sion of V, the associated form F (u) is defined as an irreducible form in

Ug, Uy, - - ., U,, depending on d generic hyperplanes @, ... «'? such
that F'(u) becomes zero as soon as the hyperplane u is specialised so as to
contain one of the points of intersection of «V, ... @ with V. The

form F(u) is symmetric or antisymmetric in the d + 1 sets of variables
w, 'V, ..., ud,

André Weil in his ‘“Foundations of Algebraic Geometry” [2] gave new
definitions of the fundamental notions of algebraic geometry. In parti-
cular, he introduced the notions of algebraically disjoint and of linearly
disjoint fields and he proved the theorem ([2], Th. 5, p. 18) : An extension
k(z) of a field k and the algebraic closure k of k are linearly disjoint if and
only if % is algebraically closed in k(x), and k(x) separably generated
over k.

W.-L. Chow used the characteristic form in his investigation of «“Alge-
braic systems of positive cycles in an algebraic variety’’ [3]. In the intro-
duction of his paper he mentioned, without prof, the following property
of the characteristic form : If the variety is separably generated then the
associated form has no multiple factors.

We shall investigate quite generally, how the characteristic form, which
is irreducible in K, factorises in an extension field L of K, and how this
factorisation is related to the splitting of V into varieties V,, V,, ...
irreducible over L. In particular Chow’s assertion mentioned above will
be proved.

1. Definitions and notations

Let us take an arbitrary field k as ground field. We shall assume £ to be
of characteristic p. The universal extension field £2 is obtained from k by
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adjunction of a countable number of indeterminates and algebraic closure.
All coordinates of points and all coefficients of equations are always
taken from Q.

Let K, L, ... stand for intermediate fields which contain k and are
contained in (2. These intermediate fields are always supposed to be
generated by the adjunction of a finite number of elements to k.

An intermediate field L is said to be separably generated over K, if L
is generated from K by adjunction of algebraically independent elements
and separable algebraic functions of these elements.

A series of n coordinates p,, p,,..., p, from Q is called a point of the
affine space R,, and a point of the projective space S, is a ray of the affine
space R,,, consisting of all points (wp,, opy,..., ®p,), where
(Pos+ - > Pn) #(0,0,...,0) is a fixed point of R,,, and o runs over
all the elements of Q.

A variety is the set of all points of R, or S, which satisfy a finite system
of algebraic equations,

fk(pl:pm""pn):() or ik(po’pls""pn):o

where f, shall be polynomials in the first case, forms in the second case
with coefficients from 2. We shall suppose that the set is non-empty.

If a variety can be represented as a union of two proper parts (sub-
varieties), it is said to be divisible. The variety is indivisible if such a
representation is not possible.

If the equations that define the variety have their coefficients in K,
the variety is called a variety over K. 1t is irreducible over K if it does not
split into proper parts which are again varieties over K. By definition an
indivisible variety remains irreducible over any extension field, i.e., it
18 absolutely irreducible.

A point P is said to be a specialisation of a point X with respect to a
field K, if all equations f(x;,..., x,) = 0 with coefficients from K,
or in the projective case all homogenous equations f(z,, #;,...,%,) = 0,
which are valid for the point X, remain valid if X is replaced by P.

An irreducible variety V over K has always a generic point X such that
all points of V can be obtained by specialisation (with respect to K) of X .
The generic point is uniquely determined by V except for isomorphisms.
That is, in the affine case the coordinates z,,...,z, are uniquely
determined except for a field isomorphism applied to all z,,, which leaves
the elements of K unaltered. In the projective case the x, are uniquely
determined only up to a common factor . We may number the coordi-
nates so that xz, # 0 and then normalise @ so that xz, = 1. The non-
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homogeneous coordinates z,,...,z, of the point X are then uniquely
determined but for an isomorphism. The number of the algebraically
independent coordinates among the so normalised x, is called the dimen-
sion of V.

The above terminology is in accordance with the suggestions of van
der Waerden in one of his recent papers [4].

V=V, +V,+---+V,, and all the imbedded V, are left out and
the rest have the same dimension then the variety is aid to be unmixed
or pure.

We shall call with André Weil [2] an extension K (X) of a field K
regular over K or a regular extension of K if K (the algebraic closure of K)
and K (X) are linearly disjoint over K .

2. The associated form of a variety

Let V be an irreducible variety of dimension d over a field K in the
projective space S,,.

Let «™W,..., 4% be hyperplanes with indeterminate coordinates
u{?. The indeterminates «{’ shall be algebraically independent over K .
The hyperplanes intersect V in a finite number of points X1, ..., X9,
conjugate over K.

Now we take in addition a further series of indeterminates,

uk(k: O,l,...,n) .
The product,
g
P = (w2’ + w2 + -« + u, 2 (1)
1
is a symmetric function in X, ... X9,

In case of characteristic zero the product is rational in
Ku,uV,. .., u@d):

In this case we write P = Q(u, u'V, ..., u®),
In case of characteristic p a p¢ th power of the product P is rational
and we write, taking e to be the lowest possible exponent,

Pt=Q(u,u®,...,uP), (¢=7p). (2)
@ is integral in % and rational in «® ... 4'®. We can, therefore,
write
A
Q—-“-wEF(u,u‘“,--.,u‘d’) (3)
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where A and B depend only on u™,...,u?, while F is integral in
w,w,...,u¥, and contains no more factors depending only on
u(l), . hony u(d).

@ is irreducible in K (u®,..., #'?)[4] and hence F is irreducible in
KluV, ..., u® «u].

For, if F is reducible in K[uV,... u@ 4], let F = GH., where G

and H both contain . Consequently, @ = 4 GH = (é G) H, contrary
: B B
to hypothesis.

The irreducible form F is called the associated form of V.
We shall now show that a permutation of the variable series

w, wM, u® .. ud leaves F unaltered up to a factor 4 1.
The condition,

Fw,ov, . . v@) =0

is necessary and sufficient in order that the hyperplanes v, v, ... @
have a point in common with V ([5] § 36, p. 157).
In the same way the condition,

F®, v,...,v9) =0

(with » and »'V interchanged) is necessary and sufficient in order that
v, oW ..., v @ have a point in common with V. The two conditions
being equivalent, and both forms F(u, ..., @) and

FuV,u,u?, ..., ud) ‘
being irreducible, they must be proportional :
FaV, u, ...,uD) =y Fu,w?,..., ud)

where y is a constant. The square of a transposition being identity, y?
must be equal to 1, so y can only be 4 1 or — 1. The same is true for all
transpositions of two of the d + 1 series w, »V,..., u@.

Since every permutation is a product of two transpositions, it follows
that every permutation leaves F invariant but for a factor + 1.

In the following we shall be concerned only with the associated forms
of varieties over a field K of characteristic p, where p is a prime number.

3. The behaviour of the associated form over an extended field

Let V be irreducible over a field K and d be the diménsion of V. Then
over any extension L of K, V is an unmixed variety of dimension d.
This theorem, which is proved by Hodge and Pedoe ([6], § 11, Th. 1,
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p- 69) for the case of a field of characteristic zero, is also true for the case
of a field of characteristic p» > 0, since the conditions mentioned in the

proof of the above theorem are independent of the characteristic of
the field.

Let the field K be of characteristic p. The associated form F defined in
§ 1 is irreducible over K.

Let L = K(t,,...,t;) be a purely transcendental extension. That is,
let ¢,,...,t, be algebraically independent over K. Now we shall prove

Theorem 1. A purely transcendental extension L=K (t,,...,t,) leaves
F and V irreducible.

Proof : Suppose F could be factorised in K () [«], e.g.
Fu) =g, u)-h(t,u) .

By a well known theorem of Gauss ([7] I, § 23) this factorisation would
imply a factorisation in K[t, u] = K[t] [«], say
F(u) =G, u)-H(t,u)
where ¢ and H are polynomials in ¢ and ». Putting all ¢, = 0, we would
obtain a factorisation of ¥ (%) in K, which is impossible, i. e. F' (%) cannot
be factorised in K(¢,,...,t,) = L.
If V were reducible, the points of intersection X® would split up into

the generic points of V,, generic points of V, and so on. This implies a
factorisation of F (u), as will be shown in the proof of theorem 4.

Theorem 2. A transcendental extension L of K, in which the form F can
be factorised into h factors,

Flu) = 6,(w) Gy (w)...G,(w), (in L[u))

always contains an algebraic extension A, in which F (u) can be factorised
in the same way :

F(u) = OF,(u) Fy(w)...Fy(w), (in A[u))
8o that the factors F; are not essentially different from G;.

Proof : For the sake of convenience, the u; and «{” of our earlier notation
will be replaced by #{” and «{”. Let F be of order g and let k£ be any
integer greater than g which we can choose once and for all. Let us fix
(d 4+ 1) (n + 1) integers r;; such that

0§7‘00<7'01 <"'< ’ron<7'10<"'< 7’1n<"'< Td0<"'< Td,l o
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Let ®(u{") be any polynomial in the 4{” such that no u{” appears to a
power greater than g and let ¢ () be the polynomial in ¢ obtained by
replacing 4" in @ (u{") by ¢ to the power k"ii(1 =0,...,d;j=0,...,n).
Consider now a term in @ («{) in which %{” has exponent g,;. From this
we get a term in ¢(f) with the exponent 2 g;; £"#7. Another term in
@ (") in which %{ has exponent o,; leads to a term in ¢ with exponent
Xo,; ki and since p,,<g<k, o,;=<g<k we have X, k"ii=
o,k if and only if o,,=9, for t=0,...,d;j=0,1,...,n.
Therefore, the set of coefficients of @ (u{”) must exactly be the same as
the set of coefficients of ¢ (7).

Now let L be any extension of K over which the associated form F (u)
becomes reducible,
h
Fu)=Fu®,u?,... 0 =G w®,«V, ..., ud) =1IG(u) .

h
=1 =1

Let the corresponding polynomials in ¢ be

h
f@) = I g;(t) .

j=1
If C, is the leading coefficient of g¢,(¢), i.e., the coefficient of the
highest power of ¢, we may write g¢,(f) = C,f,;(t), where f;({) have
h
leading coefficient 1. Hence f(t) = II C, f;(t). The set of coefficients of
j=1
g;(t) is the same as the set of coefficients of G;(u). Hence we can write
h
G;(u) =C,F;(u) and F(u) = Il C,F;(u) corresponding to the above
equation in ¢. 7=1
Now each coefficient of f;(t) is a symmetric function of the roots and
hence lies in the root field B of the polynomial f(¢) over K . The coefficients
of f;(t) also lie in L, because they are quotients of coefficients of g,(t).
Hence they lie in the intersection field 4 of B and L. Thus the theorem
is proved.

Theorem 3. F can be split wnto absolutely irreducible factors
¥ = CFi{-F}...F} with coefficients in an algebraic extension field of K .

Proof : If F can be factorised, let us write ¥ = F,-F,. If F, or F,
can be factorised we shall continue the factorisation until we arrive at
absolutely irreducible factors: F = G,G,...G,.

By theorem 2, the G; may be replaced by F; with coefficients from an
algebraic extension A. Thus we get :

F=CF,F,...F,.
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The F, are absolutely irreducible, because they are proportional to
the G,.

Some of the factors may be repeated. In this case we shall write
F=CF{}-F2...Fj» .

Later on we shall see that F can have repeated factors only if F is the
q th power of a form F, without repeated factors, ¢ being a power of
the characteristic p. So the decomposition of F into absolutely irre-
ducible factors must have the form,

F=CFF!... F¢ .

Theorem 4. Let L be any extenstionof K. Let V=V, + V,+...+V,
be the decomposition of V in L. Let F,,..., F, be the associated forms of
Viseoos Vu. Then the decomposition of F in L[u] is

F=CFh. F%. . Féh .

Proof: We have, V=V, + V,+---+ V,, where V,, V,,..., V,
are irreducible over L and they are of the same dimension. The points of
intersection X" (» = 1,2,...,g) are split up into generic points of
V., generic points of V, and so on.

So if F, and F, are the associated forms of V, and V, the linear factors
of F' are partly contained in F; and partly in ¥, and so on.

Hence F can only be

F=CFu.Fu... Fa .

Corollary 1. If V is absolutely irreducible then F is a power of a prime
form.

Proof: Suppose F can be expressed in some extension L of K as a
product of different factors, say, F = F,-F, having no prime factor in
common. If F, is factorised into linear factors as in (1), it must contain
with every factor all conjugate linear factors as well. Now all points of
intersection of V with the hyperplanes «,..., %@ are conjugate,
because V is irreducible over L. Hence F, contains all prime factors of
(1), each once at least. The same holds for F',. Hence ¥, and F, have
factors in common, against hypothesis. Thus, F can only be a power of
a prime form in L.

In the special case when F' has no multiple factors, ¥ = F,-F,...F,.
By Theorem 4, each of the prime factors F,,..., F, defines a separate
variety. These sub-varieties cannot be further subdivided, since the
associated forms are irreducible.
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Conversely, to every irreducible part of V corresponds a prime factor
of F. For, if to an irreducible part of V corresponds a factor of F which
is again factorisable into separate factors we arrive at a contradiction.

To each factor of F' corresponds exactly one irreducible part of V.
Hence the number of factors is the same. Therefore, we have :

Corollary 2. If F has no repeated factors, the decomposition of F is
F=PF,F, . .F, Inths caseto every prime factor of F corresponds an
irreducible part of V and conversely. The number of factors is equal to the
number of irreducible parts.

Corollary 3. If V us absolutely irreducible and F has no repeated factors,
F is absolutely irreducible.

Corollary 4. If F s absolutely irreducible or @ power of an absolutely
irreducible factor, then V is absolutely ivrreducible.

Proof : Suppose V is reducible over some extension L of K, say into
V,and V,.
Let F,, F, be the corresponding associated forms ; then by Theorem 4,

F = F{*-F3* contrary to hypothesis.

Theorem 6. If L = Q 1is chosen so that F factors into absolutely
irreductble factors F = Fj*...Fyk, then V decomposes into absolutely
irreducible varieties in Q.

Proof : To each absolutely irreducible factor F, or to a power of an
absolutely irreducible factor F'¢ corresponds a part V; of V according to
Theorem 4.

Now, by corollary 4 these V, are indivisible (i. e., absolutely irre-
ducible) parts of V.

This concludes the proof of theorem 5.

4. The case of a purely inseparable extension field

Now we shall consider the case of a purely inseparable extension of a
field K. A purely inseparable extension of K of characteristic p is defined
as an extension L in which every element is a p°th root of an element of K .

Theorem 6. 7T'he variety V remains irreducible vn a purely imseparable
extension of K .

Proof : Let p be the characteristic of K and let the algebraic extension
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L be purely inseparable. Then L consists only of p¢th roots (which are
unique) of elements of K.

If V were reducible over L, there would be a product of forms ¢ and H
with coefficients in L, such that G H contains V but neither & nor H con-
tains V. Now ¢ = p¢ can be so chosen as a power of p such that the gth
powers of all coefficients of ¢ and H are in L. By the well known rule,

(@+b+..)2=a24 b2+ ... it follows that G2 and H? are forms
with coefficients in K. Now the form
(GH)? = G1H1

contains V, but neither G2 nor H? contains V. This is impossible since V
is irreducible over K.

Now let ¢ = p¢ have the same meaning as in formula (2), § 1. We
shall prove

Theorem 7. In a suitable, purely inseparable extension K, of K the
form F becomes equal to Fi, where F, has no multiple factors any more.

Proof : The formula (2) in § 2 implies that ¢ contains the indeter-
minates u,,..., %, only in the gth power.

The same holds good for F on account of (3) § 1. Now on account of
the possibility of interchanging it follows, that F also contains the u{’
only in the gth power.

Therefore, F is a qth power of a form in w, and %{’ with coefficients
from a field K,, which arises out of K by the adjunction of the ¢th roots
of all coefficients of ¥'. Thus we have

F = F} . (4)
Formula (3) now becomes
Pt = %— FL . (5)

By (1), § 1, the product P has no multiple factors. Hence the left side
of (5) and therefore, also the right side contains every factor exactly ¢
times ; it follows that F, contains every linear factor of P only once, i. e.,
F, does not contain multiple factors. This concludes the proof of Theo-
rem 7.

Theorem 8. If q = 1, the variety V is separably generated, 1. e., all X
are separable algebraic functions of d independent elements.
In the proof 2 cases will be distinguished.
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Case 1. We suppose K to be an infinite field. In the case of a field of
characteristic p an irreducible polynomial f(¢) of one variable ¢ is insepa-
rable if and only if it may be written as a polynomial in {?.

Suppose e = 0, i.e., ¢ =p*= 1. By (1) § 1 and (5), F, is a product
of different linear factors :

gl + wuy o) .
Now if we normalise z, = 1, we obtain
wg + )+ wupal 4 .- + w2 as factors.
Now consider ¥ as a polynomial in one variable %, This polynomial
is a product of linear factors
(g — D) (ug — 9')...

all different. Consequently ¢ = — (%, 2§ + w, 28 + - + u, 2)
is separable with respect to the field, K (u,,...,u,; u®P,..., u@®).

Let V be defined over a field K. We shall enlarge the field K by the
adjunction of n? indeterminates t,,, where ¢ and k take all values from
1 to ». Let the enlarged field K (¢,,) be denoted by K'. By Theorem 1,
V is still irreducible with respect to K'. We shall first prove our theorem
with respect to K'.

We have proved that

— 9 = w, 28 + w2’ + -+ wu,

is separable with respect to the field K (u,,...,u,; «%,...,u@).
In this enunciation, the indeterminates w, and u$’ may be replaced
by any other set of indeterminates. Now replace,

U, by t k=1,...,mn; e=d+4+ 1),

W by tk=1,...,n),
w? by new indeterminates z;(t = 1,...,d).

1t follows that,

——ﬁ’e: telxl +te2x2 +"'+tenxn (6)
1s separable with respect to the field K'(z,,...,2;), where X is any
one of the points of intersection of V with the hyperplanes

2+t @y + lp®y - F 2, = 0. (7)

Now the problem may be simplified by a linear transformation of the
coordinates x,,..., x,:
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yi=2tik$k; (?;=1,...,‘n). (8)
Equations (6) and (7) now simplify to

2i +y:=0.

— 9, = Y. -
Hence y,,...,y, areequalto —z,,..., —2,, and y, ., =y, = — 9,
is a separable function of the indeterminates z,,..., z,.

The same holds, if d 4+ 1 is replaced by any one of the numbers
d+2,d+43,...,n. Hence y,,,,...,y, are separable functions of
Zyy...,24. Also y,,...,y,; are separable functions of z,,...,z,, for
they are equal to — 2,,..., — z;. So all y; are separable functions of
Zy, ... 2q. Solving (8) with respect to the z,, it is seen that also z,,...,z,
are separable functions of the indeterminates z,,...,z,.

Thus the theorem 8 is true provided K’ [equal to K (¢,,)] is taken as
a field of constants instead of K. Now we have to pass from K’ to K.

Let e be anyone of the numbers, d + 1,...,n. We have an algebraic
equation defining y, as an algebraic function of y,,...,y,:

fe(yl’ ces YY) =0 . (9)

The coefficients of this equation are rational functions of the ¢,,, but
they may be made integral rational. To express this, we shall write

fe(tiksyl’“"ydaya):o . (]O)

Now we can show that X is a generic point of V over K (¢;,) :

Yi,.-.,Yq are algebraically dependent on z,,...,z, by (8); and
Y1>- -+, Y, are algebraically dependent on y,,..., v, by (10). By solving
(8) we see that z,,...,z, aredependentony,,...,y,. Hence x,,...,z,
are algebraically dependent on y,,...,y,. Therefore x,, x,,..., z, are
equivalent to y,,...,y,.

That is, the degree of transcendency of X over K(¢,,) is d. Hence X
is a generic point of V over K (¢,,).

The equations (8) and (9) or (10) may be interpreted in another way.
We have considered 2,,...,2, as indeterminates and =z,,...,z,
as algebraic functions of 2,,...,2;. We may also start with a generic
point X of V, define y,,...,y, by (8) and define z,,...,2,; by 2z, =—y,.
The equations (9) remain valid in this interpretation, because all alge-
braic equations, valid for one generic point of V, remain valid for any
other generic point. This means: if y,,...,y; and y, are substituted
from equation (8) into (10), we get an identity in the ¢, :
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fobin, Ztixzy) =0 . (11)

Such an identity remains valid, if the ¢,, are specialised to ¢',,, and the y,
accordingly to ¥} = Xt', . x,.
Thus we get,

fe(t::k’ y{,...,y;,y;)=0 . (12)
Let A4, be the coefficient of the highest power of y, in (10) and D, the
discriminant of (10), considered as an equation for y,. 4, does not vanish,
nor does D,, because the equation is separable. 4, and D, are polynomials
in ¢, and y,,...,y,, and upon substitution of (8) they become poly-
nomials in ¢,, and z,,... . Further, let D be the determinant of the
tx=1,...,n; k=1, n).

Now spe(nahse t;, into t,,k so that D H A,D, remains #* 0, where
d+1
t;; are elements of K. Equation (12) now shows that all y/ and hence all

*y,..., %, are separable algebraic functions of y;,...,y,;. This com-
pletes the proof of theorem 8 for case 1.

Case 2. Now, let K be a finite field and hence perfect. In this case the
theorem follows from the following?)

Lemma: z,,..., z; can be numbered in such a way that z,,,,...,,
are separable algebraic functions of z,,..., z,.

Theorem 9. If V is separably generated then q = p¢ =1 (i.e.,e = 0,
where e 18 the exponent).

Proof : By Kronecker’s substitution, # (u) is replaced by f(¢), where
f@) =tr +a,t" !+ ayt"2+...+ a,.

Suppose it contains only 2. Then we can write,

f(t) = tme 4 ay 6T @, = (1)
g(v) = vm + @, ™D 4.t a,

Now g(v) is separable, otherwise it could be written as a polynomial
in {P,

Hence there is a separable extension L in which g(v) is a product of
different linear factors :

g)= (@ —) (v =2 ... (v —v,) .

In L let the variety be V=V,+ V,+.--+V, where V,,V,,...,V,

1) For a proof see [8], p. 620, § 1
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are irreducible. Then,
F(u)=F, - F,...F,

By Kronecker’s substitution this is replaced by

1) = H@)-f2(8) - .. f(2) -
l.e, f@#)=g909)=I01t1—v,).

In L every f,(t) is a product of some factors (2 — »,). Hence in LY¢
every f,(t) is a product of some factors (¢ — w,)? where v, = w?. That
is, in L2, we have f,(t) = {f;(¢)}?, where f(¢) is a product of different
linear factors.

Now suppose V, were reducible in a larger field L*,

Vie= V’il + Viz .

Then, F, = F}, - F},, where F}, and F}, have no factors in com-
mon. That is

fr = fi1-fis» Where f3, and f}, have no factors in common. We have then

{3, is a product of some factors (¢ — v,), where v, is in L and f}, is in
L. Similarly, f3, is also in L contrary to hypothesis.

Hence V,, V,,...,V, are absolutely irreducible over L.

Now we shall prove the

Lemma: If V is absolutely irreducible and separably generated over L,
then L is algebraically closed in L (X).

Proof?): Suppose there were an element « in L(X), algebraic over L
and not in L. « being separable over L, the conjugate elements
R are all different. That is o £ «' and

L(a) > L(a) . (1)
Now extend the isomorphism of L(x) to L(X), so as to obtain an isomor-
phism 7L (X) >~ L(X') as follows:

Let z,,...,x,; be algebraically independent and let x,.,,...,z,
be algebraic functions of «,,..., ;. Define the isomorphism as follows :

Lyg—> X,

Lo, 2y, o 2g) = Lo, 20,000, 2,) -

2) T owe the proof of this Lemma to Prof. B. L. van der Waerden.

136



L(X) is algebraic over L(x, x,,...,x,;), hence this isomorphism can
be extended to

L(X) >~ L(X') — (Proof in [7], I, § 35). (i1)

X is a point of V and of degree of transcendency d. V remains irreducible
over L(«). Hence X is a generic point of V with respect to L(«).

Because of the isomorphism (ii), X’ too is a generic point of V. As
before, we conclude : X' is a generic point with respect to L(«).

That is, X and X’ are generic points of V with respect to L(«). Hence
there is an isomorphism :

L(a) (X) —> L(e) (X7) . (iii)
The elements of L(a) remain fixed

X = X
and
X— X

aisin L(X). Hence a = f(X). Applying (ii) we get o = f(X').
Applying (iii) we have,
a = f(X)

Hence o = o« contrary to hypothesis.

Now we can complete the proof of theorem 9 that was interrupted by
this Lemma.

It is given that V is separably generated over K, i. e., the coordinates
of X are separable algebraic functions of d independent elements. They
are also independent over the algebraic closure K of K, and hence inde-
pendent over L. 1t follows that V,, the absolutely irreducible part of V
is also separably generated over L.

Now by the theorem ([2], Th. 5, p. 18):

— An extension L(X) of a field L is regular over L, if and only if L
is algebraically closed in L(X) and L(X) is separably generated over
L, — we have that L(X)= L(z,,...,,) is regular over L, i.e.,
L(X) and L are linearly disjoint over L. That is, every set of linearly
independent elements in L (X) over L is still linearly independent over L.
Hence also L(¢,,, X) and L(t;,) are linearly disjoint over L(t,,), where
t;; are defined as in the proof of theorem 8.

Now it can be proved that F, corresponding to V, is a product of dif-
ferent linear factors and hence ¢ is equal to 1.

For, if not suppose,
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F, = F?. Then also, f, = f¥ and we should have,

fo(?ha---»?/d: yd+1)p=0’ i. e, fo(?/l:-'wyd: yd+1)=0 .

Putting ¢’ = g/p, where ¢’ = degree of f, and g = degree of f,, this
would mean a linear dependence between,

g ,09-1 g’
L, Yo es Yarrr Yalaseves Yo Y1 Yoo s Y

with respect to L(f,,). Hence there is also a linear dependence with
coefficients from L(t,;). This means y,,, has degree g'(<g) at most
with respect to L(t;., ¥,,..., ¥4), contrary to hypothesis.

Lastly, we shall show that p® = 1 with respect to L leads to the result
p¢ = 1 with respect to K also. We have,

F=F,F, .F, in L (F irreducible in K)

F, cannot be written as f(u?,...); hence F, is a product of different
linear factors :

F, = Il(uyzy + - - -+ u,2,)
F,=H1I(— — —)

Fp,=I1I(— — —)

Hence F is a product of different linear factors. Hence p? =1 with
respect to K.

I am deeply indebted to Prof. Dr. B. L. van der Waerden for his kind
guidance and helpful advice throughout the course of this work.
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