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Sur Pitération des opérations de Steenrod

par HENRI CARTAN, Paris

A Monsieur Heinz Hopf, en témoignage de profonde admiration

Introduction

Le but de cet article est de déterminer explicitement les relations
existant entre les opérations de Steenrod itérées. Le cas d’un entier pre-
mier p impair se différencie du cas o1 p = 2.

Pour p = 2, les relations entre les ,,carrés” itérés Sq®Sq®, conjec-
turées d’abord par Wu Wen-tsiin, ont été établies par J. Adem [1]. Plus
récemment, J.-P. Serre et R. Thom ([6], [8]) ont indiqué (sans I'expli-
citer en détail) une méthode commode pour calculer ces relations; elle
consiste & connaitre d’avance une ,,base“ pour les carrés itérés, grace
a une détermination explicite des groupes d’Eilenberg-MacLane du
groupe cyclique d’ordre 2 (cf. [6]), puis & faire les calculs dans un
produit d’espaces projectifs réels. Cette méthode montre en outre
qu’il n’y a pas d’autre relation entre les Sq%Sq® que celles données
par Adem.

Une extension de la méthode de Serre et Thom m’a permis de déter-
miner toutes les relations existant entre puissances de Steenrod itérées
St58t> pour p premier impair. Ces relations ont été trouvées indépen-
damment par J. Adem [2], qui utilise ’homologie des sous-groupes de
Sylow du groupe symétrique d’ordre p? ; sa démonstration n’a pas encore
été publiée, & ma connaissance.

La démonstration que nous donnons ici, dont le principe est différent,
a I'inconvénient d’utiliser la détermination explicite des groupes d’Eilen-
berg-MacLane du groupe cyclique d’ordre p (cf. [3]), mais présente
Iavantage de calculs presque mécaniques. Pour la commodité du lec-
teur, nous avons réuni dans un bref Appendice quelques propriétés (sans
doute connues) des coefficients binomiaux réduits medylo p.
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1. Les opérations des Steenrod

On note Z I’anneau des entiers naturels, Z, ’anneau (corps) des entiers
mod. p (p premier).

Pour tout espace topologique X, I'homomorphisme de Bockstein o,
envoie la cohomologie H*(X ;Z,) dans la cohomologie H*(X ;Z) en
augmentant le degré d’une unité. Rappelons la définition de «,, en pré-
cisant les conventions de signe adoptées ici: tout cocyle mod. p, de
degré ¢, provient par réduction mod. p d’une cochaine entiére x telle
que dz ait la forme (— 1)*1pa’, ou a2’ est un (¢ 4 1)-cocycle entier.
L’image de =’ dans H?*(X ;Z) ne dépend que de 'image de x dans
HY(X ;Z,), et ceci définit ’homomorphisme «,. Il est, au facteur
(— 1)1 pres, identique & ’homomorphisme ,,cobord“ de la suite exacte
de cohomologie de 'espace X, relativement & la suite exacte de coeffi-
cients ‘

0252 527,50

ou f désigne la multiplication par p.
L’homomorphisme de Bockstein g,: HY(X ; Z,) - H**(X ; Z,) sera,
par définition, le composé de «, et de ’homomorphisme naturel

H™\(X;Z) > H"\(X;Z,) .

I1 est évident que I’homomorphisme composé §,0 B, est nul.

La définition précédente s’étend au cas de la cohomologie relative
H«(X,Y;Z,), Y désignant un sous-espace de X. Considérons alors
I’homomorphisme ,,cobord* ‘

o* : H(Y ;Z,) > H"*\(X,Y;Z,) ;

I’homomorphisme de Bockstein f, commute avec 6* (vérification immé-
diate). Il en résulte que B, commute avec la suspension quand celle-ci est
définie (cf. [5], Chap. II, § 7; et [3], Note 1, § 5).

Relativement au cup-produit, §, jouit de la propriété :

By(u-v) = u-f,(v) + (— 1)28,(u)-v (1.1)

si v est de degré q.
Soit @ un entier > 0, congru & 0 ou 1 mod. 2p — 2. Comme en [3]
(Note II, §4), nous définirons ’homomorphisme

Sty : H(X ; Z,) - H"*(X ; Z,)

de la maniére suivante : si p=2, on pose St?=S¢*, carré de Steenrod.
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Si p est premier impair, et @ = 2k(p — 1), k entier, on pose StZ = LP¥

(opération de Steenrod définie en [7], formule (6.8)). Pour des raisons

de commodité, nous écrirons ici P;; au lieu de 'Iﬁ, ou méme seulement

Pk Jorsqu’aucune confusion n’est & craindre. Si a = 2k(p — 1) + 1,
p premier impair, St; est, par définition, ’homomorphisme composé
B,o PE.

Rappelons les principales propriétés des opérations de Steenrod St :

(i) soit f une application X — Y, et f* ’homomorphisme
H*(Y ;Z,) - H*(X ; Z,)
défini par f; alors f*o St; = Stgo f* (autrement dit, St; est une opéra-
tion cohomologique).
(ii) Vopération St; commute avec la suspension ;
(iii) St) est I'identité, St; = f§,.
(iv) pour p premier tmpair, on a :

(1.2) Pk(u) =u” si u est de degré 2k (uP désigne la puissance
p-iéme au sens du cup-produit) ;

(1.8) PE(u) =0 siwuest de degré gq<2k;

(1.4) Pi(u-v) = Zk,' Pl(u)- PE~"(v),
cette derniére formlflz0 se généralisant aussitét au cas du produit d’'un
nombre quelconque de facteurs.

(iv,a) pour p=2, ona:

(1.2a) Sq¢*(u) = u? siu est de degré k;

(1.3a) Sq¢¥(u) = 0 siuest de degré g<k;

(1.4a) Sq¢*(u-v) = Ek’th(u)-Sq"-h(v).

On a en outre S q“zf; Sq'o 8¢2%, formule qui est en accord avec la

formule de définition S#F@-D+1 = §¢lo §2*¥@-1) pour p impair.

2. Les opérations de Steenrod itérées

Soit p premier, éventuellement égal & 2. Pour chaque suite [ =
(a,...,a;) d’entiers a; >0, congrus & 0 ou 1 mod. 2p — 2, définis-
sons l'opération composée

Stf,'—: St;’;‘o“. OStZ" .
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Si 1a suite I est vide, on convient que St/ est ’endomorphisme identique.

Soit ¢ la somme des termes de la suite I, que nous appellerons le degré
de I; St] est un endomorphisme de H*(X;Z,) de degré q, c’est-a-dire
qui envoie H"(X ;Z,) dans H"*9(X ;Z,). Si I et J sont deux suites,
et si (I,J) désigne la suite obtenue par juxtaposition des suites I et J,

on a évidemment
Stlo 8t = StIN . (2.1)

Soit M, D'algébre (sur le corps Z,) ayant pour base I'ensemble des
suites finies I d’entiers > 0 congrus & 0 ou 1 mod. 2p — 2. C’est une
algébre graduée. Pour tout espace X, la formule (2. 1) montre que ’appli-
cation I — St définit un homomorphisme de l'algébre graduée M, sur
une sous-algebre graduée de I’algébre des endomorphismes de H* (X ;Z,).
Soit R,(X) le noyau de cet homomorphisme, et soit R, I'intersection
des R, (X) relatifs & tous les espaces X possibles. L’algebre quotient
A, = M,/R, s’appellera 'algébre de Steenrod relative a I'entier premier
p. Pour tout espace X, la cohomologie H*(X ;Z,) est munie d’'une
structure de module & gauche sur Ualgébre de Steenrod A,; d’une facon
précise, H*(X ;Z,) est un module gradué sur Ualgébre graduée A, .

L’idéal bilatére R, est somme directe de ses composantes R] des
divers degrés q. Chercher RY, c’est chercher les combinaisons linéaires
(& coefficients dans Z,) des St de degré ¢, qui donnent zéro dans n’im-
porte quel espace X . Or une telle combinaison définit, pour tout entier »,
une opération cohomologique H"(X ;Z,) - H"+"(X ;Z,); et l'on sait
([6]1, § 4, corollaire du théoréme 1) que, pour qu'une opération cohomo-
logique H"(X ;Z,) - H**%(X ; Z,) soit nulle pour tout X, il faut et il
suffit qu’elle donne zéro quand on I'applique & la ,,classe fondamentale*
d’un espace d’Eilenberg-MacLane K(Z,, n), c’est-d-dire d’un espace X
dont tous les groupes d’homotopie sont nuls, sauf x,(X) qui est cyc-
lique d’ordre p. Comme les St] commutent avec la suspension [4] qui
envoie H™(Z,,n + 1;Z,) dans H"(Z,,n;Z,), une combinaison
linéaire des St] de degré g sera nulle dans I'algébre A, si et seulement si,
appliquée & la classe fondamentale de H"(Z,,n;Z,), elle donne zéro
pour n assez grand (car alors, par suspension, elle donnera zéro pour
tout #). Or on a le résultat suivant ([3], Note II, corollaire du théo-
réme 6 ; cf. aussi, pour le cas p = 2, [6], § 4, corollaire du théoréme 2) :

Soit u, la classe fondamentale de H"(Z,,n;Z,). Si q<n, Uespace
vectoriel H™+%(Z,,n;Z,) a une Z,-base formée des éléments Stl(u,), oi

I parcourt Uensemble des suites (ay,...,a;) de degré q telles que
a; > pa;,, pour 1<i<<k—1. (2.2)
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Une suite I satisfaisant 3 (2.2) sera dite admissible (cf. [6]). De tout
ce qui précéde résulte le :

Théoréme 1. Les Stz[, relatifs aux suites admassibles I forment une basel)
de Ualgébre de Steenrod A,,.

Dans cet énoncé et dans tout ce qui suit, nous adoptons la notation
suivante : St/ désigne désormais 1'élément de l'algtbre A,, image de
IeM,. ,

3. Enoncé des résultats

Dans ce travail, nous nous proposons d’exprimer les St! relatifs aux
suites / non admissibles, comme combinaisons linéaires des Stf, admis-
sibles. Cela explicitera I’algébre de Steenrod 4,; en méme temps, cela
déterminera entiérement les opérations de Steenrod dans la cohomologie
d’Eilenberg-MacLane H*(Z,,n;Z,), en vertu du théoréme 6 de [3],
Note II.

11 est commode de considérer que chaque suite I est une suite illimitée
(@y,...,a;,...) telle que les a, soient nuls pour ¢ assez grand. Une telle
suite sera admassible si a; > pa,, , pour tout 7. La suite I sera dite de
rang < r (rentier > 0) si a, = 0 pour 2>r; le rang de I sera le plus
petit des » tels que I soit de rang < r.

Dans ’ensemble des suites I, nous considérerons une relation d’ordre :
Uordre lexicographique en commencant par la droite. Une suite

(@y,...,a,,0,0,...)

sera donc antérieure a une suite (b,,...,5,,0,0,...) si a,<b,, ou
si @, = b, et la suite (a,,...,a,_,,0,0,...) est antérieure &

(by,...,0,.4,0,0,...) .
Le théoréme 1 se trouvera complété par le :

Théoréme 2. Soit J une suite non admissible de degré q ; alors St) est
combinaison linéaire des St relatifs aux suites admissibles I de degré q,
qut sont antérieures a J dans Uordre lexicographique. En particulier, le
rang de chaque suite I est au plus égal au rang de J.

Lorsque p est premier impasir, on peut préciser davantage. Appelons
type d’une suite I = (a;,...,a,,...) le nombre des entiers a, impairs.
On prouvera le :

Théoréme 2 bis. Soit p premier impazir, et soit J une suite non admis-
sible de degré q et de type v. Alors St} est combinaison linéaire des St]

1) Cf. [2], theorem 1.5, oi malheureusement le sens du mot ,,base‘‘ n’est pas précisé.
Dans notre théoréme 1, le mot ,,base** est pris au sens de la théorie des espaces vectoriels;
il implique done I'indépendance linéaire.
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relatifs aux suites admissibles I de degré q, de type ©, qui sont antérieures
a J dans Uordre lexicographique.

Le théoréme 2bis apporte une précision relative au type, qui serait
inexacte pour p = 2. Par exemple, il est bien connu que Sg%o Sg?
= S¢30 Sql.

Nous nous proposons, pour chaque suite J non admissible de rang 2,
d’exprimer explicitement St; comme combinaison linéaire des St rela-
tifs aux suites admissibles 7 de rangs 2 et 1. La solution du cas général
d’un rang quelconque s’en déduira, au moins théoriquement.

Cas p = 2. On doit exprimer Sg¢*o S¢* pour k<<2h. Le probléme
a été résolu par Adem [1]. Nous écrirons la formule comme suit :

Sq2h—1-no Sqh = X (t, m — 1 — 2¢), Sg?1-to Sgh-r+ | = (3.1)
t

ou n désigne un entier >0, et ou I’on fait les conventions suivantes : on con-
vient que S¢* est nul pour £ <0; le symbole (a, b), ol @ et b sont entiers,
(@ + b)!
a!b!
est nul si I’'un au moins des entiers a et b est <0; (a,b), désigne le
nombre (a,b) réduit mod. 2.
Explicitons la formule (3.1) pour » = 0,1,2,3,4,5,6:

S8q*10 Sg" = 0 .

Sq2h—20 Sqh = Sg?h—10 Sgh-1 .

SgZh—ti th — Sq2h—~1o th—2 .

Sq2—4o Sgh = Sg*—10 Sgh—3 4 Sq?h—20 th—

Sq2h—3 0 Sgh = Sq-1o Sqh—4

8q#—6 o 8qh = Sg*h—10 Sqh—5 4 Sq—2o Sqh—4 4 Sqh—3o Sgh~3 .
Sq2"—7 0 Sgh = Sq*~10 Sgh—¢ + Sqh—30 Sqh—4 o

On notera que Sg?—2"-1o Sgh = Sq?—10 Sgh-2"

désigne le coefficient binomial lorsque @ et b sont >0, et

Cas p premier impair. Le cas ou la suite I = (1, a) se résout triviale-
ment par les formules

8ty 0 Sts = Stz*t  si  a =0 (mod.2p — 2)

3.2
St;oSt;:O si a=1 (mod.2p — 2) (3-2)

qui résultent des définitions et du fait que f,0f8, = 0. On observera
que ces formules sont aussi vraies pour p = 2.

Il reste & étudier St} o St lorsque 2p — 2 < b<pa. Il suffit de con-
sidérer le cas o1 b6 = 0 (mod. 2p — 2); car, connaissant la formule qui
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donne St o St2 dans ce cas, on applique 8, aux deux membres pour
obtenir la formule donnant St*'o Sts. Il reste donc & exprimer Pko Pk
pour k<ph, et Ptopf o Pt pour k < ph. Voici la solution :

Prh=i=ng ph— 3 (_1)t1(t, (p—1)n—1—pt), PLi-1-to Ph-nti | (3.3
¢

o1 n désigne un entier >0, et ou l'on convient que P = 0 pour
k<0; la notation (a,b), désigne le coefficient binomial réduit mod. p,
et zéro si a<<0 ou b<0. Avec les mémes conventions, et toujours
pour » >0, on a

P B0 PY= (=110, (p—1)n—1—pt), PP~ o 0 Py

(3.4)
+2Z(—L)4t, (p—1)n—pt),p,o0 Pbh=to Ph=nti
t

On observera que, pour p = 2, on pourrait déduire la formule (3.1)
de la formule (3.3) ot ’'on conviendrait que P¥ désigne Sg*.

Voici ce que donnent (3.3) et (3.4) pour p impair et pour les petites
valeurs de n (pour abréger 1’écriture, on omet I'indice inférieur p et le
signe o) :

pr-iph —q | Ppohg ph— g peh ph

Pph-—z Ph e L Pph-—l Ph—l ,

Pph-—-l ﬂ Ph s Pph ﬂ Ph—l + ﬁ Pph th—l ,

Pph—3 Ph —_ Pph-—l Ph—z . 2Pph—2 Ph—l ,

Pj?’b——Z /3 Ph —_ Pph ﬂPh——2__ 2Pph—-—lﬁph—1+ ﬂPph Ph—2.+_ 5Pph—l Ph—-l ,
prh-a P —. _ pph-1 ph-3 __ g Pph-2 Ph-2 __ g Pph—3 ph-1

On notera que Pri-1-7" Ph — __ pPrh-1 ph-vk

On notera encore les formules suivantes, valables pour tout % (elles se
déduisent aisément des formules (7.11) et (7.18) ci-dessous, respective-
ment équivalentes & (3.3) et (3.4)):
(3.5) P¥Ph = (k, h), Pk+h

}pour 0L kELp—1.
(3.6) P*BPI=(k—1,h),P*+B(k,h—1), fPH+h

4. Démonstration dans le cas p = 2

Pour étre complet, nous allons donner ici une démonstration du théo-
reme 2 (pour p = 2) et de la formule (3.1) en appliquant une méthode
dont le principe est dit & Serre ([6], § 4, n°33) et & Thom ([8], lemme
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II.8). Ce sera d’ailleurs le méme principe qui nous permettra de ré-
soudre le cas ou p est premier impair.

Considérons un espace K (Z,, 1) dont tous les groupes d’homotopie
sont nuls, sauf =z, cyclique d’ordre 2; par exemple, 1’espace projectif
réel a une infinité de dimensions. Son algebre de cohomologie mod. 2
est une algebre de polyndémes engendrée par un unique générateur x de
degré 1 (classe fondamentale). D’aprés (1.2a) et (1.3a), on a

Sgl(x) =22, S¢¥(x)=0 pour k>1,
d’ou 'on déduit facilement, en utilisant (1.4a),
Sgk(a*') =0 si 1<k #2, Sob(ak) =22 si k=2". (4.1)

Soit X le produit de » exemplaires de K (Z,, 1); soient z,..., z, leurs
classes fondamentales, identifiées & des éléments de H'(X ;Z,). Soit
u le produit z,...z, (au sens du cup-produit). Compte tenu du théo-
réme 1 (qui est déja démontré), le théoréme 2 (pour p = 2) résultera
aussitot de la :

Proposition 4.1. Les Sq'(u) relatifs aux suites admissibles I de degré
q sont des éléments linéairement indépendants de [Uespace wvectoriel
H"+((X ; Z,), pourvu que n soit assez grand (en fait, n > q). Pour toute
suite non admissible J de degré q, Sq’(u) est combinaison linéaire des
Sql(u) relatifs aux suites admissibles I de degré q, qui sont antérieures & J
dans Uordre lexicographique.

Démonstration : elle ne présente pas de difficulté essentielle, puisque,
pour toute suite I, Sq¢f(u) peut étre calculé & I’aide des formules (4.1).
En fait, associons & chaque suite I = (a,...,a,,...) la suite d’entiers

2

qui sont > 0 si et seulement si I est admissible. A chaque suite admis-
sible I de degré ¢, on va associer un élément D’ (u) ¢ H*+*(X ; Z,) comme
suit. Observons d’abord que H"+?(X ; Z,) est ’espace vectoriel des poly-
nomes de degré » 4+ q en z,,...,x,; considérons les monémes qui
contiennent exactement x; exposants égaux & 2¢ (pour 7 =1,2,...),
et dont tous les autres exposants sont égaux & 1. La somme de tous ces
monomes est un polynéme symétrique, qui sera par définition 1’élément

D'(w). Si n>q, ona n>2Xa«,, doncles D'(u) relatifs & toutes les
i

suites admissibles I de degré q sont linéairement indépendants. On prouve
alors facilement, par récurrence sur le rang r de la suite o/ :
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Proposition 4.2. Soit J une suite (admissible ou non) de degré q
(@ < n). Alors Sq’(u) est combinaison linéaire des D(u) relatifs aux
suites admissibles I de degré q, qui sont antérieures (au sens large) a J dans
Dordre lexicographique. De plus, si J est admissible, le coefficient de D’ (u)
dans Uexpression de Sq’ (u) est égal a 1.

La proposition 4.2 entraine immédiatement :

Corollaire 4.3. Les Sq’(u) relatifs aux suites admissibles de degré q
sont des éléments linéairement tndépendants de H*+(X ;Z,) st m > q. De
plus, pour toute suite admissible I de degré q, D¥(u) est combinaison
lindaire des Sq% (u) relatifs aux suites admissibles K de degré q, qui sont
antérieures (au sens large) a I dans U'ordre lexicographique.

Si J n’est pas admissible, Sq’(u) est combinaison linéaire des Df(u)
relatifs aux suites admissibles I, antérieures & J et de méme degré
(d’aprés la proposition 4.2). Appliquant alors & chacune de ces suites
le corollaire 4.3, on voit que S¢’(u) est combinaison linéaire des
Sq% (u) relatifs aux suites admissibles K antérieures 4 J et de méme
degré. Ceci acheve de démontrer la proposition 4.1.

Ainsi le théoréme 2 est établi dans le cas p = 2. Il reste & démontrer
la formule (3. 1), et pour cela on doit calculer S¢*Sqg* pour k<2h (nous
omettons désormais le signe o). Il est visible que Sg*(u) = D"*(u), et
que Sq¢*(D"(u)) est combinaison linéaire des D’ (u) tels que

I=((k+h—t,t) aveec t<k/2.
On peut donc écrire a priori
Sqk8q = X cf , gkt Sqt  (k<2h) . (4.3)
0<t<k/2
Pour expliciter les coefficients ¢} ,, considérons Despace-produit
K(Z,,1)xX, et, dans sa cohomologie, I’élément zu (x désignant la
classe fondamentale de K (Z,, 1)). Appliquant au produit zu les opéra-

tions des deux membres de (4.3), on trouve, & gauche comme a droite,

des termes en z, 2% et 2%. Egalons les termes en x*; on obtient la rela-

3 t . pt+1 9 A
tion ¢;_,, ;, =c¢;, pour k> 2, dou

t 0
Ckoh = Cr_os,n—¢ (€M posant ¢, , = cy ;). (4.4)
Egalons ensuite les termes en 22%; on trouve

¢,1=0,¢,=1+4¢,_, pour h >2, dou ¢, =h+ 1 (a réduire
mod. 2). Puis on a
ck,h+ck—2,h——lzck—l,h+ck,h—1 pour h>2,2<k<2h—1),

4.5
Cr,n Crz,nm1=Cp_1,n POUr h>2, 2(h—1)<<k<2h. } (%:9)
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Les relations (4.5) permettent le calculde ¢, , pourh > 2, 0 < k<2h,
par récurrence sur k: les ¢, ,_; sont déja connus pour k<2(h — 1),
et les ¢, , se calculent par récurrence sur k, & partir des valeurs ¢, , =1,
¢, n="h+ 1.

Il reste & vérifier que les ¢, , ainsi calculés pour 0 < k<2h satisfont
a la relation

Ce.n = (b —k — 1,k), (coefficient binomial réduit mod. 2) (4.6)

Nous ne ferons pas ici cette vérification, car elle sera faite au § 7 pour p
premier quelconque. Les formules (4.3), (4.4) et (4.6) donnent :

Se*Sqh =2 (h —k —1+1t, k— 2t),8¢*"*8q* pour k<2h |. (4.7)

t

En remplagant £ par 2 — 1 —n et ¢ par b —n 4+ ¢, on obtient la
formule (3.1); mais la formule (4.7) peut aussi étre commode.

5. Démonstration dans le eas oit p est premier impair

On va encore considérer un espace K(Z,, 1). Cette fois, son algébre
de cohomologie mod. p est, comme bien connu, le produit tensoriel d'une
algébre extérieure & un générateur x de degré 1 par une algébre de poly-
noémes a un générateur y de degré 2. D’ailleurs x est la classe fondamen-
tale, et

y = Py(x) , donc f,(y)=0. (5.1)

Les opérations de Steenrod sont déterminées, dans H*(Z,, 1;Z,), par
les formules (5.1) et

Pi(y) = y?, P¥(y)=0 pour k>1, Pk(x)=0 pour k>0, (5.2)

qui résultent de (1.2) et (1.3). Tenant compte de (1.4), on en déduit
facilement

PEyr) =0 si 1<k#p, Piyf)=y*t si k=p' . (5.3

(La démonstration se fait par récurrence sur ¢.)

Soit X un espace, produit de n + n’ exemplaires de K(Z,, 1); soient
%y, ..., x, les classes fondamentales des n premiers facteurs, zi,..., ),
celles des n’ derniers ; et posons y, = B,(x;), y; = B,(x;). Soit u I’él¢-
ment de H*"+'(X ;Z ) égal au cup-produit

/ /
Yoo o Yp Ty oo o Xy -
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Compte tenu du théoréme 1 (qui est déja démontré), le théoréme 2 bis
résultera aussitot de la :

Proposition 5.1. Les St](u) relatifs aux suites admissibles I de degré
q sont des éléments lLinéairement indépendants de [Iespace wvectoriel
H2" (X . 7)), pourvu que n et n' soient assez grands (par exemple, il
suffit que 2n = q/(p — 1), p* =1+ q/2). Pour toute suite non admis-
sible J de degré q et de type v, St)(u) est combinaison linéaire des St (u)
relatifs aux suites admissibles I, de degré q et de type T, qui sont antérieures
a J dans Uordre lexicographique.

Démonstration : en principe, Stl(u) peut étre calculé pour toute
suite I, grace aux formules (5.1), (5.2), (5.3). En fait, associons & chaque
suite I = (a,,...,a,;,...) la suite des entiers £, et ¢, définis par

a, = 2k,(p—1)+¢ (e,=0 ou 1), (5.4)
puis la suite des entiers 4, définis par
di=1k; — pkis — €141 - (5.5)

On vérifie que la suite I est admissible si et seulement si les 4, sont tous
> 0. Inversement, la connaissance des ¢, et des A; (nuls pour ¢ assez
grand) détermine la suite des a,, car on a

ki = 2P (As + €i4541) » (5.6)
j=0
aprés quoi a; est déterminé par (5.4). La suite (&, 4;,...,¢,, 4;,...)

sera dite associée & la suite I. L’ordre lexicographique des suites I est le
méme que celui des suites associées (en commencant toujours par la
droite).

Soit alors I une suite admissible de degré ¢, et soient ¢, et 4, les entiers
de la suite associée. On va définir un élément D'(u) e H*"*" (X ; Z).
Parmi les monémes yM ...y considérons ceux qui contiennent
exactement A; exposants égaux & p’ (pour ¢ =1,2,...), et dont tous
les autres exposants sont égaux & 1; soit s la somme de ces monomes.
L’élément D* (u) sera le produit de s par 1’élément ¢ que voici : ¢ est une
somme alternée de mondémes dont chacun s’obtient en enlevant du pro-

duit 2]...x), un nombre de facteurs égal au type 7v=2¢; de la

?
suite I, puis en remplagant chaque z; enlevé par une puissance (y;)?",
de maniére qu’au total le nombre des facteurs y; qui figurent avec I'ex-
posant p* (h > 0) soit nulsi ¢,,, =0, égalaunsi ¢, = 1. Ilreste
a fixer le signe dont chaque mondéme de ¢ doit étre affecté : c’est la signa-
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ture de la permutation que 1’on doit effectuer sur les indices § (1 <<j < n')
pour que les variables x; viennent les premiéres en commencant par la
gauche (rangées par ordre d’indices croissants), et que les variables y; se
suivent dans I'ordre des exposants croissants.

L’élément D’ (u) est ainsi défini pour chaque suite admissible 7. I1 est
clair que les D (u) associés & toutes les suites admissibles de degré donné
q sont linéairement indépendants, pourvu que l'on ait n > X1, et

®
n’ > t pour toutes les suites admissibles de degré ¢. On en déduit facile-
ment la limitation de n et #»’ donnée dans ’énoncé. Avant d’achever la
démonstration de la proposition 5.1, énongons-en une autre :

Proposition 5.2. Soit J une suite (admissible ou non) de degré q et de
type ©. Alors St)(u) est combinaison linéaire des D'(u) relatifs aux
sustes admissibles I de degré q et de type v, qui sont antérieures (au sens
large) a J dans Uordre lexicographique. St de plus n et n' sont assez grands
(comme dans la proposition 5.1), alors pour toute suite admissible J de
degré q, le coefficient de D’ (u) dans Uexpression de St)(u) est égal @ 1.

Cette proposition sera démontrée au § 6. Signalons-en tout de suite
quelques conséquences immédiates :

Corollaire 5.3. Les St)(u) relatifs aux suites admissibles de degré q
sont des éléments linéairement indépendants de H2+"+4(X ;Z,) sin et n'
sont assez grands. De plus, pour toute suite admissible I, de degré q et de
type v, D'(u) est combinaison linéaire des Stf(u) relatifs aux suites
admissibles K, de degré q et de type v, qui sont antérieures (au sens large)
a I dans Uordre lexicographique.

Si J n’est pas admissible, St)(u) est combinaison linéaire des D' (u)
relatifs aux suites admissibles 7, antérieures a4 J, de méme degré et de
méme type que J (d’apres la proposition 5.2). Appliquant alors & cha-
cune de ces suites I le corollaire 5.3, on voit que StJ(u) est combinaison
linéaire des StX(u) relatifs aux suites admissibles K antérieures & J,
de méme degré et de méme type que J. Ceci achéve de démontrer la
proposition 5.1, et il ne reste plus qu’a prouver la proposition 5. 2.

6. Démonstration de la proposition 5.2 (p premier impair)

La démonstration se fait par récurrence sur le rang r de J, la propo-
sition étant triviale pour le rang 0. Supposons-la donc démontrée pour
les J de rang < r, et prouvons-la pour J de rang 7 4+ 1. On est aussi-
t6t ramené & prouver ceci :
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Lemme. Soit a un entier = 0 ou 1 (mod. 2p — 2). Si J est une suite
admissible et st n et n' sont assez grands pour que D’ (u) existe, St2(D’(u))
est combinaison linéaire d’éléments D*(u), ow I parcourt I’ensemble des
suites admissibles antérieures a la suite (a,J), de méme degré et de méme
type que (a,J). St de plus (n et n’ étant assez grands) la suite (a,J) est
admissible, alors le coefficient de D u) dans Vexpression de
St2(D'(u)) est égal a 1.

Il reste a prouver ce lemme. Il est bon d’examiner d’abord le cas ou la
suite J est vide. On a alors St7(u) = D%(u) : vérification immédiate, en
utilisant (5.1) et (5.2).

Soit maintenant J une suite admissible non vide, et soit un entier
a=2k(p—1)+¢e, ¢=0 ou l. On se propose d’étudier I'élément
P¥(D’(u)) si ¢ =0, resp. B P*(D’(w)) si e = 1. Dans les deux cas,
il faut d’abord chercher P¥(D’(u)) ; nous supposerons donc d’abord
que a = 2k(p — 1), et chercherons l'effet de P* sur chacun des mo-
némes m de l’elément D’(u); Pk(m) est une somme de mondémes, dans
chacun desquels les facteurs ; du monéme m restent inchangés ; chaque
facteur (y;)»* (b > 0) de m reste inchangé ou est remplacé par (y,)»"+1.
De méme chaque facteur (y;.)ph reste inchangé ou est remplacé par

(y;)p’“‘l. Dans la somme X P¥(m) étendue & tous les monémes m de
m

D/(u), seuls subsistent les monémes qui contiennent au plus une variable
y; d’exposant donné (ceci résulte de la convention de signe faite dans la
définition de D’ (u)). Ainsi P¥(D’(u)) est une somme de polyndmes
dont chacun a la forme D¥(u), I ayant méme degré que la suite (a, J),
et méme type que J (car le nombre des variables y; figurant dans chaque
mondme n’a pas changé). Il reste & montrer que chacune de ces suites /
est antérieure (au sens large) & la suite (a,J). Soit (e, 45, &5, Ay, ...)
la suite associée & une telle suite I (d’ailleurs & = 0); et soit (e, 4,,
&y, g, ...) la suite associée & J. La suite associée & (a,J) a la forme
(0, 4, &, 4;, &, 43, ...). Pour montrer que I est antérieure a (a,J),
on prouve ceci : r désignant le rang de J, on a 4/,, < 4,; de méme
1'+1 < & si }'1,'-}-1 = }‘M on & A':' < }*r—l ’ si :'+1 =g, on a
e <e&_,; etc.... Sienfin on a les égalités 1;., =1, et & ., =¢,
pour 1 <:¢ < r, alors les suites I et (a,J) sont identiques. Or ces
assertions se prouvent trés facilement.
Supposons de plus que la suite (a,J) soit admissible. Prenons un
mondéme m de D’(u); il y a une fagon et une seule de multiplier par p

tous les exposants des y; qui sont > p, et tous les exposants des y;
qui sont > 1. Dong, si n est assez grand pour que D N(u) existe,
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chaque mondéme de D*7)(u) figure une fois et une seule dans
PE(D7(u)). Ceci achéve de démontrer le lemme dans le cas ol @ =0
(mod. 2p — 2).

Le cas o a =1 (mod.2p — 2) s’y raméne aussitét. En effet, si
J=(a;,a,,...,a;,...) est une suite admissible et si a, =0 (mod.
2p — 2), ona B,(D’(u)) = D'(u), I désignant la suite

(@, +1,ay,...,a,,...) .

7. Formules explicites (p premier impair)

On va établir les formules (3.3) et (3.4). Etudions d’abord Pk P*
pour k<ph; on a Ph(u) = D*(u), et P¥(D"(u)) est évidemment
combinaison linéaire des D'(u) tels que I = (k+h —t,t), t <k/p.
On peut donc écrire a priori :

PkPh = X ¢, Pkti=tpPt  (E<ph) . (7.1)
ost<k/p
Les constantes ¢ , étant ainsi définies pour 0 < k<ph et 0 <& < k/p,
il sera commode d’étendre cette définition & d’autres cas, en posant

¢t =0 pour O<Lk<ph, t>klp,

sit>0et k>=ph>0, ¢, =0 pour t #h, c},=1.

De plus, on convient que, pour k<0, P* = 0, d’ou la convention
¢tn=0 pour k<0 ou k<O,

Alors ¢} , est défini pour toutes les valeurs de l'entier ¢ >0 et
toutes les valeurs entiéres de & et k, >0 ou < 0; on a toujours
Pk Ph = X ¢} Pkt pt (7.2)
t>0
Désignons par X le méme espace qu’aux §§ 5 et 6, et soit

w e Hoven' (X 7))

comme ci-dessus. Considérons l’espace-produit K(Z,, 1)xX, et la
classe de cohomologie yu de ce produit (y désigne f,(x), x étant la
classe fondamentale de K (Z,, 1)). Appliquons au produit y« les opéra-
tions des deux membres de (7 2) ; chaque membre donne des termes en
y, en y? et en y?*. Egalons les coefficients de y»* et y? ; on obtient :

ZAch_p g — CLHY) Phti-p-1-t pt — ¢ (7.3)
t>0 ’

(e 1,0 T th 1'“02, Cif}f) Prh—t-1pt — Q| (7.4)
t>0



Dans la relation (7. 3), les coefficients sont nuls pour ¢ 4+ 1>inf(k/p,h);

pour ¢+ 1 <inf(k/p, k), Vopérateur Pkth—p-1-¢tpP¢ egt, adm1ss1ble
donc (7.3) implique que tous les coefficients sont nuls: ¢;_, ,_, = ¢i7} .

Par récurrence sur ¢, on a
t 0
Ck,h = Ch_pt,n—¢ (ED posant ¢, = ¢z ;) . (7.5)

Il reste & calculer les c; ,. Pour cela, utilisons (7.4): le coefficient de
Phk+h—t-1 Pt egt, nul si t>lc/p, si ¢t < k/p, Popérateur Pk+i—t-1P% egt,
admissible, pourvu que 0 <k<ph; donc, si 0 < k<ph, tous les
coefficients de (7.4) sont nuls, ce qui donne, pour ¢ = 0 (et en tenant
compte de la relation ¢ , = ¢, ,_1):

Cen + Coop, ho1 = Ch—1, 0+ Cp,a—1 pPoUr 0< k<ph . (7.6)

Or cette relation, compte tenu du fait que c, , est déja connu pour k<0
ou k > ph, permet de calculer de proche en proche ¢, , pour tous les
couples de valeurs de k et h tels que 0 << k<ph. On procéde par double
récurrence : récurrence sur b a partir de h = 1; et, pour chaque A,
récurrence sur k & partir de k£ = 0. Précisons: si on fait - = 1 dans
(7.6), on trouve (en tenant compte du fait que ¢, , =0 pour k<0,
¢ro= 1 pour k > 0):
Cr,1 = C4—1,1 + 1 pour 0 < k<p, d’ol, par récurrence sur £,

cgi=k+1 pour O0<<bk<<p—1. (7.7)
Ensuite, utilisant (7.6) pour tout k& > 2, puis (7.7) et enfin
pour A >1, ona ¢, =0 si k<0 ou k = ph , (7.8)

on calcule tous les ¢; , pour A > 2, 0 < k<ph.
Nous allons montrer que le résultat de ce calcul est

Cen = (— e((p — 1)h —k —1,k), pour 0<LEk<ph, (7.9)

en désignant toujours par (a,b), le nombre (a,b) réduit mod. p, et
par (@, b) le coefficient binomial si @ >0, et b >0, zéro si a<<0
ou b<0. En effet, posons provisoirement

Yen=(—1¥({(p—1)h —k —1,k), quels quesoient k et .
Pour prouver que c; , = y;, pour 0 < k<ph, il suffit de montrer

Vi T Viep i1 = Vi1, T Vi,p—1 POUr h =2, (7.6)
Yeii=Fk+1 pour 0<k<p-—1, (7.7)
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pour h>1, ona y,,=0 si k<0 ou k=ph. (7.8)

La vérification de (7.7)’ et de (7.8)" est immédiate. Celle de (7.6)’
revient &

((p'“‘l)k*k~p7k)p+((p“l)h“‘k’k——p)p
=((p—Dh—k—1,k),+((p—Dh—k,k—1),. (7.10)

(Observer que ce calcul vaut aussi quand p = 2). Or, d’aprés ’Appen-
dice ci-dessous (prop. 2), le premier membre est égal & ((p—1)h—Ek,k),
parce que (p — 1)h — p >0 (h étant > 2), et le second membre est
égal aussi & ((p — 1)k — k, k),, parce que (p —1)h — 1> 0. Ceci
prouve (7.10), et par suite (7.9) est démontrée.

Les formules (7.1), (7.5) et (7.9) donnent finalement :

Pk Ph=3(-1)k+4((p-1) h—k—1--t, k—pt) , P¥+—~¢ Pt pour k<ph | (7.11)
t

Enremplacant k par ph —1—n etipar b —n -+ ¢, onobtient la formule
(3.3); mais la formule (7.11) peut aussi étre utile. On la comparera a (4. 7).

Il reste encore & démontrer (3.4). En considérant P¥B P"(u), on voit
tout de suite qu’on a, a priori,
PkgPh= X af Peh-igPiy X by, BPE—t P (k. <ph). (7.12)

0<t<(k-1)/p o< t<k/p
Considérons la classe de cohomologie xu de I’espace-produit K(Z,, 1) x X ,
et soit toujours y = f(x). Appliquons & zu les opérations des deux
membres de (7.12); chacun donne des termes en y et y?. Egalons les
termes en y? ; il vient
Piipt— ¥ g}, Pk-l+h—tpt
0<t<(k—1)/p

puisque 0 <k — 1<ph, on peut appliquer au premier membre la
formule (7.1) ol k serait remplacé par £ — 1, d’ou

aj = Ci_y, pour 0<Lti<<(k—1)/p, k<ph.
Ceci détermine les coefficients a}, ,, :
aj, =(=1)"1+¢((p-1)h—k~+¢, k-1-pt) , pour 0<t<(k-1)/p,k<ph. (7.13)
Egalons maintenant les termes en y ; on obtient

PEPh — F (b}’c’h + Cr1pt pg) PEHEPE (7.14)

0<t<k/p
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compte tenu du fait que c¢;_,_,;,_, =0 pour ¢>(k — 1)/p. Tous les
opérateurs du second membre de (7.14) sont admissibles. Il y a alors
deux cas a distinguer :

Premier cas: k = ph. — Le second membre de (7.14) doit se réduire
a PPt P, ce qui donne, en tenant compte de ¢,;,_;_,; s = 0,

blya=0 pour 0<t<<h—1, &b ,=1. (7.15)
Deuxiéme cas: k<ph. — Alors (7.14) doit se réduire & (7.1), d’ou
bt h= Cropt, it — Cror—pt,a—¢ POUr O <t < kip<h . (7.16)

On a donc b} ;= by_p¢ 5—¢r aVEC by 4 =€ j, — €y 5, d'OU

(— l)kbk,h:: (p—Dh—k—-1k,+(p—1b—Fk, k—1),
=(p—Dh—Fkk), .

Finalement, on a, pour k<ph,

b= (— Det((p — )b —k+t,k—pt),, O0<t<klp. (7.17)

Observons que (7.17) vaut aussi pour k£ = ph, d’aprés (7.15). Finale-
ment, les relations (7.12), (7.13) et (7.17) donnent la formule

Pk Pt = X (- 1)k=1+t ((p—1) h—k -+t k— 1 —pt), Pk+'—t g Pt
: (7.18)

+ Z (-1 ((p-1)h—k+t, k—pt) ,f PEH— P! (k< ph)
t

C’est exactement la formule donnée par J. Adem [2] pour k<ph.
En remplagant, dans (7.18), k par ph —n et ¢t par h —n 4 ¢, on
obtient (3.4).

Appendice. Propriétés des coefficients binomiaux réduits modulo p.

Pour & et k entiers > 0, nous notons (&, k) le coefficient binomial

Bkl (bt 1)L 2) ... (ht+k
(k’k):(hJ!rk!) -4 +1)(1.-;.2?.k( = (1)

On note (k, k), cet entier réduit modulo p (p premier).

Proposition 1. i h —hy -+ phy, k=ky+ pk, (0 <hy<p,
0 = ko <P): on a
(hy k)p = (h()’ kO)p'(hly kl)a) a (2)

(ho, ko), est nul sv et seulement st hy + ky = p.
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Démonstration : la derniére assertion est évidente. Pour prouver (2),
distinguons deux cas: si ko, 4+ ko = p, on va montrer que (h, k) est
divisible par p ; dans le dernier membre de (1), enlevons les facteurs (du
numeérateur et du dénominateur) premiers a p ; il reste

(phy+ 1)) (p(hy+ 2)) ... (plhy + ky + 1))
(p) 2p) ... (kyp)

ce qui prouve l'assertion. Le deuxiéme cas est celui ou hy -+ ky<p;
dans le dernier membre de (1), enlevons les facteurs divisibles par p; il
reste une fraction qui, mod. p, est congrue & (hy, ko); donc (h, k) est
congru (mod. p) au produit

= p(h1+k1 + 1) ' (h13 kl) ’

. (P, +1)...(phy+ ky)) -
(P, ko) (p). - . (ky p) = (hg, ko) (hl’kl) .

Corollaire. St & et k ont pour développements p-adiques

h=2ZXp'h,, k=2Zpk,,

10 10

ona (h,k),=1I(h;k;),. En particulier, pour que (h,k), =0, il faut

t=0
et vl suffit que Uon ait h;, + k, = p pour au moins un 1.
Convenons maintenant de poser (h, k) = 0 si A <0 ou k<0. L’iden-
tité classique

(h+1,k)+(h,k+1)=(R+1,k+ 1) (3)

valable pour A >0, k£ > 0, subsiste pour 2+ %k + 1 >0 (c’est im-
médiat).

Proposition 2. St A +k+p >0, ona
b+ p, k) + Bk +p)y=Gh+p k+p), . (4)
Démonstration : supposons d’abord ket k£ > 0, et soit
h=hy+ phy,, k=ky+pky, (0<h<p, O0<ky<p).
Puisque A, >0, k, > 0, on a, d’apres (3),
(hy +1,ky) + (hy, by + 1) = (b, + 1,k, + 1) .

Réduisons mod. p, puis multiplions par (h,, k), : on obtient (4). Si
maintenant A et A 4+ p sont <0, (4) est trivialement vérifiée. Reste
le casou b+ p=hy, 0 <<hy<p. On est ramené & vérifier le
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Lemme. 8¢ 0 < h,<p, e hey+ k>0, ona

(h(): k)p = (k{)? k -+ p)p . (5)

En effet, distinguons deux cas: si k>0, soit k =k, + pk,
(0 < ky<p); les deux membres de (5) sont égaux a (h,, k,), d’apreés
la proposition 1. Si k<0, posons &k + p =k, (0<k,<p); le premier
membre de (5) est nul, le second est égal a (h,, k,),, et comme
hy + ko, = p par hypothése, on a bien (g, k,), = 0.

D2

BIBLIOGRAPHIE
[1] J. Adem, The iteration of the Steenrod squaresin algebraic topology. Proc.
Nat. Acad. Sci. U. S. A. 38, 1952, p. 720-726.

[2] J. Adem, Relations on iterated reduced powers. Proc. Nat. Acad. Sci. U. S. A.
89, 1953, p. 636-638.

[3] H. Cartan, Sur les groupes d’Eilenberg-MacLane, I et II. Proc. Nat. Acad. Sci.
U. S. A. 40, 1954, p. 467—471 et p. 704—707.

[4] S. Eilenberg and S. MacLane, Cohomology theory of abelian groups and
homotopy theory, I. Proc. Nat. Acad. Sci. U. S. A. 36, 1950, p. 443—-447.

[6] J. P. Serre, Homologie singuliére des espaces fibrés. Ann. Math. 54, 3, 1951,
p. 425-505.

[6] J. P. Serre, Cohomologie modulo 2 des complexes d’Eilenberg-MacLane.
Comment. Math. Helv. 27, 1953, p. 198-232.

[7] N. Steenrod, Cyclic reduced powers of cohomology classes. Proc. Nat. Acad.
Sci. U. S. A. 89, 1953, p. 217-223.

[8] R. Thom, Quelques propriétés globales des variétés différentiables.
Comment. Math. Helv. 28, 1954, p. 17-86.

(Regu le 12 juillet 1954.)

58



	Sur l'itération des opérations de Steenrod.

