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Sur Pitération des opérations de Steenrod

par Henbi Cabtan, Paris

A Monsieur Heinz Hopf, en témoignage de profonde admiration

Introduction

Le but de cet article est de déterminer explicitement les relations
existant entre les opérations de Steenrod itérées. Le cas d'un entier
premier p impair se différencie du cas où p 2.

Pour p 2, les relations entre les ,,carrés" itérés SqaSqb, conjecturées

d'abord par Wu Wen-tsiin, ont été établies par J. Adem [1]. Plus
récemment, J.-P. Serre et R. Thom ([6], [8]) ont indiqué (sans l'expliciter

en détail) une méthode commode pour calculer ces relations; elle
consiste à connaître d'avance une ,,base" pour les carrés itérés, grâce
à une détermination explicite des groupes d'Eilenberg-MacLane du
groupe cyclique d'ordre 2 (cf. [6]), puis à faire les calculs dans un
produit d'espaces projectifs réels. Cette méthode montre en outre
qu'il n'y a pas d'autre relation entre les SqaSqb que celles données

par Adem.
Une extension de la méthode de Serre et Thom m'a permis de déterminer

toutes les relations existant entre puissances de Steenrod itérées
8tpBtbp pour p premier impair. Ces relations ont été trouvées
indépendamment par J. Adem [2], qui utilise l'homologie des sous-groupes de

Sylow du groupe symétrique d'ordre p2 ; sa démonstration n'a pas encore
été publiée, à ma connaissance.

La démonstration que nous donnons ici, dont le principe est différent,
a l'inconvénient d'utiliser la détermination explicite des groupes d'Eilen-
berg-MacLane du groupe cyclique d'ordre p (cf. [3]), mais présente
l'avantage de calculs presque mécaniques. Pour la commodité du
lecteur, nous avons réuni dans un bref Appendice quelques propriétés (sans
doute connues) des coefficients binomiaux réduits nwKÏtilo p.
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1. Les opérations des Steenrod

On note Z l'anneau des entiers naturels, Zp l'anneau (corps) des entiers
mod. p (p premier).

Pour tout espace topologique X, Yhomomorphisme de Bockstein (%p

envoie la cohomologie H* (X ; Zp) dans la cohomologie H* (X ; Z) en

augmentant le degré d'une unité. Rappelons la définition de ocpi en
précisant les conventions de signe adoptées ici : tout cocyle mod. p, de

degré q, provient par réduction mod. p d'une eoehaine entière x telle
que dx ait la forme (— l)q+1pxr, où x' est un (q -f l)-cocycle entier.
L'image de x' dans Hq+1 (X ; Z) ne dépend que de l'image de x dans

Hq(X\Zp), et ceci définit l'homomorphisme otP. Il est, au facteur
(— l)Q+1 près, identique à l'homomorphisme ,,cobord" de la suite exacte
de cohomologie de l'espace X, relativement à la suite exacte de coefficients

où / désigne la multiplication par p.
L'homomorphisme de Bockstein pp :Hq(X; Zp) -> Hq+1(X ; ZP) sera,

par définition, le composé de <xp et de l'homomorphisme naturel

Il est évident que l'homomorphisme composé pp o f}p est nul.
La définition précédente s'étend au cas de la cohomologie relative

Hq(X, Y;ZP), Y désignant un sous-espace de X. Considérons alors
l'homomorphisme ,,cobord"

l'homomorphisme de Bockstein f}p commute avec ô* (vérification
immédiate). Il en résulte que pp commute avec la suspension quand celle-ci est
définie (cf. [5], Chap. II, § 7 ; et [3], Note 1, § 5).

Relativement au cup-produit, fip jouit de la propriété :

p9(u-v) u.pp(v) + (- l)*09(u).v (1.1)

si v est de degré q.
Soit a un entier ^ 0, congru à 0 ou 1 mod. 2p — 2. Comme en [3]

(Note II, § ê), nous définirons l'homomorphisme

8t;:H*(X;Z9)-»H'**(X;Z9)
de la manière suivante : si p=2, on pose 8t% — 8qa, carré de Steenrod.
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Si p est premier impair, et a 2k(p ¦— 1), k entier, on pose Stp ç(Pp

(opération de Steenrod définie en [7], formule (6.8)). Pour des raisons
de commodité, nous écrirons ici Pp au lieu de ^P\, ou même seulement
Pk lorsqu'aucune confusion n'est à craindre. Si a 2k(p — 1) + 13

p premier impair, 8tp est, par définition, Thomomorphisme composé

Rappelons les principales propriétés des opérations de Steenrod 8tp :

(i) soit / une application X -> Y, et /* l'homomorphisme

H*(7;Z9)->H*(X;ZP)
défini par / ; alors /* o 8tp Stp o /* (autrement dit, Stp est une opération

cohomologique).

(ii) l'opération Stp commute avec la suspension ;

(iii) St°p est l'identité, 8t\ 09.

(iv) pour p premier impair, on a :

(1.2) Pp(u) up si u est de degré 2k (up désigne la puissance
2>ième au sens du cup-produit) ;

(1.3) Plp(u) 0 siu est de degré q<2k ;

(1.4) Pl(wv) ZPhp(u)-Pkp-h(v),

cette dernière formule se généralisant aussitôt au cas du produit d'un
nombre quelconque de facteurs.

(iv, a) pour p 2, on a :

(1.2 a) Sqk(u) u2 si u est de degré k ;

(1. 3a) 8qk(u) 0 si u est de degré q<k ;

k

(1.4a) 8qk(u-v) E Sqh (u) - Sqk~h (v).

On a en outre 8q2k+1 Sq1 o Sq2k, formule qui est en accord avec la
formule de définition Stf(p-1)+1 8&po St^^-v pour p impair.

2. Les opérations de Steenrod itérées

Soit p premier, éventuellement égal à 2. Pour chaque suite /
(al9..., ak) d'entiers at ^0, congrus à 0 ou 1 mod. 2p — 2, définissons

l'opération composée
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Si la suite / est vide, on convient que Stp est Fendomorphisme identique.
Soit q la somme des termes de la suite /, que nous appellerons le degré

de I ; Stp est un endomorphisme de H*(X ; Zp) de degré q, c'est-à-dire

qui envoie Hn(X\Zp) dans Hn+9(X;ZP). Si / et J sont deux suites,
et si (/, J) désigne la suite obtenue par juxtaposition des suites / et J,
on a évidemment

(2.1)

Soit Mp l'algèbre (sur le corps Zp) ayant pour base l'ensemble des

suites finies / d'entiers ^ 0 congrus à 0 ou 1 mod. 2p — 2. C'est une
algèbre graduée. Pour tout espace X, la formule (2.1) montre que l'application

I -> Stp définit un homomorphisme de l'algèbre graduée Mp sur
une sous-algèbre graduée de l'algèbre des endomorphism.es de £T* (X ;ZP).
Soit RP(X) le noyau de cet homomorphisme, et soit Rp l'intersection
des RP(X) relatifs à tous les espaces X possibles. L'algèbre quotient
Ap — MpjRp s'appellera Valgèbre de Steenrod relative à l'entier premier
p. Pour tout espace X, la cohomologie H*(X;ZP) est munie d'une
structure de module à gauche sur Valgèbre de Steenrod Ap ; d'une façon
précise, H*(X ; Zp) est un module gradué sur Valgèbre graduée Ap

L'idéal bilatère Rp est somme directe de ses composantes Rqp des

divers degrés q. Chercher Rqpi c'est chercher les combinaisons linéaires
(à coefficients dans Zp) des Stp de degré q, qui donnent zéro dans
n'importe quel espace X. Or une telle combinaison définit, pour tout entier n,
une opération cohomologique Hn(X ; Zp) ->Hn+q(X ; Zp) ; et l'on sait
([6], § 4, corollaire du théorème 1) que, pour qu'une opération cohomologique

Hn(X ; Zp) -> Hn+q(X ; Zv) soit nulle pour tout X, il faut et il
suffit qu'elle donne zéro quand on l'applique à la ,,classe fondamentale"
d'un espace d'Eilenberg-MacLane K(ZP, n), c'est-à-dire d'un espace X
dont tous les groupes d'homotopie sont nuls, sauf nn(X) qui est
cyclique d'ordre p. Comme les Stp commutent avec la suspension [4] qui
envoie Hr+1(Zp,n + l; Zp) dans Hr(Zp,n;Zp), une combinaison
linéaire des Stp de degré q sera nulle dans l'algèbre Ap si et seulement si,

appliquée à la classe fondamentale de Hn(Zp,n;Zp), elle donne zéro

pour n assez grand (car alors, par suspension, elle donnera zéro pour
tout n). Or on a le résultat suivant ([3], Note II, corollaire du théorème

6 ; cf. aussi, pour le cas p 2, [6], § 4, corollaire du théorème 2) :

Soit u0 la classe fondamentale de Hn(Zp,n;ZP). Si q<n, Vespace
vectoriel Hn+Q(Zp,n;Zp) a une Zp-base formée des éléments Stp(u0), où

I parcourt Vensemble des suites (ax,..., ak) de degré q telles que

at ^ pctt+i pour 1 < i < le — 1 (2.2)
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Une suite / satisfaisant à (2.2) sera dite admissible (cf. [6]). De tout
ce qui précède résulte le :

Théorème 1. Les 8t*p relatifs aux suites admissibles I forment une base1)
de Valgèbre de Steenrod Av.

Dans cet énoncé et dans tout ce qui suit, nous adoptons la notation
vsuivante : Stp désigne désormais l'élément de l'algèbre Ap9 image de

IeMv.
3. Enoncé des résultats

Dans ce travail, nous nous proposons d'exprimer les Stp relatifs aux
suites / non admissibles, comme combinaisons linéaires des 8tp admissibles.

Cela explicitera l'algèbre de Steenrod Ap ; en même temps, cela
déterminera entièrement les opérations de Steenrod dans la cohomologie
d'Eilenberg-MacLane H*(Zp,n)Zp), en vertu du théorème 6 de [3],
Note II.

Il est commode de considérer que chaque suite I est une suite illimitée
(«!,..., at,... telle que les at soient nuls pour i assez grand. Une telle
suite sera admissible si a% ^ rPa%+\ pour tout i. La suite / sera dite de

rang < r (r entier > 0) si at 0 pour i >r ; le rang de / sera le plus
petit des r tels que / soit de rang ^ r.

Dans l'ensemble des suites /, nous considérerons une relation d'ordre :

Vordre lexicographique en commençant par la droite. Une suite

(al9...,ar90, 0,...)
sera donc antérieure à une suite (61,..., 6r, 0, 0,...) si ar<br, ou
si ar br et la suite (at...., ar-1,0,0,...) est antérieure à

(&i,..., 6^,0,0,...)
Le théorème 1 se trouvera complété par le :

Théoïème 2. Soit J une suite non admissible de degré q ; alors St% est

combinaison linéaire des 8tp relatifs aux suites admissibles I de degré q,
qui sont antérieures à J dans Vordre lexicographique. En particulier, le

rang de chaque suite / est au plus égal au rang de J.
Lorsque p est premier impair, on peut préciser davantage. Appelons

type d'une suite I (al9.. .,ai9...) le nombre des entiers at impairs.
On prouvera le :

Théorème 2 bis. Soit p premier impair, et soit J une suite non admissible

de degré q et de type t. Alors St*p est combinaison linéaire des St^

*) Cf. [2], theorem 1.5, où malheureusement le sens du mot ,,base" n'est pas précisé.
Dans notre théorème 1, le mot ,,base'* est pris au sens de la théorie des espaces vectoriels;
il implique donc l'indépendance linéaire.
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relatifs aux suites admissibles I de degré q, de type x, qui sont antérieures
à J dans Vordre lexicographique.

Le théorème 2 bis apporte une précision relative au type, qui serait
inexacte pour p 2. Par exemple, il est bien connu que Sq2 o Sq2

Sq*oSq1.
Nous nous proposons, pour chaque suite J non admissible de rang 2,

d'exprimer explicitement Sf^ comme combinaison linéaire des Stp relatifs

aux suites admissibles / de rangs 2 et 1. La solution du cas général
d'un rang quelconque s'en déduira, au moins théoriquement.

Cas p 2. On doit exprimer SqkoSqh pour k<2h. Le problème
a été résolu par Adem [1]. Nous écrirons la formule comme suit :

— I — 2t)2 (3.1)

où n désigne un entier ^0, et où l'on fait les conventions suivantes : on
convient que Sqk est nul pour k < 0 ; le symbole (a, b), où a et 6 sont entiers,

désigne le coefficient binomial -— lorsque a et b sont > 0, et

est nul si l'un au moins des entiers a et 6 est <0 ; (a, b)2 désigne le
nombre (a, b) réduit mod. 2.

Explicitons la formule (3.1) pour w 0, 1,2,3,4,5,6:
Sq211-1 o Sqh 0

Sq2h~z o Sqh Sq271'1 o Sq^2
Sq2h~* o Sqh Sq271-1 o Sq»-* + Sq2h~2 o Sqh~2

Sq2h~5 o Sqh Sq271-1 o Sqh~*

8q2h-« o Sqh Sq211-1 o Sqh~5 + Sq2h~2 o Sqh~* + Sq2h~z o Sq*-*
Sq211-1 o Sqh Sq271-1 o Sqh~6 + Sq2h~* o Sq71-*

On notera que Sq271-2*-1 o Sqh Sq271-1 o Sq71-2*

Cas p premier impair. Le cas où la suite / (1, a) se résout trivialement

par les formules

Sti o Stt fifcî+1 si a 0 (mod. 2p - 2)
(3.2)

St\ oStap 0 si a 1 (mod. 2p - 2)

qui résultent des définitions et du fait que pp o pp 0. On observera

que ces formules sont aussi vraies pour p 2.

Il reste à étudier Stp o Stp lorsque 2p — 2 ^.b<pa. Il suffit de
considérer le cas où 6 0 (mod. 2p — 2) ; car, connaissant la formule qui
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donne Stbp o St% dans ce cas, on applique /Sp aux deux membres pour
obtenir la formule donnant Stbp+1 o St*. Il reste donc à exprimer P* o P^
pour k<ph, et Pjo^oPj pour k^ph. Voici la solution :

(3.3)

où n désigne un entier ^ 0, et où Ton convient que Pp 0 pour
k<0 ; la notation (a, 6)^ désigne le coefficient binomial réduit mod.p,
et zéro si a<0 ou b<0. Avec les mêmes conventions, et toujours
pour n > 0, on a

(3.4)

On observera que, pour p — 2, on pourrait déduire la formule (3.1)
de la formule (3.3) où l'on conviendrait que P\ désigne Sqk.

Voici ce que donnent (3.3) et (3.4) pour p impair et pour les petites
valeurs de n (pour abréger l'écriture, on omet l'indice inférieur p et le
signe o) :

pph-i pn o pPh p ph __. p pph pu
pph-2 ph __ pph-1 ph-1
pph~l g ph _ pph g ph-1 _|_ fi pph ph-1
pph—3 ph __ pph-1 ph-2 2 P^-2 P^-l
pph-% fi ph _. pph fi ph-2 2 P^^-l fi jP^-1 4- S Pph Ph~2-\- 8 PP

pph-4 ph =z pph-1 ph-3 %pph~2 ph-2 3 pph-3 ph-1

On notera que P^-i-pk ph _
On notera encore les formules suivantes, valables pour tout h (elles se

déduisent aisément des formules (7.11) et (7.18) ci-dessous, respectivement

équivalentes à (3.3) et (3.4)) :

(3.5) PkPh (k,h)vPk+h
pour 0 < k < p — 1

(3.6) PkpPh(klh)Pk+hP+(khl)PPk+h)

4. Démonstration dans le cas p 2

Pour être complet, nous allons donner ici une démonstration du théorème

2 (pour p 2) et de la formule (3.1) en appliquant une méthode
dont le principe est dû à Serre ([6], § 4, n° 33) et à Thom ([8], lemme
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II.8). Ce sera d'ailleurs le même principe qui nous permettra de
résoudre le cas où p est premier impair.

Considérons un espace K(Z2, 1) dont tous les groupes d'homotopie
sont nuls, sauf nx cyclique d'ordre 2 ; par exemple, l'espace projectif
réel à une infinité de dimensions. Son algèbre de cohomologie mod. 2

est une algèbre de polynômes engendrée par un unique générateur x de

degré 1 (classe fondamentale). D'après (1.2a) et (1.3a), on a

Sq1(x) x2 8qk(x) 0 pour k>l
d'où l'on déduit facilement, en utilisant (1.4a),

Sqk(x*{) 0 si 1 < Je ^ 2\ Sqk(xk) x2k si h 2l (4.1)

Soit X le produit de n exemplaires de K (Z2, 1 ; soient xx..., xn leurs
classes fondamentales, identifiées à des éléments de H1(X;Z2). Soit
u le produit xx... xn (au sens du cup-produit). Compte tenu du théorème

1 (qui est déjà démontré), le théorème 2 (pour p 2) résultera
aussitôt de la :

Proposition 4.1. Les Sqz(u) relatifs aux suites admissibles I de degré

q sont des éléments linéairement indépendants de Vespace vectoriel
Hn+Q(X ; Z2), pourvu que n soit assez grand (en fait, n ^ q). Pour toute
suite non admissible J de degré q, SqJ(u) est combinaison linéaire des

Sq*(u) relatifs aux suites admissibles I de degré q, qui sont antérieures à J
dans Vordre lexicographique.

Démonstration: elle ne présente pas de difficulté essentielle, puisque,
pour toute suite /, Sq1(u) peut être calculé à l'aide des formules (4.1).
En fait, associons à chaque suite / (ax,..., ai,... la suite d'entiers

(Xi^di - 2ai+1 (4.2)

qui sont ^0 si et seulement si / est admissible. A chaque suite admissible

/ de degré q, on va associer un élément D1(u) e Hn+q (X ; Z2) comme
suit. Observons d'abord que Hn+q(X ; Z2) est l'espace vectoriel des
polynômes de degré n + q en xx,.. xn ; considérons les monômes qui
contiennent exactement oct exposants égaux à 2l (pour i 1,2,...),
et dont tous les autres exposants sont égaux à 1. La somme de tous ces
monômes est un polynôme symétrique, qui sera par définition l'élément
DT(u). Si n > q, on a n > Hoci7 donc les D1 (u) relatifs à toutes les

i
suites admissibles / de degré q sont linéairement indépendants. On prouve
alors facilement, par récurrence sur le rang r de la suite J :
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Proposition 4.2. Soit J une suite {admissible ou non) de degré q
(q < n). Alors 8qJ(u) est combinaison linéaire des D*(u) relatifs aux
suites admissibles I de degré q, qui sont antérieures (au sens large) à J dans
Vordre lexicographique. De plus, si J est admissible, le coefficient de D* (u)
dans Vexpression de SqJ (u) est égal à 1.

La proposition 4.2 entraîne immédiatement :

Corollaire 4.3. Les SqJ(u) relatifs aux suites admissibles de degré q
sont des éléments linéairement indépendants de Hn+q(X \Z2) si n^q. De
plus, pour toute suite admissible I de degré q, D1(u) est combinaison
linéaire des 8qK(u) relatifs aux suites admissibles K de degré q, qui sont
antérieures (au sens large) à I dans Vordre lexicographique.

Si J n'est pas admissible, SqJ (u) est combinaison linéaire des D1 (u)
relatifs aux suites admissibles /, antérieures à J et de même degré
(d'après la proposition 4.2). Appliquant alors à chacune de ces suites /
le corollaire 4.3, on voit que SqJ(u) est combinaison linéaire des

SqK(u) relatifs aux suites admissibles K antérieures à J et de même
degré. Ceci achève de démontrer la proposition 4.1.

Ainsi le théorème 2 est établi dans le cas p 2. Il reste à démontrer
la formule (3.1), et pour cela on doit calculer Sqk8qh pour k<2h (nous
omettons désormais le signe o). Il est visible que Sqh(u) Dh(u), et
que 8qk(Dh(u)) est combinaison linéaire des DT(u) tels que

I (k + h — t,t) avec t < Jfc/2

On peut donc écrire a priori

Sqk8qh= E cl^Sqt+^Sq* (k<2h). (4.3)

Pour expliciter les coefficients cj. A, considérons Fespace-produit
K(Z2, l)xX, et, dans sa cohomologie, l'élément xu (x désignant la
classe fondamentale de K(Z2, 1)). Appliquant au produit xu les opérations

des deux membres de (4.3), on trouve, à gauche comme à droite,
des termes en x, x2 et x4. Egalons les termes en xé ; on obtient la relation

ctk_2h_1 c]^l pour k ^ 2, d'où

4,a ck-2tth-t (en posant ckth c°kih) (4.4)

Egalons ensuite les termes en x2 ; on trouve

ci,i — 0> ci,h 1 + Ci ,h-i pour h > 2, d'où clh h + 1 (à réduire
mod. 2). Puis on a

_1 pour A>2, 2^k<2(hl) ^

ck,h + Cto-2,h-i c*-ith Pour h^2, 2(h~l)^k<2h.

48



Les relations (4.5) permettent le calcul deck h pour A > 2, 0 < & < 2 A,

par récurrence sur h: les ck h_1 sont déjà connus pour k<2(h — 1),
et les ck h se calculent par récurrence sur k, à partir des valeurs c0 h 1,

Ci,» Â+ 1.

Il reste à vérifier que les cfcf fc ainsi calculés pour 0 < k<2h satisfont
à la relation

ck1l=z (Ji — k — 1, k)2 (coefficient binomial réduit mod. 2) (4.6)

Nous ne ferons pas ici cette vérification, car elle sera faite au § 7 pour p
premier quelconque. Les formules (4.3), (4.4) et (4.6) donnent :

8qk8qh Z(h — k—l+t,k — 2t)2Sqk+h~t8qf pour k < 2h • (4-7)

En remplaçant k par 2h — 1 — n et t par h — n + t, on obtient la
formule (3.1); mais la formule (4.7) peut aussi être commode.

5. Démonstration dans le cas où p est premier impair

On va encore considérer un espace K(ZP, 1). Cette fois, son algèbre
de cohomologie mod. p est, comme bien connu, le produit tensoriel d'une
algèbre extérieure à un générateur x de degré 1 par une algèbre de
polynômes à un générateur y de degré 2. D'ailleurs x est la classe fondamentale,

et
y pp(x) donc ft,(y) 0 (5.1)

Les opérations de Steenrod sont déterminées, dans H*(ZP, 1 ]ZV), par
les formules (5.1) et

pi(y) yp} p*(y) 0 pour fe> 1, Pk{x) 0 pour &>0, (5.2)

qui résultent de (1.2) et (1.3). Tenant compte de (1.4), on en déduit
facilement

Pk(yvi) 0 si 1 < k ^ p\ Pk(yk) y*k si k pi (5.3)

(La démonstration se fait par récurrence sur i.)
Soit X un espace, produit de n + n1 exemplaires de K(ZP, 1) ; soient

xx,..., xn les classes fondamentales des n premiers facteurs, x{,..., x'nl

celles des nr derniers ; et posons y{ — /^(a^), y'i fipix'i)- Soit u
l'élément de H2n+n' (X ; Zp) égal au cup-produit
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Compte tenu du théorème 1 (qui est déjà démontré), le théorème 2 bis
résultera aussitôt de la :

Proposition 5.1. Les St^(u) relatifs aux suites admissibles I de degré

q sont des éléments linéairement indépendants de l'espace vectoriel
H2n+n/+9(X ; Zp), pourvu que n et nf soient assez grands (par exemple, il
suffit que 2n ^ q/(p — 1), pn/ ^ 1 + q/2). Pour toute suite non admissible

J de degré q et de type r, StJp(u) est combinaison linéaire des Stp(u)
relatifs aux suites admissibles I, de degré q et de type r qui sont antérieures
à J dans Vordre lexicographique.

Démonstration: en principe, 8t^(u) peut être calculé pour toute
suite /, grâce aux formules (5.1), (5.2), (5.3). En fait, associons à chaque
suite / (ax,..., at,... la suite des entiers k% et st définis par

«. 2it(p - 1) + c, (e, 0 ou 1) (5.4)

puis la suite des entiers Xt définis par

K &, — pK+i -£t+i • (5-5)

On vérifie que la suite / est admissible si et seulement si les Xt sont tous

^ 0. Inversement, la connaissance des ez et des Xt (nuls pour i assez

grand) détermine la suite des at, car on a

(5.6)

après quoi at est déterminé par (5.4). La suite (e1, Al5..., £z, Xt,...)
sera dite associée à la suite /. L'ordre lexicographique des suites / est le
même que celui des suites associées (en commençant toujours par la
droite).

Soit alors / une suite admissible de degré q, et soient st et Xt les entiers
de la suite associée. On va définir un élément D^u) e H2n+nf+q(X ;ZP).
Parmi les monômes y^1--- y^1, considérons ceux qui contiennent
exactement Xt exposants égaux à pl (pour i 1, 2,...), et dont tous
les autres exposants sont égaux à 1 ; soit s la somme de ces monômes.
L'élément ^(u) sera le produit de s par l'élément t que voici : t est une
somme alternée de monômes dont chacun s'obtient en enlevant du produit

x[... x'n, un nombre de facteurs égal au type r E st de la
i

suite /, puis en remplaçant chaque x\ enlevé par une puissance {y\)vh>,

de manière qu'au total le nombre des facteurs yf7 qui figurent avec
l'exposant ph (h > 0) soit nul si eh+1 0, égal à un si £^+1 1. Il reste
à fixer le signe dont chaque monôme de t doit être affecté : c'est la signa-
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ture de la permutation que l'on doit effectuer sur les indices j (1 ^ j ^ nr)

pour que les variables #J viennent les premières en commençant par la
gauche (rangées par ordre d'indices croissants), et que les variables y1} se

suivent dans l'ordre des exposants croissants.
L'élément D1 (u) est ainsi défini pour chaque suite admissible /. Il est

clair que les D1 (u) associés à toutes les suites admissibles de degré donné
q sont linéairement indépendants, pourvu que l'on ait n > Z Xt et

i
nr ^ t pour toutes les suites admissibles de degré q. On en déduit facilement

la limitation de n et nr donnée dans l'énoncé. Avant d'achever la
démonstration de la proposition 5.1, énonçons-en une autre :

Proposition 5.2. Soit J une suite (admissible ou non) de degré q et de

type r. Alors StJv(u) est combinaison linéaire des DT(u) relatifs aux
suites admissibles I de degré q et de type r, qui sont antérieures (au sens
large) à J dans Vordre lexicographique. Si de plus n et n1 sont assez grands
(comme dans la proposition 5.1), alors pour toute suite admissible J de

degré q, le coefficient de DJ(u) dans Vexpression de St^,(u) est égal à 1.
Cette proposition sera démontrée au § 6. Signalons-en tout de suite

quelques conséquences immédiates :

Corollaire 5.3. Les StJv(u) relatifs aux suites admissibles de degré q
sont des éléments linéairement indépendants de H2n+nf+Q (X ; Zp) si n et n'
sont assez grands. De plus, pour toute suite admissible /, de degré q et de

type r, D1 (u) est combinaison linéaire des Stf(u) relatifs aux suites
admissibles K, de degré q et de type r, qui sont antérieures (au sens large)
à I dans l'ordre lexicographique.

Si J n'est pas admissible, St^(u) est combinaison linéaire des D1 (u)
relatifs aux suites admissibles /, antérieures à J, de même degré et de
même type que J (d'après la proposition 5.2). Appliquant alors à
chacune de ces suites / le corollaire 5.3, on voit que StJp(u) est combinaison
linéaire des Stf(u) relatifs aux suites admissibles K antérieures à J,
de même degré et de même type que J. Ceci achève de démontrer la
proposition 5.1, et il ne reste plus qu'à prouver la proposition 5.2.

6. Démonstration de la proposition 5.2 (p premier impair)

La démonstration se fait par récurrence sur le rang r de J, la proposition

étant triviale pour le rang 0. Supposons-la donc démontrée pour
les J de rang < r, et prouvons-la pour J de rang r-f 1. On est aussitôt

ramené à prouver ceci :
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Lemme. Soit a un entier 0 ou 1 (mod. 2p — 2). Si J est une suite
admissible et si n et n! sont assez grands pour que DJ(u) existe, Stp(DJ(u))
est combinaison linéaire d'éléments D*{u), où I parcourt Vensemble des

suites admissibles antérieures à la suite (a, J), de même degré et de même

type que (a, J). Si de plus (n et n1 étant assez grands) la suite (a, J) est

admissible, alors le coefficient de D^a> J\u) dans l'expression de

Stap{DJ{u)) est égal à 1.

Il reste à prouver ce lemme. Il est bon d'examiner d'abord le cas où la
suite J est vide. On a alors St*(u) Da(u) : vérification immédiate, en
utilisant (5.1) et (5.2).

Soit maintenant J une suite admissible non vide, et soit un entier
a 2k(p — 1) + e. e 0 ou 1. On se propose d'étudier l'élément
Pk(iy{u)) si 6 0, resp. p Pk(DJ{u)) si e=l. Dans les deux cas,
il faut d'abord chercher Pk(DJ(u)) ; nous supposerons donc d'abord
que a 2k(p — 1), et chercherons l'effet de Pk sur chacun des
monômes m de l'élément DJ(w) ; Pk(m) est une somme de monômes, dans
chacun desquels les facteurs xf9 du monôme m restent inchangés ; chaque
facteur (y9)ph (h ^ 0) de m reste inchangé ou est remplacé par (y9)ph+1.
De même chaque facteur (y'j)vh reste inchangé ou est remplacé par
(y'9)vh+1. Dans la somme S Pk(m) étendue à tous les monômes m de

m

iy(u), seuls subsistent les monômes qui contiennent au plus une variable
yr7 d'exposant donné (ceci résulte de la convention de signe faite dans la
définition de /K (-&)). Ainsi Pk(DJ(u)) est une somme de polynômes
dont chacun a la forme D*(u), I ayant même degré que la suite (a, J),
et même type que J (car le nombre des variables y!9 figurant dans chaque
monôme n'a pas changé). Il reste à montrer que chacune de ces suites /
est antérieure (au sens large) à la suite (a,J). Soit {ex, X[, e2, A2

la suite associée à une telle suite / (d'ailleurs e[ 0) ; et soit e±, Ax,

e2, X2y...) la suite associée à J. La suite associée à (a, J) a la forme
(0, A, e1, Xl9 e2, A2,.. .)• Pour montrer que / est antérieure à (a, J),
on prouve ceci : r désignant le rang de J, on a K+i ^ K > ^e m^me

eT+x < sr ; si A^+1 Xr, on a Xrr < Xr_x ; si er+1 er, on a
e'r ^ £r_i ; etc.... Si enfin on a les égalités X[_rl — Kt et e[+l et

pour 1 < i < r, alors les suites /et (a, J) sont identiques. Or ces

assertions se prouvent très facilement.

Supposons de plus que la suite (a,J) soit admissible. Prenons un
monôme m de D* (u) ; il y a une façon et une seule de multiplier par p
tous les exposants des y} qui sont ^ p, et tous les exposants des yr9

qui sont > 1. Donc, si n est assez grand pour que Dia$J)(u) existe,
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chaque monôme de D^a"^(u) figure une fois et une seule dans
Pk(DJ(u)). Ceci achève de démontrer le lemme dans le cas où a 0

(mod. 2p — 2).
Le cas où a 1 (mod. 2p — 2) s'y ramène aussitôt. En effet, si

J (ax, aa,..., a,,...) est une suite admissible et si a1 0 (mod.
2p — 2), on a fip(DJ(u)) Dz(^), / désignant la suite

7. Formules explicites (p premier impair)

On va établir les formules (3.3) et (3.4). Etudions d'abord PkPh
pour k<ph; on a Ph{u) Dh(u), et Pk(Dh(u)) est évidemment
combinaison linéaire des jDj(^) tels que I (k -\- h — t,t), t < &/#>.

On peut donc écrire a priori :

pkph^ 21 cj^P*+*-'P* (k<ph) (7.1)

Les constantes rjj. ^ étant ainsi définies pour 0<&<£>/&et 0<^< i/^),
il sera commode d'étendre cette définition à d'autres cas, en posant

cï,h " ^ pour 0 < k<ph t>k/p
si t > 0 et k ^ph^O, c\ih 0 pour £ ^ A, cJfA 1.

De plus, on convient que, pour k < 0, Pfc 0, d'où la convention

cjj.jA 0 pour &<0 ou h<0
Alors cj, A est défini pour toutes les valeurs de l'entier t ^ 0 et

toutes les valeurs entières de h et k, ^ 0 ou ^ 0 ; on a toujours

PkPh 274ffcP*+*-«P« (7.2)
t

Désignons par X le même espace qu'aux §§ 5 et 6, et soit

comme ci-dessus. Considérons l'espace-produit K(ZP, l)xl, et la
classe de cohomologie yu de ce produit (y désigne j3p(#)5 x étant la
classe fondamentale de K(ZP, 1)). Appliquons au produit yu les opérations

des deux membres de (7.2); chaque membre donne des termes en

y, en yp et en yp2. Egalons les coefficients de y&2 et yp ; on obtient :

0 (7.3)

-»p' o (7.4)
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Dans la relation (7.3), les coefficients sont nuls pour t + 1 > inf (k/p, h) ;

pour t + 1 <inf(£/p, h), l'opérateur pk+h-p-i-tpt est admissible,
donc (7.3) implique que tous les coefficients sont nuls : ctk_ph_1 ck+£

Par récurrence sur t, on a

4,* c*-2>m-< (en posant ckih c£ffc) (7.5)

II reste à calculer les ck h. Pour cela, utilisons (7.4) : le coefficient de

p&+a-*-ip*estnulsi t>k/p; si t^k/p, l'opérateur pk+h-t-ipt egt
admissible, pourvu que 0 ^k<ph; donc, si 0<i<^^, tous les
coefficients de (7.4) sont nuls, ce qui donne, pour t 0 (et en tenant
compte de la relation c\th ck_P} h__j) :

ck,h + Ck-P, h-i ct-i, h + Cm, h-i P°ur ° <k<ph (7.6)

Or cette relation, compte tenu du fait que ckfh est déjà connu pour &<0
ou k > ph, permet de calculer de proche en proche ckh pour tous les

couples de valeurs de k et h tels que 0 < k <ph. On procède par double
récurrence: récurrence sur h à partir de h 1 ; et, pour chaque h,
récurrence sur k à partir de k 0. Précisons : si on fait h 1 dans
(7.6), on trouve (en tenant compte du fait que ck 0 0 pour k<0,
cfc>0 1 pour k > 0) :

ckfl ck_11 + 1 pour 0 < k<p, d'où, par récurrence sur k,

ckl k+l pour O^k^p—1. (7.7)

Ensuite, utilisant (7.6) pour tout h > 2, puis (7.7) et enfin

pour h^l, on a ckh 0 si k<0 ou k ^ ph (7.8)

on calcule tous les ckh pour A ^ 2, 0 ^ k<ph.
Nous allons montrer que le résultat de ce calcul est

ckth=(—l)k((p—l)h — k—l,k)p pour O^k<.ph, (7.9)

en désignant toujours par (a, b)p le nombre (a, b) réduit mod. p, et

par (a, 6) le coefficient binomial si a ^ 0, et 6^0, zéro si a<0
ou 6 < 0. En effet, posons provisoirement

ykh (— l)*((p — 1) A — k ~ 1, k)p quels que soient i et h.

Pour prouver que ckth yk}h pour O^k<ph, il suffit de montrer

y** + y*-p.*-i y*-i,A + y*,*-i Pour h > 2
> (7-6)'

yfc|1 H 1 pour 0<i<^~ l> 0-1)'
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pour h ^ 1, on a yk^ =0 si k < 0 ou & ^ ^^ • (7.8)'

La vérification de (7.7)' et de (7.8)' est immédiate. Celle de (7.6)'
revient à

((p — 1) h — k — p, k)v + ((p — 1) h — k, k — p)p

v

(Observer que ce calcul vaut aussi quand p — 2). Or, d'après r
rfice ci-dessous (prop. 2), le premier membre est égal à ((p—l)h—k,k)
parce que (p — 1) h — p ^ 0 (h étant ^ 2), et le second membre est
égal aussi à ((p — l) h — k, k)p, parce que (p — 1) A — 1 ^ 0. Ceci

prouve (7.10), et par suite (7.9) est démontrée.
Les formules (7.1), (7.5) et (7.9) donnent finalement :

pkp*=27(-l)*+*((p-l)A-&-l+$,k-pt)^pk+K-tpt pour jc<pjl
t

(7.11)

En remplaçant k par ^ — 1 — n ett par h — n + t, on obtient la formule
(3.3); mais la formule (7.11) peut aussi être utile. On la comparera à (4.7).

Il reste encore à démontrer (3.4). En considérant Pkj3Ph(u), on voit
tout de suite qu'on a, a priori,

PkpPh= E aj.>ikP*+*-*j8P'+ S bl^ppx+^P' (k^ph). (7.12)

Considérons la classe de cohomologie xu de Fespace-produit iT^, l)xl,
et soit toujours y P(x). Appliquons à xu les opérations des deux
membres de (7.12); chacun donne des termes en y et yp. Egalons les

termes en yp ; il vient

puisque 0 ^k — l<ph, on peut appliquer au premier membre la
formule (7.1) où k serait remplacé par k — 1, d'où

a\ h ctk_1 h pour 0 < t < (k — l)/p, k ^ ph

Ceci détermine les coefficients a£ A
:

atkh==(~l)k--i+t((p-l)h--k+t,k-l--pt)I) pour O^t^(k-l)lp,k^ph (7.13)

Egalons maintenant les termes en y ; on obtient

2" (è^ + W^^P^-'P' (7.14)
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compte tenu du fait que cv,_x_pin_i 0 pour t>(k — 1)1p. Tous les

opérateurs du second membre de (7.14) sont admissibles. Il y a alors
deux cas à distinguer :

Premier cas : k ph. — Le second membre de (7.14) doit se réduire
à PphPh, ce qui donne, en tenant compte de cpn__x_pth_t 0,

&Jm= ° P°ur ° < i <h ~ l > bîh,h= l • (7-15)

Deuxième cas: k<ph. — Alors (7.14) doit se réduire à (7.1), d'où

6*,a= ck-pt,h-t — ck-i-9ithr-t pour 0 ^t ^k/p<h (7.16)

On a donc 6^A= bk_vtfh_t, avec bk>h ck}h - cfc_1>fc, d'où

(- l)*6*.fc ((P ~ 1) A - k - 1, k)9 + ((p - 1) h - k9k - l)p
((p-l)A-*,i)p

Finalement, on a, pour k<ph,

f>l,k=(~ l)k+t((p~ l)h-k + t,k-pt)9 O^t^k/p (7.17)

Observons que (7.17) vaut aussi pour k ph> d'après (7.15). Finalement,

les relations (7.12), (7.13) et (7.17) donnent la formule

(7.18)

C'est exactement la formule donnée par J. Adem [2] pour k<ph.
En remplaçant, dans (7.18), k par ph — n et t par h — n + t, on

obtient (3.4).

Appendice. Propriétés des coefficients binomiaux réduits modulo p.

Pour h et k entiers ^ 0, nous notons {h, k) le coefficient binomial

)]- _ (h+l)(h+2)...(h+k)

PkpPh S(- l)*~n *((p-1) h-k +1,k-1 -

On note (h,k)p cet entier réduit modulo 2? (p premier).

Proposition 1. Si h ho + phl9 k k0 + pkx (0 < hQ<p,
0 ^ k$<p), on a

(h,k)p (hOyko)p-(hlfk1)p ; (2)

(h0) ko)p est nul si et seulement si h0 -f- k0"^ p.
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Démonstration: la dernière assertion est évidente. Pour prouver (2),

distinguons deux cas : si h0 -\- k0^ p, on va montrer que (h, k) est
divisible par p ; dans le dernier membre de (1), enlevons les facteurs (du
numérateur et du dénominateur) premiers à p ; il reste

Jj>(A1+i))(P(*1 + 2)). feK^+^+D) p{hi + h + 1}. {hi t k f(p){2p) (kxp)

ce qui prouve l'assertion. Le deuxième cas est celui où hQ-\- ko<p;
dans le dernier membre de (1), enlevons les facteurs divisibles par p ; il
reste une fraction qui, mod. p, est congrue à (h0, k0) ; donc (h, k) est

congru (mod. p) au produit

Corollaire. Si h et k ont pour développements p-adiques

on a (h, k)v — II (ht, kt)v. En particulier, pour que (h, k)p 0, il faut
l>0

et il suffit que Von ait h% + kl ^ p pour au moins un i.
Convenons maintenant de poser (h, k) 0 si h < 0 ou k < 0. L'identité

classique
(h+ l,fc) + (h,k+ l) (h+ l,k+ 1) (3)

valable pour h > 0, k > 0, subsiste pour A + k + 1 > 0 (c'est
immédiat).

Proposition 2. Sih + k + p^O, ona

'(h + p, k)9 +(h,k + p)9 (h + p,k + p)p (4)

Démonstration : supposons d'abord h et k ^ 0, et soit

Puisque h± > 0, k1 > 0, on a, d'après (3),

(*! +l,kx) + (hl9 *! -f 1) (Aj + 1, Ax + 1)

Réduisons mod. ^p, puis multiplions par (Aq,^^: on obtient (4). Si

maintenant A et h -\- p sont <0, (4) est trivialement vérifiée. Reste
le cas où h + p h0, 0 < ho<p. On est ramené à vérifier le
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Lemme. Si 0 ^.ho<p, et hg + k^O, on a

(ho,k)p (ho,k + p)P (5)

En effet, distinguons deux cas : si k ^ 0, soit k k0 -f- pkx
(0 < ko<p) ; les deux membres de (5) sont égaux à (h0, ko)p d'après
la proposition 1. Si k<0, posons k + p k0 (0<k0<p) ; le premier
membre de (5) est nul, le second est égal à (ho,ko)p, et comme
ho -\- &o ^ V Par hypothèse, on a bien (h0, ko)p 0.
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