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Nouvelle démonstration d'un théorème
de P. A. Smith

par Armand Borel, Princeton, N. J.

A Monsieur H. Hopf, à Voccasion de son soixantième anniversaire

L'objet principal de ce travail est de démontrer à nouveau un théorème

classique de P. A. Smith [7] affirmant que l'ensemble des points
fixes d'un homéomorphisme de période p (p premier), d'une sphère
d'homologie mod. p est lui-même une sphère d'homologie mod. p (voir
No 3 pour Fénonoé précis). Notre démonstration utilise l'algèbre spectrale

des revêtements réguliers finis, la suite exacte de cohomologie à

supports compacts et la cohomologie des groupes cycliques (au sens de

Hopf-Eilenberg-MacLane-Eckmann), mais par contre elle ne fait pas
intervenir les groupes de cohomologie spéciale, le principal instrument
de Smith. Malgré cela, la méthode suivie ici n'est tout de même pas sans
relations avec celle de Smith, mais elle a au moins l'utilité de bien mettre
en évidence le rôle fondamental joué dans cette question par la cohomologie

des groupes, et de ne faire appel qu'à des moyens de topologie
algébrique relativement généraux.

Le No 5 apporte quelques compléments à ce théorème, et établit
notamment un résultat plus récent de E. E. Floyd [5] qui avait été
conjecturé par Smith. On remarquera que notre démonstration du théorème

de Smith est aussi purement ,,additive" en ce sens qu'elle ne se

sert pas du cup-produit, dont nous aurons en revanche besoin au No 5.

Notations. — p désigne toujours un nombre premier, Zp le corps, (ou
suivant le cas, le groupe additif) des entiers modulo p.

Hl(X,A), (resp. H*(X,A)), i-ème groupe (resp. algèbre) de
cohomologie d'Alexander-Spanier à supports compacts de l'espace localement

compact X, à coefficients dans l'anneau A. Sauf mention expresse
du contraire, on convient de plus que pour X compact, H°(X, A)
dénote le O-ème groupe de cohomologie réduit (i. e. le noyau de H°(X, A)
-> H°(P, A), P point de X, cf. [4] No 7) ; avec cette convention une
sphère d'homologie mod. p est un espace compact X pour lequel
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Hn(X,Z9) Z9, El(X,Zv) =: 0, (i # w), et cela pour tout w, > 0.
Par convention une (— l)-sphère d'homologie mod. p est l'ensemble
vide.

Soit A un module sur un anneau principal L et soit G un groupe fini
opérant sur A. On note AG l'ensemble des éléments fixes par G, et
H*(G, A), (resp. H*(G, A)), le i-ème groupe de cohomologie de G à
valeurs dans A, (resp. la somme directe des H1 (G, A), qui est une
algèbre sur L si A est une algèbre sur L avec groupe d'opérateurs G),

(pour ces notions, voir par exemple [1], Exposés I—II—III, ou
[3]). Rappelons que H°(G, A) ^ A°.

A partir du No 3, la cohomologie est toujours relative à Z9 et on ne
mentionnera plus les coefficients.

1. Algèbre spectrale des revêtements finis réguliers

Soit E un espace sur lequel un groupe fini G opère ,,sans points fixes"
(i. e. toute transformation non identique n'a aucun point fixe). E est
donc un espace fibre principal de groupe structural G, et nous notons B
sa base. H. Cartan et J. Leray [2], [1] Exp. XI, XII, ont construit une
algèbre spectrale qui relie H*(G, H*(E, A)) à H*(B,A), dont nous
allons décrire les principales propriétés ; nous ajouterons également quelques

détails sur sa construction, sans chercher du tout à faire un exposé
complet, mais simplement pour être à même de démontrer les
propriétés (1.4) et (1.5), pour lesquelles nous ne pouvons renvoyer à [1]
ou à [2]. Les propriétés (1.1) à (1.4) sont formulées pour des algèbres,
mais pour l'usage que nous en ferons aux Nos 3 et 4 on pourrait faire
abstraction du produit et n'en considérer que la partie additive ; (1.5)
n'interviendra qu'au No 5.

Soit L un anneau principal. Nous noterons 0* un complexe sur L,
gradué par des sous-modules C**, qui est 6?-libre et acyclique pour la
cohomologie relative à L. On a donc

#°(<7*) ^ L H*(C*) 0 (t>0)
relativement à un opérateur cobord qui augmente le degré de l1). Si A
est une algèbre sur L, avec G comme groupe d'opérateurs, on sait que

*) On peut prendre pour G* la somme directe des groupes Homg((Cfï, L), où G est
un complexe sur Z, G-libre et acyclique pour l'homologie, gradué par des sous-groupes
<7t.. Comme G est fini, on peut supposer Gi de type fini, et l'algèbre (C* ® A)G (resp.
(C* 0 <5)G)> considérée plus bas s'identifie alors à la somme directe des groupes
Hom(3(((7t., A) (resp. JloniQ(Ci, c??))> introduite dans [1]. Nous adoptons donc dans ce
travail plutôt le langage de [2].
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H*(G, A) est l'algèbre de cohomologie de ((7*® A)°, (produit tensoriel
sur L), muni de la différentielle induite par l'opérateur cobord de C*.

Soient c?5,12? les algèbres des eochaines d'Alexander-Spanier à supports
compacts, à valeurs dans A, de E et B respectivement ; et soit n la
projection de E sur B ; le groupe G opère sur c^et n induit un isomorphisme
n' de CB sur £Q. L'algèbre spectrale associée à cette fibration est l'algèbre
spectrale de

8 {C*®£)Q

muni de la différentielle totale, somme des différentielles données sur (7*
et c?, et filtré par les sous-modules

8> Z%>,(C*%®£f (7 0,1,2,...)
On démontre que H*(8) g^H*(B,A), que

Ey g* (C*s ® H* (E,A))G

et que dx est la différentielle partielle par rapport à C*. Il en résulte :

1.1. Soient E un espace fibre principal localement compact de groupe
structural fini G, de base B,7tla projection de E sur B et soit A une algèbre

sur un anneau principal L. Alors il existe une algèbre spectrale (Er) sur L,
bigraduée, dans laquelle E^ est Valgèbre graduée associée à H*(B, A)
convenablement filtrée, et où

Er+1 est Valgèbre de cohomologie de Er relativement à une différentielle dr
qui augmente s de r et diminue t de r — 14).

1.2. Si A et L sont isomorphes à un même corps et si G opère trivialement

sur El{E,A), alors

E8/ ^Hs(G,A)®Ht(E,A) (« 0,1,...).
1.3. E\l ^ (H^E^A))0; le groupe E0^ s'identifie à Vensemble des

cocycles permanents2) de E\*1 et le composé des homomorphismes

2) Nous utiliserons les notations usuelles relatives à l'algèbre spectrale, telles qu'elles
figurent par exemple dans A. Borel, Ann. Math. 57 (1953), pp. 115-207, § 1. Nous dirons
qu'un élément x e ET est un cocycle permanent s'il est annule par toutes les différentielles
ultérieures, î. e. si dsxrs(x) 0, {s > r).

3) Si E est compact, on prend pour E et B le 0-ième groupe de cohomologie non réduit.
4) {Er) a de plus les propriétés habituelles de l'algèbre spectrale des espaces fibres {voir

par exemple loc. cit.2), § 4), $ett, s -j- t jouant le rôle du degré base, degré fibre et degré
total, E et B apparaissant ainsi comme la fibre et l'espace total respectivement. Pour une
interprétation topologique, voir [1] ou loc. cit.2), § 22, Remarque 2.
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H^B^A) ->E^ ->E0/ -+H*(E,A)
est n*, (cf. [1], Exp. XII, No 10).

1.4. Soient L et A isomorphes à un corps. Alors Vimage de Vhomo-

morphisme naturel

n*:H*(GyH*(B,A)) -> H*(G, H*(E, A)) ^E2
induit par Vhomomorphisme n* des coefficients est formée de cocycles
permanents.

Démonstration : Munissons l'algèbre

T=
de la différentielle totale et de la filtration définie par les sous-modules

l'homomorphisme nf de CD dans (S induit un homomorphisme de T dans
S, compatible avec différentielles et filtrations, d'où un homomorphisme
(v*) de l'algèbre spectrale (E'r) de T dans (Er), on a visiblement

E'8/ ^ (C*s® H*(B, A))° ^ {C*sf ® H'iB, A)

E'8/ g* H8(G, Ht(B, A)) g* H8(G, A) (g) #*(£, A)

(nous avons fait usage du fait que A est un corps et que G agit trivialement

sur C3 et sur H*(B, A)). Bien entendu *>* n'est autre que ïr* et

pour obtenir (1.4), il suffit de faire voir que les différentielles drr de (E'r),

(r ^ 2), sont toutes nulles, ce qui est immédiat. En effet, un élément

(ueHs(G,A),veHt(B,A))
de E/82st admet comme représentant dans le sous-groupe C/82yt de T
dont E'I*1 est le quotient2) un produit u<&v de cocycles de u et v;
ce produit est lui-même un cocycle et par définition même de d'r il s'ensuit

que u® v est un cocycle permanent.
1.5. Soient L et A isomorphes à un corps et h ^ j'^ 2 des entiers.

Supposons que G agisse trivialement sur Hk(E, A) et Hk~J+1(E, A) et

soit x e E*>k. On peut écrire d'après (1.1), (1.2)

d,x x){Z™ K® tO) (u%€H>(G, A) v%eH*->*(E, A)) ;

soit enfin heHq(G,A). Alors h®xeEl*k vu (1.2) et l'hypothèse, et

Von a

x) 0 (2 < r < j) ; d,«J(A® a?) ^(
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Remarquons tout d'abord que (1.5) est évident lorsque E est compact.
Dans ce cas en effet H*(E, A) possède un élément neutre et A® a; est
le produit du cocycle permanent (A® 1) par (1 ® x), et il suffit de savoir
que dr est une différentielle ; c'est seulement pour E non compact que la
démonstration ci-dessous est nécessaire5).

Définissons tout d'abord un accouplement de C*G et (C* ® &)Q à

(0* ® C)Q en associant à c e C*° et à

x Z*(a% ® K) (a, c C*, 6, 6 <?, * € (C* ® €f)
l'élément

ce qui est légitime, comme on le voit tout de suite en remontant à la
définition du produit tensoriel. Si c est homogène de degré q on a
c-87 c Sz+i, si de plus c est un cocycle, alors

c-C/cO}*9'* c-D'/cD^8'* c-E'/œE^8^ (2)

et x ->c-x induit un endomorphisme (additif) de la suite spectrale
commutant à xrr+1 et à dr, augmentant le degré-base de q, laissant le
degré-fibre invariant. Pour un élément

qui fait partie de E8^, on a évidemment

si donc G agit trivialement sur Hf(E, A), on en déduit que pour
l'élément

x a®b (aeHs(G,A),b€Ht(E,A))
de E8/, on a

c-x ~C'a<g) b (c classe de cohomologie de c)

Nous pouvons maintenant passer à la démonstration de (1.5). Soit c un
cocycle de h, alors

x) dyr{c-{\® x)) =c.(dr^(l®*)) =0 (r<j)
x) c^(27?K® !\)) *î(c-2?K® t;,))

5) De façon analogue, on démontrera une propriété similaire de l'algèbre spectrale en
cohomologie à supports compacts des espaces fibres localement compacts, lorsque la base
est compacte et la fibre non compacte; on en déduit notamment que si la fibre est totalement

non homologue à zéro relativement à un corps, alors ^2= ^oo ce qui étend au cas
F non compact un résultat bien connu de J. Leray-Hirsch.
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2. Cohomologie des groupes cycliques

Pour les résultats de ce No, voir par exemple [1], Exp. III—IV ou
[3], No 11 ; Zm désigne le groupe cyclique à m éléments, g un générateur

de Zm, A un groupe abélien sur lequel G opère ; la norme Na de

a e A est la somme des éléments g1-a (1 < i ^ m), et NA désigne le

sous-groupe formé par les normes.
2.1. Si i est impair, Hl(Zm, A) est le quotient du groupe des éléments

de norme nulle par le sous-groupe qu'engendrent les éléments de la forme
g a — a. Si i est pair et > 0, alors H1 (Zm, A) ^ AQjNA.

On en déduit en particulier, (compte tenu de H°(G, A) ^ AQ) :

2.2. Soit p un nombre premier. Alors Hi(Zp, Zp) <^ZP, (i > 0) ,6).
Au point de vue multiplicatif, (les coefficients étant alors envisagés

comme un corps), (2.2) se précise par le résultat suivant, que nous
n'utiliserons qu'au No 5 :

2.3. Pour p impair, H*(ZP,ZP) est le produit tensoriel (gauche) d'une
algèbre extérieure A (x) engendrée par un élément x de degré 1 et d'une
algèbre de polynômes Zp[y], (y de degré 2). Pour p 2, H*(Z2,Z2)

^ Z2 [x], (x de degré 1).

3. Énoncé du théorème de Smith; début de la démonstration

Nous supposons dorénavant p fixé, et notons Hl(X), HZ(G) les groupes
de cohomologie d'un espace ou d'un groupe fini à valeurs dans Zp.

Théorème. Soient p un nombre premier, X un espace compact de

dimension finie qui est une n-sphère d'homologie mod. p, T un homéo-

morphisme de X, de période p. Alors Vensemble F des points fixes de T est

une Jc-sphère d'homologie mod. p, (— 1 ^ k ^n).
Soit Y l'espace quotient de X par la relation d'équivalence qu'y

définit T et soit n la projection de X sur Y ; elle est biunivoque sur F, dont
l'image dans Y sera aussi notée F. Il n'y a rien à démontrer si F est

vide, (ou si T est l'identité), et nous supposerons dorénavant F et X — F
non vides. L'application n induit un homomorphisme de la suite exacte
de cohomologie relative de la paire (Y, F) dans celle de (X, F) ; mais
X et Y sont compacts, F est fermé, les groupes de cohomologie relative
s'identifient donc, comme on sait, aux groupes de cohomologie à

supports compacts des espaces différences. Nous obtenons ainsi un
diagramme commutatif

6) Nous utiliserons fréquemment et sans autre commentaire le fait que Z opère
toujours trivialement sur Z
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¦ H*-1 (F) -> H*(X - F) -> #*(X) -> #*(.F) ->

f id. t^î t*£ tid- C3-1)

¦W-^F) ->W(Y -F) ->#<(F) ->H*(F) ->

(id. identité), où les deux lignes sont exactes.
3.2. p étant premier, le groupe cyclique engendré par T opère sans

points fixes sur X — F, qui est donc un espace fibre principal de groupe
structural Zp, de base Y — F, projection n, d'où (No 1) une algèbre
spectrale que nous noterons (Er). L'algèbre E^ est donc l'algèbre graduée
associée à H*(Y — F) convenablement filtrée, et E2 est isomorphe à

H*(ZV,H*(X~F)).
3.3. F, X — F et Y — F sont de dimensions finies < dim X ;

en particulier leurs groupes de cohomologie d'Alexander-Spanier à supports
compacts sont nuls pour les degrés >dim. X.

Car X est de dimension finie et Y — F est localement homéomorphe
à X -F.

3.4. On a H*-1 (F) W(X - F) pour t^n,n+l.
Cela se déduit de la suite exacte de (X,F).
3.5. Pour t ^ n, H^X — F) est dans Vimage de n*, par conséquent

(voir (1.2), (1.4), (2.2)), E8/ est isomorphe à H^X—F) et formé de

cocycles permanents, (s ^ 0).

Il suffit de remarquer que (3.1) donne pour t =fin:

H*-1 (F) ->#<(X -F) ->0

f id. f rc*

H*-1 (F) ->H*(Y -F)
3.6. On a Hl(X -F) 0, (t ^ n), donc, d'après (3.4), H* (F) 0,

Supposons (3.6) faux; il existe alors, vu (3.3), un plus grand k,
(k>n), tel que Hk(X — F) ^ 0 et, d'après (3.5), E82>k est ^ 0

et formé de cocycles permanents (s ^ 0) ; ces cocycles ne peuvent
jamais être cobords, car les différentielles dr, (r ^ 2), diminuent strictement

le degré-fibre et ici E2, (donc a fortiori Er, (r > 2)), ne contient
aucun élément de degré-fibre >k. Ainsi on a E^k ^ E82'k ^0 et
H8+k(Y — F) est ^ 0 pour tout s > 0, en contradiction avec (3.3).

Un raisonnement tout pareil, que nous ne reproduirons pas, utilisant
(1.4). (3.3) et (3.6) donne:

3.7. L'image de n* : Hi(Z9,Hn(Y~F))-+ H^Z», Hn(X - F)) est

nulle pour i > dim X — n.
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4. Fin de la démonstration

Montrons tout d'abord que F possède au moins un groupe de cohomo-
logie mod. p non nul (rappelons que F est supposé non vide et que nous
considérons en dim 0 les groupes de cohomologie réduits). Si ce n'est
pas le cas, on obtient par suite exacte :

H*{X -F) 0 (i^n) Hn(X ~F)^ZV
d'où

JEfJ.«= 0 (t^n) E82>n g± Hn(X - F) ^ Z9 (s > 0)

L'algèbre spectrale n'a donc qu'un degré-fibre, par conséquent les
différentielles sont identiquement nulles, et E^n ^ E\*n est ^ 0 pour
tout s, en contradiction avec (3.3).

Soit alors k le plus grand degré pour lequel Hk (F) ^ 0 ; on sait par
(3.6) que k^.n et nous devons montrer

H*(F) 0 (i<k) Hk(F)^Zv (4.1)

Nous distinguerons trois cas, le premier étant le plus général, et le
troisième étant le moins simple.

Premier cas: k ^n — 2. Vu (3.4) et Hk{F) j± 0, il nous suffit
d'établir

dim (Jff"-i(Z - F) + Hn~2(X - F) + • •. + H°(X - F)) 1 (4.2)

La suite exacte de (X, F) montre que

Hn(X - F) ^H
d'où

E82>n g* Hs(Zp)®Hn(X -F)^ZP (s > 0)
Posons

d'après ce qui précède et (3.5) on sait que

Bl2+n ^ Hn~*(X -F)+ Hn~*(X - F) + + H°(X - F) (4.3)

est ^ 0 et est formé de cocycles permanents. Pour i>dim X, B\+n doit
avoir une image nulle dans E^, autrement dit, chaque élément de Bl2+n

doit être cobord relativement à une différentielle dr, d'un élément qui
doit naturellement avoir le degré total n -\- i — 1. Or, parmi les groupes
El'1 (s + t n + i — 1), seul El~ltH n'est pas a priori formé de
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cocycles permanents ; comme il est de dimension 1, cela signifie qu'il
exi&te un unique indice j (j > 2), tel que

dr(El~^n) - 0 (2 <
ce qui implique

et, ajouté à (4.3), démontre (4.2),

Deuxième cas : k n. Comme Hn(X) ^Zp, le diagramme

0 _> Hn-1{F) -> Hn(X - F) -> //W(Z) -> ^(i7) -> 0

f id. f 7r*

H"-1 (F) ->Hn(Y -F)
montre que

Hn(F) ^ Zp ; .ff^1 (i^7) ^ Hn(X - i^7) ^ 7i*(Hn(Y - F)) (4.5)

Ainsi, J^2»n est lui aussi formé de cocycles permanents ; on a donc

dr 0 (r > 2) et

doit être nul pour s assez grand, d'où, vu (3.4) et (4.5), la nullité de
H1 {F) pour i<n, et F est une w-sphère d'homologie mod. p.

Troisième cas : k n — 1. Nous montrerons en premier lieu :

4.6. Hn~1(F)^Z2>. L'espace Hn(X—F) est de dimension deux,
soustendu par un élément u engendrant Vimage de n*, donc fixe par T, et

par un élément v tel que Tv u -f- v.
Le diagramme

0 -+Hn-1{F)XHn{X -F)^Hn(X) ->0

f id. f ^*
H11-1 {F) ->Hn(Y -F)

montre que Hn(X — F) est somme de l'image biunivoque (donc ^ 0),
U de H*1-1 (F) et d'un sous-espace V de dimension 1, appliqué biunivo-
quement sur Hn (X) par /u ; de plus U fait partie de l'image de tt*, et
ses éléments sont fixes par T ; cette transformation ne peut agir trivialement

sur V, car sinon E\n serait, pour tout i, la somme directe de

Hl(Zj,, V) et d'un espace Hl(Zp, U) non nul, contenu dans l'image de

35



j&*, ce qui contredit (3.7). Comme T agit trivialement sur Hn(X) et
commute à ju, on a pour v e V (v ^ 0) :

Tv u + v (u e U, u ^ 0)
d'où

Tlv v + i-u (1 <t <p)
et l'espace à deux dimensions W engendré par u et v est invariant par
T ; il admet un supplémentaire W contenu dans U, donc fixe par T et
faisant partie de l'image de rc* ; l'espace Hn (X — F) est donc somme
directe de deux sous-espaces W, W invariants par T, d'où

!?;•* ^ £T*(ZP, #W(X - J)) s ^(^, TT) + H*(ZP9 W) ;

de plus le dernier terme est dans l'image de tz*, donc (3.7) nul pour
£>dimX, d'où W 0, puisque î7 agit trivialement sur W. Ainsi
Hn (X — F) est sous-tendu par les éléments u, v linéairement
indépendants, vérifiant les conditions de (4.6); par ailleurs Hn~1(F) est

isomorphe à U, donc de dimension 1 ; enfin, U est toute l'image de n*,
puisque T n'agit pas trivialement sur Hn(X —F), ce qui termine la
démonstration de (4.6).

4.7. A montrer: p 2. Supposons p impair; à l'aide de (4.6) on
calcule immédiatement que les normes dans Hn (X — F) sont toutes
nulles et, vu (2.1), on voit que, pour tout i>0 et pair,

El'» ^ H'(ZP, Hn(X - F)) n*(H'(ZP, H"(Y - F))) ^Zp
ce qui est en contradiction avec (3.7).

4.8. Nous savons déjà que H11"1 (F) ^Z2; il reste donc à prouver
que HX{F) 0 pour i < n — 2.

En s'appuyant sur (2.1), (4.6), (4.7) on calcule aisément que

E\*n g* H*{Z21 Hn(X - F)) 0 (t >0) ;

d'autre part, E^n ^ (Hn(X — F))T est égal à U, donc dans l'image
de jr* et (1.4) formé de cocycles permanents, ce qui, ajouté à (3.5),
montre que E2 ^ Ex, d'où

W{X —F) g* E\-1 ^ E\£ - 0 (t^n, i assez grand)

et la nullité de H*(F) pour i < n — 2 se déduit de (3.4).

Remarque 4.9. Nous venons de voir que E^n^Z2, E8^ 0

sinon, d'où Hn(Y — F) Z2, H^Y — F) Q (i ^ n), dans ce dernier
cas.
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5. Compléments

Convention. Dans tous les énoncés de ce No, on garde les hypothèses et

notations du Théorème de Smith ; on note Y l'espace quotient de X par la
relation d'équivalence qu'y définit T.

Proposition 5.1. Si k n — 1, alors p — 2.
Si F est non vide, voir (4.7); il reste donc à examiner le cas où F est

vide, c'est-à-dire où n 0, k — — 1. L'espace X est alors fibre principal

de groupe structural Zv et de base F, qui est par conséquent aussi
de dimension finie. Comme H^X) est nul pour i>0 on a dans la suite
spectrale correspondante E8^1 0 pour s ^ 0, t ^ 0 d'où

H*(Y) ^ Eï° ^ JE'-0 ^ H*{ZP, H»(X)) (a > 0)

(H°(X) étant le groupe non réduit, donc isomorphe à Zp-\-Zp), et
H8(ZP, H°(X)) doit être nul pour s>dim Jl ; ainsi, T ne peut opérer
trivialement sur H°(X), et X est formé de deux composantes connexes
échangées par T, d'où p 2.

Remarque 5.2. En fait (5.1) est un cas particulier de la proposition
suivante ; nous l'avons cependant isolée car il faut quoi qu'il en soit
traiter à part le cas n 0, k — — 1.

Proposition 5.3. (Floyd [5]). Si p est impair, n — k est pair.
Pour k n il n'y a rien à démontrer, et d'après (5.1) on a k =fi n — 1.

Il reste à considérer le cas &<n — 2, n ^ 1 ; nous n'excluons pas
k — 1, c'est-à-dire F vide, mais convenons, alors d'utiliser en dimension

0 les groupes de cohomologie non réduits.
On tire tout d'abord de la suite exacte de (X, F) :

-F)g* Hn(X -F)g± Zv, Hi(X -F) 0, (i^k+l,n),
d'où pour l'algèbre spectrale

£***+1 ^ £*•* ^ Zp ; ^ 0 (t=£k+l,n)
Il n'y a ainsi que deux degrés-fibre, dont la différence est n — k — 1,
et seule la différentielle dn_k peut ne pas être identiquement nulle, d'où

En_k ^ E2 En_M g* E»

Soient u et v des générateurs de E%"k et E^^1 ; on peut écrire
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et par conséquent (voir (1.5)) :

dn_k(h®u) h-f®v (h€H*(Zp) i > 0) (5.4)

dn_k est nulle sur E8^^1 (par (3.5), ou parce que ces éléments ont le
degré-fibre minimum), par suite, si / 0, la différentielle dn_k est
identiquement nulle, E^ est isomorphe à E2 et contient des éléments
non nuls de degrés arbitrairement grands, ce qui est impossible (3.3).
Ainsi / ^ 0, et si l'on suppose n — k impair, on a dans les notations
de (2.3):

f c-x.ya (ceZp, c^ 0; 2a + 1 n - k) ;

(5.4) donne alors

dn_k(x-yb<g)u) C'X2-ya+b<g) v 0

(puisque x2 0), donc dn_k{E^^n) =0 et

pour tout 6 > 0, en contradiction avec (3.3), d'où (5.3).

Remarque 5.5. Sachant n — h pair, on détermine aisément
en effet on a

4-* M c-ya®v (ceZp, c ^0, 2a n -Je)

d'où, en utilisant (5.4), (2.3)

E8^1 0 sinon

et finalement

H*(Y -F)ç*Zp (fc+l<i<w), iî*(r--JT) 0 sinon.

Lemme 5.6. On a Jï»(r - i?7) - Zp, (fc + 1 < i < ») ^(F - #)
0 sinon.

(Si jP est vide, on prend le groupe de cohomologie non réduit en dimension

0.) Pour k n, voir No 4, deuxième cas ; pour p impair, k<n
voir (5.5), pour p 2, k<n — 1, la démonstration est tout à fait
analogue et laissée au lecteur ; enfin, pour p 2, k n — 1, voir
(4.9).
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Proposition 5.7 (Liao [6]). Pour k<n on a

_ZP (k + 1< i < n) #'(7) 0 sinon.

Pour k n, on a Hn{Y)^Zpj Hl{Y) 0 sinon.
Si k n, ou bi & — 1, cela résulte de (5.6) et de la suite exacte

de la paire (Y,F). Soit donc 0 ^k<n\ la suite exacte de (Y,F)
donne

H*(Y) 0 (»<i); W(Y) W(Y -F) (j > ib + 2) ;

compte tenu de (5.6), il nous suffira de montrer que Hk(Y) et
sont nuls ; considérons pour cela le diagramme

0-
t id. f n*

» Hk(F) -t Hk+1(Y — F) -> Hk+1(Y) -> 0

ou les deux lignes sont exactes. Puisque Hk(F) ^ Zp, l'homomorphisme
g est non nul et il doit en être de même pour h ; mais Hk+1 (Y — F)
étant aussi de dimension 1, h est alors un isomorphisme sur, d'où la
nullité de Hk(Y) et 2ï*+i(F).
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