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Nouvelle démonstration d’un théoréme

de P. A. Smith

par ARMAND BOREL, Princeton, N. J.

A Monsieur H. Hopf, a Uoccasion de son soixantiéme anniversaire

L’objet principal de ce travail est de démontrer & nouveau un théo-
reme classique de P. A. Smith [7] affirmant que 'ensemble des points
fixes d'un homéomorphisme de période p (p premier), d’une spheére
d’homologie mod. p est lui-méme une sphére d’homologie mod. p (voir
No 3 pour I’énoneé précis). Notre démonstration utilise I’algébre spec-
trale des revétements réguliers finis, la suite exacte de cohomologie &
supports compacts et la cohomologie des groupes cycliques (au sens de
Hopf-Eilenberg-MacLane-Eckmann), mais par contre elle ne fait pas
intervenir les groupes de cohomologie spéciale, le principal instrument
de Smith. Malgré cela, la méthode suivie ici n’est tout de méme pas sans
relations avec celle de Smith, mais elle a au moins 1'utilité de bien mettre
en évidence le role fondamental joué dans cette question par la cohomo-
logie des groupes, et de ne faire appel qu’a des moyens de topologie algé-
brique relativement généraux.

Le No 5 apporte quelques compléments & ce théoréme, et établit
notamment un résultat plus récent de E. E. Floyd [5] qui avait été con-
jecturé par Smith. On remarquera que notre démonstration du théo-
reme de Smith est aussi purement ,,additive” en ce sens qu’elle ne se
sert pas du cup-produit, dont nous aurons en revanche besoin au No 5.

Notations. — p désigne toujours un nombre premier, Z, le corps, (ou
suivant le cas, le groupe additif) des entiers modulo p.

H'(X, A), (vesp. H*(X, A)), i-éme groupe (resp. algébre) de coho-
mologie d’Alexander Spanier & supports compacts de ’espace locale-
ment compact X, & coefficients dans I'anneau 4 . Sauf mention expresse
du contraire, on convient de plus que pour X compact, H(X, 4) dé-
note le 0-éme groupe de cohomologie réduit (i. e. le noyau de H°(X, A4)
—~ H(P, 4), P point de X, cf. [4] No 7); avec cette convention une
sphére d’homologie mod.p est un espace compact X pour lequel
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H" X,Z,)=Z,, H(X,Z,) =0, (¢ #n), et cela pour tout n > 0.
Par convention une (— 1)-sphére d’homologie mod. p est 1’ensemble
vide.

Soit A un module sur un anneau principal L et soit G' un groupe fini
opérant sur 4. On note A% l’ensemble des éléments fixes par G, et
H*(G, A), (resp. H*(G, A)), le i-éme groupe de cohomologie de G a
valeurs dans A, (resp. la somme directe des H*(G@, A), qui est une
algébre sur L si A est une algébre sur L avec groupe d’opérateurs @),
(pour ces notions, woir par exemple [1], Exposés I—II—III, ou
[3]). Rappelons que H°(G, A) =~ A°.

A partir du No 3, la cohomologie est toujours relative a Z, et on ne
mentionnera plus les coefficients.

1. Algébre spectrale des revétements finis réguliers

Soit £ un espace sur lequel un groupe fini ¢ opere ,,sans points fixes“
(i. e. toute transformation non identique n’a aucun point fixe). £ est
donc un espace fibré principal de groupe structural ¢, et nous notons B
sa base. H. Cartan et J. Leray [2], [1] Exp. XI, XII, ont construit une
algébre spectrale qui relie H*(G, H*(£, A)) a H*(B, 4), dont nous
allons décrire les principales propriétés ; nous ajouterons également quel-
ques détails sur sa construction, sans chercher du tout & faire un exposé
complet, mais simplement pour étre 4 méme de démontrer les pro-
priétés (1.4) et (1.5), pour lesquelles nous ne pouvons renvoyer a [1]
ou & [2]. Les propriétés (1.1) & (1.4) sont formulées pour des algebres,
mais pour l'usage que nous en ferons aux Nos 3 et 4 on pourrait faire
abstraction du produit et n’en considérer que la partie additive; (1.5)
n’interviendra qu’au No 5.

Soit L un anneau principal. Nous noterons C* un complexe sur L,
gradué par des sous-modules C*°, qui est G-libre et acyclique pour la
cohomologie relative & L. On a donce

H(O*~L, H(C*=0 (>0),

relativement a un opérateur cobord qui augmente le degré de 11). Si 4
est une algebre sur L, avec G comme groupe d’opérateurs, on sait que

1) On peut prendre pour C* la somme directe des groupes Homg(C,, L), ou C est
un complexe sur Z, G-libre et acyclique pour I’homologie, gradué par des sous-groupes
C,. Comme @ est fini, on peut supposer C, de type fini, et I'algébre (C* Q) A)& (resp.
(C*® &)9), considérée plus bas s’identifie alors & la somme directe des groupes
Homg(C,;, 4) (resp. Homg(C,, &7), introduite dans [1]. Nous adoptons donc dans ce
travail plut6t le langage de [2].
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H*(G, A) est 'algébre de cohomologie de (C*® A4)% (produit tensoriel
sur L), muni de la différentielle induite par 'opérateur cobord de C*.

Soient &, £ les algébres des cochaines d’Alexander-Spanier & supports
compacts, & valeurs dans 4, de X et B respectivement ; et soit & la pro-
jection de K sur B; le groupe G opére sur & et & induit un isomorphisme
7' de £f sur &¢. L’algébre spectrale associée & cette fibration est 'algébre
spectrale de

8= (C*® &)
muni de la différentielle totale, somme des différentielles données sur C*
et &, et filtré par les sous-modules

8 =Z; (08¢, (=01,2,...).
On démontre que H*(S) >~ H*(B, 4), que
Byt ~ (¥ ® H' (B, 4))°

et que d; est la différentielle partielle par rapport & C*. Il en résulte :

1.1. Soient B un espace fibré principal localement compact de groupe
structural fini G, de base B, &t la projection de K sur B et soit A une algébre
sur un anneaw principal L. Alors il existe une algébre spectrale (E,) sur L,
bigraduée, dans laquelle E _ est Ualgébre graduée associée & H* (B, A) con-
venablement filtrée, et ou

Eit= Hs(G, HY(E, A))?) .

E, ., est Ualgébre de cohomologie de E, relativement & une différentielle d,

qui augmente s de r et diminue t de r — 14%).
1.2. 8i A et L sont isomorphes a un méme corps et si G opére triviale-

ment sur H'(E, A), alors
B~ H3(G,4)® H'(E, A) , (s=0,1,...) .

1.3. EY' ~ (HY(E, A))%; le groupe E%' s’identifie & Uensemble des
cocycles permanents?) de K2 et le composé des homomorphismes

%) Nous utiliserons les notations usuelles relatives a 1’algébre spectrale, telles qu’elles
figurent par exemple dans A. Borel, Ann. Math. 87 (1953), pp. 115-207, § 1. Nous dirons
qu’'un élément x € E, est un cocycle permanent 8’il est annulé par toutes les différentielles
ultérieures, i. e. si d,x7(x) = 0, (s = 7).

3) Si & est compact, on prend pour E et B le 0-iéme groupe de cohomologie non réduit.

%) (E,) a de plus les propriétés habituelles de ’algébre spectrale des espaces fibrés (voir
par exemple loc. cit.?), § 4), sett, 8 + ¢ jouant le réle du degré base, degré fibre et degré
total, E et B apparaissant ainsi comme la fibre et ’espace total respectivement. Pour une
Interprétation topologique, voir [1] ou loc. cit.?), § 22, Remarque 2.
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H'(B, A) - E%' — E% — H'(E, A)

est &*, (cf. [1], Exp. XII, No 10).
1.4. Soient L et A isomorphes a un corps. Alors U'image de I’homo-
morphisme naturel

7+ H(G, H*(B, A)) — H*(@, H*(E, A)) ~ E,

indurt par U’homomorphisme n* des coefficients est formée de cocycles per-
manents.

Démonstration : Munissons I’algébre
T=(C*® 0)*~C*® IJ
de la différentielle totale et de la filtration définie par les sous-modules
TV =S (0¥ D), (=0,1,...);

I’homomorphisme 7z’ de £ dans ¢ induit un homomorphisme de 7' dans
S, compatible avec différentielles et filtrations, d’oit un homomorphisme
(vF) de I’algébre spectrale (E.) de T dans (E,) ; on a visiblement

B9t = (O @ HY(B, 4)) ~ (C*F ® H'(B, 4)

B’ ~ H(G,H!(B, A)) >~ H3(G,4)® H(B, A) ,
(nous avons fait usage du fait que A est un corps et que G agit triviale-
ment sur £F et sur H*(B, A)). Bien entendu »; n’est autre que 7* et

pour obtenir (1.4), il suffit de faire voir que les différentielles d. de (E),
(r = 2), sont toutes nulles, ce qui est immédiat. En effet, un élément

w®v, (ueH (@, A),veH (B,A)

de E’:%' admet comme représentant dans le sous-groupe C'5* de T
dont E’%? est le quotient?) un produit »® ¥ de cocycles de u et v;
ce produit est lui-méme un cocycle et par définition méme de d; il s’ensuit
que #® v est un cocycle permanent.

1.5. Sotent L et A isomorphes a un corps et k =9 = 2 des entiers.
Supposons que G agisse trivialement sur H¥(E, A) et H*1+1(E 6 A) et
soit x e BEY*. On peut écrire d’aprés (1.1), (1.2)

dyw = (P (@) , (i <HI@,4), v e HM(E, 4);

soit enfin h e HI(G, A). Alors h® x ¢ E@* vu (1.2) et Uhypothése, et
Uon a

dodh®@ x) =0, (2<r<j); dipih® x) =7k u;® ;) .
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Remarquons tout d’abord que (1.5) est évident lorsque £ est compact.
Dans ce cas en effet H* (K, 4) posséde un élément neutre et A® = est
le produit du cocycle permanent (A ® 1) par (1® z), et il suffit de savoir
que d, est une différentielle ; c’est seulement pour £ non compact que la
démonstration ci-dessous est nécessaire ?).

Définissons tout d’abord un accouplement de C*¢ et (O*® )% a
(C*® &)¢ en associant & ¢ e O*% et 3

x=2"a;®b,) , (aieC’*,biec‘?,xe(O*(g é))G),
I’élément
c-x=2V(ca,®b,) ,
ce qui est légitime, comme on le voit tout de suite en remontant & la

définition du produit tensoriel. Si ¢ est homogéne de degré ¢ on a
c-87 ¢ S2+7, si de plus ¢ est un cocycle, alors

C_Cj,tcog+s,t , C_D:,tCDz+s,t , C'E:’tCEg'H’t (2)

et & —»c-2 induit un endomorphisme (additif) de la suite spectrale
commutant & »x;_ , et a d,, augmentant le degré-base de ¢, laissant le
degré-fibre invariant. Pour un élément

x:Z;n(a/z®bz) 5 (aiEC*s, biEHt(.E, A)) -
qui fait partie de Ej*?, on a évidemment
c-x=27(ca;®b,) ;

si donc G agit trivialement sur H'(E, 4), on en déduit que pour I'é1é-
ment
xr=a®b, (e e H3(G, A),be H' (E, A))

de E%' ona

ccx=ca®b, (¢ classe de cohomologie de c) .

Nous pouvons maintenant passer & la démonstration de (1.5). Soit ¢ un
cocycle de %, alors

d2(h® z) = d,2(c- (1@ x)) =c-(d,22(1@ h)) =0 (r<j),
di}‘?(k® x) = C'”?(Z‘T(ui‘& v,)) = "?(C'Z;n(ui(@ v;))
dj"?@@ x) = %ﬁ(fin(h-ui® v;)) -

%) De fagon analogue, on démontrera une propriété similaire de 1’algébre spectrale en
cohomologie & supports compacts des espaces fibrés localement compacts, lorsque la base
est compacte et la fibre non compacte; on en déduit notamment que si la fibre est totale-
ment non homologue & zéro relativement & un corps, alors E,~ E,, ce qui étend au cas
F non compact un résultat bien connu de J. Leray-Hirsch.
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2. Cohomologie des groupes cyeliques

Pour les résultats de ce No, voir par exemple [1], Exp. III—IV ou
[3], No 11; Z, désigne le groupe cyclique & m éléments, g un généra-
teur de Z,,, 4 un groupe abélien sur lequel G' opére ; la norme Na de
aeA est la somme des éléments ¢g*-a (1 <¢ < m), et NA désigne le
sous-groupe formé par les normes.

2.1. Si i est impair, H*(Z,,, A) est le quotient du groupe des éléments
de norme nulle par le sous-groupe qu’engendrent les éléments de la forme
g-a —a. Siiestpair et >0, alors H (Z,,, A) >~ A°(NA.

On en déduit en particulier, (compte tenu de H°(G, A) ~ A%):

2.2. Soit p un nombre premier. Alors H*(Z,,7Z,) ~Z,, (i = 0) ,©).

Au point de vue multiplicatif, (les coefficients étant alors envisagés
comme un corps), (2.2) se précise par le résultat suivant, que nous n’uti-
liserons qu’au No 5 :

2.3. Pour pimpair, H*(Z,,Z,) est le produit tensoriel (gauche) d’une
algébre extérieure A (x) engendrée par un élément x de degré 1 et d’une
algébre de polynomes Z,[y], (y de degré 2). Pour p = 2, H*(Z,,Z,)
=~ Zy[x], (x de degré 1).

3. Enoncé du théoréme de Smith; début de la démonstration

Nous supposons dorénavant p fixé, et notons H*(X), H*(() les groupes
de cohomologie d’'un espace ou d’un groupe fini & valeurs dans Z .

Théoréme. Soient p un nombre premier, X un espace compact de
dimension finie qui est une nm-sphére d’homologie mod. p, T un homéo-
morphisme de X , de période p. Alors Uensemble F des points fixes de T est
une k-sphére d’homologie mod. p, (— 1 < k < »n).

Soit Y l’espace quotient de X par la relation d’équivalence qu’y dé-
finit 7' et soit « la projection de X sur Y ; elle est biunivoque sur ¥, dont
Pimage dans Y sera aussi notée F. Il n’y a rien & démontrer si F est
vide, (ou si 7" est I'identité), et nous supposerons dorénavant F et X — F
non vides. L’application # induit un homomorphisme de la suite exacte
de cohomologie relative de la paire (Y, #) dans celle de (X, F); mais
X et Y sont compacts, F est fermé, les groupes de cohomologie relative
s’identifient donc, comme on sait, aux groupes de cohomologie & sup-
ports compacts des espaces différences. Nous obtenons ainsi un dia-
gramme commutatif

§) Nous utiliserons fréquemment et sans autre commentaire le fait que Z, opére tou-
jours trivialement sur Z .
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—~ H*-Y(F) - H'(X — F) - HY(X) - H(F) —
4 id. A A 4 id. (3.1)
— H*-Y(F) - H(Y — F) - H(Y) - H'(F) —»

(id. = identité), ol les deux lignes sont exactes.

3.2. p étant premaer, le groupe cyclique engendré par 7' opére sans
points fixes sur X — ¥, qui est donc un espace fibré principal de groupe
structural Z,, de base Y — F, projection =, d’oi (No 1) une algebre
spectrale que nous noterons (£,). L’algébre E_ est donc ’algebre graduée
associée &4 H*(Y — F) convenablement filtrée, et £, est isomorphe a
H*(Z,, H¥*(X — F)).

3.3. F, X —F et Y —F sont de dimensions finies < dim X ;
en particulier leurs groupes de cohomologie d’ Alexander-Spanver a supports
compacts sont nuls pour les degrés >dim. X .

Car X est de dimension finie et ¥ — F est localement homéomorphe
a X —F.

3.4. Ona H(F)=H'(X —F) pour t#=mn,n + 1.

Cela se déduit de la suite exacte de (X, F).

3.5. Pour t #n, H(X — F) est dans U'tmage de n*, par conséquent
(voir (1.2), (1.4), (2.2)), E' est isomorphe @ H'(X — F) et formé de
cocycles permanents, (s = 0).

11 suffit de remarquer que (3.1) donne pour ¢  n:

H(F) - H'(X — F) - 0
4 id. A
H*-Y(F) > H'(Y — F) .

3.6. Ona H(X —F)=0, (t > n), donc, d’aprés (3.4), H'(F) = 0,
(t>n).

Supposons (3.6) faux; il existe alors, vu (3.3), un plus grand %,
(k>mn), tel que H*(X — F) # 0 et, d’aprés (3.5), E®* est # 0
et formé de cocycles permanents (s >> 0); ces cocycles ne peuvent ja-
mais étre cobords, car les différentielles d,, (r > 2), diminuent stricte-
ment le degré-fibre et ici £,, (donc a fortiori £,, (r > 2)), ne contient
aucun élément de degré-fibre >k. Ainsi on a E%F ~ E¥* £ 0 et
H*+k(Y — F) est £ 0 pour tout s > 0, en contradiction avec (3.3).

Un raisonnement tout pareil, que nous ne reproduirons pas, utilisant
(1.4). (3.3) et (3.6) donne:

3.7. L’image de n*: HY(Z,, H"(Y — F)) - H(Z,, H*(X — F)) est
nulle pour ¢>dim X — n.
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4. Fin de la démonstration

Montrons tout d’abord que F posséde au moins un groupe de cohomo-
logie mod. p non nul (rappelons que F est supposé non vide et que nous
considérons en dim 0 les groupes de cohomologie réduits). Si ce n’est
pas le cas, on obtient par suite exacte :

HEX —F)=0, (@G#n), HX-FNH~Z

D
d’olr

Ept=0 (@t +#n), Ey~H"X—F)~Z,, (s=0).

L’algeébre spectrale n’a donc qu’un degré-fibre, par conséquent les diffé-
rentielles sont identiquement nulles, et E2" ~ E}" est 5 0 pour
tout s, en contradiction avec (3.3).

Soit alors £ le plus grand degré pour lequel H*(F') # 0; on sait par
(3.6) que k£ < n et nous devons montrer

HiF)=0, (i<k), H:F) =%, . (4.1)

Nous distinguerons trois cas, le premier étant le plus général, et le troi-
siéme étant le moins simple.

Premier cas: k <n —2. Vu (3.4) et HF(F) # 0, il nous suffit
d’établir

dim ("X —F)+ H"?*X —F)+-- -+ HX —F)) =1. (4.2)
La suite exacte de (X, #) montre que

H"(X — F)~ H (X))~ 7,
d’ou

Bt ~HN(Z)Q H"(X —F)~Z, (s=0).
Posons

Bz’+n — E:—&-l,n—l + E::+2,n——2 + s + E;H—n,o .
d’aprés ce qui précede et (3.5) on sait que
Bit* ~H'Y(X —F)+H2*X —F)+...+ H(X —F) (4.3)

est £ 0 et est formé de cocycles permanents. Pour ¢ >dim X, Bit" doit
avoir une image nulle dans E_, autrement dit, chaque élément de Bi*"
doit étre cobord relativement & une différentielle d,, d’'un élément qui
doit naturellement avoir le degré total » + + — 1. Or, parmi les groupes
Eit (s+t=mn-4+¢—1), seul Ei %" n’est pas a priori formé de
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cocycles permanents; comme il est de dimension 1, cela signifie qu’il
existe un unique indice j (5 > 2), tel que

d (V") =0 (2<r<j), d;E "= B,

ce qui implique
i+n ., Rit+n - Fi—1,n i—1,n
B;"" ~ B;™" ~ K ~ K ~ 7,

et, ajouté a (4.3), démontre (4.2).
Deuxiéme cas: k =mn. Comme H"(X)~Z,, le diagramme

0 —H"Y(F)—>H"X —F)—>H"(X)—>H"(I') >0
4 id. + o

H"Y(F) - H"(Y — F)
montre que

H"F)~2,; H"'(F)~H"(X —F)~a*H"(Y —F)). (4.5)

Ainsi, E3'™ est lui aussi formé de cocycles permanents; on a donc
d, =0 (r>=2) et
HY(X — F) >~ E3* ~ E**

doit étre nul pour s assez grand, d’ou, vu (3.4) et (4.5), la nullité de
Hi(F) pour i<mn, et F est une n-sphére d’homologie mod. p.

Troisiéme cas: k =mn — 1. Nous montrerons en premier lieu :

4.6. H"Y(F)~Z,. Lespace H"(X — F) est de dimension deux,
soustendu par un élément w engendrant U'image de n*, donc fixe par T, et
par un élément v tel que Tv = u + v.

Le diagramme

0 - H\(F) > H (X — F) X H*(X) - 0
4 id. A a*
H~\(F) - H"(Y — F)
montre que H"(X — F) est somme de I'image biunivoque (donc £ 0),
U de H"-(F) et d’'un sous-espace V de dimension 1, appliqué biunivo-
quement sur H"(X) par p; de plus U fait partie de I'image de =n*, et
ses éléments sont fixes par T ; cette transformation ne peut agir triviale-

ment sur V, car sinon E!'" serait, pour tout ¢, la somme directe de
H'(Z,,V) et d’un espace H!(Z,, U) non nul, contenu dans 'image de
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n*, ce qui contredit (3.7). Comme 7' agit trivialement sur H”(X) et
commute & x4, on a pour veV (v 0):

Tv =u -+ v (wuelU, w#0),
d’ol
Tvo=v+1u (1 <i<p) ;

et ’espace a deux dimensions W engendré par w et v est invariant par
T ; il admet un supplémentaire W’ contenu dans U, donc fixe par T et
faisant partie de I'image de n* ; 'espace H™(X — F) est donc somme
directe de deux sous-espaces W, W' tnvariants par T, d’ou

Bi" o~ H(Z,, H(X — F)) =~ H'(Z,, W) + H'(Z,. W') ;

de plus le dernier terme est dans I'image de =*, donc (3.7) nul pour
1>dim X, d’ou W' = 0, puisque 7' agit trivialement sur W’'. Ainsi
H"(X — F) est sous-tendu par les éléments u,v linéairement indé-
pendants, vérifiant les conditions de (4.6); par ailleuars H"1(F) est
isomorphe & U, donc de dimension 1; enfin, U est toute I'image de n*,
puisque 7' n’agit pas trivialement sur H"(X — F'), ce qui termine la
démonstration de (4.6).

4.7. A montrer: p = 2. Supposons p impair; & l'aide de (4.6) on
calcule immédiatement que les normes dans H"(X — F) sont toutes
nulles et, vu (2.1), on voit que, pour tout +>0 et pair,

Ein o~ HY(Z,, H"(X — F)) = a*(H(Z,, H*(Y — F))) ~ %,

ce qui est en contradiction avec (3.7).

4.8. Nous savons déja que H"'(F) =~ Z,; il reste donc a prouver
que H'(F) =0 pour + <n — 2.

En s’appuyant sur (2.1), (4.6), (4.7) on calcule aisément que

Bi" = Hi(Zy, HN(X —F)) =0 (i>0) ;

d’autre part, E¥" ~ (H"(X — F))T est égal & U, donc dans I'image
de =* et (1.4) formé de cocycles permanents, ce qui, ajouté a (3.5),
montre que K, ~ E_, d’ou

H(X —F)~E*~E2'=0  (t#mn, ¢assez grand)
et la nullité de H(F) pour ¢ << n — 2 se déduit de (3.4).

Remarque 4.9. Nous venons de voir que E%"~Z, E%' =0
sinon, o H*(Y — F) = Z,, H*(Y — F) = 0 (¢ # n), dans ce dernier
cas.
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5. Compléments

Convention. Dans tous les énoncés de ce No, on garde les hypothéses et
notations du Théoréme de Smith ; on note Y Uespace quotient de X par la
relation d’équivalence qu’y définit T.

Proposition 6.1. 8¢ k=n — 1, alors p = 2.

Si F est non vide, voir (4.7); il reste donc & examiner le cas ou F est
vide, c’est-a-dire ot n = 0, k = — 1. L’espace X est alors fibré prin-
cipal de groupe structural Z, et de base Y, qui est par conséquent aussi
de dimension finie. Comme H?(X) est nul pour #>0 on a dans la suite
spectrale correspondante Ei** = 0 pour s >0, ¢ # 0 d’ou

H3(Y) >~ E%® ~ E}** ~ H*(Z,, H*(X)) (s=0),
(H°(X) étant le groupe non réduit, donc isomorphe a Z, | Z,), et
H:(Z,, H*(X)) doit étre nul pour s>dim X ; ainsi, 7' ne peut opérer

trivialement sur H°(X), et X est formé de deux composantes connexes
échangées par 7', d’'oh p = 2.

Remarque 5.2. En fait (5.1) est un cas particulier de la proposition
suivante ; nous l’avons cependant isolée car il faut quoi qu’il en soit
traiter & part lecas n =0, k= — 1.

Proposition 5.3. (Floyd [5]). S¢ p est impair, n — k est pair.

Pour k£ = n iln’y arien & démontrer, et d’aprés (5.1)ona k£ n — 1.
Il reste a considérer le cas k <<n — 2, n > 1; nous n’excluons pas
k= — 1, c’est-a-dire F vide, mais convenons. alors d’utiliser en dimen-
sion 0 les groupes de cohomologie non réduits.

On tire tout d’abord de la suite exacte de (X, F):

Hk'*'l(X——F)an(X—F)gZ”, H'(X——F)zO, (?:#k_{-la’n’)’
d’ou pour l’algébre spectrale

BN~ B 7 Eyt =0 t#%k+1,n).

Il n’y a ainsi que deux degrés-fibre, dont la différence est » — k& — 1,
et seule la différentielle d,_, peut ne pas étre identiquement nulle, d’ot

En-—k 2= Ez ’ En_k+1 = Eoo .
Soient % et v des générateurs de E®”, et E®*+1: on peut écrire
n—k n—k

d k() =f®v (feH"*(Z)) ,
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et par conséquent (voir (1.5)):
dy r(h@u) =h-fQv (heH'(Z,), ¢2>=0). (5.4)

d,_; est nulle sur E%*F! (par (3.5), ou parce que ces éléments ont le
degré-fibre minimum), par suite, si f = 0, la différentielle d,_, est
identiquement nulle, £ est isomorphe & K, et contient des éléments
non nuls de degrés arbitrairement grands, ce qui est impossible (3.3).
Ainsi f # 0, et si 'on suppose » — k impair, on a dans les notations
de (2.3):

f=c-z-y*, (ceZ,, ¢c#£0; 2¢a+1=mn—kFk) ;
(5.4) donne alors
dy (- PQu) =c-22 9y PQuv=0
(puisque 22 = 0), donc d, ,(E®*}™) =0 et

Eil;—kl M E2b+kl+7; P E2b+1 n o Z

pour tout b > 0, en contradiction avec (3.3), d’ou (5.3).

Remarque 5.5. Sachant » — k& pair, on détermine aisément E_ ;
en effet on a

dor(u) =c-y’'®v , (ceZ,, ¢c#0, 2a =n —k) ,

d’ou, en utilisant (5.4), (2.3)

n——lz: (Eg nk) - E8+"—k,k+1 (8
Eikl ~ gikil ~ BRI~ 7 0<j<n—k)

E%' =0 sinon
et finalement
H(Y —F)~Z,, Fk+1<i<n), HY (Y —F)=0 sinon.
Z

Lemme 5.6. Ona HY(Y —F)=2,, (k+ 1 < , H(Y — F)

= 0 sinon.
(Si F est vide, on prend le groupe de cohomologie non réduit en dimen-

sion 0.) Pour k£ = n, wvoir No 4, deuxiéme cas; pour p impair, k<n
voir (5.5), pour p =2, k<n — 1, la démonstration est tout & fait
analogue et laissée au lecteur; enfin, pour p=2, k=n — 1, voir
(4.9).
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Proposition 5.7 (Liao [6]). Pour k<n on a

H(Y)~Z,, 4+ 1<e < n), Hi{(Y) = 0 sinon.
Pour k=mn, ona H"(Y)=~Z,, H(Y) = 0 sinon.
Si k=mn, ousi k= — 1, cela résulte de (5.6) et de la suite exacte

de la paire (Y,F). Soit donc 0 < k<n; la suite exacte de (Y, F)
donne

H(Y)=0, (i<k); H(Y)=H(Y—-F) (G=k+2);

compte tenu de (5.6), il nous suffira de montrer que H*(Y) et H*+'(Y)
sont nuls ; considérons pour cela le diagramme

0 — H*(F) % H*+1(X — F)

4 id. ) =
0 — H*(Y) — H*(F) " H*1(Y — F) - H**1(¥) — 0

ou les deux lignes sont exactes. Puisque H*(¥) ~ Z,, I’homomorphisme
g est non nul et il doit en étre de méme pour % ; mais H*+1(Y — F)

étant aussi de dimension 1, 2 est alors un isomorphisme sur, d’ou la
nullité de H*(Y) et H*+1(Y).
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