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Un théorème de dualité
Herrn H. Hopf zum sechzigsten Geburtstag gewidmet

par Jean-Pierre Serre

Introduction

Soit X une variété analytique complexe, de dimension complexe n,
et soit F un espace fibre analytique de base X dont la fibre est un espace
vectoriel de dimension r sur C. Le faisceau S F) des germes de sections
holomorphes de F est un faisceau analytique cohérent sur X, et les

groupes de cohomologie HQ(X, S (F)) jouent un rôle important dans
diverses questions ; en particulier, si X est une variété algébrique pro-
jective, et F l'espace fibre associé à une classe D de diviseurs de X
(auquel cas r 1), les dimensions des espaces vectoriels Hg(X, S (F))
coïncident avec les „superabondances" qui interviennent dans le théorème

général de Riemann-Roch (voir là-dessus les Notes publiées en 1953

et 1954 aux Proc. Nat. Acad. Sci. U. S. A. par K. Kodaira, D. C. Spencer
et F. Hirzebruch).

Or l'on sait que les classes de diviseurs D et K — D (K étant la classe

canonique) jouent un rôle dual dans le théorème de Riemann-Roch. Nous
nous proposons ici de préciser ce résultat et de l'étendre au cas d'un
espace fibre F quelconque en montrant que, sous des hypothèses très

larges, les espaces vectoriels Hq(X, S (F)) et #^(.X,S(F)) sont en

dualité, F désignant un espace fibre dont la construction généralise celle
de K — D. Un cas particulier de ce théorème avait d'ailleurs été déjà
obtenu par H. Cartan et L. Schwartz ([10], théorème 4) et la démonstration

du cas général n'est qu'une extension facile de la leur.

§1. Préliminaires

1. Produit tensoriel de deux faisceaux de modules. Soient X un espace
topologique, et A U Ax un faisceau d'anneaux sur X (pour toutes

les définitions relatives aux faisceaux, nous renvoyons à [2] et [4]) ;

nous supposons que les Ax sont commutatifs et possèdent un élément
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unité variant continûment avec x. On dit qu'un faisceau M est un
faisceau de A-modules si, pour tout xcX, N\x est muni d'une structure

de module unitaire sur A^ telle que l'application (a, m) ->a-m,
définie sur l'ensemble G des couples (a, m) tels qu'il existe x e X
avec a ç Ax et m e Mx, soit une application continue de G c A x M

dans M.
Soient maintenant M et N deux faisceaux de A-modules. Si U est un

ouvert de X, soient A v, Mv, Nn les groupes formés par les sections de

A, M, N sur U ; il est clair que Av est un anneau commutatif à élément
unité, et que Mv et Nv sont des modules unitaires sur Av. Posons

Pv Mjj ® Nv, le produit tensoriel étant pris sur Au ; si Va U, on
a des homomorphismes canoniques :

Av -> Av MU~>MV Nn->NV

qui définissent, par passage au produit tensoriel, un homomorphisme
de Pn dans PF. La collection des modules Pv et des homomorphismes
P^ -> PF définit un faisceau P (cf. [2], XIV—3) ; le module ponctuel
P^ est la limite inductive (pour x e U) des modules Pv. Comme l'on a :

A^ lim Av Mx lim Mv Hx lim Nv
xeU xeU xeU

il en résulte1) que P^ est isomorphe à M^ N^, le produit tensoriel
étant pris sur A^. Pour cette raison, le faisceau P est appelé le produit
tensoriel des faisceaux M et N et on le note M ®A N Du fait que A est

commutatif, c'est un faisceau de A-modules ; lorsque A est un faisceau

constant, on retrouve la notion définie dans [2], XIV—10.
Les propriétés de M ®A N sont tout à fait semblables à celles du

produit tensoriel de deux modules :

1.1. Si M' et N' sont deux autres faisceaux de A-modules, et si q>

(resp. xp) est un homomorphisme A-linéaire de M dans M' (resp. de
N dans N;), le produit tensoriel <p®ip est un homomorphisme
A-linéaire de M <g)A N dans M'®A N'.

1.2. Toute suite exacte d'homomorphismes A-linéaires :

donne naissance à une suite exacte :

M ®A N -> M 0A N' -> M ®A N " -^ 0

1) A cause de la commutation du produit tensoriel avec les limites inductives.
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1.3. On a des isomorphismes canoniques :

(M ®A N) ®A Q ^ M ®A (N ®A Q), M ®A N ^ N ®A M M <g)A A ^ M etc.

Si X est une variété analytique complexe, et si l'on prend pour A le
faisceau O des germes de fonctions holomorphes sur X, la notion de

faisceau de O-modules coincide avec celle de faisceau analytique, définie
dans [4], n° 5. En outre les propriétés 1.2 et 1.3 entraînent immédiatement

que le produit tensoriel de deux faisceaux analytiques cohérents
est un faisceau analytique cohérent.

Signalons enfin que l'on peut définir de façon analogue les faisceaux

Tor£(M, N) U Tot**(Mx, NJ pour tout p>0 (pour la définition
XÇ.X.

de Tor^, voir [5], Chap. VI, § 1). Par contre, la définition de HomA (M, N)

est plus délicate, et ne peut se faire sans hypothèses restrictives sur M.
Nous n'insistons pas là-dessus, car nous n'utiliserons dans toute la suite

que le produit tensoriel.

2. Cohomologie d'un espace à coefficients dans un faisceau. (Dans ce

numéro, nous supposerons que l'espace X est paracompact.)
Soit 0 une famille de parties de X vérifiant les conditions suivantes :

2.1. Tout ensemble de 0 est fermé.

2.2. Tout sous-ensemble fermé d'un ensemble de 0 appartient à 0.
2.3. Toute réunion finie d'ensembles de 0 appartient à 0.
2.4. Tout ensemble de 0 possède un voisinage qui appartient à 0.

Si F est un faisceau sur X, on définit alors (cf. [2]) les groupes de

cohomologie de X à coefficients dans F et à supports dans 0, notés

H%(X, F), q 0, 1,.. Rappelons leurs propriétés essentielles :

2.5. H%(X, F) est égal au groupe des sections de F dont le support
appartient à 0.

2.6. H%(X, F) 0 pour q> 0 si F est fin.
2.7. Toute suite exacte de faisceaux 0->A->B->C->0 donne

naissance à une suite exacte de cohomologie :

->H%(X, A) ->fTJ(X, B) ->H%(X, C) -+H%+1(X, A) -> •.

Des propriétés précédentes on tire facilement (cf. [2], XVI, XIX ou
encore [10], n° 2) :

2 £ £

2.8. Soit 0 -> F -> C° -> C1 -> C2 -> • • une suite exacte de

faisceaux, et supposons que tous les H^(X, Cq) soient nuls pour p> 0
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(ce qui sera notamment le cas si les faisceaux Cq sont fins). Dans ces

conditions, la somme directe Zq>0H%(X, Ca), munie de l'opérateur
cobord défini par ô, est un complexe gradué dont le g-ième groupe de

cohomologie est isomorphe à H%(X, F).

Lorsque 0 est la famille de tous les sous-ensembles fermés (resp.
compacts) de I, on écrit Hq(X, F) (resp. H^X, F)) à la place de

H%(X, F). Ces deux familles, de beaucoup les plus importantes dans
les applications, sont les seules qui interviendront dans les §§3 et 4.

§ 2. Généralisation d'un théorème de Dolbeault

Nous supposons à partir de maintenant que X est une variété analytique

complexe, dénombrable à l'infini (donc paracompacte), et de dimension

complexe n.

3. Faisceaux de formes différentielles sur X. Nous aurons à considérer
les faisceaux suivants sur la variété X :

O faisceau des germes de fonctions holomorphes.
Qp faisceau des germes de formes différentielles holomorphes de

degré p.
Ap>q faisceau des germes de formes différentielles de type (p, q) à coef¬

ficients indéfiniment difïérentiables.
Kp>q faisceau des germes de formes différentielles de type (p, q) à coef¬

ficients distributions2).

Tous ces faisceaux sont des faisceaux de O-modules, de façon évidente.
On a Q° O, QpœAp>°, A»'«cK»'«. Les sections de K*'* sont les

courants de type (p, q) cf. [8].
On sait que, si co est une forme de type (p, q), dco est la somme d'une

forme de type (p + l,q) et d'une forme de type (p, q -f- 1) que nous
noterons respectivement d'co et d" œ ; l'opérateur différentiel d" définit
donc un homomorphisme de Ap>q dans Ap>q+1 et un homomorphisme de
Kp>q dans Kp>q+1. On observera que ces homomorphismes sont O-linéaires
puisque d" (f) 0 si / est une fonction holomorphe.

Si œ est une forme différentielle de type (p, 0), à coefficients différen-
tiables, la condition d" en 0 équivaut visiblement à dire que co est

2) Sur une variété orientée de dimension réelle m, nous appelons ,,distribution" un
courant de degré 0, c'est-à-dire un élément du dual de l'espace des formes différentielles à
supports* compacts de degré m (cf. [8]). Cette définition est nécessaire si l'on veut qu'une
fonction soit une distribution particulière.
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holomorphe ; le même résultat vaut pour les courants, comme il résulte

par exemple de [9], Chap. VI, §§ 6 — 7. Par ailleurs, d'après un résultat
de Grothendieck (cité dans [7]), toute forme co, à coefficients différen-
tiables ou distributions, de type (p, q) avec q ^ 1, et telle que df/a)=0,
est localement égale à d" oc, avec oc de type (p, q — 1). En d'autres
termes (cf. [7]) :

Proposition 1. Les suites d'homomorphismes de faisceaux :

d" d"
0 -> Q» -> Ap>° -> Ap'1 -> -> A*'n -> 0

et d" d"
0 _> Qp -> K*'0 -^ K*'1 -> -> Kp>n ~-> 0

sow£ des suites exactes.

4. Espaces fibres analytiques à fibres vectorielles. Soit P un espace fibre
principal analytique complexe, de base X, et de groupe structural G le

groupe linéaire complexe GLr(C). Prenons pour fibre type F l'espace Cr

sur lequel G opère de façon évidente, et soit V PxGF l'espace fibre
associé à P et de fibre type F (rappelons que V est l'espace quotient de

P xF par la relation d'équivalence (p-g,f) (p,g-f) pour p e P, g e

f €F). Puisque les opérations de G conservent la structure vectorielle de Cr,
chaque fibre Vx de V (x e X) est munie d'une structure d'espace vectoriel

complexe de dimension r. Un tel espace fibre V est dit espace fibre
analytique à fibre vectorielle. Il est localement isomorphe à X x Cr, les

changement de cartes se faisant au moyen de matrices holomorphes
inversibles de degré r.

Si s (x) est une section holomorphe de V au-dessus d'un ouvert U de

X, et si f(x) est une fonction holomorphe sur U, le produit f(x)-s(x)
est une section holomorphe de V sur U ; en outre, la somme de deux
sections holomorphes est encore une section holomorphe. I] en résulte que
le faisceau S (F) des germes de sections holomorphes de V est muni
d'une structure de faisceau analytique ; puisque F est localement
isomorphe à XxCr, ce faisceau est localement isomorphe à Or et c'est en
particulier un faisceau analytique cohérent.

Inversement, soit F un faisceau analytique localement isomorphe à Or.

Il existe donc un recouvrement ouvert {U^} de X et, pour chaque oc,

un isomorphe <pa de Or sur la restriction de F à Ua ; ^1o ç>a est un auto-
morphisme de Or au-dessus de Ua ^ Up, donc est défini par une matrice
holomorphe inversible Ma/3 sur Î7a ^ Up ; les Ma/3 définissent un espace
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fibre F à fibre vectorielle tel que S (F) soit isomorphe à F, et l'on voit
facilement que cette propriété caractérise F, à un isomorphisme près.

Il y a donc une correspondance biunivoque entre faisceaux analytiques
localement libres de rang r (i. e. localement isomorphes à Or), et espaces
fibres analytiques à fibres vectorielles de dimension r3).

5. Formes différentielles à coefficients dans un espace fibre analytique à

fibre vectorielle. Soit F un espace fibre analytique à fibre vectorielle de
base X. Nous allons attacher à F les faisceaux suivants :

QP(V) S{V)®OQP A'-«(F)
K*-«(F) S(F)(g>0 K*'*

On a Q°(V) S(V), fip(F)cA^(F), A»'«(F)cK»'«(F). Une
section de APt9(V) sera appelée une forme différentielle de type (p,q)
à coefficients dans F ; comme S F) est localement isomorphe à Or,

une telle forme peut être localement identifiée à un système de r formes
différentielles de type (p, q), au sens usuel.

Puisque d" est un homomorphisme O-linéaire de Ap>q dans APiQ+1.

on peut définir l'homomorphisme

et Ton obtient ainsi un homomorphisme de Ap>q(V) dans AP>9+1(V)

que nous noterons encore d". Définition analogue pour Kp>q(V).

Proposition 2. Les suites d'homomorphismes de faisceaux :

d" d"
0 -*Q»(V) -> A*-°(F)-> A^^F)-* -> A»»n(F) -> 0

et d" d»

fF) ->...-> K*'n(F) -> 0

sont des suites exactes.

En effet, elles se déduisent des suites exactes de la proposition 1 par
produit tensoriel avec S (F) qui est localement libre.

Propositions. Les faisceaux AP>Q(V) et KPtQ(V) sont fins.
En effet, si g est une fonction différentiable sur X, l'application

a>-+g-co est un homomorphisme O-linéaire de Ap*9 dans lui-même,
donc définit un homomorphisme de AP)9(V) dans lui-même ; en considérant

alors une partition de l'unité {g^}, on voit que A*»tf(F) est fin,
et de même pour K*>9 (F).

3) Bien entendu, un résultat analogue vaut pour les espaces fibres topologiques (resp.
différentiables, analytiques réels, algébriques, à fibres vectorielles.
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6. Groupes de cohomologie de X à coefficients dans Qp(V).
Posons A0>q(V) H%(X, Ap>q(V)), espace des formes différentielles

de type (p, q), à coefficients dans F, et à supports dans une famille 0
vérifiant les conditions 2.1, 2.2, 2.3 et 2.4. L'opérateur différentiel d"

applique A%>q(V) dans A%*+1(V) et l'on a d"od" 0. Posons alors

A0(V) ZpqAl>q(V); muni de l'opérateur d", A0(V) est un
complexe bigradué dont nous désignerons le groupe de cohomologie de

bidegré (p,q) par Hp'q(A0(V)). Si 0 est la famille de tous les sous-
ensembles fermés (resp. compacts) de X, on écrira AP'Q(V) et A(V)
(resp. A™{V) et A*(F)) à la place de 4J'*(F) et A0(V).

On définit de même K%*(V) et #0(F) ZPAK0>q{V).
En appliquant 2.8 aux suites exactes de la proposition 2 (ce qui est

licite, vu la proposition 3), on obtient le théorème suivant, qui généralise
celui de [7] :

Théorème 1. Soient X une variété analytique complexe dénombrable
à Vinfini, V un espace fibre analytique à fibre vectorielle de base X et 0
une famille de parties de X vérifiant les conditions 2.1, 2.2, 2.3 et 2.4.
Le groupe H%(X,QP(V)) est isomorphe à HP}Q(A0(V)) ainsi qu'à
Hp>q(K0(V)).

(En outre, les trois groupes en question sont munis de structures
vectorielles complexes, et les isomorphismes du théorème 1 respectent ces

structures.)

Corollaire 1. Le groupe H%(X,S(V)) est isomorphe à H°>q(A0(V))
ainsi qu'à H<>>«(K0(V)).

Inversement, le corollaire 1 permet de retrouver le théorème 1 : puisque

le faisceau QP(V) est localement libre, il existe un espace fibre à

fibre vectorielle W tel que S(W) soit isomorphe à ÛP(V) ; il est d'ailleurs

facile de voir que la fibre Wx de IF en x e X est canoniquement
v

isomorphe à Vx <g)c A Dx, où Dx désigne le dual de l'espace tangent à

X en x. En appliquant le corollaire 1 à.TF, on voit que

est isomorphe à H°>q(A0(W)); pour retrouver le théorème 1, il suffit
alors de vérifier que A°>q(W) est isomorphe à Ap>q(V), ce qui ne
présente pas de difficultés.

Corollaire 2. H%(X, QV(V)) 0 pour q> n, si n est la dimension

complexe de X.
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7. Remarque. Si F est un faisceau analytique quelconque, on peut
encore former la suite :

d"
0 -> F -» F®0 A°'°-> F®o A0'1 -> -> F®o A°'w -> 0

Si Ton pouvait montrer que cette suite est exacte, on aurait ainsi
obtenu une résolution de F par des faisceaux fins (cf. 2.8) et le théorème 1

ainsi que ses corollaires seraient ainsi étendus à tout faisceau analytique,
Malheureusement, il n'est nullement évident que cette suite soit exacte ;

on pourrait penser à le démontrer en prouvant que Tor°* (F^, A°j0) 0

pour tout p > 1, mais la question parait difficile.

§ 3. Le théorème de dualité

8. Topologie sur l'espace APtQ(V). Nous allons définir une famille
de semi-normes4) sur l'espace Ap-q(V) des sections de Ap*q(V).

Considérons les systèmes (K, <p, y), le) qui vérifient les conditions
suivantes :

8.1. K est un compact de X.
8.2. <p est un homéomorphisme analytique d'un voisinage U de K sur

un ouvert de Cn.

8.3. y> est un isomorphisme de n^iU) sur UxCr, n désignant la
projection de V sur X,

8.4. k est une suite de 2n entiers > 0 : r1}..., rn9 s1}..., sn.

Si co est un élément de APtQ(V), la restriction de œ à U peut être
identifiée (au moyen de y)) à un système de r formes différentielles de

type (p, q) sur U, système qui peut lui-même être identifié (au moyen

(71
\ 7l\
J.l J — N fonctions différentiables sur

q>(U) ; nous noterons ces fonctions a)iq}^, 1 ^ i ^ N. Soit Dk l'opéra-

teur différentiel =-— Nous poserons :

dzl1 dzr»dz£ ...dz8nn *

.,*, i)i,(z)\ (8.5)
z€V(K) l<ia

Les fonctions pKi<p^ilc sont des semi-normes; lorsque (K, q>, y), Je)

varie de toutes les façons possibles, ces semi-normes définissent une
topologie sur APfQ(V) qui est visiblement séparée. On voit aisément

4) Cf. [1], auquel nous renvoyons pour tout ce qui concerne les espaces vectoriels
topologiques.
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que cette topologie ne change pas si l'on se borne à considérer une famille
de compacts K^ dont les intérieurs recouvrent X, et, pour chacun d'eux,
un couple ((pa, ipa) vérifiant 8.2 et 8.3. La topologie de Ap>q(V) peut
donc être définie par une famille dénombrable de semi-normes : c'est
une topologie métrisable.

Une suite con d'éléments de AP>Q(V) tend vers 0 au sens de la topologie

précédente si, au voisinage de tout point de X, les N fonctions
qui représentent localement con tendent uniformément vers 0 ainsi que
chacune de leurs dérivées partielles. On peut donc dire que la topologie
de Av*q(V) est celle de la convergence uniforme locale (ou sur tout
compact, cela revient au même) de chaque dérivée. L'espace APtQ(V) est
tout à fait analogue à l'espace E de Schwartz ([9], p. 88) ; on vérifie,
comme pour E, qu'il est complet, autrement dit que c'est un espace de

Fréchet.

9. Dual topologique de AP>Q(V). On sait que le dual topologique
de E peut être identifié à l'espace des distributions à supports compacts
(cf. [9], p. 89, théorème XXV). Nous allons étendre ce résultat à

Ap «(V).
Soit F* l'espace fibre dual de F : si F est défini au moyen de l'espace

fibre principal P, on peut définir F* comme espace associé à P, de fibre
type Cr sur lequel GLr(C) opère par la représentation contragrédiente
de la représentation usuelle ; ou encore, si F est défini par des changements

de cartes qui sont des matrices holomorphes inversibles Ma^, on

peut définir F* au moyen des matrices contragrédientes Jfa/3~ '(Jif0^)""1.

Pour tout x e X, il existe une forme bilinéaire canonique sur Vx X F*
qui met ces deux espaces en dualité (d'où le nom d'espace fibre ,,dual") ;

elle définit un homomorphisme O-linéaire de S(F)®0 S (F*) dans O ;

d'autre part, l'opération de produit extérieur définit un homomorphisme
O-linéaire de A»-«®0 K»'»*' dans Kp+pl>*+«', q et q' étant des entiers

> 0 quelconques. D'où, en passant au produit tensoriel un homomorphisme

O-linéaire

e : A*

Si a>€A*>q(V) et Tel^'fF*), l'image de co® T7 par s sera
notée co /\T ; c'est un élément de K^+p/' q+q/, c'est-à-dire un courant
à support compact de type (p + pr, Ç + #')• Si l'on prend une carte
locale de F et la carte correspondante de F*, la forme a> s'identifie à r
formes coi, le courant T à r courants Tt, et co /\T est égal à Z^J co^ A Ti.

2 Commentarii Mathematici Helvetici 17



Prenons en particulier p' n — p, q1 n — q. Alors a> f\T est

un courant à support compact de type (n,n), que Ton peut donc intégrer

sur X (X étant orientée de façon naturelle par sa structure
complexe). Nous poserons :

Pour T fixé, l'application co -> <co, T> est une forme linéaire sur
APiq(V) que nous désignerons par LT.

Proposition 4. L'application T -> LT est un isomorphisme de

Kn-v, n-ff(p*j ^ ?e duai tOpOiOgique de Ap>q(V) .5)
II est immédiat que LT 0 entraîne T 0. Il nous faut donc

montrer : a) que LT est continue, b) que toute forme linéaire continue L
sur Av>q(V) est égale à une forme LT.

Choisissons un recouvrement ouvert localement fini {Ua} de X assez

fin pour que F soit trivial au-dessus de chaque Ua et que C7a soit
relativement compact. Soit {da} une partition difiEérentiable de l'unité
subordonnée à {Ua}.

Montrons d'abord la continuité de LT. Soit con une suite d'éléments
de APtQ(V) tendant vers 0. Pour tout oc, la suite 0acon tend vers 0,
et les supports de ces formes restent contenus dans un compact fixe
intérieur à C7a ; l'expression locale de 0acon A T écrite plus haut montre
alors que <0acow, T} tend vers 0. D'autre part, l'ensemble H des indices
oc tels que Ua rencontre le support de T est fini, puisque ce support est

compact. Il en résulte que <con, T} ^a€fl<^aft>n5î7> tend vers 0, et
LT est bien une forme linéaire continue.

Soit inversement L une forme linéaire continue sur APfQ(V). Soit
a>n une suite d'éléments de Ap>q(V), tendant vers 0, et telle que le
support de œn soit contenu dans un compact fixe intérieur à Ua. Evidemment

L (a)n) tend vers 0. Or chaque con est défini sur C7a par un système
de r formes différentielles de type (p, q) à supports compacts, et l'on
sait que le dual topologique de l'espace des formes différentielles à
supports compacts de type (p, q) (muni de la topologie précédente,
analogue à celle de l'espace D de Schwartz) est l'espace des courants de

type (n —p,n — q) (cf. [8], où ceci est pris comme définition des

5) Cette proposition est un cas particulier d'un résultat valable pour tout espace fibre
différentiable V: le dual de l'espace des sections différentiables de F est isomorphe à
l'espace des courants de degré maximum, à coefficients dans l'espace fibre dual de V, et
à supports compacts.
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courants). Il s'ensuit qu'il existe, pour chaque oc, une section Ta de

K«-».«-«(7*) au-dessus de U^, telle que J co A Ta L(co) pour tout

co e Ap'q(V) dont le support est contenu dans Ï7a. Il est clair que
Ta Tf$ dans Ua -> £7^, autrement dit que jTa est la restriction à TJa

d'une section T de Kn-p'n-fl(F*) au-dessus de X ; la continuité de L
montre en outre que T^ 0 pour tous les a sauf un nombre fini d'entre
eux, c'est-à-dire que le support de T est compact. Enfin, pour tout
œeA*'9(V), on a:

L(co) ZL(0aco) £Se0La)AT0C=icoAT LT(a>)

c. q. f. d. a

A partir de maintenant, nous identifierons K^~Pt n~q(V*) avec le dual
topologique de APiQ(V) au moyen de l'application T ->LT.

Propositions. L'application linéaire d" : Ap'q(V)->Ap>Q+1(V) est
continue et sa transposée est (-îy+^d" : ir»-p.»-*-i(7*) -> Z*-p'ft~ff(F*).

Soient œeAp>«(V) et î7 £ ^-^'^^-^F*). On a :

d(a> AT) d"(a> AT) d"(co) AT + (- l)*+*œ Ad"(T)

et comme J d (co A T) 0, on en déduit

<d"{co), T> + (- l)»+« <a>, d'(T)> 0

ce qui démontre la proposition (la continuité de d" étant évidente).

10. Démonstration du théorème de dualité. Les propositions 4 et 5

signifient que le dual topologique du complexe A F) est isomorphe au
complexe K* (F*). Pour passer de là aux groupes de cohomologie de ces

complexes, nous utiliserons le lemme suivant :

Lemme 1. Soient L, M, N trois espaces de Fréchet, et u : L -> M,
v : M -> N, deux homomorphismes 6) linéaires tels que v o u 0. Soient
L*, M*, N* les duals topologiques de L, M, N, et lu, fv les applications
transposées de u, v. Posons C v~x{0), B u(L)9 H C/B, et
G' ^-i(0), B' *v(N*), H1 C'/B'.

Alors H est un espace de Fréchet dont le dual topologique est isomorphe
à H1.

Puisque u est un homomorphisme, B u(L) est complet, donc fermé,
et H est un espace de Fréchet (cf. fl], p. 34).

8) Cf. N. Bourbaki, Top. Gén., Chap. III, § 2.
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Soit d'autre part d e C, et soit h' l'élément de H1 défini par d. Par
définition, d est une forme linéaire continue sur M, nulle sur B, donc
définit une forme linéaire continue sur H qui ne dépend que de h''. Si
cette forme linéaire est nulle, c! est nulle sur C, donc appartient à tv(N*)

B'', puisque v est un homomorphisme, autrement dit hr 0.
Inversement, toute forme linéaire A continue sur H, peut être identifiée

à une forme linéaire continue sur C qui est nulle sur B ; d'après le
théorème de Hahn-Banach ([1], p. 111) on peut la prolonger à M ; on
obtient ainsi un élément d de C, donc un élément h' de H', et il est
immédiat que la forme linéaire définie par h' sur H n'est autre que A,

ce qui achève de démontrer que H' est isomorphe au dual topologique
de H.

Nous allons appliquer le lemme précédent avec L AViq~1(V),
M Ap*q(V), N Ap>q+1(V), et u d", v d". D'après la proposition

4, on a :

et d'après la proposition 5, %u (— l)v+qd", lv (— l)»+«+1d". D'autre
part, le théorème 1 montre que

et JÎ' Jîj;-*(J,Ûll-J>(F*))
D'où, en appliquant le lemme 1 :

Théorème 2. Soit X une variété analytique complexe, dénombrable à

Vinfini, de dimension complexe n, et soit V un espace fibre analytique à

fibre vectorielle de base X. Supposons que les deux applications linéaires :
d" d"

A», «-i(7) -> £p,q(y) -> a*> «+1 (F)

soient des homomorphismes. Alors le dual topologique de l'espace de Fréchet

Hq(X,Dp(V)) est canoniquement isomorphe à H^q{X, Ûn-p(V*))
Pour p — 0 (cas auquel on peut toujours se ramener, comme on l'a

vu au n° 6), le théorème 2 montre que Hq (X, S (F)) est en dualité avec

Hl~q{X, i2n(F*)). Or i2w(F*) est localement libre, donc est isomorphe
à S (F), où F désigne un espace fibre à fibre vectorielle dont la fibre Vx

n

en un point xeX est canoniquement isomorphe à F*®c ADX, avec

les notations du n° 6. On observera que V V.
On peut donc énoncer :

Corollaire. Supposons que les deux applications linéaires
d" d"
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soient des homomorphismes. Alors le dual topologique de l'espace de Fréchet

Hq(X,S{V)) est canoniquement isomorphe à H^~q{X, S (F))

11. Un critère. Pour appliquer le théorème de dualité, il est nécessaire

de démontrer que d" est un homomorphisme. Voici un critère
permettant d'affirmer qu'il en est bien ainsi :

Proposition 6. Si la dimension de Hq(X,Qp(V)) est finie, Vapplication

d" : APf a~1 F) -> Av*q F) est un homomorphisme.
Soit C»*9(V) le noyau de d":Ap>q(V) -+Ap>q+1(V); puisque d" est

continue, Cp>q(V) est fermé, donc est un espace de Fréehet. Comme

l'hypothèse faite équivaut à dire que d"(Ap> q~1 (F)) est un sous-espace
de codimension finie de CP}Q(V), on voit que la proposition 6 est un cas

particulier du résultat suivant :

Lemme 2. Soit u une application linéaire continue d'un espace de

Fréchet L dans un espace de Fréchet M. Si u (L) est un sous-espace de

codimension finie de M, Vapplication u est un homomorphisme.
Démonstration7) : Soit P un supplémentaire algébrique de u(L) dans

M, et soit v l'application de LxP dans M définie par :

v(x, y) u{x) -f- y si X€JL, yeP

L'application v est une application linéaire continue de LxP sur
M ; or P est un espace séparé de dimension finie, donc LxP est un
espace de Fréchet. Le théorème de Banach ([1], p, 34) montre alors que v

est un homomorphisme, d'où il résulte immédiatement que u est un
homomorphisme.

12. Application aux variétés de Stein.

Théorème 3. Soit X une variété de Stein, de dimension complexe n, et

soit V un espace fibre analytique à fibre vectorielle, de base X. On a

H%(X,QV(V))=:O pour q^n, et H%(X,QP(V)) est isomorphe au
dual topologique de H° (X, Qn~p F*)).

(Lorsque F est l'espace fibre trivial XxC, on retrouve le théorème 4
de [10]).

En effet, d'après le théorème B des variétés de Stein (cf. [3], [4]), on a
Hn~Q(X, Qn~p(V*)) 0 pour q=£n, ce qui montre (proposition 6)

que d" est toujours un homomorphisme. En appliquant le théorème 2,

7) Cette démonstration est due à L. Schwartz.
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avec F* et n — p à la place de F et de p respectivement, on obtient le
résultat énoncé.

On notera que la topologie de H°(X, Qn-p(V*)) est celle de la convergence

compacte.

Corollaire. Soient K une partie compacte de X et s une section holo-

morphe de F au-dessus de X — K. Si n ^ 2, il existe une section holo-
morphe de V au-dessus de X tout entier qui coincide avec s en dehors d'un
compact Kfz>K.

La démonstration est identique à celle donnée dans [10], n° 13, dans
le cas où F est trivial.

13. Application aux variétés compactes. Lorsque X est une variété
analytique complexe compacte, on sait (cf. [6]) que la dimension de

Hq(X, F) est finie quel que soit le faisceau analytique cohérent F. On

peut donc appliquer le critère de la proposition 6, et l'on obtient ainsi
(compte tenu de ce que HQ^(X, F) — Hq(X, F) puisque X est
compacte) :

Théorème 4. Soit X une variété analytique complexe compacte, de

dimension complexe n, et soit V un espace fibre analytique à fibre
vectorielle, de base X. Alors les espaces vectoriels

et Hn~«(X,Qn-p(V*))

sont en dualité ; en particulier, ces espaces ont même dimension.
Pour p 0 :

Corollaire. Hq (X, S F)) et Hn~q (X, S F) ont même dimension.

14. Un exemple où d" n'est pas un homomorphisme. Soit Y=C2, et
soit F un sous-ensemble fermé, connexe, et non compact de Y. Posons

X Y ~F. En appliquant la suite exacte de cohomologie (cf. [2],
XVII—4), on obtient la suite exacte :

D'après le théorème 4 de [10] (ou le théorème 3 ci-dessus),

et d'après l'hypothèse faite sur F, H\ (F, O) 0. Donc H\ (X, O) 0.

Choisissons F de telle sorte que X ne soit pas un domaine d'holomorphie
(il suffit de prendre pour F une droite réelle, par exemple). D'après un
résultat de H. Cartan (cf. [10], p. 65, note 7), on a H1{X9 O) # 0, et
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d'autre part H^(X, Q2) H^(X, O) 0, nous venons de le voir. Le
théorème 2 montre alors que d" n'est pas un homomorphisme.

Le comportement de l'opérateur d" est donc assez différent de celui
de d, puisque d est toujours un homomorphisme (en effet, le sous-espace
des cobords est caractérisé par l'annulation des périodes, donc fermé).

15. Interprétation de la dualité entre H« (X, Q»( F)) et J5Ç-ff(X, Qn~v{ F*)).
Nous allons donner une interprétation purement cohomologique de la
forme bilinéaire définie par le produit scalaire <co, T> sur

La dualité entre F et F* définit (cf. n° 9) un homomorphisme O-li-
néaire : S (F) ®0 S (F*) -> O ; d'autre part, l'opération de produit extérieur

définit un homomorphisme O-linéaire : Qp ®0 Qn~v -> Qn ;

par passage au produit tensoriel, on obtient ainsi un homomorphisme
O-linéaire : Qp F) ®0 Qn~v F*) -> Qn d'où un homomorphisme
O-linéaire: Qv(V)®0 Qn~p(V*) -> Zn Zn désignant le faisceau des

germes de formes différentielles fermées de degré n.
Or un tel homomorphisme donne naissance à un cup-produit (cf. [2],

XVII —9) qui est ici une application bilinéaire de

J3r«(Z,fl1>(F))xiGrj~«(Z,ûtt-1>(F*)) dans #*(X, Zn)

Comme Hn(X, Zn) — H2"(X.C) (cf. la démonstration du théorème de
de Rham donnée dans [10]), qui est lui-même isomorphe à C si X est

connexe (ce que l'on peut supposer), on a bien ainsi obtenu une forme
bilinéaire à valeurs complexes sur Hq(X, Q*(V))xHl-q(X, Qn~p(V*)),
et il n'est pas difficile de montrer qu'elle coincide avec celle définie plus
haut.

§ 4. Application aux diviseurs

16. Espace fibre associé à un diviseur. Soit D un diviseur de la
variété X. En un point x e X, D est égal au diviseur d'une fonction gx<

méromorphe en x, non identiquement nulle, et définie à la multiplication
près par un élément inversible de O^. Soit L(D)X l'ensemble des fonctions

/, méromorphes au voisinage de a:, et telles que gx.f soit holo-

morphe en x. La réunion des L(D)X forme un sous-faisceau L(D) du
faisceau des germes de fonctions méromorphes sur X. Ce faisceau est
localement isomorphe à O, donc est isomorphe à S(Fi)), où VD est un
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espace fibre analytique à fibre vectorielle de dimension 1, de base X. On
vérifie tout de suite que, si D et D' sont linéairement équivalents (c'est-
à-dire si D — D' est égal au diviseur (/) d'une fonction / méromorphe
sur X tout entier), alors L(D) et L(D') sont isomorphes, donc aussi VD

et VD, ; réciproquement, si VD et VD, sont isomorphes, D et D' sont
linéairement équivalents. Enfin V__D est isomorphe à Fj, et VD+D, est
isomorphe à VD<g) VD,8).

Soit de même QP(D)X l'ensemble des formes différentielles œ, de

degré p, méromorphes au voisinage de a;, et telles que gx. co soit holo-
morphe en a:. La réunion des QV(D)X forme un sous-faisceau du faisceau
des germes de formes différentielles méromorphes de degré p sur X. On a

Q*(D) L(J5)®OÛ* S(VD)®0Qp QV(VD). D'où, en appliquant
le théorème 4 à l'espace fibre VD :

Théorème 5. Soit X une variété analytique complexe compacte, de

dimension complexe n, et soit D un diviseur de X. Alors les espaces vectoriels

H«(X,Q»(D)) et Hn-Q(X,Qn-p(~D)) sont en dualité.
Pour p 0, il y a donc dualité entre

H*(X,L{D)) et Hn-«(X,Qn(-D))
En particulier, Hn(X, L(D)) est isomorphe au dual de H° (X, Q" —D)),
espace des formes différentielles méromorphes de degré n dont le diviseur
est >D.

S'il existe des formes différentielles méromorphes a> de degré n non
identiquement nulles (ce qui est toujours le cas si X est algébrique, par
exemple), leurs diviseurs (œ) sont linéairement équivalents et leur classe

K est appelée la classe canonique de X. On a alors L(K) Qn, d'où

L(K — D) Qn( — D) (ce qui peut aussi s'écrire VD VK_D), et l'on
obtient ainsi :

Corollaire. Si la classe canonique K est définie, les espaces vectoriels

H«(X,L(D)) et Hn~*(X,L(K - D)) sont en dualité.

17. Application: théorème de Riemann-Roch sur une courbe. SoitX
une variété analytique complexe compacte, connexe, de dimension 1.
Soit D 2npP un diviseur de X, les np étant des entiers nuls sauf

un nombre fini d'entre eux. Nous poserons :

hl(D)=dimH1(X, L(D)) deg (D)=
P

8) Cette correspondance entre espaces fibres et diviseurs est due à A. Weil; cf. [11], par
exemple.
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Lemme 3. L'entier h°(D) — hx{D) — deg (D) ne dépend pas de D.
Il suffit de montrer que cet entier ne change pas lorsqu'on remplace D
par D + P, où P est un point quelconque de X. Or L(D) est un sous-
faisceau de L(D -j- P) ; soit Q le faisceau quotient L(D -f P)/L(D).
On a Q^ — 0 si x ^ P, et Q^ C si x P, comme on le voit tout
de suite. Donc H°(X, Q) ==C, et #«(-£, Q) 0 pour g>0. La suite
exacte de faisceaux : 0 -> L(D) -^L(D+P)->Q->0 donne
naissance à la suite exacte de cohomologie :

0 ->H°(X, L(D)) -> HQ(X, L(D + P))->C-> H^X, L(D))

D'où, en formant la somme alternée des dimensions :

h°(D) - h°(D + P) + 1 - ^(D) + AMJ5 + f) 0,
ce qui entraîne évidemment :

h°(D) - h^D) - deg(D) h°(D + P) - h^D + P) - deg (D + P),

c. q. f. d.
Pour D 0, L(D) O, d'où h°(D) 1, puisque X est connexe.

Nous poserons A1(0) #, c'est le genre de X. Le lemme 3 peut donc
s'écrire sous la forme équivalente :

Lemme 4. h°(D) — A^D) deg (D) + 1 — g.

Or H°ÇX, L(i))) est l'espace vectoriel des fonctions méromorphes /
telles que (/) ^ — D ; donc h°(D) coincide «avec l'entier noté d'ordinaire

1{D).
D'autre part, le théorème 5 montre que hx(D) est égal à la dimension

i (D) de H° (X, Q1 (—D)), espace des formes différentielles méromorphes
a> telles que (co) ^ D.

En portant ces expressions dans le lemme 4, on obtient :

Théorème de Biemann-Roch. l(D) — i(D) deg (D) -+¦ l —g.
Remarques. 1) II résulte, comme on sait, du théorème de Riemann-

Roch que X possède ,,assez" de fonctions et de formes méromorphes ;

en particulier, la classe canonique K de X est définie, et l'on a

i(D) l(K — D), d'où la formule usuelle :

l(D) - l(K - D) deg (D) + 1 - g

2) Le genre g a été défini comme A1(0) i(0), c'est-à-dire comme
dimension de l'espace vectoriel des formes différentielles holomorphes.
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Il n'est pas difficile de montrer qu'il est égal à la moitié du premier
nombre de Betti de X : cela résulte, soit de la théorie des formes
harmoniques, soit, plus simplement, de la suite exacte de cohomologie définie

d

par la suite exacte de faisceaux 0 ->C -> Q° -> Q1 -> 0 (on fait une
somme alternée de dimensions, et l'on trouve que 2 — 2g est égal à la
caractéristique d'Euler-Poincaré de X, d'où le résultat cherché).
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