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Un théoréme de dualité
Herrn H. Hopf zum sechzigsten Geburtstag gewidmet

par JEAN-PIERRE SERRE

Introduction

Soit X une variété analytique complexe, de dimension complexe =,
et soit V un espace fibré analytique de base X dont la fibre est un espace
vectoriel de dimension r sur C. Le faisceau S(V) des germes de sections
holomorphes de V est un faisceau analytique cohérent sur X, et les
groupes de cohomologie H(X,S(V)) jouent un réle important dans
diverses questions ; en particulier, si X est une variété algébrique pro-
jective, et V I’espace fibré associé a une classe D de diviseurs de X (au-
quel cas r = 1), les dimensions des espaces vectoriels H(X, S(V))
coincident avec les ,,superabondances“ qui interviennent dans le théo-
réme général de Riemann-Roch (voir la-dessus les Notes publiées en 1953
et 1954 aux Proc. Nat. Acad. Sci. U. S. A. par K. Kodaira, D. C. Spencer
et F. Hirzebruch).

Or I'on sait que les classes de diviseurs D et K — D (K étant la classe
canonique) jouent un réle dual dans le théoréme de Riemann-Roch. Nous
nous proposons ici de préciser ce résultat et de 1’étendre au cas d’un
espace fibré ¥ quelconque en montrant que, sous des hypothéses trés
larges, les espaces vectoriels H(X, S(V)) et H, %X, S( 17)) sont en
dualité, V désignant un espace fibré dont la construction généralise celle
de K — D. Un cas particulier de ce théoréme avait d’ailleurs été déja
obtenu par H. Cartan et L. Schwartz ([10], théoreme 4) et la démonstra-
tion du cas général n’est qu'une extension facile de la leur.

§ 1. Préliminaires

1. Produit tensoriel de deux faisceaux de modules. Soient X un espace

topologique, et A = UX A, un faisceau d’anneaux sur X (pour toutes
Z€.

les définitions relatives aux faisceaux, mous renvoyons a [2] et [4]);
nous supposons que les A, sont commutatifs et possedent un élément
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unité variant continiment avec x. On dit qu'un faisceau M est un
faisceau de A-modules si, pour tout x e« X, M, est muni d’une struc-
ture de module unitaire sur A, telle que 'application (a,m) —a-m,
définie sur ’ensemble G des couples (a, m) tels qu’il existe zeX
avec ae A, et me M,, soit une application continue de G c Ax M
dans M.

Soient maintenant M et N deux faisceaux de A-modules. Si U est un
ouvert de X, soient A,, M, N les groupes formés par les sections de
A, M, N sur U; il est clair que 4, est un anneau commutatif & élément
unité, et que M, et N, sont des modules unitaires sur A4,. Posons
Py, =M; ® Ny, le produit tensoriel étant pris sur 4, ;si VcU, on
a des homomorphismes canoniques :

Ay > Ay, My — My Ny =Ny,

qui définissent, par passage au produit tensoriel, un homomorphisme
de P, dans P,. La collection des modules P, et des homomorphismes
P, — P, définit un faisceau P (cf. [2], XIV—3); le module ponctuel
P, est la limite inductive (pour z e U) des modules P,. Comme I’on a :

A,=1lim4d, , M, =lim M, , N,=1lim N, ,
zeU zelU zeU
il en résulte!) que P, est isomorphe & M,® N_,, le produit tensoriel
étant pris sur A,. Pour cette raison, le faisceau P est appelé le produit
tensoriel des faisceaux M et N et on le note M ®, N. Du fait que A est
commutatif, c’est un faisceau de A-modules ; lorsque A est un faisceau
constant, on retrouve la notion définie dans [2], XIV —10.
Les propriétés de M®, N sont tout a fait semblables & celles du pro-
duit tensoriel de deux modules :

1.1. Si M’ et N’ sont deux autres faisceaux de A-modules, et si ¢
(resp. y) est un homomorphisme A-linéaire de M dans M’ (resp. de
N dans N’), le produit tensoriel ¢ ® ¢ est un homomorphisme A-li-
néaire de M ®, N dans M '@, N'.

1.2. Toute suite exacte d’homomorphismes A-linéaires :
N—-N >N -0,
donne naissance & une suite exacte :

MRIy,N-M, N->-M,N"—>0.

1) A cause de la commutation du produit tensoriel avec les limites inductives.
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1.3. On a des isomorphismes canoniques :
M, N, QA~*MR,(N®,Q), M,NANR, M, Mg, Ax~M, etc.

Si X est une variété analytique complexe, et si 'on prend pour A le
faisceau O des germes de fonctions holomorphes sur X, la notion de
faisceau de O-modules coincide avec celle de faisceau analytique, définie
dans [4], n° 5. En outre les propriétés 1.2 et 1.3 entrainent immédiate-
ment que le produit tensoriel de deux faisceaux analytiques cohérents
est un faisceau analytique cohérent.

Signalons enfin que 'on peut définir de fagon analogue les faisceaux
Torp (M, N) = ng Tory#(M,, N,) pour tout p >0 (pour la définition

de Tor,,, voir [5], Chap. VI, § 1). Par contre, la définition de Hom, (M, N)
est plus délicate, et ne peut se faire sans hypothéses restrictives sur M.
Nous n’insistons pas la-dessus, car nous n’utiliserons dans toute la suite
que le produit tensoriel.

2. Cohomologie d’un espace & coefficients dans un faisceau. (Dans ce
numéro, nous supposerons que l’espace X est paracompact.)

Soit @ une famille de parties de X vérifiant les conditions suivantes :
2.1. Tout ensemble de @ est fermé.
2.2. Tout sous-ensemble fermé d’un ensemble de @ appartient a @.
2.3. Toute réunion finie d’ensembles de @ appartient & @.
2.4. Tout ensemble de @ posséde un voisinage qui appartient a @.

Si F est un faisceau sur X, on définit alors (cf. [2]) les groupes de
cohomologie de X a coefficients dans F et & supports dans @, notés
HY(X,F), ¢ =0,1,... Rappelons leurs propriétés essentielles :

2.5. HY%(X,F) est égal au groupe des sections de F dont le support
appartient a @.

2.6. HL(X,F)=0 pour ¢> 0 siF est fin.

2.7. Toute suite exacte de faisceaux 0 - A — B — C — 0 donne nais-
sance & une suite exacte de cohomologie :

Des propriétés précédentes on tire facilement (cf. [2], XVI, XIX ou
encore [10], n® 2):

) 3 3 .
2.8. Soit 0 >F >C°»Ct—C2—... une suite exacte de fais-
ceaux, et supposons que tous les H% (X, C? soient nuls pour p> 0
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(ce qui sera notamment le cas si les faisceaux C? sont fins). Dans ces
conditions, la somme directe X ., Hy (X, C?%, munie de l'opérateur
~ cobord défini par &, est un complexe gradué dont le g-iéme groupe de
cohomologie est isomorphe & H% (X, F).
Lorsque @ est la famille de tous les sous-ensembles fermés (resp. com-
pacts) de X, on écrit HY(X,F) (resp. HI(X,F)) & la place de
H? (X, F). Ces deux familles, de beaucoup les plus importantes dans
les applications, sont les seules qui interviendront dans les §§ 3 et 4.

§ 2. Généralisation d’un théoréme de Dolbeault

Nous supposons & partir de maintenant que X est une variété analy-
tique complexe, dénombrable & I'infini (donc paracompacte), et de dimen-
sion complexe 7.

3. Faisceaux de formes différentielles sur X. Nous aurons a considérer
les faisceaux suivants sur la variété X :

O faisceau des germes de fonctions holomorphes.

Q7  faisceau des germes de formes différentielles holomorphes de
degré p.

A? ¢ faisceau des germes de formes différentielles de type (p, q) a coef-
ficients indéfiniment différentiables.

K?.¢  faisceau des germes de formes différentielles de type (p, q) & coef-
ficients distributions 2).

Tous ces faisceaux sont des faisceaux de O-modules, de fagon évidente.
On a Q°=0, Q?c AP0 AP I Kr 9 Les sections de K? ¢ gsont les
courants de type (p, q) cf. [8].

On sait que, si w est une forme de type (p, q), dw est la somme d’une
forme de type (p + 1,¢q) et d’une forme de type (p,q + 1) que nous
noterons respectivement d'w et d”"w; l'opérateur différentiel d” définit
donc un homomorphisme de A?:? dans A?’?+! et un homomorphisme de
K?- ¢ dans K?>?+1, On observera que ces homomorphismes sont O-linéaires
puisque d”(f) = 0 si f est une fonction holomorphe.

Si w est une forme différentielle de type (p, 0), & coefficients différen-
tiables, la condition d”"w = 0 équivaut visiblement & dire que w est

%) Sur une variété orientée de dimension réelle m, nous appelons ,,distribution‘‘ un cou-
rant de degré 0, c’est-a-dire un élément du dual de I’espace des formes différentielles &
supports compacts de degré m (cf. [8]). Cette définition est nécessaire si I’on veut qu’une
fonction soit une distribution particuliére.
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holomorphe ; le méme résultat vaut pour les courants, comme il résulte
par exemple de [9], Chap. VI, §§ 6—7. Par ailleurs, d’aprés un résultat
de Grothendieck (cité dans [7]), toute forme w, & coefficients différen-
tiables ou distributions, de type (p, g) avec ¢ > 1, et telle que d"w=0,
est localement égale & d"«x, avec « de type (p,q — 1). En d’autres
termes (cf. [7]):

Proposition 1. Les suites d’homomorphismes de faisceaux :

d” d”
0 - Q22 > AP0 > APl —» | —» AP 0

et d” d”
0 > Q2 > Ko » Krl— || —» K" —» 0

sont des suiles exactes.

4. Espaces fibrés analytiques a fibres vectorielles. Soit P un espace fibré
principal analytique complexe, de base X, et de groupe structural ¢ le
groupe linéaire complexe GL,(C). Prenons pour fibre type F l’espace Cr
sur lequel G opére de fagon évidente, et soit V = P X4 F D'espace fibré
associé & P et de fibre type F (rappelons que V est I'espace quotient de
P x F par la relation d’équivalence (p-¢,f) = (p,g-f) pour pe P, ge@G,
f € F'). Puisque les opérations de G conservent la structure vectorielle de C7,
chaque fibre V,de V (2 ¢ X) est munie d’une structure d’espace vecto-
riel complexe de dimension 7. Un tel espace fibré V est dit espace fibré
analytique & fibre vectorielle. Il est localement isomorphe & X x C7, les
changement de cartes se faisant au moyen de matrices holomorphes in-
versibles de degré r.

Si s(x) est une section holomorphe de V au-dessus d’'un ouvert U de
X, et si f(x) est une fonction holomorphe sur U, le produit f(x)-s(x)
est une section holomorphe de V¥ sur U ; en outre, la somme de deux sec-
tions holomorphes est encore une section holomorphe. Il en résulte que
le faisceau S (V) des germes de sections holomorphes de V est muni
d’une structure de faisceau analytique; puisque V est localement iso-
morphe & X x C’, ce faisceau est localement isomorphe & O” et c’est en
particulier un faisceau analytique cohérent.

Inversement, soit F un faisceau analytique localement isomorphe & Or.
Il existe donc un recouvrement ouvert {U,} de X et, pour chaque «,
un isomorphe ¢, de O” sur la restrictionde Fa U, ; ¢z'o ¢, est un auto-
morphisme de O” au-dessus de U, ~ Ug, donc est défini par une matrice
holomorphe inversible M* sur U, ~ Ug; les M *# définissent un espace
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fibré V & fibre vectorielle tel que S(V) soit isomorphe & F, et I'on voit
facilement que cette propriété caractérise ¥, & un isomorphisme pres.

Il y a donc une correspondance biunivoque entre faisceaux analytiques
localement libres de rang 7 (i. e. localement isomorphes & Or), et espaces
fibrés analytiques a fibres vectorielles de dimension 7 3).

5. Formes différentielles & coefficients dans un espace fibré analytique &
fibre vectorielle. Soit ¥V un espace fibré analytique a fibre vectorielle de
base X. Nous allons attacher a ¥V les faisceaux suivants :

V)y=S(V)R®,82?, A»YV)=S(V)Q,A»?,
K (V) = S(V)®, K7 .

On a Q%V) = S(V), Q*(V)c A»(V), A»?(V)cK?¢(V). Une sec-
tion de A??(V) sera appelée une forme différentielle de type (p, q)
a coefficients dans V; comme S(V) est localement isomorphe a O,
une telle forme peut étre localement identifiée & un systéme de » formes
différentielles de type (p, q), au sens usuel.

Puisque d” est un homomorphisme O-linéaire de A?> ¢ dans A?: 9+,
on peut définir ’homomorphisme

1 d" :S(V)Qq AP - S(V) R, AP 241 |

et I'on obtient ainsi un homomorphisme de A?:%(V) dans A?> (V)
que nous noterons encore d”. Définition analogue pour K?: ¢(V).

Proposition 2. Les suites d’homomorphismes de faisceaux :

14 d”

0 = Q2(V) — A (V)= ABL(V) > ... — A?*(V) =0
et 14 14
d d

0 > Q?(V) — Ke:o(V) > KB (V) — ... — Ko (V) = 0

sont des suiles exactes.
En effet, elles se déduisent des suites exactes de la proposition 1 par
produit tensoriel avec S(V) qui est localement libre.

Proposition 8. Les faisceaux AP 2(V) et K> (V) sont fins.

En effet, si ¢ est une fonction différentiable sur X, I'application
o —>¢g-w est un homomorphisme O-linéaire de A?'? dans lui-méme,
donc définit un homomorphisme de A?:%(V) dans lui-méme ; en considé-
rant alors une partition de 'unité {g,}, on voit que A? (V) est fin,
et de méme pour K?:¢(V).

3) Bien entendu, un résultat analogue vaut pour les espaces fibrés topologiques (resp.
différentiables, analytiques réels, algébriques, ...) & fibres vectorielles,
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6. Groupes de cohomologie de X a coefficients dans Q7 (V).

Posons A%YV) = HY(X, A»%(V)), espace des formes différentielles
de type (p,q), & coefficients dans V, et a supports dans une famille @
vérifiant les conditions 2.1, 2.2, 2.3 et 2.4. L’opérateur différentiel d”
applique A%%(V) dans A%Z""YV) et 'on a d"od” = 0. Posons alors
Ay(V) =2, A% (V); muni de l'opérateur d’, Ag4(V) est un com-
plexe bigradué dont nous désignerons le groupe de cohomologie de
bidegré (p,q) par H”?(A4(V)). Si @ est la famille de tous les sous-
ensembles fermés (resp. compacts) de X, on écrira 47 ¢(V) et A(V)
(resp. ADUV) et A, (V)) alaplace de ARU(V) et A,(V).

On définit de méme KZ5:YV) et Ky (V) =2, KpU(V).

En appliquant 2.8 aux suites exactes de la proposition 2 (ce qui est
licite, vu la proposition 3), on obtient le théoréme suivant, qui généralise
celui de [7]:

Théoréme 1. Soient X wune variété analytique complexe dénombrable
@ Uinfint, V un espace fibré analytique o fibre vectorielle de base X et @
une famille de parties de X vérifiant les conditions 2.1, 2.2, 2.3 et 2.4.
Le groupe HY(X,Q7(V)) est isomorphe & H"*(A4(V)) ainsi qu'a
H? (K, (V).

(En outre, les trois groupes en question sont munis de structures vec-
torielles complexes, et les isomorphismes du théoréme 1 respectent ces
structures.)

Corollaire 1. Le groupe HYL(X, S(V)) est isomorphe & H®*(A,(V))
ainsi quw'a H® (K4 (V)).

Inversement, le corollaire 1 permet de retrouver le théoreme 1 : puis-
que le faisceau Q7?(V) est localement libre, il existe un espace fibré &
fibre vectorielle W tel que S(W) soit isomorphe & Q7(V); il est d’ail-
leurs facile de voir que la fibre W, de W en xz e X est canoniquement

P
isomorphe & V,®q A D,, ou D, désigne le dual de I’espace tangent &
X en z. En appliquant le corollaire 1 & W, on voit que

HY (X, Q°(V)) = H% (X, S(W))

est isomorphe & H®?(A,(W)); pour retrouver le théoréme 1, il suffit
alors de vérifier que A% (W) est isomorphe a A?¢(V), ce qui ne pré-
sente pas de difficultés.

Corollaire 2. HY(X,Q°(V))=0 pour q>n, si n est la dimension
complexe de X .
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7. Remarque. Si F est un faisceau analytique quelconque, on peut
encore former la suite :

d”
0>F>FQR,A">FR, A%l » ... > F® A" -0 .

Si ’on pouvait montrer que cette suite est exacte, on aurait ainsi ob-
tenu une résolution de F par des faisceaux fins (cf. 2.8) et le théoréme 1
ainsi que ses corollaires seraient ainsi étendus a tout faisceau analytique.
Malheureusement, il n’est nullement évident que cette suite soit exacte ;
on pourrait penser & le démontrer en prouvant que Tords(F,, AYy°) = 0
pour tout p > 1, mais la question parait difficile.

§3. Le théoréme de dualité

8. Topologie sur I’espace A*>?(V). Nous allons définir une famille
de semi-normes %) sur ’espace 4?-?(V) des sections de A?>¢(V).

Considérons les systémes (K, ¢, w, k) qui vérifient les conditions
suivantes :

8.1. K est un compact de X.

8.2. ¢ est un homéomorphisme analytique d’'un voisinage U de K sur
un ouvert de C".

8.3. wu est un isomorphisme de #n~'(U) sur U X C", n désignant la
projection de V sur X.

8.4. k est une suite de 27 entiers >0: »,,...,7,,8;,...,8,.

Si w est un élément de A??(V), la restriction de w & U peut étre
identifiée (au moyen de y) & un systeme de r formes différentielles de
type (p, q) sur U, systéme qui peut lui-méme étre identifié (au moyen

de ¢) & un systéme de r~( ;3')( Z) = N fonctions différentiables sur

@(U) ; nous noterons ces fonctions w; 4 ., 1 <7 << N. Soit D* Popéra-
ont...+ratsi+...+sn

teur différentiel PR RNN RTY - ra Nous poserons :
pK,cp,tp,k(w) = Sup Sup lewi,w,ep(z)l . (8.5)

2€9(K) 1<i<N
Les fonctions pg , ., ; sont des semi-normes; lorsque (K, ¢, v, k)
varie de toutes les fagons possibles, ces semi-normes définissent une
topologie sur A?'¢(V) qui est visiblement séparée. On voit aisément

4) Cf. [1], auquel nous renvoyons pour tout ce qui concerne les espaces vectoriels topo-
logiques.
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que cette topologie ne change pas si l’on se borne a considérer une famille
de compacts K, dont les intérieurs recouvrent X, et, pour chacun d’eux,
un couple (¢,,w,) vérifiant 8.2 et 8.3. La topologie de A?’4(V) peut
donc étre définie par une famille dénombrable de semi-normes: c’est
une topologie métrisable.

Une suite o™ d’éléments de A7 ?(V) tend vers 0 au sens de la topo-
logie précédente si, au voisinage de tout point de X, les N fonctions
qui représentent localement w” tendent uniformément vers 0 ainsi que
chacune de leurs dérivées partielles. On peut donc dire que la topologie
de A7 2(V) est celle de la convergence uniforme locale (ou sur tout com-
pact, cela revient au méme) de chaque dérivée. L’espace AP 9(V) est
tout a fait analogue & I’espace E de Schwartz ([9], p. 88); on vérifie,
comme pour E, qu’il est complet, autrement dit que c’est un espace de
Fréchet.

9. Dual topologique de 47:¢(V). On sait que le dual topologique
de E peut étre identifié & I’espace des distributions a supports compacts
(cf. [9], p- 89, théoreme XXV). Nous allons étendre ce résultat a
47 (V).

Soit V* I’espace fibré dual de V : si V est défini au moyen de 1’espace
fibré principal P, on peut définir V* comme espace associé & P, de fibre
type C™ sur lequel GL,(C) opére par la représentation contragrédiente
de la représentation usuelle; ou encore, si V est défini par des change-
ments de cartes qui sont des matrices holomorphes inversibles M**, on

peut définir V* au moyen des matrices contragrédientes M — t{( M*F)1,

Pour tout z ¢ X, il existe une forme bilinéaire canonique sur V,x V>
qui met ces deux espaces en dualité (d’ol le nom d’espace fibré ,,dual®);
elle définit un homomorphisme O-linéaire de S(V)®, S(V*) dans O;
d’autre part, 'opération de produit extérieur définit un homomorphisme
O-lindaire de AP ?Q®, K?":? dans KP+?"»1+¢ ¢ et ¢’ étant des entiers
> 0 quelconques. D’ol, en passant au produit tensoriel un homomor-
phisme O-linéaire

e Ap,q(V) ®° Kzﬂ.q/(V*) — K?+2/5 a+97 |

Si wedr (V) et T eK:>¥(V*), limage de w® T par ¢ sera
notée w A T; c’est un élément de K2+?"» ¢+ c’est-a-dire un courant
a support compact de type (p + p',q + ¢'). Si I'on prend une carte
locale de V et la carte correspondante de V*, la forme w s’identifie & »

\ 4 A T
formes w;, le courant 7' ar courants 7';,et w A 7T estégala X ZTw, AT,.

2 Commentarii Mathematici Helvetici 17



Prenons en particulier p' =n —p, ¢ =n —q. Alors o AT est
un courant & support compact de type (n,n), que I’on peut donc inté-
grer sur X (X étant orientée de fagon naturelle par sa structure com-
plexe). Nous poserons :

o, T)=foANT .
X

Pour 7T fixé, 'application w — {(w,T)> est une forme linéaire sur
AP %(V) que nous désignerons par L.

Proposition 4. L’application T — L, est un isomorphisme de
K77 *7U(V*) sur le dual topologique de A7 (V) . %)

Il est immédiat que L, = 0 entraine 7' = 0. Il nous faut donc
montrer : a) que L, est continue, b) que toute forme linéaire continue L
sur A?>2(V) est égale & une forme L.

Choisissons un recouvrement ouvert localement fini {U,} de X assez
fin pour que V soit trivial au-dessus de chaque U, et que U, soit relati-
vement compact. Soit {6,} une partition différentiable de I'unité sub-
ordonnée a {U,}.

Montrons d’abord la continuité de L,. Soit w" une suite d’éléments
de A? ¢(V) tendant vers 0. Pour tout «, la suite 6,w"™ tend vers O,
et les supports de ces formes restent contenus dans un compact fixe
intérieur & U, ; '’expression locale de 6,w"™ A T écrite plus haut montre
alors que <{0,0w",T)> tend vers 0. D’autre part, I’ensemble H des indices
« tels que U, rencontre le support de 7' est fini, puisque ce support est
compact. Il en résulte que <(w",T) = 2,  z(0,0"T) tend vers 0, et
L est bien une forme linéaire continue.

Soit inversement L une forme linéaire continue sur A4? ¢(V). Soit
" une suite d’éléments de A4?:¢(V), tendant vers 0, et telle que le sup-
port de w” soit contenu dans un compact fixe intérieur a U,. Evidem-
ment L(w") tend vers 0. Or chaque w" est défini sur U, par un systéme
de r formes différentielles de type (p,¢q) & supports compacts, et I’'on
sait que le dual topologique de I’espace des formes différentielles & sup-
ports compacts de type (p,q) (muni de la topologie précédente, ana-
logue & celle de I'espace D de Schwartz) est I’espace des courants de
type (n — p,n —q) (cf. [8], ou ceci est pris comme définition des

%) Cette proposition est un cas particulier d’un résultat valable pour tout espace fibré
différentiable V: le dual de I’espace des sections différentiables de V est isomorphe &
Iespace des courants de degré maximum, & coefficients dans 1’espace fibré dual de V, et
a supports compacts.
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courants). Il s’ensuit qu’il existe, pour chaque «, une section 7', de
Kr—2-7=2(V*) au-dessus de U,, telle que [w AT, = L(w) pour tout
Ua
weA” (V) dont le support est contenu dans U,. 1l est clair que
Ty = Tg dans U, ~ Ug, autrement dit que 7', est la restriction & U,
d’une section 7' de K"-?:7—2(V*) au-dessus de X ; la continuité de L
montre en outre que 7', = 0 pour tous les « sauf un nombre fini d’entre
eux, c’est-a-dire que le support de 7' est compact. Enfin, pour tout
weA” V), ona:

Lw)=2L0,0) =20, ANTy= o ANT = Lp(w) ,
o aU X
e. q.f. d. *
A partir de maintenant, nous identifierons K}7?> "/(V*) avec le dual
topologique de A7 (V) au moyen de 'application 7' — L,.

Proposition 5. L’application linéaire d" : AP 1(V)—> A% +1(V) est con-
tinue et sa transposée est (— 1)P+a+id” : K2=P:"—07Y(P*) — KPP =I(V*),

Soient w e A 4(V) et T e Ky " 77}(V*). Ona:
Ao AT)=d"(w AT)=d" (@) AT + (= 1)""w Ad"(T) ,
et comme [d(w AT)= 0, on en déduit
T @), T+ (= P, d (1) = 0

ce qui démontre la proposition (la continuité de d” étant évidente).

10. Démonstration du théoréme de dualité. Les propositions 4 et 5
signifient que le dual topologique du complexe A (V) est isomorphe au
complexe K, (V*). Pour passer de la aux groupes de cohomologie de ces
complexes, nous utiliserons le lemme suivant :

Lemme 1. Soient L, M, N trois espaces de Fréchet, et w:L — M,
v: M — N, deux homomorphismes ®) linéaires tels que vou = 0. Sotent
L*, M*, N* les duals topologiques de L, M, N, et ‘u, *v les applications
transposées de w, v. Posons C =v1(0), B=u(L), H=C|B, et
(" = '4-1(0), B' = (N*), H = C'|B'.

Alors H est un espace de Fréchet dont le dual topologique est isomorphe
a H'

Puisque u est un homomorphisme, B = u(L) est complet, donc fermé,
et H est un espace de Fréchet (cf. [1], p. 34).

%) Cf. N. Bourbaki, Top. Gén., Chap. III, § 2.
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Soit d’autre part ¢’ € C', et soit A’ I’élément de H' défini par ¢'. Par
définition, ¢’ est une forme linéaire continue sur M, nulle sur B, done
définit une forme linéaire continue sur H qui ne dépend que de A'. Si
cette forme linéaire est nulle, ¢’ est nulle sur C', donc appartient & ‘v (N*)
= B’, puisque v est un homomorphisme, autrement dit ' = 0.

Inversement, toute forme linéaire A continue sur H, peut étre identi-
fiée & une forme linéaire continue sur C qui est nulle sur B; d’apres le
théoreme de Hahn-Banach ([1], p. 111) on peut la prolonger & M ; on
obtient ainsi un élément ¢’ de €', donc un élément A’ de H’, et il est
immédiat que la forme linéaire définie par A’ sur H n’est autre que 4,
ce qui achéve de démontrer que H' est isomorphe au dual topologique
de H.

Nous allons appliquer le lemme précédent avec L = A7 41(V),
M = A479(V), N = A»*(V), et uw=4d", v=d". D’apres la propo-
sition 4, on a:

L¥ = Vom0t (%), Y* = KP0n=q(V*),  N* = Kr=0=aY(¥),
et d’aprés la proposition 5, ‘u = (— 1)?+2d”, 'p = (— 1)?+?+1d", D’autre
part, le théoréme 1 montre que

H=HY(X,Q"(V)) et H = H, YX,0Q"?(V*)) .
D’ol, en appliquant le lemme 1 :

Théorédme 2. Soit X une variété analytique complexe, dénombrable a
Pinfini, de dimension complexe n, et soit V un espace fibré analytique &
febre vectorielle de base X . Supposons que les deux applications linéaires :

” dll
AP’ Q—I(V) — AP: Q(V) —_— Ap’ a+1 (V)
sotent des homomorphismes. Alors le dual topologique de Uespace de Fréchet
H (X, Q7(V)) est canoniquement isomorphe ¢ H (X, Q**(V*)) .
Pour p = 0 (cas auquel on peut toujours se ramener, comme on l’a

vu au n° 6), le théoréme 2 montre que H?(X, S(V)) est en dualité avec
H}~ q(X .Q"(V* )). Or Q"(V*) est localement libre, donc est isomorphe

a S( V) on V désigne un espace fibré & fibre vectorielle dont la fibre Vx
en un point x ¢ X est canoniquement isomorphe & V;®, /\Dw, avec

les notations du n° 6. On observera que V=".
On peut donc énoncer :
Corollaire. Supposons que les deux applications linéaires

d ”

d”
A% =1(V) = A0 (V) - A% a+1(F)
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sorent des homomorphismes. Alors le dual topologique de Uespace de Fréchet
HY(X,S(V)) est canoniquement isomorphe & H} (X, 8(17)) :

11. Un eritére. Pour appliquer le théoréme de dualité, il est néces-
saire de démontrer que d” est un homomorphisme. Voici un critére per-
mettant d’affirmer qu’il en est bien ainsi :

Proposition 6. Si la dimension de H(X, Q27(V)) est finie, Vapphi-
cation d" : A?1(V) — A? (V) est un homomorphisme.

Soit C?:¢(V) le noyau de d": A» (V) — A7 1 (V); puisque d’ est
continue, C? 2(V) est fermé, donc est un espace de Fréchet. Comme
I'hypothése faite équivaut & dire que d” (4% ¢ 1(V)) est un sous-espace
de codimension finie de C?:?(V), on voit que la proposition 6 est un cas
particulier du résultat suivant :

Lemme 2. Soit u une application linéaire continue d’un espace de
Fréchet L dans un espace de Fréchet M. Sy u(L) est un sous-espace de co-
dimension finte de M , Uapplication w est un homomorphisme.

Démonstration?) : Soit P un supplémentaire algébrique de u (L) dans
M, et soit v 'application de L X P dans M définie par:

v(z,y) =u(x) +y si xzeL, yeP .

L’application v est une application linéaire continue de L X P sur
M ; or P est un espace séparé de dimension finie, donc L X P est un
espace de Fréchet. Le théoreme de Banach ([1], p. 34) montre alors que v
est un homomorphisme, d’ott il résulte immédiatement que u est un
homomorphisme.

12. Application aux variétés de Stein.

Théoréme 3. Soit X une variété de Stein, de dimension complexe n, et
soit 'V un espace fibré analytique a fibre vectorielle, de base X. On a
H{(X,Q*(V))=0 pour q#mn, et Hi(X,Q°(V)) est isomorphe au
dual topologique de H° (X, Q"7 (V*)).

(Lorsque V est I'espace fibré trivial X x C, on retrouve le théoreme 4
de [10]).

En effet, d’aprés le théoréme B des variétés de Stein (cf. [3], [4]), on a
H»(X,Q"?(V*))=0 pour g #n, ce qui montre (proposition 6)
que d” est toujours un homomorphisme. En appliquant le théoréme 2,

7) Cette démonstration est due & L. Schwartz.
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avec V¥ et m — p a la place de V et de p respectivement, on obtient le
résultat énoncé.

On notera que la topologie de H®(X, Q~—7(V*)) est celle de la conwver-
gence compuacte.

Corollaire. Sotent K une partie compacte de X et s une section holo-
morphe de V au-dessus de X — K. St n = 2, il existe une section holo-
morphe de V au-dessus de X tout entier qui coincide avec s en dehors d’un
compact K'D K.

La démonstration est identique & celle donnée dans [10], n® 13, dans
le cas ou V est trivial.

13. Application aux variétés compaectes. Lorsque X est une variété
analytique complexe compacte, on sait (cf. [6]) que la dimension de
HY(X, F) est finie quel que soit le faisceau analytique cohérent F. On
peut donc appliquer le critére de la proposition 6,et 'on obtient ainsi
(compte tenu de ce que HI(X, F)= HY(X,F) puisque X est com-
pacte) :

Théoréme 4. Sort X wune variété analytique complexe compacte, de
dimension complexe n, et soit V un espace fibré analytique a fibre vecto-
rielle, de base X . Alors les espaces vectoriels

H'(X, Q*(V)) et H™ (X, Q=2 (V*))
sont en dualité ; en particulier, ces espaces ont méme dimension.
Pour p =0:
Corollaire. H(X,S(V)) et H"*(X,S(V)) ont méme dimension.

14. Un exemple ot d” n’est pas un homomorphisme. Soit Y =C?2, et
soit F' un sous-ensemble fermé, connexe, et non compact de Y. Posons
X =Y — F. En appliquant la suite exacte de cohomologie (cf. [2],
XVII—4), on obtient la suite exacte :

H}(F, O) —a-H;lk(X, O) - H,(Y,0) .
D’aprés le théoréme 4 de [10] (ou le théoréme 3 ci-dessus),
HL(Y,0) =0,

et d’aprés Phypothése faite sur ', H)(F, O) = 0. Donc H, (X, 0) = 0.
Choisissons F' de telle sorte que X ne soit pas un domaine d’holomorphie
(il suffit de prendre pour F une droite réelle, par exemple). D’aprés un
résultat de H. Cartan (cf. [10], p. 65, note 7), on a H(X,0) # 0, et
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d’autre part H(X, Q%) = H, (X, O) = 0, nous venons de le voir. Le
théoréme 2 montre alors que d” n’est pas un homomorphisme.

Le comportement de 'opérateur d” est donc assez différent de celui
de d, puisque d est toujours un homomorphisme (en effet, le sous-espace
des cobords est caractérisé par I'annulation des périodes, donc fermé).

15. Interprétation de la dualité entre H* (X, 2%(V)) et H} (X, Q2"*(V*)).
Nous allons donner une interprétation purement cohomologique de la
forme bilinéaire définie par le produit scalaire <(w, 7> sur

He(X, Q)< H4(X, Qv (V%)).

La dualité entre V et V* définit (cf. n®9) un homomorphisme O-li-
néaire : S(V)®, S(V*) - O; d’autre part, 'opération de produit exté-
rieur définit un homomorphisme O-linéaire: Q7 R, Q"7 — Q" ;
par passage au produit tensoriel, on obtient ainsi un homomorphisme
O-linéaire : Q7(V)®, 2" ?(V*) - Q" , d’ou un homomorphisme
O-linéaire : Q?(V)®, 2" ?(V*) - 2" , Z" désignant le faisceau des
germes de formes différentielles fermées de degré =.

Or un tel homomorphisme donne naissance & un cup-produit (cf. [2],
XVII—9) qui est ici une application bilinéaire de

He(X, Q(V))xH"(X, Q-»(V*)) dans H™(X,Z") .

Comme H}(X,Z") = H*(X.C) (cf. la démonstration du théoréme de
de Rham donnée dans [10]), qui est lui-méme isomorphe & C si X est
connexe (ce que I'on peut supposer), on a bien ainsi obtenu une forme
bilinéaire & valeurs complexes sur H?(X, Q?(V))x H, (X, ~*(V*)),
et il n’est pas difficile de montrer qu’elle coincide avec celle définie plus
haut.

§ 4. Application aux diviseurs

16. Espace fibré associé a un diviseur. Soit D un diviseur de la
variété X. En un point z ¢ X, D est égal au diviseur d’une fonction g,
méromorphe en x, non identiquement nulle, et définie & la multiplication
prés par un élément inversible de O,. Soit L (D), I’ensemble des fonc-
tions f, méromorphes au voisinage de z, et telles que ¢g,.f soit holo-
morphe en z. La réunion des L (D), forme un sous-faisceau L (D) du
faisceau des germes de fonctions méromorphes sur X. Ce faisceau est
localement isomorphe a O, donc est isomorphe & S(V,), ol V, est un
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espace fibré analytique a fibre vectorielle de dimension 1, de base X. On
vérifie tout de suite que, si D et D’ sont linéairement équivalents (c’est-
a-dire si D — D' est égal au diviseur (f) d’une fonction f méromorphe
sur X tout entier), alors L(D) et L(D') sont isomorphes, donc aussi V,,
et Vp,; réciproquement, si V, et V. sont isomorphes, D et D’ sont
linéairement équivalents. Enfin V_,, est isomorphe & V7, et Vp,, p, est
isomorphe & V,® V. 8).

Soit de méme Q7?(D), l’ensemble des formes différentielles w, de
degré p, méromorphes au voisinage de x, et telles que ¢,. w soit holo-
morphe en x. La réunion des 07 (D), forme un sous-faisceau du faisceau
des germes de formes différentielles méromorphes de degré p sur X. On a
QD) = L(D)®, 272 = S(V)) R, £2° = 2?(V,). D’ol, en appliquant
le théoréme 4 & l’espace fibré V, :

Théoréme 5. Soit X une variété analytique complexe compacte, de di-
menston complexe n, et sott D un diviseur de X . Alors les espaces vectoriels
HY(X,Q"(D)) e¢ H (X, Q"*(— D)) sont en dualité.

Pour p = 0, il y a donc dualité entre

HY(X,L(D)) et H"*(X,Q"(—D)).

En particulier, H" (X, L(D)) estisomorphe audualde H°(X, Q"(— D)),
espace des formes différentielles méromorphes de degré n dont le diviseur
est > D.

S’il existe des formes différentielles méromorphes w de degré n non
identiquement nulles (ce qui est toujours le cas si X est algébrique, par
exemple), leyrs diviseurs (w) sont linéairement équivalents et leur classe
K est appelée la classe canonique de X. On a alors L(K) = 0", d’ou
L(K — D) = Q"(— D) (ce qui peut aussi s’écrire V~'D = Vg_p), et I'on
obtient ainsi :

Corollaire. St la classe canonique K est définie, les espaces vectoriels
HY(X,L(D)) e¢ H*(X,L(K — D)) sont en dualité.

17. Application: théoréme de Riemann-Roch sur une courbe. Soit X
une variété analytique complexe compacte, connexe, de dimension 1.

Soit D = X np-P un diviseur de X, les np étant des entiers nuls sauf
PeX
un nombre fini d’entre eux. Nous poserons :

ho(D)=dim H*(X, L (D)), k(D)=dim H'(X,L(D)), deg (D)= Zn,.
PeX

8) Cette correspondance entre espaces fibrés et diviseurs est due & A. Weil; cf. [11], par
exemple.

24



Lemme 3. L’entier h°(D) — h'(D) — deg (D) ne dépend pas de D.
Il suffit de montrer que cet entier ne change pas lorsqu’on remplace D
par D + P, ou P est un point quelconque de X. Or L(D) est un sous-
faisceau de L(D + P); soit Q le faisceau quotient L (D + P)/L(D).
Ona Q,=05si  # P, et Q,=Csi = P, comme on le voit tout
de suite. Donc H°(X,Q) =C, et HY(X,Q) = 0 pour ¢> 0. La suite
exacte de faisceaux: 0 —L(D) —-L(D + P) —>Q — 0 donne nais-
sance a la suite exacte de cohomologie :

0 - H*(X,L(D)) - H*(X,L(D + P)) > C - H'(X, L(D))
—~ H'(X,L(D + P)) - 0.

D’ou, en formant la somme alternée des dimensions :
(D) — k(D + P) + 1 — kYD) + (D + P) =0,
ce qui entraine évidemment :
h*(D) — h*(D) — deg(D) = h°(D + P) — h*(D + P) — deg (D + P),

c. q. f. d.

Pour D=0, L(D)= 0, d’ou h°(D) =1, puisque X est connexe.
Nous poserons hl(0) = g, c’est le genre de X. Le lemme 3 peut donc
s’écrire sous la forme équivalente :

Lemme 4. A2°(D) — A*(D) =deg (D) +1 — g.

Or H°(X,L(D)) est I'espace vectoriel des fonctions méromorphes f
telles que (f) > — D; donc A°(D) coincide avec I’entier noté d’ordi-
naire [ (D). (

D’autre part, le théoréme 5 montre que h!'(D) est égal a la dimension
+(D) de H°(X, Q'(—D)), espace des formes différentielles méromorphes
w telles que (w) > D.

En portant ces expressions dans le lemme 4, on obtient :

Théoréme de Riemann-Roch. [(D) —¢(D) =deg (D) +1 —g.

Remarques. 1) 11 résulte, comme on sait, du théoreme de Riemann-
Roch que X posseéde ,,assez” de fonctions et de formes méromorphes ;
en particulier, la classe canonique K de X est définie, et I'on a
(D) = I(K — D), d’ou la formule usuelle :

I(D)—I(K—D)=deg(D)+1—g .

2) Le genre g a été défini comme A!(0) = ¢(0), c’est-a-dire comme
dimension de l’espace vectoriel des formes différentielles holomorphes.
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11 n’est pas difficile de montrer qu’il est égal & la moitié du premier
nombre de Betti de X : cela résulte, soit de la théorie des formes har-
moniques, soit, plus simplement, de la suite exacte de cohomologie définie

d
par la suite exacte de faisceaux 0 -C — Q2°— 01 — 0 (on fait une
somme alternée de dimensions, et 'on trouve que 2 — 2g est égal & la
caractéristique d’Euler-Poincaré de X, d’ou le résultat cherché).
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