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Kosmologische Losungen
eines homogenen Wirkungsprinzips

von WALTER NOHL

§1. Einleitung

Im Anschluf} an eine Untersuchung von Herrn Prof. Dr. W. Scherrer,
in der Wirkungsfunktionen mit gewissen Homogenitédtseigenschaften
eingefithrt und die statisch-zentralsymmetrischen Losungen der zuge-
horigen Feldgleichungen ermittelt wurden [1], schien es interessant, auch
nach eventuellen kosmologischen Losungen der genannten Feldgleichun-
gen zu suchen. In der vorliegenden Arbeit, zu der ich von Herrn Prof. Dr.
W. Scherrer angeregt wurde, soll gezeigt werden, daB3 sich das kosmologi-
sche Problem explizite vollstindig losen 148t.

Das in Frage stehende Variationsprinzip hat die folgende Form :

S[[RD* 4 2£R), D @+ + 29 D)\®+ D, &

+ 2L(DD)? + eF) FrNV — Gdz =0 . (1.1)
Dabei bedeutet
_ary, ary,

RA}L ax# - o, +Fﬁpﬁw-rfpprw
den verjiingten Riemannschen Kriimmungstensor, R = G R), den
Riemannschen Kriimmungsskalar, F,, = D ®, — D,®, den elektro-
magnetischen Feldtensor. D) stellt das Symbol fiir kovariante Differen-
tiation dar. Ferner wurde @,®* = @2 und D,®* = DD gesetzt.

Die im Wirkungsprinzip (1.1) auftretenden Invarianten sind alle ra-
tional und homogen von der Dimension 0 in bezug auf die Komponenten
@), des metrischen Tensors und ganz rational und homogen von der
Dimension 2 in bezug auf die Potentiale @*. Die GroBen &, 7, ¢, ¢ sind
dimensionslose universelle Konstanten. In einer zweiten Arbeit von
Herrn Prof. Dr. W. Scherrer wird gezeigt, dafl infolge einer linearen Ab-
héngigkeit zwischen den zu verschiedenen Invarianten von (1.1) ge-
horenden Variationen ohne Einschrinkung der Allgemeinheit eine der
Konstanten &, 7, ¢ gleich null gesetzt werden darf. Wir setzen # = 0.
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Im Rahmen der durch (1.1) charakterisierten vollstindigen Feld-
theorie ist der Vektor @* der Reprisentant der materiellen Eigenschaften
der Welt. Die physikalischen Vorginge werden beschrieben durch die
Differentialgleichungen, die aus dem Wirkungsprinzip (1.1) bei Varia-
tion der Funktionen &), bzw. der Funktionen @ flieBen.

Beim kosmologischen Problem werden die Funktionen @), so speziali-
siert, daBl der durch =x, == konstant definierte Unterraum die Metrik
einer dreidimensionalen Hypersphire aufweist. Das Linienelement hat
die Form

ds? = dad — L?(xy)do?; do? = dad + sin? x,dal + sin? x, sin? x,dal. (1.2)

Diese Annahme bedeutet, da3 alle Punkte und alle Richtungen im Raum
vollsténdig gleichwertig sind. Entsprechend der vollkommenen Symme-
trie dieses R, wird der Vektor ®* spezialisiert auf @° = @ (x,);
@ = @2 = @3 = 0. Wenn man eine solche Losung als Modell der Welt
auffassen will, mufl man offenbar alle lokalen Inhomogenitéiten — Sterne,
Atome, Elementarteilchen — vernachlissigen.

Zum Methodischen sei das Folgende angemerkt. Im Prinzip handelt es
sich darum, Losungen desjenigen Systems von Differentialgleichungen
zu ermitteln, welches sich aus dem Variationsprinzip (1.1) ergibt. Dabei
werden an die gesuchten Funktionen die oben angegebenen zusétzlichen
Forderungen gestellt. Die Differentialgleichungen erfahren dadurch eine
starke Vereinfachung. Bei Aufgaben dieser Art ist es oft zweckmaifig,
die Spezialisierung schon in der Wirkungsfunktion des Variationsprin-
zips vorzunehmen. Man erhilt dann sofort vereinfachte Feldgleichungen,
wobei allerdings noch abzukldren bleibt, ob deren Losungen auch die
allgemeinen Differentialgleichungen erfiillen. In unserem Fall erweist
sich jedoch dieser Weg als ungeeignet. Es zeigt sich, dafl Spezialisierung
nach Ausfilhrung der Variation drei verschiedene Gleichungen ergibt,
wiahrenddem man bei Ausfiihrung der Variation nach der Spezialisierung
der Wirkungsfunktion naturgemif nur zwei Beziehungen erhalten kann,
die aus den eben genannten drei Gleichungen folgen. Die groBere Zahl
von Gleichungen ermoglicht Eliminationsprozesse, welche die Auflosung
des Systems sehr erleichtern.

In dieser Arbeit wird die geometrische Entwicklung der Welt im
Rahmen der vorliegenden Theorie untersucht, das heilt es werden die in
Frage kommenden Funktionen L = L(x,) ermittelt. Je nach Wahl von
& und ¢ treten verschiedenartige Losungstypen auf. Dagegen hangen die
kosmologischen Losungen nicht vom Wert der Konstanten ¢ ab. Es er-
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geben sich Modelle, bei denen der Weltradius L(z,) von null auf einen
endlichen Wert ansteigt und nach endlicher Zeit wieder auf null zuriick-
fallt. Andere Losungen ergeben eine Kontraktion von L =oo auf einen
minimalen endlichen Wert und nachfolgend Expansion nach L =oo.
Diese Entwicklung kann in einem endlichen Zeitintervall erfolgen oder
unendlich lange dauern. Weiter treten Losungen auf, bei denen monotone
Expansion von L = 0 nach L =oo stattfindet, ebenso ist eine ent-
sprechende Kontraktion moglich. Diese Vorgénge konnen wieder inner-
halb einer endlichen Epoche ablaufen oder unendlich viel Zeit in An-
spruch nehmen. Von einigem Interesse kénnten die zwei folgenden
Losungstypen sein : Wenn eine bestimmte lineare Relation zwischen den
universellen Konstanten erfiillt ist, ergeben sich Modelle, bei denen der
Weltradius von einem endlichen Anfangswert auf einen endlichen End-
wert steigt oder fallt. Diese Entwicklungen sind also frei von Singulari-
titen. Sie dauern unendlich lange. Bei allen bisher genannten Losungen

ist L variabel. Es treten aber auch Losungen auf, bei denen L konstant
bleibt, die also eine lineare Expansion oder Kontraktion der Welt be-
schreiben. Ein Teil dieser Losungen hat allerdings singuldren Charakter,
indem in jedem Punkt eine nichtlineare Losung in deren Wendepunkt,
also in zweiter Ordnung, beriihrt wird. Die Steigung der iibrigen linearen

Losungen stimmt mit dem L-Wert tiberein, den nichtlineare Losungen
am Anfang oder am Ende ihrer Entwicklung annehmen oder asymptotisch
anstreben.

§ 2. Die Feldgleichungen
Man kann die Invarianten in (1.1) auffassen als Funktionen der

GroBen V — @ @2 und @¢. Alle Variationen sind dann auszudriicken
durch 6(V— G G¢) und éP¢. Es ist zu verlangen, daB die durch par-

tielle Integration auftretenden Randglieder verschwinden. Zur Umrech-
nung der Variationen gelten die folgenden Formeln :
8V —G=134G,,8(V— GG
1

oG =

S(V=G aM) — ;T/—l-:_a-awawa(v:‘@ Ges)

6G/\p = (% G)\p.GQU G/\QG;LO) 6(‘/:—@ Ge) .

V
Nun sollen zuniichst die Variationen der einzelnen Summanden in
(1.1) bestimmt werden.
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Variation von [ R®*V— Qdx

Setzt man
R =V—_GR
Pr=V— GGV, — G D)
Q =V-—- GGW(F;,FM I’A wdy)
so gilt
_ o
R =g+ 0
SPA = T2, 8(V — GGM) — L I'?, GGy, 6(V — GGe)
8 [Go, 8(V—=G Q)]  a[6(V—GaWw)]
+ 1 G/\“ go "l" )
% ax” axﬂ
A (A (eo v — QO
o0 — a[reaé(;/ G G)] _a[rlv 6(‘/ G Q)] _Jr_RQoa(]/—:a—qu).
213,\ axu
Nun ist

8f ROV —GQda=[[8(R) D+ RO PG, + 2RG,, P 6D+ da
mj[_??iaspwrgbz 0Q + RP\Dr G, + 2RE, @Aaczw]d

Nach kurzer Rechnung ergibt sich :
5[ RO*V—GQdr = [ A,,6(V — GG)dx + [ a, V— Gédedzx
mit
Ayy = — R®,P, + R,,P*
+ 3(DeDy + Dy Do) P* + $(RP* + O PG,
a, =2R®, .

Variation von | Ry, P ®rV — Gdw
Es gilt :
8 Ry, @ OnV — Gdz = [8(R),) DD+ V — Gdx + | R), P drsV — Gdw

+ 2 Ry, PV —Godrdx .
Mit
aaGw).

200G
O8Iy = 8(*) [y, pu + 37— =

030G
R i el L =

p, w
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folgt hieraus nach einiger Rechnung :
6§ Ry, PO+ V — Gda = | By, 6(V— GG)dx + [ b,V — G 6®edx ,

wobei
By, = } [D)\Do(P*D,) + D)\D, (P D,) — 1 (P, D,)]
+ } [R) P P+ + {00 9%G,, ,

by = 2 Ry P .

Variation von | (D®)? V—Gda

Aus

6 [ (DP2V —Gdr=2[éV—GD®)Dbdx — | (DD)?6V — G dx
erhiélt man unter Verwendung der Gleichung

@V Q)
ax,\

(V=G é0e)
0%,

8(V— G DY) = +

8 [ (DDRYV —Qdx = [ C,6(V—QGe)dx + [ ¢, V— G édeda

wobel

Coo = — [P'D\D® + } (DD)Y4,, ,
Co= —2D,DD .

Variation von | Fy,FrAV — @ dx
Die Rechnung ergibt hier
0 j'FMFM V—G@dx = [D,,0(V —GG®)dzx + [d, V — G éDedx
mit
an = 2(F9AF¢); - ¢QD/\F§ - QGD)\FQ)
-+ 2(¢”D)\FA“ - i’F/\pF”I\)Geo s

Als Feldgleichungen der Gravitation und der Materie erhilt man jetzt :

Aoe + 28B,, + 20Cy, + €Dy, = 0, (2.1)
ao + 28by + 2fce +ed, =0. (2.2)
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§ 3. Das kosmologische Problem
Kosmologische Koordinaten

Es sind jetzt diejenigen Losungen der allgemeinen Feldgleichungen zu
ermitteln, bei denen das Linienelement die spezielle Gestalt (1.2) auf-
weist. Fiir die Dreiindizessymbole gilt die folgende Tafel :

. L
Fgo:O sz:O (I::l:LLgkl: _ka”
i i L i i i
I'iy=0 Fol:faz I'yi = Y -

Hierbei durchlaufen die Indizes 2, k£, [ die Werte 1, 2, 3. Der Index 0
gehort der zeitlichen Koordinate an. Die g,, stellen die Komponenten
des metrischen Tensors im Unterraum R, dar, die y%, sind die zugehérigen
Dreiindizessymbole.

Fiir den verjiingten Riemannschen Kriimmungstensor erhilt man

i
R00:3—L—, ‘ROTC:O’

. : . . G,
By = — (LL + 2L* + 2) g, = (LL + 212 + 2)7:5’“,

Der Riemannsche Kriimmungsskalar hat den Wert

_ gL+ L2+

R 73

Spezialisierung der Feldgleichungen auf kosmologische Koordinaten

Fiir die Tensoren 4,,, B,,, C,,, D, erhilt man die folgenden speziali-
sierten Ausdriicke, in denen r, s die Werte 1, 2, 3 annehmen :

T
n (L0 L L Sl o,
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_[(d®\ ded® L do* |, 2LL 4+ L* .
2Crs = [( d:vo) dxy °T dry 3 L3 ¢ ]G"
.Dw == O ; Drs - O .
Fiir die Vektoren a,, b,, ¢,, d, ergibt sich :
. s
d2 & L do LL — L2
200=*—4%}2’—‘—-12T-{—1§;——12——L—;——-¢ d0=0

Alle nicht angegebenen Komponenten verschwinden.
Nach (2.1) und (2.2) erhalten die Feldgleichungen nunmehr die fol-
gende Gestalt :

Glerchungen der Gravitation :

C(d@ 2+3+3§-—2¢ d2d? 34+ 9f —12¢ L dor
dz, 2 d + 2 L dzx, (3.1a)
+ 3(5 - 2C)LL “‘L::(l + C) L* —3 P2 — 0 .
Cdrpz 1+4+&—2¢ d*d* b5+ 76— 12¢ L do?
dxo) T 2 a T ) im0
+(4+55_6C)LL+L(3+4§-3C)L2+5¢2=O-
GQleichung der Materie
d*d L dd 3(1+&—¢)LL+3(1+8)L*+3 .
575:%_+ 3C_L_ az, — 73 d=0. (3.2)

Multipliziert man (3.2) mit @ und addiert man das Resultat zu den
Gleichungen (3.1a) und (3.1b), so ergeben sich nach linearen Kombina-
tionen die Beziehungen

d2 @2 L do*  (1+&—¢)(LL+2L%+2 .,
= —3(2+2<,=—3/:)--L-dw0 —6 = D=0, (3.3a)
d2d* Ldor _(2+&(LL+2LY)+4 ,
1+§)3§?_(1“5)T755"2 i P2=0. (3.3b)
2h2

Aus (3.3a) und (3.3b) liBt sich eliminieren. Setzt man

A=3+4 38— 2¢, so folgt -

y(r—3¢— 4&2)(1';‘;?: L + 2L ¢2)+3L§-<p2 —0, (3.4

dx?
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somit

\ . N
o — —M@’—- 64 — P2, (3.5)
di, LL (A2 — 3¢ — 42 LL

Dabei ist A2 — 30 — 4{% ## 0 vorausgesetzt.

Eine zweite Relation zwischen %— und @2 erhilt man durch Elimi-
2 0

D
Frri (3.2) und (3.3a):

2
0

nation von

it _, A—DLVr—sr—alitsc o,

T F T (3.6)

Hier wird vorausgesetzt, dall { = 0 ist.
Aus (3.5) und (3.6) folgt die separierte Differentialgleichung fiir L
allein, die die geometrische Entwicklung der Welt beschreibt :

LL—= — Vol + BL —y(x L2+ B) . (3.7)
Dabei wurde zur Abkiirzung gesetzt :

a(e—3r—4ry . 12 At
« = iz D b= Y smE sy

(3.8)

Im Ausnahmefall A2 — 37 — 4{%2= 0 gibt es keine nichttriviale
Losung (@ £ 0) der kosmologischen Gleichungen. Aus (3.4) folgt ndm-
lich zunichst A = 0, somit entweder { = 0 oder { = — 2. Die erste
Moéglichkeit wird durch (3.3a), die zweite durch (3.6) ausgeschlossen.

Liegt der Ausnahmefall { = 0 vor, so reduziert sich die Gleichung
(3.2) zu . .

OLL = L2 4+ 1 . (3.9)
Dabei wurde gesetzt :

0=-(1+£)=—-—§-. (3.10)

Die Gleichung (3.5) vereinfacht sich mit (3.9) und (3.10) zu

Lﬁd¢2= —(1+4+29) L2+ 1
dx, )

@ (3.11)

Zusammenfassend gelten nach (3.5), (3.7), (3.9), (3.11) die folgenden
Gleichungssysteme :
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£#0 =20

a) LL=—)alt+pL—ylt+p)|b) OLL =Li2+1 (3.12)
d* i do*_ —(1+20)i2+1
) LT..[]/O‘L2+5+2_C_ ]q;a d) Ldeo p

Im folgenden Abschnitt sollen die Losungen der Gleichungen (3.12a)
und (3.12b) angegeben und diskutiert werden.

§4. Losung der kosmologischen Gleichungen

Aus den Gleichungen (3.12) ersieht man unmittelbar, dafl mit ZL(x,)
stets auch — L(z,) eine Losung darstellt. Da beide Funktionen dieselbe
Entwicklung der Welt beschreiben, ist es keine Einschrdnkung der All-
gemeinheit, anzunehmen, L (z,) sei positiv. AuBlerdem existiert zu jeder
Losung die zeitlich umgekehrt verlaufende. Wir kénnen uns daher bei
monotonen Ldsungen zum vornherein auf monoton steigende Funktionen
beschrianken.

Die Gleichungen (3.8) und (3.10) geben an, welche Werte der Kon-
stanten «, £, y, & in Frage kommen. Der Charakter der auftretenden
Losungen hdngt wesentlich vom Vorzeichen dieser Konstanten ab. Wir
unterscheiden die Hauptfille

I. x>0, f>0; II. x>0, f<0; III. <0, B>0,

in denen ¢ nicht verschwindet und die Gleichungen (3.12a), (3.12c¢)
gelten, sowie den Sonderfall ¢ = 0, fiir den die Gleichungen (3.12b),
(3.12d) gelten.

Zur Auflésung der Gleichung (3.12a) kann man L= p als Losungs-
dp
dL
Differentialgleichung, die sich in der Form

parameter einfithren. Mit L= p erhilt man eine sofort separierbare

dL pdp

L Vap+Bp+ y(ap*+ B

schreiben 148t. Es liegt nahe, hier hyperbolische bzw. trigonometrische
Funktionen einzufiihren. Setzt man in den Féllen
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I. p= —— sinh 2 Vap? + B = VB cosh 2
|Vl
vr,é RN —
II. p= v cosh z Vap® + =V — Bsinhz (4.1)
ol

III. p = sin 2 Vap? + p = | VBI COS 2

l/____

sowie zur Abkiirzung

2 __
w=3C+ 4%, also “:,‘ﬂf‘?.f‘l,
so erhélt man in den drei Hauptfillen
I ﬂ____l_ ¢ sinh 2 dz
"L 2 | V32— ulsinhz + Acoshz
I g]_;_:_i __icoshzdz ’ 4.2)
L 2 |V — ulcoshz + Asinhz
m, 1 c sin 2 dz .
L 2 |V—24pulsinz — Acosz

Bei der weiteren Auflésung sind die Vorzeichen von A und u zu be-
riicksichtigen. Es ergeben sich die folgenden Unterfille :

IL.La) A>0, u>0 I.b) A<0, u>0

II.a) A>0, u>0({<—%) IL.b) A<0, u>0 (t<—%)
II.e) u=20 (t=—% II.d) u<oO (— $<i<0)
III. u>0

Setzt man in

I a) IV_}?———//! :~—|V;,]sinhz0 , A= |V/;|coshz0 ,
I.b) |V22—u| = |Vu|sinhz, , A= —|Vu|coshz,
M.a) |VA*—pu| = |Vul|sinhz, , A= |Vu|coshz
II.b) |Vi2—pu| = —|Vu|sinhz, , A= —|Vu|coshz |,
I.d) |[VA2—pu| = |V—pulcoshz,, A= |V —p|sinhz ,
II. |V—2+pu|l= |Vu|cosz, , A= |Vu|singz ,
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so vereinfachen sich die Gleichungen (4.2) weiter zu

dL ¢ sinh z dz
I.a) —= —
L 2| Vul cosh (z — z)
1. b) aL 4 sinh z dz
L 2|V,;¢| cosh (z — z)
II. a) _d_L_: . C_ cosh z dz
L 2] Vul sinh (z2 — z)
II. b) i_l:’____ C_ .coshzdz (4.3)
L 2| Vu| sinh (z — 2)
1I. ¢) _d_LL__ _ 83a Gos};zz dz
II. d) aL {  coshzdz
L 2| V—ul cosh (z — z)
I1I. aL & . sin z dz
L 2|Vﬁl Sln(z——zo)

Unter Anwendung der Additionstheoreme der hyperbolischen und
trigonometrischen Funktionen lassen sich die Gleichungen (4.3) sofort
explizite integrieren. Man erhélt :

¢t
I.a) L = A[cosh(z — z,)®0% . ee—z0)sinhze] 3|}
g

I.b) L = A[cosh(z — z)™h? . g—2)sinh 2012} |
¢

2|V

3

®I

II.a) L = A[|sinh(z—z,) | % . gz—%)sinh zo]“

11. b) L=A4 [l sinh (z__zo) Icosh 20 , g(z2—20) sinh zo] 2| Vp |
3,3 -2z
II.c) L=A4.e¥* 322
£
I1.d) L = A[cosh(z — z,)¥ith % . gz—%a) cosh 2o 2 | }/p

I
. -5
III. L = A[|sin(z —z) 2% « & — 2 @5 2] 2)—4]|

Dabei bedeutet A eine positive Konstante. )
Aus den Gleichungen (4.3) und (4.1) mit p = L 14Bt sich dL elimi-
nieren. Man erhdlt damit die Parameterdarstellung fiir ;.
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I a) 11/¢ . L(z)
I. b) } ) /;Slnh z"f cosh (z — z,) d
II. a) 11/ ¢ L(z)
I1. b) } %= ?1 o -—-smh z“f sinh (z — z,) A
1II. ¢) Xy ==
1I. d) xoz—-—I/———coshzofcosh(z_zo dz
et

2 3

€08 z" sin (z — 2,)
Im Sonderfall { = 0 ergibt sich mit L = sinh z, also

TI1. 2,

I

. dz
L = sinh z coshz —— a7

als Losung :
L = A(coshz)® , z,=19

cosh z

Die Losungsfunktionen zeigen in den verschiedenen Féllen das folgende
qualitative Verhalten :

I. a) L steigt von null auf ein Maximum und fillt wieder auf null im
Verlauf einer endlichen Zeit. L fillt dabei von 4 co auf — oo

1. b) L fillt von oo auf ein noch positives Minimum und steigt wieder
nach oo. Das Zeitintegral konvergiert auf der einen Halbachse von z
sicher, auf der anderen ist je nach dem Wert der universellen Konstanten
Konvergenz oder Divergenz moglich.

II. a) Die z-Achse ist an der Stelle z, zu unterteilen. Fiir z > 2, erhilt

man eine monotone Expansion von L = 0 nach L =oo, bei der L
einen positiven Anfangswert aufweist, auf ein positives Minimum féllt
und nachher gegen oo ansteigt. Fiir z < 2z, ergibt sich eine Expansion

ohne Wendepunkt von L = 0 nach L =oo. L steigt monoton von

einem positiven Anfangswert nach L =oco. Diese Entwicklungen kénnen
in endlicher Zeit ablaufen oder unendlich lange dauern.
Am Anfang und im Wendepunkt dieser Losungen verschwindet in

(3.12a) das Produkt LL. Infolgedessen miissen Geraden, die den zuge-

horigen L-Wert als Steigungsmaf$ besitzen, ebenfalls Losungen dar-
stellen. Die linearen Losungen mit der Steigung der Wendetangente sind
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singuldr, sie beriihren in jedem ihrer Punkte eine regulidre Losung in
deren Wendepunkt, also in zweiter Ordnung.

I1. b) Wieder ist die z-Achse zu unterteilen. Fir z > z, erhilt man

eine monotone Expansion von L = 0 nach L =oo, bei der L monoton
von unendlich nach einem endlichen Endwert fillt. Fir z <z, ergibt
sich eine analoge Expansion, die aber einen Wendepunkt enthilt. Uber
lineare Losungen gilt Ahnliches wie im Falle I1a.

I1. c) d). Auch hier erhédlt man eine monotone Expansion von L = 0

nach L =oo. L fillt nun von oo auf ein positives Minimum und steigt
wieder nach co. Die Entwicklung kann innerhalb einer endlichen Epoche
ablaufen oder unendlich lange dauern. Es tritt wieder eine singulire
lineare Losung auf.

III. Fir A>0 ergeben sich Losungen, die sich wieder wie in 1. b)
aus einer Kontraktions- und einer Expansionsphase zusammensetzen.

L strebt hier fiir x,—> 4+ oo je einem endlichen Wert zu. Wieder tritt ein
Wendepunkt auf, und es ergeben sich wieder lineare Losungen.

Fiir den speziellen Fall 2 = 0 erhdlt man eine monotone Expansion
von einem endlichen Anfangswert nach einem endlichen Endwert. Die
ganze Entwicklung dauert unendlich lange. Es existiert wieder eine sin-
guldre lineare Losung ; die iibrigen linearen Losungen vereinfachen sich
hier zu L = konstant.

Ist A< 0, so erhilt man eine Expansion von L = 0 nach einem end-

lichen Wert und nachfolgend Kontraktion nach L = 0. L weist einen
endlichen Anfangs- und Endwert auf. Die ganze Entwicklung spielt sich
in einem endlichen Zeitintervall ab. Wiederum existiert ein Wendepunkt,
und es treten wieder lineare Losungen auf.

Im Sonderfall { = 0 ergeben sich symmetrische Losungen. Je nach
dem Vorzeichen von & handelt es sich um monotone Kontraktion von
L =oo nach einem minimalen positiven Wert mit nachfolgender mono-
toner Expansion nach L =oco oder um eine Expansion von L =0
nach einem positiven Maximum mit nachfolgender Kontraktion nach
L=0.
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