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Kosmologisehe Lôsungen
eines homogenen Wirkungsprinzips

von Walter Nohl

§1. Einleitung

Im AnschluB an eine Untersuchung von Herrn Prof. Dr. W. Scherrer,
in der Wirkungsfunktionen mit gewissen Homogenitâtseigenschaften
eingefuhrt und die statisch-zentralsymmetrischen Lôsungen der zuge-
hôrigen Feldgleichungen ermittelt wurden [1], schien es intéressant, auch
nach eventuellen kosmologischen Lôsungen der genannten Feldgleichungen

zu suchen. In der vorliegenden Arbeit, zu der ich von Herrn Prof. Dr.
W. Scherrer angeregt wurde, soll gezeigt werden, daB sich das kosmologisehe

Problem explizite vollstàndig lôsen làBt.
Das in Frage stehende Variationsprinzip hat die folgende Form :

l
0 (1.1)

Dabei bedeutet
r)lTv ?)T1V

XfJL ~ ~fa ^ r l Xv1 pw — 1 Xfi1 vu}

den verjungten Riemannschen Krummungstensor, R G^RXfl den
Riemannschen Krùmmungsskalar, FXfl Dx&p — D^&x àen elektro-
magnetischen Feldtensor. Dx stellt das Symbol fur kovariante Differen-
tiation dar. Ferner wurde 0X0X @2 und Dx&x D0 gesetzt.

Die im Wirkungsprinzip (1.1) auftretenden Invarianten sind aile ra-
tional und homogen von der Dimension 0 in bezug auf die Komponenten
OXfJL des metrischen Tensors und ganz rational und homogen von der
Dimension 2 in bezug auf die Potentiale <Z>\ Die GrôBen f, tj, £, e sind
dimensionslose universelle Konstanten. In einer zweiten Arbeit von
Herrn Prof. Dr. W. Scherrer wird gezeigt, daB infolge einer linearen Ab-
hàngigkeit zwischen den zu verschiedenen Invarianten von (1.1) ge-
hôrenden Variationen ohne Einschrankung der Allgemeinheit eine der
Konstanten f, rj, £ gleich null gesetzt werden darf. Wir setzen r\ 0.
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Im Rahmen der durch (1.1) charakterisierten vollstândigen Feld-
theorie ist der Vektor &* der Repràsentant der materiellen Eigenschaffcen
der Welt. Die physikalischen Vorgânge werden beschrieben durch die

Differentialgleichungen, die aus dem Wirkungsprinzip (1.1) bei Variation

der Funktionen 6?AjLt bzw. der Funktionen <Z>A flieBen.
Beim kosmologischen Problem werden die Funktionen 0^ so speziali-

siert, daB der durch x0 konstant definierte Unterraum die Metrik
einer dreidimensionalen Hypersphâre aufweist. Das Linienelement hat
die Form

ds2 dx\ - L2 (xo)da2 ; do2 dx\ + sin2 xxdx\ + sin2 xx sin2 x%dx\. (1.2)

Dièse Annahme bedeutet, daB aile Punkte und aile Richtungen im Raum
vollstândig gleichwertig sind. Entsprechend der vollkommenen Symme-
trie dièses i?3 wird der Vektor 0^ spezialisiert auf <2>° &(x0) ;

0i 02 __ 03 _ q Wenn man eine solche Lôsung als Modell der Welt
auffassen will, muB man offenbar aile lokalen Inhomogenitàten - Sterne,
Atome, Elementarteilchen - vernachlâssigen.

Zum Methodischen sei das Folgende angemerkt. Im Prinzip handelt es

sich darum, Lôsungen desjenigen Systems von Differentialgleichungen
zu ermitteln, welches sich aus dem Variationsprinzip (1.1) ergibt. Dabei
werden an die gesuchten Funktionen die oben angegebenen zusâtzlichen
Forderungen gestellt. Die Differentialgleichungen erfahren dadurch eine
starke Vereinfachung. Bei Aufgaben dieser Art ist es oft zweckmàBig,
die Spezialisierung schon in der Wirkungsfunktion des Variationsprin-
zips vorzunehmen. Man erhâlt dann sofort vereinfachte Feldgleichungen,
wobei allerdings noch abzuklàren bleibt, ob deren Lôsungen auch die

allgemeinen Differentialgleichungen erfullen. In unserem Fall erweist
sich jedoch dieser Weg als ungeeignet. Es zeigt sich, daB Spezialisierung
nach Ausfïïhrung der Variation drei verschiedene Gleichungen ergibt,
wâhrenddem man bei Ausfûhrung der Variation nach der Spezialisierung
der Wirkungsfunktion naturgemâB nur zwei Beziehungen erhalten kann,
die aus den eben genannten drei Gleichungen folgen. Die grôBere Zahl
von Gleichungen ermôglicht Eliminationsprozesse, welche die Auflôsung
des Systems sehr erleichtern.

In dieser Arbeit wird die geometrische Entwicklung der Welt im
Rahmen der vorliegenden Théorie untersucht, das heiBt es werden die in
Frage kommenden Funktionen L L(x0) ermittelt. Je nach Wahl von

| und f treten verschiedenartige Lôsungstypen auf. Dagegen hangen die

kosmologischen Lôsungen nicht vom Wert der Konstanten s ab. Es er-

339



geben sich Modelle, bei denen der Weltradius L(xQ) von null auf einen
endlichen Wert ansteigt und nach endlicher Zeit wieder auf null zuriick-
fâllt. Andere Lôsungen ergeben eine Kontraktion von L =00 auf einen
minimalen endlichen Wert und nachfolgend Expansion nach L 00.
Dièse Entwicklung kann in einem endlichen Zeitintervall erfolgen oder
unendlich lange dauern. Weiter treten Lôsungen auf, bei denen monotone
Expansion von L 0 nach L =00 stattfîndet, ebenso ist eine ent-
sprechende Kontraktion môglich. Dièse Vorgânge kônnen wieder inner-
halb einer endlichen Epoche ablaufen oder unendlich viel Zeit in An-
spruch nehmen. Von einigem Interesse kônnten die zwei folgenden
Lôsungstypen sein : Wenn eine bestimmte lineare Relation zwischen den
universellen Konstanten erfûllt ist, ergeben sich Modelle, bei denen der
Weltradius von einem endlichen Anfangswert auf einen endlichen End-
wert steigt oder fâllt. Dièse Entwicklungen sind also frei von Singulari-
tàten. Sie dauern unendlich lange. Bei allen bisher genannten Lôsungen
ist L variabel. Es treten aber auch Lôsungen auf, bei denen L konstant
bleibt, die also eine lineare Expansion oder Kontraktion der Welt be-
schreiben. Ein Teil dieser Lôsungen hat allerdings singularen Charakter,
indem in jedem Punkt eine nichtlineare Lôsung in deren Wendepunkt,
also in zweiter Ordnung, beriihrt wird. Die Steigung der ûbrigen linearen

Lôsungen stimmt mit dem Zy-Wert ûberein, den nichtlineare Lôsungen
am Anfang oder am Ende ihrer Entwicklung annehmen oder asymptotisch
anstreben.

§ 2. Die Feldgleichungen

Man kann die Invarianten in (1.1) auffassen als Funktionen der

GrôBen V—GGQa und 0e. Aile Variationen sind dann auszudrucken

durch Ô(V— OOQa) und Ô0Q. Es ist zu verlangen, daB die durch
partielle Intégration auftretenden Randglieder verschwinden. Zur Umrech-

nung der Variationen gelten die folgenden Formeln :

ôV ~- G

Nun sollen zunâchst die Variationen der einzelnen Summanden in
(1.1) bestimmt werden.
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Variation von J" R&2V— Gdx

Setzt man

gilt

<5Q
dx~x Wp + Rea

Nun ist

Nach kurzer Rechnung ergibt sich :

ô J R02 V- Gdx J AQaô(V~ GG*u)dx + J aQ V- Gô0*dx

mit
AQa - iî$8^ + iî,^2

+ ip,2)ff + ^De)^2 + \(R& + D <?2)e?a

aD 2iî^

Variation von J i^$A$^ V

Es gilt :

ô$Rxll<Px<P>1 V- Gdx p(J?Ap)<?A^ V'- Gda; + J Rx^^ôV- Gdx

+ 2 J i?A/iCPA y^
Mit
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folgt hieraus nach einiger Rechnung :

ô J MXfl0x0i* V- Gdx J BQaô{V-GG^)dx + $bQV-G Ô0*dx

wobei
BQa \ [DxDQ(0*0o) + DxDa(0*0Q) - Q (0Q0o)]

Variation von J (D0)2 V— G dx

Aus

à J (D0)2 V~Gdx=2$ Ô(V- G D0)D0dx - J (D0)*ô V- G dx

erhàlt man unter Verwendung der Gleichung

dxx dxQ

ô J (D0)2 V^G dx J C^^17*? G*°)dx + $ cQV

wobei
Cca - [0xDxD0 + \ (B0Y\GQa

co — 21

Variation von J FXfJLF^x V—Gdx

Die Rechnung ergibt hier

¥ V-Gdx | IV^V- flotte + J rfe V^- G

mit
- 0aDxF\

dQ A^
Als Feldgleichungen der Gravitation und der Materie erhâlt man jetzt :

AQa + 2ÇBQa + 2ÇC6a + eDQa 0 (2.1)

aQ + 2ÇbQ +2ÇcQ + edQ =0. (2.2)
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§3. Das kosmologisehe Problem

Kosmologische Koordinaten

Es smd jetzt diejenigen Losungen der allgememen Feld^leichungen zu
ermitteln, bei denen das Limenelement die spezielle Gestalt (1 2) auf-
weist Fur die Dreimdizessymbole gilt die folgende Tafe]

ri o r°ol o rM LL9kl - ±-akl,

oo — u l oi -£ °i l ki^ yki -

Hierbei durchlaufen die Tndizes %, k, l die Werte 1,2,3 Der Index 0

gehort der zeitlichen Koordmate an Die gkl stellen die Komponenten
des metrischen Tensors îm Unterraum R6 dar, die yvkl smd die zugehongen
Dreimdizessymbole

Fur den verjungten Riemannschen Krummungstensor erhalt man

L_

L^00 3-y- ROk 0

Rtk =-(Ll + 2L* + 2) glk (LL + 2L*+2)-£,
Der Riemannsche Krummungsskalar hat den Wert

R=6_
Speziahsierung der Feldgleichungen auf kosmologische Koordinaten

Fur die Tensoren AQO, BQ(J, CQ(J, DQa erhalt man die folgenden speziali-
sierten Ausdrucke, m denen r, s die Werte 1,2,3 annehmen

A - 3 d*02
|

3 l d0 o
00 ~ 2 dl ^~ 2 L d2 dx* 2 L dx0 L2

5 L
rfxi "^ 2 L dx0 ^ L*

T "d^T + Y L dx0+6 L*w

¦<P\Gr.

on _| "" \ ^J!_ r1' d<p2
o 2LL

2Cnn ~ [1^) ~ ~JxT ~ T 1x^ - 6
L
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2Crt L dx0

Fur die Vektoren aQi bQ, cQ, dQ ergibt sich :

&0 j ilu;q

0 ; Dr, 0

L2

L

260 12 -y- 0

O

Aile nicht angegebenen Komponenten verschwinden.
Nach (2.1) und (2.2) erhalten die Feldgleichungen nunmehr die fol-

gende Gestalt :

Oleichungen der Gravitation :

®W 3 + 3^-2Ç 91 -dxJ

-1-

2 dxl

2QLL- 3(1

2

_ 3

_L dx0

_

ri—.\* 6 + 7g—

(o.Ja)

(o • 10)

jr a — U

Gleichung der Materie

d»0 L d0 °- (3-2)

Multipliziert man (3.2) mit 0 und addiert man das Résultat zu den
Gleichungen (3.1a) und (3.1b), so ergeben sich nach linearen Kombina-
tionen die Beziehungen

-'- <»••«

Aus (3.3a) und (3.3b) làfit sich
3 + 3|-2f, sofolgt

2
°

eliminieren. Setzt man

^*- O, ,3.4)
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somit

— ZL 0t _. 02 (3 5J

Dabei ist A2 — 3£ — 4£2 # 0 vorausgesetzt.

Eine zweite Relation zwischen -=— und 02 erhalt man durch Elimi-
dx0d0nation von -7-^- aus (3.2) und (3.3a) :

axQ

dxQ

Hier wird vorausgesetzt, daB C =7^ 0 ist.
Aus (3.5) und (3.6) folgt die separierte Differentialgleichung fur L

allein, die die geometrische Entwicklung der Welt beschreibt :

LL= - ]/<xL2 + fiL-y((xL2 + p) (3.7)

Dabei wurde zur Abkurzung gesetzt :

12. HP~ f J ^-2(A23f4C2)*

Im Ausnahmefall A2 — 3C — 4f2=0 gibt es keine nichttriviale
Lôsung (0 ^à 0) der kosmologischen Gleichungen. Aus (3.4) folgt nâm-
lich zunâchst A 0, somit entweder f 0 oder f — f. Die erste

Môglichkeit wird durch (3.3a), die zweite durch (3.6) ausgeschlossen.

Liegt der Ausnahmefall f 0 vor, so reduziert sich die Gleichung
(3.2) zu

&LL L*+ 1 (3.9)
Dabei wurde gesetzt :

0=_(l + fl=--i. (3.10)

Die Gleichung (3.5) vereinfacht sich mit (3.9) und (3.10) zu

-(i + yHi „. (3.n)

Zusammenfassend gelten nach (3.5), (3.7), (3.9), (3.11) die folgenden
Gleichungssysteme :
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a) b) êLL L*+ 1 (3.12)

dxn

Im folgenden Abschnitt sollen die Lôsungen der Gleichungen (3.12a)
und (3.12b) angegeben und diskutiert werden.

§4. Losung der kosmologischen Gleichungen

Aus den Gleichungen (3.12) ersieht man unmittelbar, daB mit L(x0)
stets auch — L(x0) eine Losung darstellt. Da beide Funktionen dieselbe

Entwicklung der Welt beschreiben, ist es keine Einschrânkung der All-
gemeinheit, anzunehmen, L(x0) sei positiv. AuBerdem existiert zu jeder
Losung die zeitlich umgekehrt verlaufende. Wir kônnen uns daher bei
monotonen Lôsungen zum vornherein auf monoton steigende Funktionen
beschrânken.

Die Gleichungen (3.8) und (3.10) geben an, welche Werte der Kon-
stanten oc, /?, y, â in Frage kommen. Der Charakter der auftretenden
Lôsungen hângt wesentlich vom Vorzeichen dieser Konstanten ab. Wir
unterscheiden die Hauptfâlle

I. oc>0, p>0; IL <%>0, p<0; III. <x<0,

in denen f nicht verschwindet und die Gleichungen (3.12a), (3.12c)
gelten, sowie den Sonderfail Ç 0, fur den die Gleichungen (3.12b).
(3.12d) gelten.

Zur Auflosung der Gleichung (3.12a) kann man L p als Lôsungs-

parameter einfuhren. Mit L -^- p erhâlt man eine sofort separierbare

Differentiâlgleichung, die sich in der Form

dL pdp

schreiben lâBt. Es liegt nahe, hier hyperbolische bzw. trigonometrische
Funktionen einzufuhren. Setzt man in den Fàllen
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I- V

IL £>

-A sinh Vocp2 + p Vp cosh

V — fi sinh z (4.1)

m. sin

sowie zur Abkûrzung

ju 3£ + 4f2 also oc

so erhâlt man in den drei Hauptfàllen

dL 1 C sinh z dz
I.

IL

III.

dL
L

dL

— fj, | sinh z + A cosh

f cosh 2 ^2
1 VI? l | cosh^ +

sin z dz

^— A2 -f- /^ | sin ^ — A cos z

(4.2)

Bei der weiteren Auflôsung sind die Vorzeichen von À und fx zu be-

riicksichtigen. Es ergeben sich die folgenden Unterfâlle :

La)
IL a) A>0,

II.c) ^ 0

III.
(C=-î)

I.b)
ILb) A<0,
IL d)

Setzt man in

La) \VH*^-

i.b) |i^n
IL a)

IL b)

ILd)

III.

—\V

Vl2

X | Vfi | cosh z0

X — | Vfi | cosh z0

A | V[i | cosh z0

X — | Vfj, | cosh z0

| V — fi | cosh z0 X

sinh zQ

\Vju\ sinh z0

-= | ^ | sinh z0

— \V/u\ sinh 20

V- 1^1 cos z0

| r — // | sinh ;

| V/i | sin z0
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so vereinfachen sich die Gleichungen (4.2) weiter zu

La)
dL

II. a)

L

IL c)

III.

2|

2|

2|

2|

3

2|1

f

c

f
^1

cosh

f

sinh

cosh (z

sinh
cosh (z

cosh

sinh (z

cosh

sinh (z

z dz

cosh
| cosh (z

sin z

z dz

zdz

zdz

-*o)

-Zo)

z dz

: dz

2\Vjî\ sin (2 - z0)

(4.3)

Unter Anwendung der Additionstheoreme der hyperbolischen und
trigonometrischen Funktionen lassen sich die Gleichungen (4.3) sofort
explizite integrieren. Man erhalt :

I. a) L A [cosh (z - Zo)c08h *

I. b) L — A [cosh (z — z0)CO8h 2°

IL a)

II. b)

IL c)

Il.d)

III.

^L[| sinh(2-20) |C08h z

A[\sinh(2-20)|cosh
L-

32X

^ [cosh (2 - 20)8mh

-Zq) sinh zo-i

—z0) sinh zo-i 2

—zQ) sinh zot

—z0) sinh zo-i 2 |

-Zq) cosh zon 2 |

2 1 |/ia 1

1 ]/J^ 1

s

«1^1

IK?I

c(z " Zo) cos Zo] » i V—#

Dabei bedeutet A eine positive Konstante.
Aus den Gleichungen (4.3) und (4.1) mit p L lâBt sich dL elimi-

nieren. Man erhàlt damit die Parameterdarstellung fur x0.
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I.
I.

II.
II.

a)
b)}
a) 1

b)

x0

XQ

1

1

/ cosh (z — z0)

| ~ Tsmh 2»j sinh (z - z0)

Il.d) xo -^- /--^-coshz0 / r^ -dz2 [/ 3 J cosh (z — z0)

III. #0 - - sin {z — z0)

Im Sonderfall £ 0 ergibt sich mit L sinh z, also

r • i *-
d>Z

L smh z cosh z —=7=-,

als Lôsung : r T \
L A (cosh z)^ xQ & I —t~- dz

J coshz

Die Lôsungsfunktionen zeigen in den verschiedenen Fâllen das folgende
qualitative Verhalten :

/. a) L steigt von null auf ein Maximum und fâllt wieder auf null im
Verlauf einer endlichen Zeit. L fâllt dabei von +°° auf — oo.

/. b) L fâllt von oo auf ein noch positives Minimum und steigt wieder
nach oo. Das Zeitintegral konvergiert auf der einen Halbachse von z

sicher, auf der anderen ist je nach dem Wert der universellen Konstanten
Konvergenz oder Divergenz môglich.

//. a) Die z-Achse ist an der Stelle z0 zu unterteilen. Fur z ^ zQ erhâlt

man eine monotone Expansion von L 0 nach L =oo, bei der L
einen positiven Anfangswert aufweist, auf ein positives Minimum fâllt
und nachher gegen oo ansteigt. Fur z ^. zQ ergibt sich eine Expansion
ohne Wendepunkt von L 0 nach L oo. L steigt monoton von
einem positiven Anfangswert nach L oo. Dièse Entwicklungen kônnen
in endlicher Zeit ablaufen oder unendlich lange dauern.

Am Anfang und im Wendepunkt dieser Lôsungen verschwindet in

(3.12a) das Produkt LL. Infolgedessen mussen Geraden, die den zuge-

hôrigen Î-Wert als SteigungsmaB besitzen, ebenfalls Lôsungen dar-
stellen. Die linearen Lôsungen mit der Steigung der Wendetangente sind
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singular, sie beruhren in jedem ihrer Punkte eine regulare Losung in
deren Wendepunkt, also m zweiter Ordnung.

//. 6) Wieder ist die z-Aehse zu unterteilen. Pur z > z0 erhalt man
eine monotone Expansion von L — 0 nach L oo, bei der L monoton
von unendlich nach einem endlichen Endwert fallt. Fur z ^ z0 ergibt
sich eine analoge Expansion, die aber einen Wendepunkt enthalt. Ùber
lineare Lo&ungen gilt Àhnliches wie îm Falle Ha.

//. c) d). Auch hier erhalt man eine monotone Expansion von L 0

nach L =oo. L fallt nun von oo auf ein positives Minimum und steigt
wieder nach oo. Die Entwicklung kann innerhalb einer endlichen Epoche
ablaufen oder unendlich lange dauern. Es tritt wieder eine singulare
lineare Losung auf.

///. Fur A>0 ergeben sich Lôsungen, die sich wieder wie m I. b)
aus einer Kontraktions- und einer Expansionsphase zusammensetzen.

L strebt hier fur #0-> ± oo je einem endlichen Wert zu. Wieder tritt ein
Wendepunkt auf, und es ergeben sich wieder lineare Lôsungen

Fur den speziellen Fall A — 0 erhalt man eine monotone Expansion
von einem endlichen Anfangswert nach einem endlichen Endwert. Die

ganze Entwicklung dauert unendlich lange. Es existiert wieder eine
singulare lineare Losung ; die ubrigen linearen Lôsungen vereinfachen sich
hier zu L konstant.

Ist A < 0, so erhalt man eine Expansion von L 0 nach einem
endlichen Wert und nachfolgend Kontraktion nach L 0. L weist einen
endlichen Anfangs- und Endwert auf. Die ganze Entwicklung spielt sich
in einem endlichen Zeitintervall ab. Wiederum existiert ein Wendepunkt,
und es treten wieder lineare Lôsungen auf.

Im Sonderfall £ 0 ergeben sich symmetrische Lôsungen. Je nach
dem Vorzeichen von # handelt es sich um monotone Kontraktion von
L oo nach einem minimalen positiven Wert mit nachfolgender mono-
toner Expansion nach L =oo oder um eine Expansion von L 0

nach einem positiven Maximum mit nachfolgender Kontraktion nach
L 0.
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