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Longueurs extrémales et théorie des fonctions
par Joseph Hersch, Zurich

Introduction

Le but essentiel du présent travail est de mettre en lumière un champ
d'applications de la méthode des longueurs extrémales, due notamment à

Ahlfors et Beurling. Cette méthode est appliquée sous une forme modifiée

présentant certains avantages. La longueur extrémale est un
invariant conforme.

On peut caractériser par des longueurs extrémales les autres invariants
conformes que sont le module d'un quadrilatère ou d'un domaine doublement

connexe (cette propriété est connue), et, pour un domaine de
Jordan, la mesure harmonique d'un arc-frontière en un point et la distance
hyperbolique de deux points.

En même temps que des formules exactes, nos méthodes de variation
fournissent d'utiles évaluations de théorie des fonctions : les unes
précisent, parfois de façon essentielle, des inégalités connues (de Nevanlinna,
Ostrowski, Sario, Strebel) ; les autres concernent des problèmes nouveaux.

Nous dirons toujours ,,courbe fermée" pour courbe de Jordan, ,,arc"
pour arc de Jordan et ,,courbe" pour courbe ou arc de Jordan ; une
,,coupure" d'un domaine sera un arc de Jordan à extrémités sur la frontière.
Tous les domaines considérés seront supposés définis dans le plan
complexe ou sur une surface de Riemann.

Les principaux résultats de ce travail ont été annoncés dans trois
Notes aux Comptes rendus [7], [8], [12]. Une publication ultérieure [10]
donnera des applications des méthodes développées ici aux fonctions
pseudo-analytiques et aux transformations quasi-conformes, ainsi qu'à
une classe plus générale de fonctions ; la plupart de ces résultats ont été
sommairement annoncés dans une autre Note aux Comptes rendus [11].

J'exprime ici ma vive reconnaissance au Prof. A. Pfluger : il m'a fourni
l'essentiel de ma formation en théorie des fonctions, et c'est à lui que je
dois d'avoir étudié la méthode des longueurs extrémales ; je lui sais
particulièrement gré de ses conseils précieux et de sa bienveillance constante.
Je remercie aussi vivement le Prof. B. Eckmann, dont je suis depuis
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longtemps l'assistant et qui m'a toujours encouragé dans mon travail ;

ainsi que le Prof. M. Plancherel, corapporteur de ma thèse, pour toute
l'attention qu'il lui a consacrée. — D'autre part, on verra au Chapitre III
que bien des applications m'ont été suggérées par le livre si riche de
contenu ,,Eindeutige analytische Funktionen" de R. Nevanlinna.
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Chapitre I. La longueur extrémale

§1. Figures et configurations. Quadrilatères et leurs modules

Nous appellerons figure et écrirons GPlP2 (ou simplement (?* lorsqu'il
n'y aura pas d'équivoque possible) l'entité formée par un domaine G et
des points p±, p2,... désignés (dans cet ordre) sur la frontière ou à
l'intérieur de G.

Deux figures GPlP2 et HQl92 seront dites conformément équivalentes

s'il existe une représentation conforme de G sur H appliquant
respectivement px, p%,... sur qx, q2,... Les figures sont ainsi groupées
en classes d'équivalence, que nous appellerons configurations. (Voir aussi
Beurling [2].) En voici deux premiers exemples :

On appelle quadrilatère Q(£V£'V) une figure GPlM*p* obtenue en
désignant quatre points-frontière d'un domaine de Jordan ; ils décomposent

la frontière en 4 arcs j$r, a', /}"', oc" (dans cet ordre). On sait que
chaque configuration de quadrilatères contient des rectangles, tous
semblables entre eux ; prenons donc un de ces rectangles comme représentant
de la configuration ; soient a la longueur de ses côtés oc' et a", b celle de
/?' et f}" ; on appelle a/b fip,p» le module de la configuration, ou de
chacun de ses quadrilatères ; il caractérise la configuration. Il est immédiat

que lApp-pu'aL* !•
Deux domaines doublement connexes sont conformément équivalents

s'ils se laissent appliquer conformément sur une même couronne circulaire,

de rayons 1 et R > 1. Cette couronne circulaire se laisse à son
tour appliquer conformément par la fonction logarithmique sur le
rectangle (0, In R, In R + 2in, 2in), les côtés (0, In R) et (2in, In R+2in)
étant identifiés. Nous définissons le module ^ (1/2a) In R de ce
rectangle comme module de la couronne circulaire, et des domaines doublement

connexes qui lui sont conformément équivalents. L'équivalence conforme
de deux domaines doublement connexes est caractérisée par l'égalité des

modules.

§2. La longueur extrémale d'une famille de courbes

A. Je dirai que deux courbes fermées ou deux coupures c0 et cx sont
homotopes relativement à une figure G* (c0 ~ cx) s'il existe une déformation

(continue) de c0 sur cx telle que chaque courbe intermédiaire c\
(^ < A < 1) passe par les mêmes points désignés sur (?* (selon la définition)

que c0, et par aucun autre. — En d'autres termes, c0 et cx ne peuvent
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pas être distinguées l'une de l'autre à l'aide des repères figurant dans la
définition de C?*. Si ce sont des coupures, leurs extrémités AQ, Af0; Ax, A[
ne coïncident pas nécessairement deux à deux, mais il suffit que Ao et Ax
appartiennent à un même arc-frontière sans points désignés, et qu'il en
soit de même pour Af0 et A[. — Les courbes considérées ne seront pas
orientées (il est donc permis de permuter les extrémités A et A1).

L'ensemble de toutes les courbes fermées et coupures que l'on peut
définir dans G se décompose en classes d'homotopie. Sauf mention explicite

du contraire (B ; Chapitre III, § 3), j'appelle famille de courbes la
réunion d'un certain nombre de telles classes. Toute famille de courbes

peut alors être décrite topologiquement dans (?*.

B. Soit {c} une famille de courbes rectifiables (donc violant la condition

énoncée sous A) dans un domaine G ; Ahlfors et Beurling [1]
définissent la longueur extrémale L{c} de {c} par le problème de variation :

-f—= infe

où l'on admet à concurrence les fonctions réelles non-négatives {répartitions)
q telles que j$ Q2dr existe, et que, pour toute courbe ce {c}, J @ds

G c

existe et soit > 1.

C. Pour des raisons que j'exposerai tout à l'heure, je préfère à cette
définition la définition modifiée suivante :

Soit {c} une famille de courbes (définie topologiquement dans une
figure 6?*). Posons, pour simplifier l'écriture,

AQ AQ{G) ïJg2dr et CQ{c) ^j^ds1)
G —

Je définis la longueur extrémale L^ de {c} par

—— M{c] infe^4e

où Von admet à concurrence toutes les répartitions q satisfaisant à la condition

CQ(c) > 1 pour toute courbe c € {c}.
Si le domaine G est situé sur une surface de Riemann donnée par ses

représentations paramétriques locales, on considérera un système de ré-

x) /est l'intégrale supérieure, / l'intégrale inférieure de Darboux ; dr est l'élément de
surface. - Si la courbe c n'est pas rectifiable, ds n'est pas défini ; [c q ds a cependant le

sens évident de la limite inférieure d'une somme, selon une notation due à Weierstrass

(cf. Bolza [3], p. 284).
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partitions dont chacune £t est définie dans le domaine de variation d'un
paramètre complexe local tif et telles que, pour toute paire de valeurs
t\, tf des paramètres locaux tt et ti représentant un même point p de G,
on ait Qi | dti \ =Qj \ dt$ |. On peut alors considérer le système des gt
comme représentant une grandeur covariante, la métrique conforme g,
,,définie sur la surface de Riemann" elle-même. Nous dirons que g est une
répartition sur G.

La définition reste valable dans les deux cas extrêmes : si aucune répartition

g n'est admise à concurrence (par exemple si {c} contient les courbes
fermées homotopes à zéro), L{c} — 0 ; si infe AQ 0 (par exemple si
la famille {c} est vide), L{c) =oo.

Cette définition modifiée de la longueur extrémale présente plusieurs
avantages. Les courbes concurrentes sont définies topologiquement ; tandis

que la restriction aux courbes rectifiables est une condition métrique ;

de même, toutes les répartitions sont considérées. D'importantes propriétés

évidentes pour la nouvelle définition, ne le sont pas du tout pour
l'ancienne [voir par exemple la seconde partie de b) ci-dessous, et
l'inégalité e)]. D'autre part, la nouvelle définition jouera un rôle important
dans la publication annoncée [10].

Dans la suite de ce travail, futiliserai exclusivement cette nouvelle définition.

Pour abréger, nous écrirons PLE {c} pour ,,problème de longueur
extrémale définissant L{c}". D'autre part, lorsque {c} sera la classe des

courbes homotopes à une courbe c relativement à une figure (?*, nous
écrirons Lc au lieu de L{c}.

D. a) La longueur extrémale est un invariant conforme. En effet, soit
z' f(z) une application conforme transformant {c} en {c'} ; si g(z) est

une répartition concurrente du PLE{c}, gf(z') q(z) \ dzjdz' | est
concurrente du PLE{c'}, d'où L{c,}> L{c} ; de même, L{c} > L{c,}, donc

Lic) L{C) •

b) L{y)>L{c} si {c}z){y}. La même propriété subsiste si toute y
contient une c.

c) S'il existe un point z0 à l'intérieur ou sur la frontière de tel que,

pour tout e assez petit (e < e0), toutes les courbes c € {c} coupent le
cercle | z — z0 \ e, alors L{c} =oo. En effet, la répartition q£(z)

(ln(eo/e) • | z — z0 I)"1 pour e < \ z \ < e0, qe(z) 0 ailleurs, est

concurrente, d'où L{c} > (l/2rc) ]neoje quel que soit e (0<e<e0).
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d) S'il existe un point q à l'intérieur ou sur la frontière de G, tel que
toutes les circonférences de centre q et situées dans un voisinage U de q
relatif à G, appartiennent à la famille {c}, alors L{c) 0. En effet, il
existe un cercle de centre q et de rayon e extérieur à G — U ; pour toute
répartition concurrente q du PLE {c},

t H ç*dr>fdr J fd8>f
\z-q\<e r=0 \z-q\=r r=0

donc L{c) 0.

e) Mfrjvict}) <!£&} +M{c%}.*)
En effet, soient qx concurrente du PLE {ct} et q2 concurrente du

PLE{c2}; alors g(p) Max [^(p), ^2(^)] est concurrente du

- {c2}); et

+ Q\)dr < JJ ^2dr + fj Q\dr AQi +
donc M({cj - {c2}) < infei AQl + infe2 4^ M {c,} + M{c2}.

Il s'ensuit que : primo si M {c2} 0, alors Jf ({Cj} ^ {c2})
secundo si Von augmente la famille {Cj} en sorte que M {cx} ->oo mai^ si
M{c2} reste borné, alors M({cj ^ {c2}) M{cj + 0(1).

f) Si les familles {Ci} et {c2} sont dans des domaines disjoints G± et
(?2 et si {Ci} w {c2}c {y}, alors M {y} > M {cj + Jf {c2}. En effet, soit
g concurrente pour le PLE {y} ; gt q dans Gl9 0 ailleurs, est
concurrente pour le PjLJ^Ic!}; £2 ç dans(?2, =0 ailleurs, est concurrente

pour le PLE{c2} ; et AQ >AQi + AQ2.

g) Si les familles {Cj} et {c2} sont dans des domaines disjoints Gx et
(?2 et si chaque courbe y contient une cx et une c2, alors L{r} > L{Ci} -\-L{c%).
En effet, soient qx et ^2 concurrentes du PLE {Cj}, resp. du PLE {c2} ;

la répartition £ égale à A^x sur (?x, à (1 — X)q2 sur (?2 (0 < X < 1)

et nulle sur G — Gx — G2, est concurrente du PLE {y}, d'où

if {y} < Piffo} + (1 ™ A)2Jf{c2}, c'est-à-dire (évaluation la plus

forte pour X
M{^ | ^{g>} j £{y} > i{Ci} + Z,{C8}

E. Méthode de symétrisation.
Nous dirons qu'un groupe de transformations T laisse invariante une

famille {c} si, pour toute courbe c € {c} et toute t e T, t(c) c {c}.

2) Strebel [22, 23] a démontré, pour la longueur extrémale définie selon Ahlfors et Beur-

Ung (§ 2, B), l'inégalité moins forte lJc]}\j{c2} ^ ^{êi}2 "+" ^{caf '
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Supposons qu'il existe un groupe fini de transformations conformes ou
anticonformes qui laisse invariante {c}. Soient zl9 z2(z1),..., zn(z1) les

images d'un point z1 par toutes les transformations du groupe. Je veux
montrer qu'on obtient également M {c} en restreignant le PLE {c} aux
répartitions £ telles que çfa) £(z2) | dz2jdz1 | g(zn) \ dzjdz11.

En effet, soit q concurrente du PLE {c} ; la répartition
1 n

n iix dzx
Q(*i)

est également concurrente, et l'inégalité de Schwarz3) montre que
A^ < AQ ; donc M {c} infe AQ inf-gA^.

En particulier, si G* et {c} sont symétriques par rapport à l'axe réel,
on considérera le groupe formé par l'identité et la symétrie : la construction

ci-dessus revient alors à définir simplement q(z) [q(z) -f- q(z)]/2.

F. Principe de l'augmentation des longueurs extrémales.
Soient {c} une famille de courbes dans un domaine G; zf f(z) une

fonction analytique définie dans G; {cf} la famille des courbes images
c' f(c). Alors L{c,} >L{C}.

Démonstration. — Soit q(z) une répartition concurrente du PLE {c} ;

appelons zi les images réciproques de z' ; la répartition
dz'

si tous les -z— sont différents de zéro,
dZ

dzdz
0 si un -=— 0 (ces z' sont isolés),

az

est concurrente du PLE{c'}, car Cr(c') > C^c^ > 1 (c^ est une
courbe c {c} dont c' est l'image). Soit E l'ensemble des points zx de G

tels que q{zx) \ dzjdz' \ q'{z') ; AQ, < AQ(E) < AQ(G), d'où l'inégalité

annoncée.

§3. Longueurs extrémales et modules. Propriétés des modules

A. a) Considérons un quadrilatère Q(f}' a' fl" a"). Soient {c} la famille
des arcs joignant /?' à /S", et {y} celle des arcs joignant od à a". Alors

8) Sous la forme plus générale (/ fgdx)2 ^ J f2dx -1 g%dx (/ > 0, g ^ 0). Par un
partage fin adéquat de l'intervalle d'intégration, on démontre en effet que

lf*dx + A2Jg*dx — 2Xlfgdx^ 0

pour tout A réel.
4) Cette propriété est bien connue pour la définition d'Ahlfors et Beurling ; je montre

qu'elle reste valable avec ma définition modifiée.
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Démonstration. — Prenons comme représentant de la configuration à

laquelle appartient Q un rectangle (0, a, a + ib, ib), ocr étant maintenant

le segment 0a. ju^ç,, ajb. La répartition constante q0 1/a
dans le rectangle est concurrente du PLE{c). Soit q(x + iy) une
répartition concurrente quelconque, on a

o < JJ (q - 6oy àx < J.dy Jo(^ + e3 ~l
<- + Th2dr--hdyUQdx<Ae--,

a a — — c?

d'où AQ > bja AQ ; @0 est donc extrémale du PLE{c} et 2/c ajb.
On montrerait de même que Ly bja.5)

b) Considérons maintenant un domaine doublement connexe D, de
contours F' et F". Soient {c} la famille des arcs joignant F' à F", et {y}
celle des courbes fermées séparant F1 de F". On a alors de nouveau
M {y} Lc ju (où ^ est cette fois le module de D). (Démonstration
tout à fait analogue à celle de a.) 6)7)

c) Grâce à ces problèmes extrémaux, toute répartition q, dans un
quadrilatère ou un domaine doublement connexe, fournit pour le module
deux approximations : l'une par défaut, l'autre par excès.

d) Ces problèmes de variation permettent de retrouver immédiatement
les propriétés bien connues de monotonie et de suradditivité des modules.

e) Couture des segments. Soit D un domaine doublement connexe dont
les contours /?' et fi" sont tous deux symétriques par rapport à l'axe réel ;

et soit Q un quadrilatère (/?' oc' fi" ol") dont le contour est formé par
/?', fi" et un segment a de l'axe réel (joignant /?' à /?") compté doublement.
Alors pppQ /uD.

C'est une conséquence immédiate de la méthode de symétrisation
(§ 2, E).

5) Sans transformation conforme, la théorie du potentiel montre que LQL 1 pour
Q quelconque : Soit u harmonique, 0 sur fi', =1 sur /T et à dérivée normale nulle

sur ol et a," ; soit e / duldnds (n normale extérieure), qqc I gradw I est extré-

maie du PLE {c}, et £0 (1/e) | gradw | est extrémale du PLE {y}. Il s'ensuit que
ljLY Le Ile.

6) Nous voulons nous rendre indépendants, dans la mesure du possible, du théorème
fondamental de Riemann sur la représentation conforme : aussi considérerons-nous (j,

comme défini par la longueur extrémale d'une des familles de courbes {c}, {y}.
7) Pour les deux types de figures considérées ici, {y} est la famille des courbes coupant

chaque c en un point au moins ; et nous constatons que LCL 1. Voir à ce propos
l'Appendice du Chap. I : E et F.

308



B. Coupure extrémale.
Soit G un domaine (ordre de connexion quelconque) situé dans le plan

complexe, et dont chaque contour est symétrique par rapport à Taxe
réel. Nous supposons que Ton ait désigné, sur la frontière de G, un
certain ensemble /}" également symétrique relativement à Taxe réel. Soient
donnés en outre deux points réels p, q (à l'intérieur ou sur la frontière de

tels que l'intervalle réel p < x <q soit intérieur à G. Soit /?' un
continu quelconque dans G, contenant p et q; et soit {c} la famille des arcs
situés dans G et reliant /?' à /8". Alors L^ est maximum si /?' ^ ee
segment réel p < x < q.

Démonstration. — Appelons {c^ la famille des arcs dans G reliant /?{ à

/?". Soit q concurrente du PLE{c}, la répartition q (z) [q(z) + q(z)]/2
(où l'on définit q 0 sur /?') est concurrente du PLE {cx} ; en effet,
C^(c^) — (l/2)CQ(c1 ^~c1) ; or, cx ^>~c1 est un arc8) séparant p de q et
ayant ses extrémités sur /S" ; c1^>~c1 a donc au moins un point commun
avec le continu f}r, cx ^ ~c1 contient donc deux arcs disjoints c {c} ; donc
C'q (^i) > 1, 5 est bien concurrente du PLE {c^. A j < AQ est (comme
au § 2, E) une conséquence du lemme de Schwarz. Donc L{Ci} > £{c}.

Si G est un domaine de Jordan * p,q, de frontière J1 /?", nous
avons une importante propriété extrémale concernant les modules [x des

domaines doublement connexes D dans G, qui séparent petqde F : (x < fa .9)

C. Comportement asymptotique des modules.

Soient (fig. 1) 6? un domaine de
Jordan ; F sa frontière ; a un arc-
frontière ; {Ox} (0 < A <oo, indice
discret ou continu) des arcs à extrémités

sur F—oc, tels que, si À'<X<A",
Ox sépare a et 0\, de 0^, et se

refermant, lorsque A->oo, sur un point
E de F (E ^ extrémité d'un 0A).

0^ partage G en deux domaines de Jordan ; appelons G^ celui qui est
adjacent à oc. 0O partage 6?^ en Go et Gox. Soit {y^} la famille des coupures
dans Gx séparant oc de 0^ ; soit {yo^}c {yx} ceu<e des coupures dans Gox

séparant 0O de 0^ ; et soit {c^} {yx} — {^oa}- Appelons {c} la famille
des coupures dans G séparant E de a, mais non pas de 0O. M {c} < oo10) ;

8) Si Ci a plusieurs points réels, il recoupe êx, mais tout le raisonnement reste valable.
9) Cette propriété peut également être obtenue à Faide d'une symétrisation de Steiner

(cf. Pôlya et Szegô [18]). Voir aussi Nehari [15], p. 174.
10) Chaque c a, sur la sphère, une longueur positive ; la métrique sphérique fournit

donc une répartition concurrente du PLE {c}.
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{cx}a{c}, donc M {cx} < M {c} ; {yx} {yoX} w {cA}, donc (cf. §2,
D, e) Jf {yA} < M{yoX} + M{cx} <M{yoX} + M{c}, c'est-à-dire

x + M{cx}. — En vertu de la suradditivité, on sait que
H" W)0x î donc

< if {CA} < if {

D'où la formule asymptotique :

/ueoex +0(1) lorsque X

Cette formule nous sera utile par la suite, notamment à propos du théorème

général de Phragmén-Lindelof (III, 3, C).

D. Applications du principe de Vaugmentation des longueurs extré-
males. f Augmentation du module d'un domaine doublement connexe.

Soient 6? un domaine simplement connexe, de frontière f;Zun
continu simplement connexe dans G ; D le domaine doublement connexe
G — K; z' f(z) une transformation intérieure bornée dans G, analytique
dans D; Gr f(G), K' f(K). Appelons yx le contour extérieur de

K'11), et /\ celui de G' ; Dx le domaine doublement connexe de contours

yx et Fx. Alors

Démonstration. — Soit {c}, resp. {cx}, la famille des arcs joignant
les deux contours de D, resp. Dx. Tout arc cx a un point p' f(p) sur
K' (p e K); si z' décrit cx à partir de pf, z décrit un arc rj à partir de p ;

p étant intérieur kG, rj coupe F en un point q, dont l'image q' est sur cx.

Il existe donc un arc c (de p k q) czrj, dont l'image d (de ^/ à q')czcx. —

La propriété b) du §2, D dit que L^Ciy > £{C'} ; le principe d'augmentation

(§ 2, F) dit que L{c,} > L{c) ; donc L{Ci} > L{e}, soit fxDi > ^.12)

g) Diminution du module d'un quadrilatère.
Primo. Soit Q(^iolxP%ol^ un quadrilatère ; supposons que son image

par une fonction analytique z' f(z) soit un domaine simplement
connexe, à partir duquel les ensembles-images fi[ et /?£ définissent un
quadrilatère Qf. Le module de Q' est défini par M {yx}, où {yx} est la
famille des coupures séparant /?( de fi% dans Q''. Alors

11 C'est la frontière de la composante connexe infinie du complément de K'.
1%) Si f{z) applique D de façon non-triviale dans un domaine doublement connexe Dt

(c. à d. si / {D) sépare les deux contours de D%)9 alors Dt 3 Dx et fAD%> PDv donc fAD^
Cette dernière inégalité a déjà été démontrée par Schiffer [20] et par JenHns [14].
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Démonstration. — Soit {y} la famille des arcs dans Qy séparant ^
de /?2. Soit c un arc joignant px à /?2 dans Q ; c' joint $ à /îj dans Q' ;

c' coupe donc tout arc yx en un point p', qui est l'image d'un point p de c.
Par p passe une image réciproque de yls qui coupe o^ et a2 e^ contient
donc un arc y ; donc y^y' ; L^ > X^y/j > i^ en vertu du principe
d'augmentation, d'où l'inégalité annoncée.

Secundo. Soient Q^xol^^ol^) un quadrilatère ; zf f(z) u + iv
une fonction analytique dans Q, telle que v < — 6 sur ax, v > 6 sur
cx2, et | % | < a dans tout Q (a et 6 réels > 0). Alors fi^^Q < ajb.

Démonstration. — Soient {c} la famille des arcs dans Q reliant $x à /?25

et {cx} celle des arcs dans le rectangle \u\ <a, \v\ <b, reliant les

deux arcs-frontière verticaux. Chaque arc c± contient un arc c' /(c) ;

donc L{Ci} > L{c,} > L{c} (principe d'augmentation) ; d'où

L{c1) =alb •

L'évaluation est exacte, l'égalité ayant lieu si Q est le rectangle

\u\<a, \v\<b et f(z)=z.**)

Appendice du Chapitre I. Les familles numériques

A. J'appellerai courbe brisée un système fini ou dénombrable de
courbes ou d'arcs de Jordan ci9 chacun étant compté un nombre entier
Ut > 0 de fois : c n1c1 -f n2c2 -f-.. Snici. Le sens de parcours
des courbes c{ est indifférent ici, ainsi que l'ordre dans lequel figurent les.
termes. On conviendra d'omettre ceux pour lesquels n€ 0.

La somme de deux courbes brisées est définie par c(1) -f c(2)

S (n^ + nf*) Ci. Pour N entier positif, Ne définira donc la courbe
brisée S (Nn^Cj. — L'ensemble BQ de toutes les courbes brisées dans

un domaine 0 diffère d'un espace vectoriel du fait de la condition nt > 0.

B. Une famille numérique dans un domaine G est une fonction réelle

non-négative C dans BG, telle que G(kc) Jc-C(c) (k réel > 0).
Un exemple particulièrement important est fourni par la famille numérique

C6(c) Zn{jci gds (cf. § 2, C), induite par une répartition q dans

13 Jenkins [14] a démontré tout récemment une propriété équivalente à notre inégalité

; sa méthode (bien que liée à plusieurs hypothèses restrictives) présente une forte
analogie avec notre démonstration générale du principe d'augmentation (§ 2, F) ; nous avons
cependant travaillé indépendamment de lui. - Nevanlinna ([16], p. 76-76) avait déjà
démontré une inégalité analogue, mais moins forte. - Un problème analogue a été traité
par Pôlya [17].
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G. Cette fonction GQ dans BQ est linéaire ; en outre, GkQ Je-CQ (Je réel

>0) et CQi+Q2>CQl + CQ2.

Définitions. — La somme Cx + C2 est définie par (C1 + C2)(c)
C1(c) + C2(c); JeC (Je réel > 0) par (JcC)(c) Je-C(c) ; [Cl5C2]
Max (C^, C2) par [^, C2] (c) Max ((^ (c), C2(c)) ; ÇiÇ,

Min (Cl9 O2) par C^^c) Min (C^c), O2(c)). — Nous écrirons Ox > G2

si Cx(c) > C2(c) pour toute courbe brisée c.

C. Le module M(C) d'une famille numérique C est défini par

où Ton admet à concurrence toutes les répartitions q telles que CQ>C.
Cette définition généralise celle qui a été donnée (§ 2, C) pour les

familles (ordinaires) de courbes14). Elle jouit notamment des propriétés
suivantes :

a) Le module M(C) est un invariant conforme. Même démonstration
qu'au § 2, D, a.

b) Monotonie: C1 < C2 entraîne M (Gy) < M(C2). En effet, toute
répartition concurrente pour M (G2) l'est aussi pour M (Cj).

c) Homogénéité: M(JeC) Je2-M(C). En effet, CkQ>JcC si et
seulement si CQ >C ; et AkQ 1e2AQ.

d) [M(C1 + C2)f'* < [M(CJf* + [M(C2)f* 2)

Démonstration. — Soient qx et @2 concurrentes pour M (Cj), resp. pour
M(C2), c.-à-d. Cti > C, et CQi > G2 ; C9i+e, > Ctl + C6t >C1 + Ct;

en vertu de l'inégalité de Schvxirz 3), d'où le résultat.

Démonstration. — (Cf. § 2, D, e.) Si CSi > C1 et CSi > C2, alors

l'inégalité.

f) Nous dirons qu'un domaine G ,,porte" une famille numérique C si
G (c) 0 pour toute courbe brisée c non située entièrement dans G.

lê) Jenkina [13] avait déjà généralisé la notion de longueur extrémale au cas où, étant
données plusieurs familles de courbes {cv }, on impose aux répartitions g les conditions
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Si Cx et C2 sont portées par deux domaines disjoints G± et G2, alors

X + C2) M(CX) + M(C%). (Généralisation du § 2, D, f.)

Démonstration. — Ici C1 + C2 [C1? C2], e) nous fournit donc déjà
une inégalité. — Soit q telle que CQ > Cx -f- C2 ; posons Qi g dans

^i> £1== ^ ailleurs ; et q2= q dans 6?2, £2 0 ailleurs ; AQi-\- AQ%

AgiOy) + AQ(G2) < AQ. Donc Jf (OJ + M(C2) < M(CX + C2) ;

c. q. f. d.

g) (Généralisation du § 2, D, g.) Considérons trois familles numériques
Cl5 C2, C satisfaisant aux deux conditions suivantes :

Primo. Oj et C2 sont portées par deux domaines disjoints Gx et G2 ;

Secundo. Chaque courbe brisée c contient deux courbes brisées cx et c2

telles que C(c) < min (C^Cj), C2(c2))

Alors
1 T

if (C) - Jf (Cx)
' Jf (0,)

*

Démonstration. — Pour tout 0 < k < 1

M (G) <M[(\- À)C1 + AC2] < M [(1 - A)CX] +

en vertu de f) et c). Cette borne a (en fonction de A) le minimum

1 + m (cy-T1
d'où l'inégalité.

h) La méthode de symétrisation (§ 2, E) et sa démonstration restent
valables pour les familles numériques. On dira qu'un groupe de transformations

T laisse invariante une famille numérique C si, pour toute courbe
brisée c et toute teT, C(c) C(t(c))

i) Le principe d'augmentation des longueurs extrémales (§ 2, F) se

laisse transposer ici comme suit :

Soient C une famille numérique portée par un domaine G; z' f(z) une
fonction analytique définie dans G; C la famille numérique définie dans

0' f(G) par C'(c') Max,C(c,), où f(c4) c'. Alors M(C) < M(C).

Démonstration. — Soit q(z) concurrente pour M(C), c'est-à-dire
CQ >C ; appelons z{ les images réciproques d'un point z' c (?' ; la répartition

__ | Max^fgfo) | dzjdz' |] si tous les dz'jdZi sont différents de zéro,
| 0 si l'une de ces dérivées est nulle,
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est concurrente pour M(C), car CQ,(c') > Max^O^) > MaxtC(ct)
<7(c'); et AQ,<AQ, d'où le théorème.

De même que les principes de Nevanlinna (sur la mesure harmonique
et sur la distance hyperbolique), le principe ci-dessus exprime seulement

une propriété de monotonie ; il ne dit pas de combien le module d'une
famille numérique diminue par une application analytique non-univalente.

Il n'est donc pas sans intérêt de le préciser comme suit.

j) Soit C* la famille définie dans Or par C*(e') VE [O^)]2, où

fie,) c'. Alors M(C*) < M(C). i

Démonstration. — Soit q (z) telle que CQ > C ; je dis que la répartition

e*(*') { *

0 si

j V E [q (z{) I dzjdz' | ]2 si tous les dz'jdzi sont différents de zéro,
i
si Tune de ces dérivées est nulle,

est concurrente pour M (C*). En effet, l'inégalité

— i i — i

s'obtient par passage à la limite à partir de S\^S a^ >\^E (E a^Y
j i % j

(la somme E\a^\ des longueurs des vecteurs «,. (ati,a2j,..., ani)
i

est au moins égale à la longueur \ E a}-\ du vecteur résultant) ; donc
i

CQ*(cf) > l/r [<?(<!,)]•= C*(c% g* est bien concurrente pour M{C*).
i

D'autre part, A^= AQ, d'où M (O*) < M (C).
Par exemple, si i 1, 2,..., n et Cfa) C(c2) C(cn),

alors 0* =l/w'C", le principe énoncé sous i) est précisé dans ce cas

par M{C) <M{G)ln.

D. Je dirai que deux courbes brisées c — En^ et c' —

sont homotopes relativement à une figure 0* (c ~ cf), si l'on peut établir
une correspondance biunivoque i^->^. telle que c{C^Lcfvi et n€ nfvi.

L'ensemble BG des courbes brisées dans 6? se décompose en classes

d'homotopie h{ (relativement à (?*).
Une famille numérique G sera dite relative à une figure G* si c ~ c'

entraîne C(c) C(cr) ; G induit alors une fonction, notée aussi C, dans
l'ensemble § des classes d'homotopie hi.
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E. Je me permets d'énoncer ici une conjecture : je n'ai pas pu la
démontrer, mais je l'ai vérifiée dans de nombreux exemples ; nous en
rencontrons plusieurs au cours de ce travail.

Je désigne par nl} le nombre minimum de ,,points d'intersection de
deux courbes brisées" c{%) Zn{gég e ht et c0) En{p c{p <¦ h3 :

Z n<? n<?> • n (c£>, $>)

où n (c, y) est le nombre de points d'intersection des courbes c et y.

Conjecture. Soient Cx et C2 deux fonctions réelles > 0 efoms §, telles

que G1(hl)-C2(h3) < nl3 pour tous i, j. Alors Jf (C^-Jf (C2) < 1.
Cas particulier : Soient {c} et {y} deux familles de courbes. Si chaque

courbe c coupe chaque courbe y en N points au moins, alors L{Ci -L{y} > N2,

F. Soit C une fonction réelle > 0 dans §. Je désigne par C la plus
grande fonction > 0 dans §, satisfaisant avec G à l'hypothèse de la
conjecture. En d'autres termes, je définis C par

Si C est la fonction caractéristique d'une famille de courbes {y}, C(c)
n{c, {y}) miny^ n(c, y).

_La conjecture énoncée sous E est équivalente à M (C) • M (C) < 1.
Dans les exemples qui se présentent au cours de ce travail (Chapitre I,

§ 3, A ; Chapitre II, §§2 et 3), on a même M(C) M (C) 1. Cela
suggère la

Question. Sous quelles hypothèses a-t-on M (C)- M (C) 1?

16 Utilisons momentanément les notations de la théorie des ensembles : C au heu
de <, C1 w <72 au heu de [Clt C2]> Ct ^ <72 au ueu de CtC2. On montre facilement :

a) si Cx C C2, alors Cx 3 C2 b) C 3 C ; c) G C ; d) Cx ^ C2 Cx ^ C2 ; e)C1^C2

DO^^, f) CX^>C%~D7Jt ^ C2 et Gx r\ C2dC1 ^ (72. - Appelons C la fermeture de C,
et disons que C est fermée si C C. Toute famille fermée est inverse, et réciproquement.
C est la plus petite famille fermée Z3 C. Appelons ,,famille vide" (ou ,,nulle") 0(c) 0 ;

0(c) oo, 0 0. d) montre que l'intersection de deux familles fermées est fermée.
Cependant, e) ne permet pas d'affirmer que la réunion de deux familles fermées soit
fermée : c'est le seul axiome de Kuratowskt non-sattsfatt %c%.

Dans les exemples simples qui se présentent au cours de ce travail, les familles considérées

sont fermées ; rien ne dit que ce soit le cas généralement. - On pourrait restreindre les
définitions de ce paragraphe aux familles numériques de courbes connexes, non-brisées.

Il est alors facile de construire une famille {c} ^ {c} : dans un domaine triplement
connexe de contours Ft, Fz, F%, {c} sera la famille des arcs joignant J\ à Ft ou à F9.
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Chapitre II. Mesure harmonique et distance hyperbolique

§1. La fonction v(r)

A. Définition. v(r) (0 < r < 1) est le module du domaine doublement

connexe dont les contours sont le cercle-unité | z \ 1 et le
segment réel 0 < x < r.16)

B. Discussion dans le cadre de la théorie des intégrales elliptiques.
Le quadrilatère défini par le demi-plan inférieur y < 0 et ses points -

frontière oo, 1/r, r, 0 est représenté conformément sur le rectangle
(0, œ1, œ1 + co2i co2) (eo2 i | co21) par l'intégrale elliptique

/ dz
w(z) J Vz(z~r)(z-l/r) '

avec o)1 w{\jr) 2 Vr K(r) et \ o)2\ 2Vr K' (r), selon les notations

usuelles pour la forme normale de Legendre :

i
ax K'(r)

Le module /u de notre quadrilatère initial (relativement aux arcs-frontière

0 < x < r et llr <x <oo) vaut J^L Jf} La méthode- ~ \ œi (r)
de symétrisation (I, 2, E) montre dès lors sans peine que

II s'ensuit immédiatement que

v(r)-v(Vl-r*) ±. (2)

D'autre part, la transformation de Landen, connue dans la théorie des

fonctions elliptiques [25], permet de déduire de (1) les formules de récur-

2v(r) ^- 'S, ' (3)

et .-

16) Si 0(P) désigne la fonction définie par TeichmuUer [24], v(l/P) (l/25r) In
II est immédiat que v est monotone décroissante.
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On tire des égalités (2) et (3) :

Les développements asymptotiques de v (r) pour r -> 0 et r -> 1 peuvent
être obtenus à partir des développements connus de K{r) pour ces deux
mêmes cas limites. On obtient ainsi :

r _ 0 : »(r) -1- fci i- + 0(r2) (5)

r->l: v(r) %— (1 + 0(1 - r)). (6)
4*

C. Discussion élémentaire. Au lieu d'employer la théorie des
intégrales elliptiques et les développements connus, on peut procéder élémen-
tairement ; comme Teichmilller [24] (pour des résultats partiels), je pense
qu'il vaut la peine d'indiquer de quelle façon.

Je désigne par D(a, ô,b) le domaine doublement connexe obtenu en
coupant la sphère de Riemann le long des segments réels — a < x < 0

et à < x < à ~\- b, et par fi(a, ô,b) son module. Le module étant un
invariant conforme, //(a, ô, b) ^(Aa, Aô, Xb) — ju(b, ô,a). D'autre
part, une inversion w~a/z, appliquée sur D(a,ô,b), montre que
fi(a, ô, b) ju(ab/ôf a + ô + b, oo).

La méthode de symétrisation (I, 2, E) montre que

2v(r) ju(r, \\r — r, oo)
donc

2v(r) p{r\ 1 - r\ oo) (7)

D'autre part, la transformation w (z + l/z)/2 donne

La comparaison de cette expression avec (7) fournit les formules de récurrence

(3') et (3).
(I, 2, E) montre aussi facilement que le quadrilatère défini par le demi-

plan supérieur et les segments-frontière — a < a; < 0 et d<#<oo,
a un module fiaoo= 2/j,(a, ô, oo) ; l'autre module du même quadrilatère
vaut ^5= 2p(ô,a,oo); /y, •//«,$= 1, donc ^(a,(5,oo)^(<5,a,oo)==l/4
En vertu de (7), cette identité est équivalente à (2) ; d'où (4).
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De (7), on tire encore

en vertu de (2), oh a x2 — xt, ô xz — x%, b x4 — xz, et

(xl9 xé, x29 xz) Xl

Evaluations. La transformation w;=(2+ V^)/^ ^pl^116 l'anneau
circulaire 1 < | z \ < R sur l'ellipse Ea, de foyers ±1 et de demi-axes
a — (R -\- l/R)/2, b (R — 1/jB)/2, coupée le long du segment joignant
les foyers. C'est un domaine doublement connexe de module

ju(Ea) (1/2n) lnR (l/2jr) In (a + ]/a2 - 1)

Considérons maintenant le cercle | z \ < K > 1, que nous coupons le
long du segment réel — 1 < x < 1 ; soit CK le domaine doublement

connexe ainsi construit. La transformation conforme w - — K
K. -\- zI n/r \ 1 / 1 \ K. -\- z

montre que // (CK) v (^pjj 2 ^(^2) selon (3')« ^z c Cx c^2+ï
donc, selon la monotonie des modules, ^{EK) <ju(CK) <
d'où

Formule asymptotique pour r ->• 0 : (9) donne

v(r) =~lny+ O(r) (5')

L'inégalité de droite dans (9) se laisse améliorer par le raisonnement
suivant : Considérons le segment réel 0 < x < r et les circonférences

|3| 1 et \z\ R> 1. En vertu de la suradditivité des modules

(I, 3, d),

]B. (10)

r restant fixe, prenons R très grand ; (10) devient, en vertu de (5;),

(valable si grand que soit R), donc

JLlnii±2^Ezll<,(r)<J-lnA. (9')
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On voit que ces évaluations sont d'autant meilleures que r est plus petit.
On peut d'ailleurs les améliorer autant que Von voudra, par l'application
itérée de la formule de récurrence (3).

Améliorons p. ex. l'inégalité de droite :

(9')

Pour obtenir des évaluations bonnes pour r voisin de 1, nous rem-
1 — rplaçons r par ——— dans (9;) et nous utilisons (4) :

~ n \ \r] v 'n \—r ~~ v(r) ~ n \ \—r
On peut améliorer ces évaluations autant que Von voudra, par Vapplication

itérée de (3').
Formule asymptotique pour r -> 1 : (11) donne essentiellement (6).

Quelques valeurs particulières. (2) donne immédiatement v(ljV2) 1/4,
et de même (4) donne v(V2 — 1) l/2l//2. A partir de ces valeurs, on

n

peut résoudre élémentairement toute équation en r de la forme v (r) 2^

(avec n entier), par application répétée des formules (3) ou (3'). Exemple :

1/2 2v{l\V2) v((V2 — l)2) v(3 - 2V~2).

§2. Mesure harmonique et longueur extrémale

Nous considérons un domaine de Jordan sur lequel on a désigné un
point intérieur p et un arc-frontière (connexe) oc. On sait que la configuration

à laquelle appartient cette figure est complètement déterminée par
la mesure harmonique co de Varc oc au point p. — II suffit donc de choisir
un représentant de cette configuration : le cercle-unité, avec p à l'origine
et le point 1 au milieu de oc : a {e>ltp}_na)<<p<nù}

Soit /? l'arc-frontière complémentaire de a. Appelons {c} la famille
des coupures (à extrémités sur a) qui séparent p de p, et {7} celle des

coupures (à extrémités sur P) qui séparent p de oc.

Soit rj le segment réel — 1 < x < 0 ; rj détermine un quadrilatère
Q{ocpfrjP"), dont les modules ju^q l/^^Q sont caractérisés par deux
PLE. La méthode de symétrisation (I, 2, E) permet de restreindre ces

deux PLE, ainsi que le PLE{c} et le PLE {y} aux répartitions q(z)
£ (i) ; il en découle facilement que Lc 4//aî? et Ly fi^,^ 1/^.

La transformation conforme w u + iv (z -j- l/z)/2 applique l'inté-
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rieur du cercle-unité sur l'extérieur du segment réel — 1 < u < 1,

rj sur le segment réel —oo<u< — l et a sur le segment réel cos (nco)
< u < 1. Une ,,couture" (I, 3, e) du segment réel — 1 < u < cos (nco)
montre que fj,ar) ju(l — cos (^rco), 1 + cos (nco), oo) 2v (sin nco/2)
selon (8). Donc

en vertu de (2). On a Ly(co) Lc(l — co), comme il se doit17)18).
Cas limite co -> 0 :

co est une fonction biunivoque de Lc (ou Ly) ; donc Lc caractérise la
configuration. De plus, v étant monotone décroissante, chaque répartition
concurrente du PLE {c} (resp. du PLE {y}) fournit une évaluation par
excès (resp. par défaut) de co. 19)

Application du principe d'augmentation des longueurs extrémales.

Supposons qu'une figure Gp0L (domaine de Jordan G, point intérieur p, arc-
frontière oc) soit appliquée sur une autre Gf'*1 du même type par une fonction

analytique z' — f(z) : Gx f(G) — f(oc), ^ frontière commune
à G± et à /(a). (Par exemple G cercle-unité et z' z2.) Alors oop,ai6l
> (op0i0. En effet : Soit {y}, resp. {yt}, la famille des coupures séparant

p de oc dans G, resp. pr de oc1 dans Gx ; tout comme en (I, 3, D), on
montre que chaque yx contient une y' =f(y)', L{Yi) >L{Y,} >L{y}
en vertu du principe d'augmentation (I, 2, F), donc œ1> co selon (12).
On voit par ce cas particulier que notre principe sur les longueurs
extrémales est apparenté au principe de Nevanlinna sur la mesure harmonique :
la mesure harmonique d'un ensemble-ÎTontikve ne peut pas être diminuée

par une application analytique20).

17) II faut insister sur le fait que les formules (12) ne sont valables que si primo le
domaine est simplement connexe et secundo a n'est formé que d'un seul arc-frontière.

18) Chaque courbe c coupe chaque coube y en deux points au moins, et LCL 22.

(Cf. Appendice du Chap. I, E et F.)
19) Ces évaluations sont essentiellement indépendantes du choix de la figure dans la

configuration, contrairement à l'évaluation de Carleman pour un domaine convexe :

m < <p/nt où (p est l'angle sous lequel on voit a à partir de p. - L'évaluation de co donnée

par Beurling [2] ne dépend également que de la configuration ; mais elle n'est pas la
meilleure possible, et est moins maniable que celle indiquée ici.

20) Nous n'avons considéré ici qu'un cas très particulier des deux principes.
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§3. Distance hyperbolique et longueur extrémale

La figure considérée Gpq est définie par un domaine simplement connexe
G dont la frontière est un continu F, et à l'intérieur duquel on a désigné
deux points p, q. Sa configuration est caractérisée par la distance
hyperbolique h hpqG (ou la fonction de Green g gpqG) des points p et q
relativement au domaine G.21) — Comme au paragraphe précédent, il
suffit donc de considérer un représentant de cette configuration : le cercle-
unité, avec p à l'origine et q Th h e~g.

Soient {c} la famille des courbes fermées séparant p et q de F, et {y}
la famille des coupures qui séparent p de q. Nous comparons, dans le
cercle-unité, le PLE {c} et le PLE {y} avec les deux PLE qui
définissent le module v(q) du domaine doublement connexe dont les
contours sont le cercle | z \ 1 et le segment réel 0 < x < q. La méthode
de symétrisation (I, 2, E) montre facilement que l/Lc Lyj4c v(q).

En vertu de (4), *(Th h) %v^h) \ donc**) ™)

Cas limite h -> 0, soit g ->oo :

.A Lv= —In4- + 0(h2) — (g + In 4) + 0(e~2a) (130
jL/c 71 h 71

Cas limite h ->oo, soit gr -> 0 :

Lc=-^~ — (h + In 2) + O(e~u) —In \- O(g2). (13")
Ly 7ï 7i g

Lc (ou Ly) caractérise la configuration. — Chaque répartition concurrente

du PLE {c} (resp. du PLE {y}) fournit une évaluation par défaut
(resp. par excès) de h et une évaluation par excès (resp. par défaut) de g.23)

Application du principe d'augmentation. Soient G un domaine simplement

connexe ; z' f (z) une fonction analytique dans G ; Gt xxn

domaine simplement connexe contenant f(G). Si p, q c G, on a hp,q,Gi<hpqG.
En effet : Soit {y}, resp. {yx}, la famille des coupures séparant p de q

21 hpqG est normée comme suit : si G est le cercle-unité, kOrG — (1/2) In (1 -f r)/(l — r)
Ar Th r (fonction inverse de la tangente hyperbolique : r Thhorg) ; et gorG — In r.
22) II est essentiel pour la validité de (13) que G soit simplement connexe.
23) Beurling a indiqué dans sa thèse [2] un problème de variation caractérisant h, et

conduisant à des évaluations par défaut ; ce problème est tout à fait distinct du nôtre.
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dans G, resp. p' de q' dans G1 ; comme en (I, 3, D), on montre que chaque
yx contient une y' ; L{yi) > L{y,} > L{y} (principe d'augmentation,
I, 2, F), donc hx<h selon (13). Ce cas particulier montre que notre
principe est aussi en relation avec le principe de Nevanlinna sur la longueur
hyperbolique : celle-ci ne peut jamais être augmentée par une application
analytique24).

Chapitre III. Applications

§ 1. Variation de la distance hyperbolique par une déformation
du domaine

A. Je considère deux domaines simplement connexes GaGf
emboîtés, de frontières disjointes F, F'. Je désignerai par le signe ' les
grandeurs relatives à G'. Soient p et q deux points intérieurs ou frontaliers
de G. L'inégalité hpq < hpq (monotonie) est bien connue, elle est
équivalente au lemme de Schwarz pour le cas d'une fonction univalente. —
Sous nos hypothèses, le module ju>rr, (du domaine doublement connexe
Qf __ Q _ jT) n'est pas nul ; je veux alors remplacer l'inégalité de monotonie

par une autre plus forte.
J'écris h pour hpq et \i pour [irr,. Soit {c} (resp. {c'}) la famille définie

au Chapitre II, § 3, et soit {y??*} la famille des courbes fermées séparant

r de r ; {c'}=> {c} ^ {yrr,} ; donc, en vertu de (I, 2, D, f),

M{c'}>M{c} + M{yrr,}
c'est-à-dire, selon (II, 13),

où g g est la fonction de Green.

B. Cas limite h -> 0, soit g ->oo : hf < e~2n^{h + 0{hzj) ; g' >g
+ 2n/A + O(e~2g). Ces évaluations sont valables uniformément, quelle

que soit la manière dont h -> 0. — Notons que l'inégalité hf < e'^h
est valable pour tout h (démonstration élémentaire).

Soit p fixe, intérieur à G ; lorsque q ->p, M({c'} — {c}) reste borné ;

il s'ensuit facilement (comme en (I, 3, C)) que g' g + 0(1). Ce résultat
connu permet de définir la constante de Robin yp : g In (1/1 q — p |)

84) Précision importante : Si l'on prend pour G et Qx des surfaces universelles de re -

couvrement, le raisonnement ci-dessus démontre ce principe de Nevanlinna lui-même.
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+ 7P + o(l) lorsque q -> p ; et notre cas limite de (1) exprime l'inégalité

connue yp — yp > 2jz/j.
C. Cas où h (resp. g) est inconnu (on s'en désintéresse). Les inégalités

(1) fournissent le théorème général suivant, qui est en réalité à la base du
§ 3 du Chapitre II :

Tout continu dans G1 contenant p et q détermine avec F' un domaine
doublement connexe de module

Cas limite fi ->oo : h' < 4e~2^ + O(e~6^) ; g' > 2rc// - In 4 +
O(e~47r/i). Supposons que Gpq reste fixe ; lorsque fi ->oo, F' se referme
sur un point E1'. Soit {{} la famille des courbes fermées séparant E' de

p et q, mais non pas de F; {c'}c {yrr,} ^ {£}, donc, selon (I, 2, D, e),

M{c'} < M{yrr,} + M{Ç}, ce qui démontre que h' e-

D. Les inégalités (1) ne peuvent pas être améliorées, la borne indiquée
est exacte. En effet, étant données des valeurs Ao, hfQ et ju0 telles que l'égalité

soit réalisée dans (1), on peut construire des figures G'^GS p,q
telles que h h0, hf h'o et [x //0 : il suffit de choisir pour J1 et F1

des ellipses convenables, de foyers p et g. — Plus généralement, quel que
soit G'pq, coupons G! le long du segment hyperbolique (relativement à G')
rj pq-9 soit u la fonction harmonique nulle sur F' et 1 sur ^ ; pour
que l'on ait l'égalité dans (1), il faut et il suffit que F soit une courbe de
niveau de u.

E. Hadamard [5] [6] (cf. Schiffer [21], p. 292) a donné une formule
permettant de calculer la variation exacte de la fonction de Green par
une déformation infinitésimale d'un domaine dont la frontière a presque
partout une tangente. La formule d'Hadamard peut être comparée à (1)
si en outre le domaine est simplement connexe. Elle est toujours meilleure

que (1), à condition que Von connaisse exactement quelle est la variation de la
frontière. Au contraire, (1) ne suppose pas la variation infinitésimale, et
on peut l'appliquer dès que l'on connaît ju (ce n'est qu'une donnée globale

sur la déformation).

§2. Variation de la mesure harmonique par une déformation du domaine

A. Soient (fig. 2) G un domaine de Jordan de frontière F, /5 un arc-
frontière de G et a une coupure de G, à extrémités sur F — fi ; a partage
G en deux domaines G% (adjacent à fi) et Gx ; soit enfin p un point de
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G1. — J'écrirai œp pour copm, <wa pour œp0lGl9 et ju2 pour /u^g2. — Le
principe de déformation de Oarleman dit que co^ < eoa ; nous voulons
permettre de préciser cette inégalité chaque fois que Ton connaîtra pour
^g une évaluation par défaut.

Soient {y} la famille des coupures dans G séparant p de /? ; {y±} celle
des coupures dans G± séparant p de a ; et {y2} celle des coupures dans
G2 séparant a de p. {y}^> {y^ ^ {y2} ; donc, en vertu de (I, 2, D, f),
M {y} >M{yx} + i^{y2}, c'est-à-dire, selon (II, 12),

(2)

fig. 2 fig.3

B. Cas limite (oa -> 0 : cop <e nH't(œ(X + O(col)). Appelons Tj la
frontière de Gx. Soit {f} la famille des coupures séparant p de fi, mais
non pas de a ; {y} {yj w {f} ; en vertu de (I, 2, D, e), M {y} < M {yx}
-f- Jf {£}. /Si #> fe^d véts ^^ ^°^^ intérieur de Varc Fx — a, on voit
facilement (répartition constante concurrente) que M {£} reste borné
supérieurement. Donc M {y} M {yx} + 0(1), d'où cop coa-eO(1),

coo e£ coa 5cm^ dw même ordre de grandeur.

C. Cas où (oa est quelconque, inconnu (fig. 3). (2) donne le théorème

général suivant, qui est en réalité à l'origine du § 2 du Chapitre II :

Tout continu A dans G + F, joignant p à F — /S, détermine dans G

un quadrilatère de module fiAf3 < 2 v sin ——£-

Cas limite a2 < A +
Supposons que G\a reste fixe et que $ se réduise progressivement à un
point E, tandis que G2 est augmenté ou ne change pas ; soit {f} la
famille des arcs séparant E de p mais non pas de a (dans le grand domaine
G réunion des domaines intermédiaires) ; {y}^ {y2} w {£} î selon

(I, 2, D, e), M {y} < M {y2} + M {1} ; d'où

(3)
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Si p, g € Gx, nous avons donc

^=^.eoW; (3')

mais (I, 3, C) montre que le choix de a ne joue pas de rôle pour le
comportement asymptotique de jh2 (addition de 0(1)), donc :

(3') reste valable pour tous p et q dans G.

D. L'évaluation (2) ne peut pas être améliorée, la borne indiquée est

exacte. En effet, étant données des valeurs 00%, co£ et fi\ réalisant l'égalité
dans (2), on peut construire une figure Gpp et acff telles que œa eoJS,

coa co£ et ^2 p\. On choisira par exemple, dans un faisceau de

coniques homofocales dont p est un foyer, pour F — /? un arc d'ellipse,
pour p et a des arcs d'hyperboles. — Plus généralement, quel que soit
GpP, soit a le point-frontière partageant F — /? en deux arcs d'égale
mesure harmonique au point p. Soit rj le segment hyperbolique pa
relativement au domaine G ; soit u la fonction harmonique dans G — rj,
solution du problème de Dirichlet-Neumann suivant : u 0 sur p,
u 1 sur rj, dujdn 0 sur F — p. Pour que l'égalité ait lieu dans

(2), il faut et il suffit que a soit une ligne de niveau de u.

E. La borne exacte fournie par (2) est beaucoup meilleure que celle
contenue dans l'inégalité

cop < coa-suv8€0cœ8m (4)

due à Ostrowshi ([4], p. 44—45). Cette inégalité (reposant sur un
raisonnement élémentaire de théorie du potentiel) n'est jamais la meilleure
possible si p est intérieur à Gx.

§3, Applications. Théorème général de Phragmén-Iindelof

A. Considérons (fig. 4) le cas
particulier où a et p sont des segments
rectilignes parallèles x=a et x=b.
G étant simplement connexe, la
droite x X {a < h < b) a un et
un seul intervalle Ox (de longueur
0(X)) dans G qui sépare p de p ;

ea oc, eb p.
Les segments infiniment voisins 6X, 6x+dx déterminent avec F un

quadrilatère de module d[x (x) l*>oxex+ax dx/O (x) ; en vertu de la
b b

suradditivité des modules, [i2 ^a0 > J dju(x) J dxjd(x) ; je désigné¬
es a
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rai cette intégrale par [i /x(a, 6).25) (2) donne maintenant

+ 4r- (5)

On remarquera que, vu la restriction imposée aux arcs oc et /S (qui n'est

pas de nature topologique), l'inégalité (5) a perdu la propriété de (2) d'être
la meilleure possible.

B. Je veux comparer cette évaluation avec l'inégalité
4 -

<*>p < coa-e~^^ (6)

que B. Nevanlinna ([16], p. 71) a obtenue (sous des hypothèses un peu
plus générales) à partir du principe de déformation de Carleman, en
appliquant de façon continue l'inégalité (4) le long de l'intervalle a<x<b.26)

a) Cas où coa est quelconque, inconnu.
Pour jû -> 0, (6) est beaucoup meilleure que (5).
Pour Jt ->oo, par contre, (5) donne

o>B < — e-"*1 + O (e~3^), (50r n
qui est meilleure que (6).

Si jâ 1/2, (5) donne cop < 1/2, tandis que (6) donne
2

û>0 < e"~~* ~ 1/1,89 ;

on voit que (5) est déjà un peu meilleure dans ce cas.

b) Dans le cas où coa a une valeur connue (ou évaluée par excès), l'avantage

de (5) sur (6) (pour jû, pas trop petit) est encore renforcé. Voici quelques

exemples :

Pour ~jl ->oo et coa 1/2, (5) donne

(oB < — e~nJl~~% + O(e-3^) * -V. — e-"? (5")
H n 4,8 7t

tandis que (6) donne seulement cop < (1/2) e »
M

.27)

26 L'évaluation /u2 > ~ji peut aussi être obtenue comme suit: soit {6}= {6x}a <x<b '>

Tinégalité de Schwarz montre que qq \jfy(x) sur 0x est extrémale du PLE {6}; donc

M {6} UxjB{x) Ji. Soit {y} la famille des arcs séparant a de ^ dans G2; {y} 3 {0},
a

donc ju2 — M {y} > M {B} "jx. Cette méthode se laisserait généraliser à des domaines
multiplement connexes.

26) Comme (4) ne fournit pas la borne exacte, il faut s'attendre à ce que (6) soit d'autant
moins précise que l'intervalle b — a est plus grand.

27) En appliquant l'inégalité (4) d'Ostrowski au résultat (5'), on obtient une évaluation
différant de (5") par le seul facteur 1/2 au lieu de 1/4,8 ; (5W) est donc plus forte, et on voit

par cet exemple combien la formule générale (2) fournit un mécanisme d'approximation plus
adéquat.

326



Pour ^ 1/2 et wa 1/2, (5) donne

cop < (2J7i) arcsin (3 — 21^2) ~ 0,11 ;

tandis que (6) donne cop < e~%lnf2 ~ 0,264.
Si coa -> 0, (5) donne co^ < e-*/1^ + O(cd^)) évaluation meilleure

que (6), d'autant plus que ]2 est plus grand.

C. Théorème général de Phragmén-Lindelof.
Soient (cf. fig. 1) G un domaine de Jordan (de frontière F), qu'une

coupure 0O partage en deux domaines Go et G'o ; p un point de Go ; {0X}
(0 < A <oo, A paramètre continu ou discret) des coupures emboîtées
intérieures à G'o (6\ sépare p de tous les 0^,, où X! > X) telles que

~ jue0ex-+oo quand X ->oo. Les 0^ convergent vers un point £ de F.
Soit tfe une fonction sous-harmonique dans G, telle que

lim sup;^.^^^) < 0

pour chaque Ç € F — E. Je pose u\ MaxZ€0x ^ (^) e^

f^J^e-^x) (7)
Si a0 > 0,

^—(*=^) (8)

Démonstration. Il existe un A aussi grand que Ton veut, tel que
UX < (ao + o(l))enfXo\ En vertu de (2), on a

u(p) <uxœpex<(a0 +
d'où (8).

On peut aussi interpréter (8) de la façon suivante : Si

u0 Max,€e?ow(z) 1

alors, pour toute suite {0\} du type considéré,

Que peut-on dire si a0 0? Alors u < 0 dans Go. Mais on a vu
(I, 3, C) que ^oA /xxX + 0(1) lorsque A ->oo, h restant fixe. Par
conséquent les ax sont soit tous nuls, soit toits différents de zéro. cr0 0

entraîne ax 0 pour tous les x, donc (en vertu de (8), où Ton
remplacera l'indice 0 par k) u < 0 dans U GH G.

Théorème 1. Si aQ < 0, alors u < 0 dems £ot^

La démonstration a été donnée pour le cas a0 0 ; si cr0 < 0, il
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existe une suite partielle {AJ (->oo) telle que u\{ < 0 ; u < 0 dans
les Gx{, donc dans U GXi G : Si aQ<0, alors u<0 dans tout G.2S)

Théorème 2. ao> — oo.

Démonstration. Raisonnons par l'absurde: soit a0 — oo. Pour
tous Jf > 0 et A > 0, il existe alors un arc 6X tel que X> A et
wA e-^ox < — jf. En vertu de (3),

u(p) < ux (op6x < — M-e*m .c-*m + o<i) _ m-eo(1>

donc w — oo dans Go ; cela contredit l'hypothèse que u est sous-
harmonique.

D. 2?w particulier, si les 0A sont des segments verticaux x A,
JE étant à l'infini (cas limite de A), (8) est valable a fortiori avec, au lieu
de cr0, cr0 liminfx_->oo(^e"w?(0»x>), >0 par hypothèse. Comme
I <*o I ^ I #0 U Ie théorème 1 devient : Si a0 < 0, aZors ^ < 0 da^5
fem^ G (et u < 0 si er0 < 0). C'est une forme connue du théorème de

Phragmên-Lindelof. — Par contre, on ria pas le droit de remplacer a0 par
Oq dans le théorème 2.

De façon analogue, il est facile d'appliquer l'inégalité (8) et de formuler
la théorème 1 pour le cas où les B\ sont des arcs de cercles concentriques.
On obtient les théorèmes connus.

E. Revenons à la figure 4, considérée sous A. Le segment oc sépare G

en (?2 (adjacent à /?) et Gx. Il existe un xQ (a < xo< b) tel que Ji(a, x0)

Ji(x0, b) /j/2 ; en vertu de (5), on a, en tout point zO€dx

o)ZqOlq2 <co et coZol302 < cô, où cô est défini par v(sin7rcô/2) — ]5/4 ;

donc (oZQ)(X^pt02 < 2~œ ; d'où l'inégalité

vLmn(°z^0*\>^. (9)
\ 4/4II existe donc toujours une transversale verticale 6Xq telle que chacun de ses

points satisfasse (9)29).

L'inégalité (9) n'est pas la meilleure possible, car (5) ne l'est pas30).

28) Rappelons que (3') est valable ici, et montre aussi directement que le point-frontière

E, singulier pour u, influe sur u(p) soit pour tout peG, soit pour aucun peG.
29) Comme je le montre dans une autre publication ([9], formule (1)), il existe dans le

quadrilatère G2 une coupure y (pas nécessairement verticale) séparant a de f$ et en tout
point de laquelle on a (relativement à G2) Wawj3 < co, c'est-à-dire

v(sin n ft>av^j8/2) > /J/4 (9)

et cette évaluation est exacte. Il est intéressant de constater que la borne pour co dans (9)
est deux fois plus petite (meilleure) que dans (9).

30) Cependant, dans tout le domaine 0 < a> < 1 qui nous intéresse, (9) est plus précise
que l'inégalité de Nevanlinna ([16], p. 73) : In coawj3 < — (2/jr) ~ji + In 2. Dans le cas
limite Ji -> oo notamment, (9) donne

In o>clvP < — (n/2) Ji + In (16/rc) + o (1) (9')

328



§4. Variation d'une fonction harmonique
dans des domaines simplement connexes emboîtés

A. Soient G un domaine simplement connexe ; pet q deux points
intérieurs ; u une fonction harmonique dans G.

On démontre facilement (application conforme de G sur un cercle et
usage de l'intégrale de Poisson) l'inégalité

2
\u(p) — u(q) | < Var^ w-arcsin ThhpqQ (10)

où VarG u supG u — infG u.

B. Considérons deux domaines emboîtés GczG1 simplement
connexes, de frontières disjointes F et F'. J'écris /u pour jbtrr,. — Soit u
harmonique dans G1.

En vertu du § 1, v(Thh') >v(Th h) + ju. Si les points p et q sont
dans G, nous avons donc, grâce à (10),

Si hpqQ est inconnu, cette inégalité fournit le théorème général suivant :

Soit E un continu dans G', et soit jli le module du domaine doublement

connexe composante de G' — E ; alors, pour toute fonction u harmonique
dans tout G', Var^\\

\ \2 Vsltg'U// — r
L'analogie avec le théorème général (III, 2, C) est frappante. On voit

que le quotient des variations prend la place de la mesure harmonique.

C. Soit u une fonction harmonique dans tout le plan ouvert. —

Supposons que l'on ait une famille de domaines simplement connexes G^
(0 < A < oo) emboîtés (G^cC?^/ si X < Ar), dont la réunion soit le
plan ouvert. Soit Fx le contour de G\, et appelons jllxX le module du
domaine doublement connexe de contours Fx et Fx. Je pose

aH liminf^^Var^ ^e"2^) (12)

Lorsque A ->oo, ju,0\ ->oo. Les inégalités trouvées ci-dessus donnent
alors, si p et q eG0, ^(13)et 8

VarGo u < — a0
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Théorème. 8i ao O, u est constante.
Ces inégalités et ce théorème sont formellement très analogues au

théorème général de Phragmén-Lindelof (III, 3, C). Ce n'est pas un pur
hasard : comme me Fa fait remarquer dans une conversation le Prof.
Kaplan, le théorème classique de Phragmén-Lindelof (pour le demi-plan)
peut être démontré à l'aide d'une propriété bien connue sur la croissance
des fonctions entières. Cette observation est à l'origine du présent
paragraphe. — De même, le théorème 1 (III, 3, C) peut être déduit du théorème

ci-dessus.

D. Si nous opérons le passage à la limite q -> p dans A, nous
obtenons de (10), en désignant par R(p,G') le rayon conforme31) de Gr

Cette inégalité est valable a fortiori si l'on remplace le rayon conforme
R(p,Of) par le rayon intérieur r(p,G') (cf. § 6, A).

Le même passage à la limite donne, à partir de (13), si p c(?0,

§ 5. Evaluation par défaut de la distance hyperbolique

A. Soit (fig. 5) G un domaine de Jordan, que deux coupures
disjointes oc et /? partagent en trois domaines Gx (adjacent à oc), G2 (adj. à oc

et j8), G3 (adj. à /?). Appelons .Fia fron-
fig. 5 / \ tière de G, r{ celle de Gt. Soient p e Gx

et q cGz. Je me propose d'évaluer par
défaut h=hpqQ (ou par excès g=gpqQ),
connaissant co1 copotGl, ju2 [Aam2 et

Soit {y}, resp. {yx}, {y2}, {yz}, la
famille des coupures dans G, resp.

Gl9 G2, 6r3, séparant p de q, resp. p de a, a de /?, /? de g. Alors
{y}-D {yx} w {y2} w {y3} ; donc, selon (I, 2, D, f),

M {y} > M{yx) + M{y2} + M {y,}
81 C'est le rayon R du cercle \w\ < R, image conforme de G' par une application

w(z) telle que w(p) 0 et w' (p) — 1.
82) Considérons p et q comme deux prisonniers, dans les cellules Gt (de porte a) et G3

(de porte /?), G2 étant le corridor de la prison. Il est intuitif qu'il sera difficile aux prisonniers

d'entrer en contact {h grand) si le corridor est long et étroit {ja2 grand) et si chacun
d'eux est maintenu éloigné de la porte de sa cellule (a^ et cos petits).
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En remplaçant ces longueurs extrémales réciproques par leurs valeurs,
données par (II, 13), (II, 12) et (I, 3, a), nous pouvons mettre cette
inégalité sous la forme

v{e >

-sh^) * r(sm-] + t + pV\

B. Cas où fjL2 et cos sont quelconques, inconnus (on s'en désintéresse)33) :

v étant décroissante, (14) donne e~~2h < sin * Ce n'est pas autre

chose que la solution d'un problème de Carleman-MillouxM).
Cas limite co1 -> 0 : (14) donne

g ^n^ + O{o)\) 35) (14')

Lorsque (G, oc, ^ et q restant fixes) p tend vers un point intérieur à

l'arc J\ — oc, M {yx} ->oo, mais M {{y} — {y-^}) reste borné
supérieurement ; d'où (I, 2, D, e) M {y} M {yx} + 0(1), c'est-à-dire

C. Cas limite œ1-+0 et co3 -> 0 :

Si p et q tendent vers des points-frontière intérieurs aux arcs Fx — oc,

resp. F3 — p,
(J CO-t Ct/q CJ • l lOj

En effet, soit {£} {y} - {7l} - {yz} ; en vertu de (I, 2, D, e),

M {7l} + M {yz} <M{y}<M {?1} + M {y3} + M {f}. Lors du
passage à la limite, M {|} reste borné. En utilisant (II, 12') et (II, 13"), on
obtient alors (15).

Remarque. Un raisonnement élémentaire de théorie du potentiel,
calqué sur celui qui conduit à l'inégalité (4) à'Ostrowski, montre que

g fS ft>l'-^fax«€a<w«,^,C?1w(?2'^ax<€0 fftqO • (^)

33) L'ancien prisonnier q est maintenant en liberté ; la prison ne comprend que la cellule
où est enfermé p.

M) Cf. Nevanlinna [16], p. 104, où le problème traité est plus général. La solution
indiquée (exacte) est équivalente à notre inégalité.

35 Si Ox est convexe et si a est vu de p sous un angle euclidien tpx -> 0, l'inégalité de
Carleman wx < yx\n permet de conclure de (14') que g <Ç \px + O(y>\).

36) Si Gx et Oz sont convexes et si l'on voit a de p (resp. f} de q) sous un angle euclidien

^x _> 0 (resp. % -> 0), l'inégalité de Carleman permet de conclure de (14") que
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Dans le cas limite co1 -> 0, coz -> 0, avec (pour simplifier) ^2 inconnu
ou nul, introduisons dans (4;) l'évaluation de gtqQ donnée par (14/) :

9tqo ^ n °*s (en négligeant les termes d'ordre supérieur) ; nous obtenons
g gpqG < 7i (o1œ3. La borne est plus faible que dans l'évaluation
exacte g< (^2/8) œ1 co3 (cf. (14")). Comme au § 3, B, nous voyons qu'il
y a lieu d'éviter autant que possible l'emploi d'inégalités du type (4) ou
(4') : elles affaiblissent les évaluations.

D. Cas où œ1 et coz sont quelconques, inconnues : (14) donne le théorème

général suivant :

Deux continus disjoints A et B dans G + F, reliant F à p, resp. à q,
déterminent dans G un quadrilatère de module

Cas limite jli2 -*oo : h > (rc/2) jlc2 — In 2 + O(
Si Ol9 (?3, p, q sont fixes et jbt2 ->o° (rétrécissement du corridor),

h (^2)^ + 0(1).
En effet, M ({y} — {y2}) reste borné, donc (I, 2, D, e)

M{y2}<M{y}<M{y2} + O(l) ;

et, par (II, 13"), nous obtenons notre formule asymptotique.

E. L'évaluation (14) ne peut pas être améliorée, la borne indiquée est

exacte. En effet, l'égalité a par exemple lieu dans (14) si JTest une ellipse,
a et p des arcs d'hyperboles, ces trois coniques appartenant au même
faisceau homofocal de foyers p et q. — Plus généralement, si l'on donne
Gpq et des valeurs coj, ^ e^ ^3 telles que le système (h, coj, p\, col) réalise
l'égalité dans (14), on peut toujours construire des arcs oc et p tels que
co1 col y /*2 fA e^ «>3 ft>3 • P ^ q déterminent sur la droite
hyperbolique pq (relativement à G) trois segments ; soient f celui qui joint p
à F et rj celui qui joint q h F; j'appelle u la fonction harmonique dans
q _ | __ fj nulle sur rj, 1 sur £ et dont la dérivée normale s'annule
sur F. Pour que l'égalité soit valable dans (14), il faut et il suffit que ex et
P soient des lignes de niveau de u ; il est facile de calculer lesquelles il
faut choisir.

F. Cas où Von connaît une borne ~co majorant à la fois cox et coz, fiz
étant inconnu ou nul :

Je suppose cox < cô et co3 <7ô (par exemple cô Max (coî} o>3)).

(14) donne (cf. II, 2) Sv(e~g) < Sv(cos rcô)/2), d'où, v étant décroissante,

Th h e~g > cos (n ~côj2) (16)
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Ce résultat peut aussi être formulé de la façon suivante :

Théorème. Etant donnés, dans un domaine de Jordan G, deux points
p, q, il n'est pas possible de construire dans G une coupure oc séparant p de

q telle que copoc H coq0i (relativement aux domaines partiels) soient tous deux
inférieurs à 2jn arccos e~g.

Il existe un et un seul arc oc réalisant copoc (oqoc 2\n arccos e~9,

c'est la ligne de niveau u 1/2 de la fonction harmonique u considérée
sous E.

§ 6. Rayon intérieur, mesure harmonique et modules

A. Si p est un point intérieur d'un domaine G, j'appelle rayon
intérieur de G en p le rayon r (p) du plus grand cercle de centre p dont tout
l'intérieur soit dans G. — D'autre part, j'appelle toujours rayon conforme
de G en p le rayon R (p) du cercle \w\ < R sur lequel la surface
universelle de recouvrement de G peut être appliquée conformément par
une fonction w(z) telle que w(p±) 0, w1(px) 1, px étant un des

points ,,au-dessus de p" sur cette surface37).
On sait (conséquence du lemme de Schwarz) que r(p) < R(p), d'où

l'on déduit, pour un élément d'arc hyperbolique au point p,

dhp ds/R(p) < ds/r(p)

où ds est la longueur euclidienne de cet élément d'arc. Si p et q sont
deux points d'un domaine G,

\dz\
r(z) J

l'intégrale portant sur un arc rectifiable quelconque cpq joignant q à, p.

B. Soit Gx un domaine simplement connexe (sur la sphère de Rie-
mann) dont la frontière est une courbe de Jordan Fx, et sur lequel on a

désigné un point intérieur p et un arc-frontière oc. Soit G le domaine
simplement connexe de frontière /\ — oc. Je définis le rayon intérieur
r(z) relativement à G (et non à Gx\). Soit c un arc rectifiable quelconque

joignant p à oc dans Gx ; alors

2f
copocGl > 2/tc arcsin e c

r(z) (17)

87) Le terme ,,rayon intérieur" a parfois été utilisé pour désigner notre rayon conforme :

je mets en garde le lecteur contre toute confusion.
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En effet, soit q l'extrémité de c sur a ; on a

\dz\
hiQ

r(z)

et, en vertu de (III, 5, B) ci-dessus, on trouve (17).

C. Soit (fig. 6) Q un quadrilatère (j8V/Ta") (sur la sphère de Rie-
mann) ; soit c un arc rectifiable dans Q, joignant /?' à /?". — Appelons D

le domaine doublement connexe de
contours <x et ol" ; et U sa surface
universelle de recouvrement. Le
rayon intérieur r(z) de D en un point
quelconque z de c est égal à la dis-

euclidienne de z à a! ^ot". Donc

hcu^htD < j \dz\
r(z)

d'où, en vertu du théorème général (III, 5, D) ci-dessus (que nous
appliquons au domaine simplement connexe U),

e c «*). (18)

Grâce à (II, 9'), il en résulte l'inégalité élémentaire mais plus faible

%\dz

r(z)
¦ + —In2 (18')

D. Je vais résoudre ici un problème lié aux précédents, mais qui ne
nécessite pas l'usage des méthodes développées dans ce travail.

a) Soit D un domaine doublement connexe, de contours F et F" ; on
peut définir dans D une métrique hyperbolique grâce à sa surface
universelle de recouvrement. Soit jll le module de D, et soit hy la longueur
hyperbolique d'une courbe fermée rectifiable y séparant P de F" ;

minv nv
n (19)

88) NevarUinna ([16], p. 79) donne une évaluation qui peut s'écrire sous la forme
suivante : fÂpfp"Q< (7ij2) In (4n) -f- n S \ dz \jr(z) ; elle est toujours moins forte que (18'),

c
donc a fortiori que (18). — Ainsi que le montre une autre publication ([9], formules (1) et
(4)), l'évaluation 2 S \ dz \/r(z) > — In (2tt(1 — mw (Nevanlinna, ibid.) peut, en vertu

c

de (18), être remplacée par la suivante : S \ dz \jr(z) ;> — In tg((7r/4)(l—mw))t qui est
c

toujours plus forte.
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Démonstration. Je choisis comme domaine normal (représentant la
configuration de D) le cylindre obtenu à partir du rectangle 0 < x < a,
0 < y < n en identifiant chaque point-frontière i y avec le point-frontière

a + i y ; » est déterminé par p nja. La surface universelle de
recouvrement est la bande 0 < y < n ; par la fonction w ez, je
l'applique conformément sur le demi-plan supérieur ; y devient un arc y1

joignant les deux demi-cercles supérieurs | w \ 1 et \ w \ ea. On a

1 \dw\ 1 f\dw\ 1 fdr aajy,

(y'o est le segment u 0, 1 <v <ea). m) c. q. f. d.
b) Introduisons pour hy l'évaluation établie sous A : nous obtenons

Remarque. Coupons D par un arc p joignant J" à T" ; Q {fi'F fi" F') ;

on déduit immédiatement de (I, 3, a et b) que

Comparons cette évaluation à (18), également appliquable ici (en
considérant Q sur une surface de recouvrement, fl' et fi" étant sur deux feuillets
différents). (18) est formellement moins bonne, car v(r) > (1/2n) In 1/r ;

mais il peut y avoir des points zey où rQ(z) > rn(z), ce qui parle
pour (18).

§ 7. Remarque sur les théorèmes de Koebe et A9Ahlfors

On peut obtenir facilement les théorèmes de Koebe et d'Ahlfors à
l'aide des résultats précédents. Voici les grandes lignes de la démonstration.

a) Etant donnés sur la sphère de Riemann 8 trois points a; b ; p ^ oo,
trouver une borne supérieure pour R(p,O) valable pour tout domaine
simplement connexe 0 ne contenant pas les points a et b (Koebe).

On ramène ce problème à celui qui est résolu en (III, 1, C), en
enlevant de 8 un cercle infinitésimal de centre p.

89) On voit de plus qu'une seule courbe y0 dans D réalise ce minimum.
40) Sario ([19], p. 29) a fait un premier pas dans cette direction en démontrant que

où d< 2r{z) et L longueur de y.
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b) On donne deux points a, b et un arc c (d'extrémités p et q). Trouver
une borne inférieure pour la longueur hyperbolique hc 0, valable pour tout
domaine simplement connexe G ne contenant pas les points a, b.

c) On donne quatre points a, b, p, q. Trouver une borne supérieure pour
le module /bt(DH), valable pour tout domaine doublement connexe DU
sur 8, dont le complément est formé d'un continu Eab contenant a et b, et

d'un continu EpQ contenant p et q.
On passe de b) à c) en appliquant de nouveau le théorème général

(III, 1, C).

d) Soient G la bande 0 < y < n ; Exun continu dans G joignant — oo
à un point zx xx + i V\ \ E2un continu dans G joignant -f- oo à un point
z2 x2 + iy2' Ex et E2 déterminent dans G un quadrilatère Q. Trouver
une borne supérieure pour ^Eie2q » ne dépendant que de ô x2 — x1 (g 0)

(Ahlfors).
Solution : [aEie2q ^ ^8 4v((l + es)~1/2). — On passe de c) à d) en

posant le problème d'Ahlfors d'abord pour le demi-plan.
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