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Longueurs extrémales et théorie des fonctions

par JosEpHa HERSCH, Zurich

Introduction

Le but essentiel du présent travail est de mettre en lumiére un champ
d’applications de la méthode des longueurs extrémales, due notamment &
Ahlfors et Beurling. Cette méthode est appliquée sous une forme modi-
fiée présentant certains avantages. La longueur extrémale est un in-
variant conforme.

On peut caractériser par des longueurs extrémales les autres invariants
conformes que sont le module d'un quadrilatére ou d’un domaine double-
ment connexe (cette propriété est connue), et, pour un domaine de Jor-
dan, la mesure harmonique d’un arc-frontiére en un point et la distance
hyperbolique de deux points.

En méme temps que des formules exactes, nos méthodes de variation
fournissent d’utiles évaluations de théorie des fonctions: les unes pré-
cisent, parfois de fagon essentielle, des inégalités connues (de Nevanlinna,
Ostrowski, Sario, Strebel) ; les autres concernent des problémes nouveaux.

Nous dirons toujours ,,courbe fermée* pour courbe de Jordan, ,,arc*
pour arc de Jordan et ,,courbe* pour courbe ou arc de Jordan ; une ,,cou-
pure® d’un domaine sera un arc de Jordan & extrémités sur la frontiére.
Tous les domaines considérés seront supposés définis dans le plan com-
plexe ou sur une surface de Riemann.

Les principaux résultats de ce travail ont été annoncés dans trois
Notes aux Comptes rendus [7], [8], [12]. Une publication ultérieure [10]
donnera des applications des méthodes développées ici aux fonctions
pseudo-analytiques et aux transformations quasi-conformes, ainsi qu’a
une classe plus générale de fonctions ; la plupart de ces résultats ont été
sommairement annoncés dans une autre Note aux Comptes rendus [11].

J’exprime ici ma vive reconnaissance au Prof. 4. Pfluger : il m’a fourni
Pessentiel de ma formation en théorie des fonctions, et c¢’est & lui que je
dois d’avoir étudié la méthode des longueurs extrémales ; je lui sais parti-
culiérement gré de ses conseils précieux et de sa bienveillance constante.
Je remercie aussi vivement le Prof. B. Eckmann, dont je suis depuis
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longtemps 'assistant et qui m’a toujours encouragé dans mon travail ;
ainsi que le Prof. M. Plancherel, corapporteur de ma thése, pour toute
Pattention qu’il lui a consacrée. — D’autre part, on verra au Chapitre 111
que bien des applications m’ont été suggérées par le livre si riche de con-
tenu ,,Eindeutige analytische Funktionen“ de R. Nevanlinna.
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Chapitre I. La longueur extrémale

§1. Figures et configurations. Quadrilatéres et leurs modules

Nous appellerons figure et écrirons QP72+ (ou simplement G* lorsqu’il
n’y aura pas d’équivoque possible) I’entité formée par un domaine G et
des points p,, p,, ... désignés (dans cet ordre) sur la frontiére ou & I'in-
térieur de G .

Deux figures G172+ et H? %~ geront dites conformément équiva-
lentes §’il existe une représentation conforme de G sur H appliquant
respectivement p,, py,... Sur ¢,,q,,... Les figures sont ainsi groupées
en classes d’équivalence, que nous appellerons configurations. (Voir aussi
Beurling [2].) En voici deux premiers exemples :

On appelle quadrilatére Q(f o’ f”"a") une figure GP17:P3P¢ obtenue en
désignant quatre points-frontiére d’'un domaine de Jordan; ils décom-
posent la frontiére en 4 arcs f’, o/, f”, «" (dans cet ordre). On sait que
chaque configuration de quadrilateres contient des rectangles, tous sem-
blables entre eux ; prenons donc un de ces rectangles comme représentant
de la configuration ; soient a la longueur de ses c6tés o’ et o”, b celle de
B et B"; on appelle a/b = pg e le module de la configuration, ou de
chacun de ses quadrilateres ; il caractérise la configuration. Il est immsé-
diat que wugign: thyrqr = 1.

Deux domaines doublement conneres sont conformément équivalents
g’ils se laissent appliquer conformément sur une méme couronne circu-
laire, de rayons 1 et R > 1. Cette couronne circulaire se laisse & son
tour appliquer conformément par la fonction logarithmique sur le rect-
angle (0,In BR,In R + 2in, 2ix), les c6tés (0, In R) et (2¢7, In R+24m)
étant identifiés. Nous définissons le module x = (1/2x) In B de ce rect-
angle comme module de la couronne circulaire, et des domaines doublement
connexes qui lui sont conformément équivalents. L’équivalence conforme
de deux domaines doublement connexes est caractérisée par I’égalité des
modules.

§2. La longueur extrémale d’une famille de courbes

A. Je dirai que deux courbes fermées ou deux coupures ¢, et ¢, sont
homotopes relativement & une figure G* (c, =~ ¢,) 8’il existe une déforma-
tion (continue) de ¢, sur ¢, telle que chaque courbe intermédiaire c,
(0 < 2 <1) passe par les mémes points désignés sur G* (selon la défini-
tion) que ¢y, et par aucun autre. — En d’autres termes, ¢, et ¢, ne peuvent
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pas étre distinguées I'une de V’autre & 1’aide des repéres figurant dans la
définition de G*. Si ce sont des coupures, leurs extrémités A,, 4,; 4,, 4]
ne coincident pas nécessairement deux & deux, mais il suffit que 4,et 4,
appartiennent & un méme arc-frontiére sans points désignés, et qu’il en
soit de méme pour A, et A;. — Les courbes considérées ne seront pas
ortentées (il est donc permis de permuter les extrémités 4 et A’).

L’ensemble de toutes les courbes fermées et coupures que l’on peut
définir dans G se décompose en classes d’homotopie. Sauf mention expli-
cite du contraire (B; Chapitre I1I, § 3), j’appelle famille de courbes la
réunion d’un certain nombre de telles classes. Toute famille de courbes
peut alors étre décrite topologiquement dans G*.

B. Soit {c¢} une famille de courbes rectifiables (donc violant la condi-
tion énoncée sous A) dans un domaine G ; Ahlfors et Beurling [1] défi-
nissent la longueur extrémale L, de {c} par le probléme de variation :

1 :
Ly infe f(j; e*dr,

ou ’on admet & concurrence les fonctions réelles non-négatives (répartitions)
o telles que ([ o®dr ewiste, et que, pour toute courbe ce {c}, [ ods
& ¢

existe et soit >1.

C. Pour des raisons que j'exposerai tout a I’heure, je préfere & cette
définition la définition modifiée suivante :

Soit {c} une famille de courbes (définie topologiquement dans une
figure G*). Posons, pour simplifier I’écriture,

Ao = A4,(@) = f;f e’dr et Co(c) =_j;c ods?) .

Je définis la longueur extrémale L, de {c} par

1
Ly

== M{C} == infg AQ

ou ’on admet & concurrence toutes les répartitions ¢ satisfaisant a la conds-
tion Co(c) > 1 pour toute courbe ¢ e {c}.

Si le domaine @ est situé sur une surface de Riemann donnée par ses
représentations paramétriques locales, on considérera un systéme de ré-

1) [ est l'intégrale supérieure, f lintégrale inférieure de Darboux ; dr est 1’élément de
surface. — Si la courbe ¢ n’est pas rectifiable, ds n’est pas défini; f, o ds a cependant le
sens évident de la limite inférieure d’une somme, selon une notation due & Weterstrass
(cf. Bolza [3], p. 284).
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partitions dont chacune g, est définie dans le domaine de variation d’un
parametre complexe local ¢;, et telles que, pour toute paire de valeurs
t7, tf des parametres locaux ¢, et ¢; représentant un méme point p de @,
on ait g;|d¢; | =p,; | dt;|. On peut alors considérer le systéme des p,
comme représentant une grandeur covariante, la métrique conforme o,
,,définie sur la surface de Riemann“ elle-méme. Nous dirons que p est une
répartition sur G .

La définition reste valable dans les deux cas extrémes : si aucune répar-
tition p n’est admise & concurrence (par exemple si {c} contient les courbes
fermées homotopes & zéro), L, = 0; si inf, 4, = 0 (par exemple si
la famille {c} est vide), L, =oo.

Cette définition modifiée de la longueur extrémale présente plusieurs
avantages. Les courbes concurrentes sont définies topologiquement ; tan-
dis que la restriction aux courbes rectifiables est une condition métrique ;
de méme, toutes les répartitions sont considérées. D’importantes proprié-
tés évidentes pour la nouvelle définition, ne le sont pas du tout pour
I’ancienne [voir par exemple la seconde partie de b) ci-dessous, et I'iné-
galité e)]. D’autre part, la nouvelle définition jouera un réle important
dans la publication annoncée [10].

Dans la suite de ce travail, j’utiliserar exclusivement cette nouvelle défini-
tion.

Pour abréger, nous écrirons PLE {c} pour ,probléme de longueur
extrémale définissant L,“. D’autre part, lorsque {c} sera la classe des
courbes homotopes & une courbe ¢ relativement & une figure G*, nous
écrirons L, au lieu de L .

D. a) La longueur extrémale est un tnvariant conforme. En effet, soit
2’ = f(2) une application conforme transformant {c} en {c¢'}; si g(2) est
une répartition concurrente du PLE {c}, o'(2') = 0(?) | d2/dz’ | est con-
currente du PLE {¢'}, d’ou L..,> L, ; de méme, L., > L., donc
L{C} - L{cl} .

b) Ly,> Ly si {c}>{y}. La méme propriété subsiste si toute y
contient une c.

¢) §’il existe un point z, & U'intérieur ou sur la frontiére de &, tel que,
pour tout & assez petit (e < &), toutes les courbes ce {c} coupent le
cercle |z —z,| =¢, alors Ly, =oco. En effet, la répartition g.()
= (In(epfe)-| 2 — 2o|)™* pour e<|z| <&, @2)=0 ailleurs, est
concurrente, d’oit L, > (1/27) Inegfe quel que soit ¢ (0 <& <g).
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d) S’il existe un point ¢ & I'intérieur ou sur la frontiére de @, tel que
toutes les circonférences de centre g et situées dans un voisinage U de ¢
relatif & G, appartiennent & la famille {c}, alors L, = 0. En effet, il
existe un cercle de centre q et de rayon ¢ extérieur & G — U ; pour toute
répartition concurrente o du PLE {c},

1
2nr

1 &dr
[ I 0ds]2> —|—=o00;
lz—q|=r 27g r

A,> [ etdr> [dr | ods> [®dr
r 2—q|=r r=0

lz—ql<e =0 |

donc L, = 0.

e) M({c,} v {c.}) < M{c,} + MAco}. ?)

En effet, soient g, concurrente du PLE {c,} et g, concurrente du
PLE {c,}; alors o(p) = Max [p,(p), 02(p)] est concurrente du
PLE(fe,} v {e2)); et

A, = [f ot < [f (8 + @d)dr < [f o¥dr + Jf o2dv = Ao + A, ;

done M ({e,} v {ea}) < infy, A, + infy, Ag = M {e,} + M {cs}.

Il s’ensuit que : primosi M {c,} = 0, alors M ({c,} v {c;}) = M {c,};
secundo st l’on augmente la famille {c,} en sorte que M {c,} —>oco mais st
M {c,} reste borné, alors M ({c,} v {c;}) = M {c,} + O(1).

f) Si les familles {c,} et {c,} sont dans des domaines disjoints @, et
Gyetsi {c,} v {c;}c {y}, alors M {y} > M {c,} + M {c,}. En effet, soit
¢ concurrente pour le PLE {y}; ¢, = ¢ dans G,, = 0 ailleurs, est con-
currente pour le PLE {c,}; p, = ¢ dans @,, = 0 ailleurs, est concur-
rente pour le PLE {c,}; et Ay > A, + 4,,.

g) Si les familles {c,} et {c,} sont dans des domaines disjoints G, et
G, et si chaque courbe y contient une ¢, et une ¢y, alors L, > L, ,+ L., .
En effet, soient g, et p, concurrentes du PLE {c,}, resp. du PLE {c,};
la répartition g égale & Ag, sur G4, a (1 — A)p, sur @, (0<1<1)
et nulle sur G — G, —@,, est concurrente du PLE{y}, d’ou
My} < A2M{c,} + (1 — 2)2M {c,}, Cc’est-a-dire (évaluation la plus

M{c,}
M{c,} + M{c,} ) Liyy 2 Ligyy + Ly -

E. Méthode de symétrisation.

Nous dirons qu'un groupe de transformations 7' laisse invariante une
famille {c} si, pour toute courbe c e {c} et toute te 7T, t(c) e {c}.

forte pour 4 =

%) Strebel [22, 23] a démontré, pour la longueur extrémale définie selon Ahlfors et Beur-

ling (§ 2, B), I'inégalité moins forte L, {2, < LL? + L M.

306



Supposons qu’il existe un groupe fini de transformations conformes ou
anticonformes qui laisse invariante {c}. Soient 2z, 2,(2,),...,2,(z;) les
images d’un point 2z, par toutes les transformations du groupe. Je veux
montrer qu’on obtient également M {c} en restreignant le PLE {c¢} aux

répartitions g telles que 0(2,) = p(25) | dzofdz, | =...= 0(2,) | dz,/dz, |.
En effet, soit ¢ concurrente du PLE {c}; la répartition
e 1 2| dz;
L e e

est également concurrente, et l'inégalité de Schwarz3) montre que
Ay < Ay; done M {c} = inf, 4, = infz473.

En particulier, si G* et {c} sont symétriques par rapport a I’axe réel,
on considérera le groupe formé par I'identité et la symétrie : la construc-
tion ci-dessus revient alors & définir simplement g(z) = [o(2) + 0(2)]/2.

F. Principe de Uaugmentation des longueurs extrémales.

Soient {c} une famille de courbes dans un domaine G'; z' = f(z) une
fonction analytique définie dans G; {c'} la famille des courbes images
¢' = f(c). Alors Ly > Ly,.

Démonstration. — Soit p(z) une répartition concurrente du PLE {c};
appelons z; les images réciproques de 2z’ ; la répartition

Mox, (2
o' (z') = Vo 4
siun =~

est concurrente du PLE {c'}, car Cy(c') = Co(c;) =1 (c; est une
courbe € {c} dont ¢’ est I'image). Soit £ I'’ensemble des points 2z, de @
tels que p(2,) |dzyfd2' | = ' (2'); Ao < Ag(H) < Ae(Q), d’ou I'inéga-
lité annoncée.

dz’

dz;

2

dz’

] si tous les sont différents de zéro,

=0 (ces 2’ sont isolés),

§3. Longueurs extrémales et modules. Propriétés des modules

A. a) Considérons un quadrilatére Q (B’ o' p"«"). Soient {c} la famille
des arcs joignant f' a ", et {y} celle des arcs joignant o' & «". Alors
M{y} =L, = pgp.*)

3) Sous la forme plus générale (Jfgdz)® < T f2dz.Jg%dx (f >0, g > 0). Par un par-
tage fin adéquat de l'intervalle d’intégration, on démontre en effet que

Tfrde + A2 T g2dx — 2A T fgdx > 0

pour tout A réel.
%) Cette propriété est bien connue pour la définition d’Ahlfors et Beurling; je montre
qu’elle reste valable avec ma définition modifiée.

307



Démonstration. — Prenons comme représentant de la configuration &
laquelle appartient € un rectangle (0,a,a + ib,:b), o' étant mainte-
nant le segment Oa. ugg = a/b. La répartition constante g, = 1/a
dans le rectangle est concurrente du PLE {c}. Soit ¢(x + 1y) une
répartition concurrente quelconque, on a

b a1 2
0< Jf(e— 00)?de Siodyio(&g + ¢ —&e) dx

b == 2 b L, b
S_‘!’jj@gd" — “j'ody.fc)@dx < 4o — -,
a as = a
d’ot 4, > bla = A, ; 0, est donc extrémale du PLE {c} et L, = a/b.
On montrerait de méme que L, = b/a. %)

b) Considérons maintenant un domaine doublement connexe D, de con-
tours I" et I'". Soient {c} la famille des arcs joignant I" & I'", et {y}
celle des courbes fermées séparant I de I'”. On a alors de nouveau
M{y} =L,=p (ou u est cette fois le module de D). (Démonstration
tout & fait analogue & celle de a.) 8) 7)

c) Grace a ces problémes extrémaux, toute répartition g, dans un
quadrilatére ou un domaine doublement connexe, fournit pour le module
deux approximations: 'une par défaut, 'autre par exces.

d) Ces problémes de variation permettent de retrouver immédiatement
les propriétés bien connues de monotonie et de suradditivité des modules.

e) Couture des segments. Soit D un domaine doublement connexe dont
les contours ' et 8" sont tous deux symétriques par rapport & ’axe réel ;
et soit  un quadrilatére (f' o’ " «") dont le contour est formé par
B', B” et un segment « de ’axe réel (joignant 8’ & ") compté doublement.
Alors pgigrg = pp-

C’est une conséquence immédiate de la méthode de symétrisation
(§ 2, E).

8) Sans transformation conforme, la théorie du potentiel montre que L L, = 1 pour
Q quelconque: Soit # harmonique, = 0 sur f’, = 1 sur §” et & dérivée normale nulle

sur o et a”; soit e = g” Ou/dnds (n = normale extérieure), po, = | grad u | est extré-

male du PLE {c}, et Qoy = (1/e) | grad w | est extrémale du PLE {y}. Il s’ensuit que
l/Ly =L, =1le.

%) Nous voulons nous rendre indépendants, dans la mesure du possible, du théoréme
fondamental de Riemann sur la représentation conforme: aussi considérerons-nous u
comme defini par la longueur extrémale d’une des familles de courbes {c}, {y}.

7) Pour les deux types de figures considérées ici, {y} est la famille des courbes coupant
chaque ¢ en un point au moins; et nous constatons que L, Ly = 1. Voir a ce propos
I'Appendice du Chap.I: E et F.
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B. Coupure extrémale.

Soit @ un domaine (ordre de connexion quelconque) situé dans le plan
complexe, et dont chaque contour est symétrique par rapport & l'axe
réel. Nous supposons que I'on ait désigné, sur la frontiére de G, un cer-
tain ensemble B” également symétrique relativement & 1’axe réel. Soient
donnés en outre deux points réels p, ¢ (& 'intérieur ou sur la frontiére de
() tels que I'intervalle réel p < x < ¢ soit intérieur & G'. Soit g’ un con-
tinu quelconque dans G, contenant p et q ; et soit {c} la famille des arcs

situés dans G et reliant g’ a g". Alors L, est maximum si ' = B = seg-
ment réel p < x <q.

Démonstration. — Appelons {c,} la famille des arcs dans G reliant g; &
. Soit o concurrente du PLE {c}, la répartition g (z) = [0(z) + 0(2)]/2
(ou l'on définit ¢ = 0 sur f’') est concurrente du PLE {c,}; en effet,
C3(cy) = (1/2)Cqlcy v ¢y); or, ¢y vy est un arc®) séparant p de q et
ayant ses extrémités sur g’ ; ¢, v ¢, a donc au moins un point commun
avec le continu 8', ¢, v ¢, contient donc deux arcs disjoints €{c}; donc
Cz(c;) > 1, g est bien concurrente du PLE {¢,}. A7 < A, est (comme
au § 2, E) une conséquence du lemme de Schwarz. Donc L, > L, .

Si G est un domaine de Jordan » p, ¢, de frontiere I'= B”, nous
avons une importante propriété extrémale concernant les modules u des
domaines doublement connexes D dans G, qui séparent petqde I': u < p,.?)

C. Comportement asymptotique des modules.

Soient (ft¢g. 1) G@ un domaine de
Jordan ; I' sa frontiére; o un arc-
frontiere ; {0,} (0 < A <oo, indice
discret ou continu) des arcs & extré-
mités sur I'—a, tels que, si A'<A<d’,
0, sépare o et 0y, de 0,.,, et se re-
fermant, lorsque 4—>co, sur un point
E de I' (E # extrémité d'un 0,). fig. 1

6, partage G en deux domaines de Jordan ; appelons @) celui qui est
adjacent & «. 6, partage @) en Gy et Gy,. Soit {y,} la famille des coupures
dans G séparant « de 0, ; soit {y, }c {ya} celle des coupures dans G,
séparant 0, de 0, ; et soit {cy} = {ya} — {yor}- Appelons {c} la famille
des coupures dans @ séparant I de o, mais non pas de 6,. M {c} < co0?0);

8) Si ¢, a plusieurs points réels, il recoupe c,, mais tout le raisonnement reste valable.

%) Cette propriété peut également étre obtenue & I'aide d’une symétrisation de Steiner
(cf. Pélya et Szegé [18]). Voir aussi Nehar: [15], p. 174.

10) Chaque c¢ a, sur la sphére, une longueur positive; la métrique sphérique fournit
donc une répartition concurrente du PLE {c}.
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{ea}c{c}, donc M{cy} < M{c}; {ya} = {vor}v {ea}, donc (cf. § 2,
D,e) My} S M{yoa} + Micr} < M{yon} + M{c},  clest-a-dire
paoy < poge, + M{cy}. — En vertu de la suradditivité, on sait que
Hady = Hady + He,6, ; donc

ooy < ooy — pogey < M {oy} < Mic} .
D’ol la formule asymptotique :
Had; = 6,6, + O(1) lorsque A —oo .

Cette formule nous sera utile par la suite, notamment & propos du théo-
reme général de Phragmén-Lindelof (111, 3, C).

D. - Applications du principe de Uaugmentation des longueurs extré-
males. f) Augmentation du module d’un domaine doublement connexe.

Soient G un domaine simplement connexe, de frontiére I'; K un con-
tinu simplement connexe dans G'; D le domaine doublement connexe
G — K ; 2'=f(z) une transformation intérieure bornée dans @, analytique
dans D; G' = f(@), K = f(K). Appelons y, le contour extérieur de
K'1) et I', celui de G ; D, le domaine doublement connexe de contours
y, et I';. Alors

MDIZILLD'

Démonstration. — Soit {c}, resp. {c,}, la famille des arcs joignant
les deux contours de D, resp. D,. Tout arc ¢, a un point p’ = f(p) sur
K' (peK); siz' décrit ¢, & partir de p’, z décrit un arc # & partir de p;
p étant intérieur a G, n coupe I" en un point ¢, dont 'image ¢’ est sur c,.
Il existe donc un arc ¢ (de p & q) c#, dont I'image ¢’ (de p' & ¢')cec,. —
La propriété b) du §2, D dit que L, > L., ; le principe d’augmenta-
tion (§ 2, F) dit que L, > L, ; donc Ly, > L,, soit up > pp.'?)

g) Diminution du module d’un quadrilatére.

Primo. Soit Q(f,x,f:2;) un quadrilatére ; supposons que son image
par une fonction analytique 2’ = f(z) soit un domaine simplement
connexe, & partir duquel les ensembles-images B, et f; définissent un
quadrilatére @'. Le module de ' est défini par M {p,}, ol {y,} estla
famille des coupures séparant f; de 8, dans Q'. Alors

Moipser = Ma,pye -

11) (Pest la frontiére de la composante connexe infinie du complément de K’.

12) Si f(z) applique D de fa¢on non-triviale dans un domaine doublement connexe D,
(c. & d. si f(D) sépare les deux contours de D,), alors Dy D D, et up,=> up,, donc up,=> up-.
Cette derniére inégalité a déja été démontrée par Schiffer [20] et par Jenkins [14].
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Démonstration. — Soit {y} la famille des arcs dans @, séparant S,
de B,. Soit ¢ un arc joignant 8, & B, dans @ ; ¢’ joint 8; & B, dans Q';
¢’ coupe donc tout arc y, en un point p’, qui est 'image d’un point p de c.
Par p passe une image réciproque de y,, qui coupe «, et «a, et contient
donc un arc y; donc y,2y"; Ly, > Ly > L, en vertu du principe
d’augmentation, d’ol 'inégalité annoncée.

Secundo. Soient @Q(f,a,8,x;) un quadrilatére; 2z’ = f(z) = u + v
une fonction analytique dans @, telle que v < —b sur oy, v > b sur
ay, et |u | <a dans tout @ (a et b réels > 0). Alors pg g0 < a/b.

Démonstration. — Soient {c} la famille des arcs dans @ reliant §, & g,,
et {c,} celle des arcs dans le rectangle [u | <<a, |v| <b, reliant les
deux arcs-frontiere verticaux. Chaque arc ¢, contient un arc ¢’ = f(c);
donc L, > L., > L, (principe d’augmentation); d’olr

te,pq < Ly = afb .

L’évaluation est exacte, 1’égalité ayant lieu si @ est le rectangle
lu|<a, |[v]|<b et f(z) =2.19)

Appendice du Chapitre I. Les familles numériques

A. J’appellerai courbe brisée un systéme fini ou dénombrable de
courbes ou d’arcs de Jordan c;, chacun étant compté un nombre entier
n, >0 de fois: ¢ = n,¢; + nycy +---= X' n;c;,. Le sens de parcours
des courbes ¢, est indifférent ici, ainsi que I'ordre dans lequel figurent les .
termes. On conviendra d’omettre ceux pour lesquels n, = 0.

La somme de deux courbes brisées est définie par ¢ + ¢®@ =
2 0P 4+ n®)c,. Pour N entier positif, N¢ définira donc la courbe
brisée X (Nn;)c;. — L’ensemble B, de toutes les courbes brisées dans
un domaine G différe d'un espace vectoriel du fait de la condition n, > 0.

B. TUne famille numériqgue dans un domaine G est une fonction réelle
non-négative C dans By, telle que C(kc) = k-C(c) (k réel > 0).

Un exemple particuliérement important est fourni par la famille numé-
rique Co(c) = Z'n, |,, ods (cf. § 2, C), induite par une répartition o dans

13) Jenkins [14] a démontré tout récemment une propriété équivalente a4 notre inéga-
lité ; sa méthode (bien que liée & plusieurs hypothéses restrictives) présente une forte ana-
logie avec notre démonstration générale du principe d’augmentation (§ 2, F); nous avons
cependant travaillé indépendamment de lui. — Nevanlinna ([16], p. 75-76) avait déja
démontré une inégalité analogue, mais moins forte. - Un probléme analogue a été traité
par Pélya [17].

311



G . Cette fonction C, dans B, est lindaire ; en outre, Cpo = k-C, (k réel
> 0) et Co o, = Co + O,

Définitions. — La somme C, + C, est définie par (C, + C,)(c)
= Cy(c) + Cy(c); kC (k réel >0) par (kC)(c)=£k-C(c); [C},C,]
= Max (C,, C,) par [Cy, C.](c) = Max (C,(c), Cy(c)) ; C,C, =

Min (C,, 0y) par C,0C;(c) = Min (C,(c), Cz(c)) . — Nous écrirons C, > C,
si C,(c) > Cy(c) pour toute courbe brisée c.

C. Le module M (C) d’une famille numérique C est défini par
M(C) = inf, 4, (4o = [f o?dr)

ol I'on admet & concurrence toutes les répartitions g telles que C, > C.

Cette définition généralise celle qui a été donnée (§ 2, C) pour les
familles (ordinaires) de courbes4). Elle jouit notamment des propriétés
suivantes :

a) Le module M (C) est un ¢nvariant conforme. Méme démonstration
qu’au § 2, D, a.

b) Monotonie: C, < C, entraine M (C,) < M(C,). En effet, toute
répartition concurrente pour M (C,) l’est aussi pour M (C,).

c) Homogénéité: M(kC)=k?* M(C). En effet, C,o >kC si et
seulement si Oy > C; et A4,,= 1k 4,.

d) [M(C,+ C)I® < [M(CYT™ + [M(C)T' ?) .

Démonstration. — Soient g, et g, concurrentes pour M (C,), resp. pour
M(Cz), Cc_éd—d. Oel 2 01 et 092 2 02; OQI+92 2 Cel + ng 2 01 + 02;

Ael+ez S.ﬁ eidt + E@:df + 2ﬁ9192d'5 < Ae, + A92 + 2VA91A92

en vertu de I'inégalité de Schwarz?3), d’ou1 le résultat.
e) M[C,,C,] < M(C,) + M(Cy).

Démonstration. — (Cf. § 2, D, e) Si Co >C, et Cp > C,, alors
C[Qx;?z] __>_. [Cla 02]; et A[gl,gz] S j‘j‘ (Q% + Q:)dt S A91 + Agz s d’Oﬁ
Iinégalité.

f) Nous dirons qu’un domaine @ ,,porte* une famille numérique C si
C(c) = 0 pour toute courbe brisée ¢ non située entiérement dans G.

14) Jenkins [13] avait déja généralisé la notion de longueur extrémale au cas ou, étant
données plusieurs familles de courbes {c,}, on impose aux répartitions g les conditions
CQ(cy) 2 ay ( > 0)'
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S C, et C, sont portées par deux domaines disjoints G, et Q,, alors
M@C,+ Cy) = M(C,) + M(C,). (Généralisation du § 2, D, f.)

Démonstration. — Ici C, + C, = [C,, C,], e) nous fournit donc déja
une inégalité. — Soit g telle que C, > C, 4 C,; posons g, = p dans
Gy, 0, =0 ailleurs; et g, = ¢ dans ¢,, g, = 0 ailleurs; 4, + 4,
= A,(Gy) + 4,(Gy) < 4,. Donc M(C)) + M(Cy) < M(C, + Cy);
c.q.f. d.

g) (Généralisation du § 2, D, g.) Considérons trois familles numériques
C,, 0,, C satisfaisant aux deux conditions suivantes :

Primo. C, et C, sont portées par deux domaines disjornts G, et G, ;
Secundo. Chaque courbe brisée ¢ contient deux courbes brisées ¢, et c,
telles que C'(c) < min (C,(c,), Ca(c,)) -

Alors 1 1 1

M©) = HM©y T MOy

Démonstration. — Pour tout 0 < 41 <1

MQC) <M[(1 — A0, + AC,] <M [(1 — A)C1] + M(A0,)
= (1 — 3)2M(01) + AzM(Cz)

en vertu de f) et ¢). Cette borne a (en fonction de 1) le minimum

[M(C)? + M(Cp) 1,
d’ol I'inégalité.
h) La méthode de symétrisation (§ 2, E) et sa démonstration restent
valables pour les familles numériques. On dira qu’un groupe de transfor-

mations 7 laisse invariante une famille numérique C si, pour toute courbe
brisée ¢ et toute £ e T, C(c) = C(t(c)).

i) Le principe d’augmentation des longueurs extrémales (§ 2, F) se
laisse transposer ici comme suit :

Soient C une famille numérique portée par un domaine G ; z' = f(z) une
fonction analytique définie dans G ; C' la famille numérique définie dans
G = {(@) par C'(c') = Max,C(c,), ou f(c;) =c'. Alors M(C') < M(C).

Démonstration. — Soit ¢(2) concurrente pour M (C), c’est-a-dire
C, > C; appelons z, les images réciproques d’un point 2’ e G’ ; la répar-
tition

oo Max;[o(z;) | dz;/dz" |] si tous les dz'/dz; sont différents de zéro,
') = { 0 si I’'une de ces dérivées est nulle,
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est concurrente pour M (C’), car Cy(c') > Max,Cy(c;) > Max,C (c,)
=C'(c'); et A, < A,, d’olr le théoréme. -

De méme que les principes de Nevanlinna (sur la mesure harmonique
et sur la distance hyperbolique), le principe ci-dessus exprime seulement
une propriété de monotonie ; il ne dit pas de combien le module d’une
famille numérique diminue par une application analytique non-univa-
lente. Il n’est donc pas sans intérét de le préciser comme suit.

i) Soit C* la famille définie dans G' par C*(c') =VI[C (c,) 13, ou
f(c;) =¢'. Alors M(C*) < M (C). '

Démonstration. — Soit p(z) telle que C, > C; je dis que la réparti-
tion

V X [o(2;) | dz;/dz’ |]* sitousles dz'/dz, sont différents de zéro,
) =1
0 si 'une de ces dérivées est nulle,

est concurrente pour M (C*). En effet, 'inégalité

Cox(c') = _.[z'ec'V“_'—"(Q(zi) | dz; [)? = V‘_S(ic,- e (=) | dz|)? = VZ [Celed) ]

s’obtient par passage & la limite & partir de X'V Xa}; >V a;;)?
J ¢ i 7
(la somme 2X'|g;| des longueurs des vecteurs g; = (@,;, @z;,..., ;)
i

est au moins égale & la longueur | X g,| du vecteur résultant); donc
]
Cox(c') =V Z [C(c;) 2= C*(c'), o* est bien concurrente pour M (C*).

D’autre part, A= 4,, d’ou M (C*) < M (C).

Par exemple, si 1 =1,2,...,n et C(c,) =C(cy) =...= C(c,),
alors C* =Vn.C', le principe énoncé sous i) est précisé dans ce cas
par M(C') < M (C)/n. ' '

D. Je dirai que deux courbes brisées ¢ = Zmn,c; et ¢ = Znc;
sont homotopes relativement & une figure G* (¢ ~ ¢'), sil’'on peut établir
une correspondance biunivoque i<>»; telle que ¢,~¢c,, et n, = n,,.

L’ensemble By des courbes brisées dans G se décompose en classes
d’homotopie k,; (relativement a G*).

Une famille numérique C sera dite relative & une figure G* si ¢~ ¢
entraine C(c) = C(c¢’); C induit alors une fonction, notée aussi C', dans

I’ensemble $ des classes d’homotopie ;.
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E. Je me permets d’énoncer ici une conjecture: je n’ai pas pu la
démontrer, mais je l'ai vérifiée dans de nombreux exemples; nous en
rencontrons plusieurs au cours de ce travail.

Je désigne par 7;; le nombre minimum de ,,points d’intersection de
deux courbes brisées” ¢ = ZnPcP e h; et ¢ =T ad P h,;:

4 s
Ny = minc“:)eha‘ ) n(ITé) ng)'n(c%)’ Cg)) ’
eh; K,8

ou n(c,y) estle nombre de points d’intersection des courbes c et y.

Conjecture. Soient O, et C, deux fonctions réelles > 0 dans §, telles
que C,(h;)-Cy(h;) < n;; pourtousi,j. Alors M(C,)-M(C,) < 1.
Cas particulier : Soient {c} et {y} deux familles de courbes. Si chaque

courbe c coupe chaque courbe y en N points aw moins, alors Ly, L., > N2

.F. Soit C une fonction réelle > 0 dans §. Je désigne par C la plus
grande fonction > 0 dans §, satisfaisant avec C & I’hypothése de la
conjecture. En d’autres termes, je définis C par

Ny
Clhy)

Si C est la fonetion caractéristique d’une famille de courbes {y}, C(c)
= n(c, {7}) - minye{‘Y} 'n(c, 7)' _

La conjecture énoncée sous E est équivalente & M (C)-M(C) < 1.

Dans les exemples qui se présentent au cours de ce travail (Chapitre I,
§ 3, A; Chapitre II, §§ 2 et 3), on a méme M (C)- M (C) = 1. Cela sug-
gere la

Question. Sous quelles hypothéses a-t-on M (C)-M (C) = 1?

18) Utilisons momentanément les notations de la théorie des ensembles: C au lieu
de <<, C; v C, aulieu de [C,,C,], C; ~ C, au lieu de C,C,. On montre facilement :

8) si C,CC,, alors 0;DC,; b) CDC; ¢)C=0C; d) C,u0y,=C,n Cy; e)C,m Gy
D_(:'-lv-é’;; f) CluCzD—é’-lv—dg et Olr\CzC—aln-ag.—Appelons_C_la fermeture de C,

et disons que C est fermée si C = C. Toute famille fermée est inverse, et réciproquement.

C est la plus petite famille fermée DO C. Appelons ,famille vide* (ou ,,nulle) 0(c) = 0;

6-(0) = 00, 0 = 0. d) montre que lintersection de deux familles fermées est fermée.
Cependant, e) ne permet pas d’affirmer que la réunion de deux familles fermées soit fer-
mée : c’est le seul axiome de Kuratowski non-satisfait vct.

Dans les exemples simples qui se présentent au cours de ce travail, les familles considé-
rées sont fermées ; rien ne dit que ce soit le cas généralement. — On pourrait restreindre les
définitions de ce paragraphe aux familles numériques de courbes connexes, non-brisées.

11 est alors facile de construire une famille {c} 3% {c}: dans un domaine triplement con-
nexe de contours Iy, Iy, I';, {c} sera la famille des arcs joignant I & I, ou & I75.
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Chapitre II. Mesure harmonique et distance hyperbolique

§1. La fonetion »(r)

A. Définition. »(r) (0 <7 < 1) est le module du domaine double-
ment connexe dont les contours sont le cercle-unité |z| =1 et le seg-
ment réel 0 < x <r. 18)

B. Discussion dans le cadre de la théorie des intégrales elliptiques.
Le quadrilatére défini par le demi-plan inférieur y < 0 et ses points-
frontiére oo, 1/r, r, 0 est représenté conformément sur le rectangle
(0, 0y, w; + Wy, wy) (wy =1 | wy|) par l'intégrale elliptique

dz

wee) :of Ve — 1)\ — 1Jr)

avec w, = w(ljr)=2VrK(r) et | wy| = 2VrK'(r), selon les nota-
tions usuelles pour la forme normale de Legendre :

B[V(l-—xz)(l—rﬂxz) K'(r)=KWlV'1—r?.

Le module ¢ de notre quadrilatére initial (relativement aux arcs-fron-

/
titre 0 <z <r et 1/r <z <oo) vaut |, = i) . La méthode
w0, K(r)
de symétrisation (I, 2, E) montre des lors sans peine que
1 K'()
") =1 Koy 8)
11 s’ensuit immédiatement que

e 1

. —r?) = —
v(r)-» (V1 — r?) T (2)

D’autre part, la transformation de Landen, connue dans la théorie des
fonctions elliptiques [25], permet de déduire de (1) les formules de récur-
rence :

29(r) = v( (1 —V1—y )

72

(3)
et
(3"

o= (25

16) Si @(P) désigne la fonction définie par Teichmiiller [24], »(1/P) = (1/2n) In O(P).
Il est immédiat que v est monotone décroissante.
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On tire des égalités (2) et (3):

v(r)-v(l_—r>=%— (4)

1+ 7

Les développements asymptotiques de v (r) pour r — 0 et r — 1 peuvent
étre obtenus & partir des développements connus de K (r) pour ces deux
mémes cas limites. On obtient ainsi :

r—0: v(r) =~§1&—ln %—{— O(r?) , (5)
r>1: () =—o (1+ 0L — 7). (6)

C. Discussion élémentarre. Au lieu d’employer la théorie des inté-
grales elliptiques et les développements connus, on peut procéder élémen-
tairement ; comme 7T'eichmiiller [24] (pour des résultats partiels), je pense
qu’il vaut la peine d’indiquer de quelle fagon.

Je désigne par D(a, 4, b) le domaine doublement connexe obtenu en
coupant la sphére de Riemann le long des segments réels —a < x <0
et d <x <6+ b, et par u(a, 6,b) son module. Le module étant un
invariant conforme, u(a,d,b) = u(ia,Ad, Ab) = u(b, 6,a). D’autre
part, une inversion w = a/z, appliquée sur D(a, 4, b), montre que
u(@, 6,b) = u(ab/é,a + 6 + b, oo).

La méthode de symétrisation (I, 2, E) montre que

2v(r) = u(r, jr — r, o) ,
donc
2v(r) = u(r?, 1 — 2, o0) . (7)

D’autre part, la transformation w = (z + 1/2)/2 donne

y=p(2, 17— 1, oo) =ular, =t o) =u(( s (157) > =)

La comparaison de cette expression avec (7) fournit les formules de récur-
rence (3') et (3).

(I, 2, E) montre aussi facilement que le quadrilatére défini par le demi-
plan supérieur et les segments-frontiére —a < <0 et 6 <z <oo,
a un module wu,.,= 2u(a, 8, co); l'autre module du méme quadrilatére
vaut u, 5= 2u(0,8,00); fse0 Ms=1, donc u(a,d,00) -u(d,a,00)=1/4.
En vertu de (7), cette identité est équivalente & (2) ; d’ol (4).
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De (7), on tire encore

1@, 0,b)=2v ]/( F0) ( +5) 2”(1/(371,134:‘”2’373)):

en vertude (2),o0t a =2, — 2, d =23 — x,, b=, — 25, et

1

8”( V(‘”l, xz:%:‘”a))

(8)

Xy — Xy Xy — X4

(%1, X4, Tz, X3) =

Evaluations. La transformation w = (2 + 1/2)/2 applique l’anneau
circulaire 1 < |z|< R sur lellipse E,, de foyers 41 et de demi-axes
a= (R + 1/R)/2, b = (R — 1/R)/2, coupée le long du segment joignant
les foyers. C’est un domaine doublement connexe de module

u(B,) = (1/272)In R = (1/27)In (@ + Vaz — 1)

Considérons maintenant le cercle |z| < K > 1, que nous coupons le
long du segment réel —1 <z <1; soit C; le domaine doublement

.. ) . z 1
connexe ainsi construit. La transformation conforme w — ——j_— K

2K \ 1 (1 Al 2
montre que u(Cg) =v(————) (Kz) selon (3’). EKCCKCE@?J;

K21

done, selon la monotonie des modules pw(Bg) < p(Cg) < u(E zi71)

ol 1. 14+ Vi—r 14+ Vi¥s
—In <N < ln . 9
- <) < = 9)

Formule asymptotique pour » — 0: (9) donne

1.4 ,
v(r) -—?%—ln—;——%O(r) (5")

L’inégalité de droite dans (9) se laisse améliorer par le raisonnement
suivant : Considérons le segment réel 0 < x <r et les circonférences
|z] =1 et |2] = R>1. En vertu de la suradditivité des modules
(I, 3, d), , 1 .
'V(—R;‘)Z'V(T)"*“‘Q—EIHR. ( 0)

r restant fixe, prenons R trés grand ; (10) devient, en vertu de (5'),
1 4 r
)= gyt 0(7{)
(valable si grand que soit R), donc
?ly—z—ln 1+ V1i—r) v(r)<—l—-1n— (9")

r - 2=
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On voit que ces évaluations sont d’autant meilleures que r est plus petit.
On peut d’ailleurs les améliorer autant que Uon voudra, par Uapplication
itérée de la formule de récurrence (3).

Améliorons p. ex. I'inégalité de droite :

1 2(1 -+ V1—1r?)

v(r) < In

"
- 2x r (99

Pour obtenir des évaluations bonnes pour r wvoisin de 1, nous rem-

plagons r par —%—_—_}t—; dans (9’) et nous utilisons (4) :

4, (Vitr+Vorp 1 <_‘£1n(4. I"H). (11)

—;ln 1—7r — () T =m 1—17r

On peut améliorer ces évaluations autant que I’on voudra, par Uapplication
itérée de (3').
Formule asymptotique pour » —1: (11) donne essentiellement (6).

Quelques valeurs particuliéres. (2) donne immédiatement » (1/V§) = 1/4,
et de méme (4) donne »(¥'2 — 1) = 1/2V'2. A partir de ces valeurs, on

n
peut résoudre élémentairement toute équation en r de la forme »(r)= 22
(avec n entier), par application répétée des formules (3) ou (3'). Exemple :

1/2 = 2 (1V2) = »((V2 — 1)2) = »(3 — 2V2).

§2. Mesure harmonique et longueur extrémale

Nous considérons un domaine de Jordan sur lequel on a désigné un
point intérieur p et un arc-frontiére (connexe) . On sait que la configura-
tion & laquelle appartient cette figure est complétement déterminée par
la mesure harmonique w de Uarc o au point p. — Il suffit donc de choisir
un représentant de cette configuration : le cercle-unité, avec p & l'origine
et le point 1 au milieu de a: o = {€*}__,_¢ 0o -

Soit, B ’arc-frontiére complémentaire de «. Appelons {c} la famille
des coupures (& extrémités sur «) qui séparent p de 8, et {y} celle des
coupures (4 extrémités sur f) qui séparent p de «.

Soit 7 le segment réel —1 < a2 < 0; 7 détermine un quadrilatére
Q(of' np"), dont les modules u,,q = 1/uggrg sont caractérisés par deux
PLE . La méthode de symétrisation (I, 2, E) permet de restreindre ces
deux PLE, ainsi que le PLE {c} etle PLE {y} aux répartitions g (2)
= (2); il en découle facilement que L, = 4pu,, et L, = ugg = 1/u,,.
La transformation conforme w = u + tv = (2 + 1/2)/2 applique l'inté-
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rieur du cercle-unité sur l'extérieur du segment réel —1 <u <1,
n sur le segment réel —co<u << —1 et a sur le segment réel cos (ww)
< u < 1. Une ,,couture” (I, 3, e) du segment réel —1 < u < cos (7 w)
montre que u,, = u(l — cos (Fw), 14 cos (Tw), 00) = 2 (sin 7w w/2)
selon (8). Donc

. 1 ] T
L, = 8v(sm ’“") . L,=-—— = 8| cos ) (12)
P) ey - e

en vertu de (2). On a L,(w) = L, (1 — w), comme il se doit17)18).
Cas limite w — 0:

%:Lc:!};—m%+0(w2). (12/)

o est une fonction biunivoque de L, (ou L,); donc L, caractérise la
configuration. De plus, » étant monotone décroissante, chaque répartition
concurrente du PLE {c} (resp. du PLE {y}) fournit une évaluation par
exces (resp. par défaut) de w. 1?)

Application du principe d’augmentation des longueurs extrémales. Sup-
posons qu’une figure G** (domaine de Jordan G, point intérieur p, arc-
frontiére «) soit appliquée sur une autre G?'** du méme type par une fonc-
tion analytique 2’ = f(2): @, = f(#) — f(«), oy = frontiére commune
& @, et & f(a). (Par exemple G = cercle-unité et z' = 22) Alors w4 ¢,
> wyg- Em effet : Soit {y}, resp. {y,}, la famille des coupures sépa-
rant p de « dans G, resp. p’ de «; dans @, ; tout comme en (I, 3, D), on
montre que chaque y, contient une y' = f(y); Ly, = Lyn = Ly,
en vertu du principe d’augmentation (I, 2, F), donec w, > w selon (12).
On voit par ce cas particulier que notre principe sur les longueurs extré-
males est apparenté au principe de Nevanlinna sur la mesure harmonique :
la mesure harmonique d’un ensemble-frontiére ne peut pas étre diminuée
par une application analytique 2°).

|

17) 11 faut insister sur le fait que les formules (12) ne sont valables que si primo le do-
maine est simplement connexe ef secundo « n’est formé que d’un seul arc-frontiére.

18) Chaque courbe ¢ coupe chaque coube y en deux points au moins, et L oLy = 22,
(Cf. Appendice du Chap. I, E et F.)

19) Ces évaluations sont essentiellement indépendantes du choix de la figure dans la
configuration, contrairement & I’évaluation de Carleman pour un domaine convexe :
o < p/n, ou @ est 'angle sous lequel on voit a & partir de p. — L’évaluation de w donnée
par Beurling [2] ne dépend également que de la configuration; mais elle n’est pas la
meilleure possible, et est moins maniable que celle indiquée ici.

20) Nous n’avons considéré ici qu'un cas trés particulier des deux principes.
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§3. Distance hyperbolique et longueur extrémale

La figure considérée G?? est définie par un domaine simplement connexe
G dont la frontiére est un continu I, et & I'intérieur duquel on a désigné
deux points p, q. Sa configuration est caractérisée par la distance hyper-
bolique h = h,,q (ou la fonction de Green g =g,,) des points p et g
relativement au domaine G'.2!) — Comme au paragraphe précédent, il
suffit donc de considérer un représentant de cette configuration : le cercle-
unité, avec p a 'origine et ¢ = Th h = e77.

Soient {c} la famille des courbes fermées séparant p et g de I, et {y}
la famille des coupures qui séparent p de ¢. Nous comparons, dans le
cercle-unité, le PLE {c} et le PLE {y} avec les deux PLE qui défi-
nissent le module »(9) du domaine doublement connexe dont les con-
tours sont le cercle |z | = 1 et le segment réel 0 < x < q. La méthode
de symétrisation (I, 2, E) montre facilement que 1/L, = L,/4 = »(q).

1
—_ . 22) 18
En vertu de (4), »(Th A)= 8o () donc 22) 18)
L= b 4y(e%); L, = 8y(e) = — (13)
Yo 2p(e—2h) »oe v(e~9)

Cas limite h — 0, soit g —oo:

4
L,

— L=+ 0 =2+ e+ 0 (13

Cas limite h —oo, soit g - 0:

— 4 - 8 —4hy __ i _§_ 9 /4
L= =—(+In2+0E"="In_"+0@). (3
L, (ou L,) caractérise la configuration. — Chaque répartition concur-

rente du PLE {c} (resp. du PLE {y}) fournit une évaluation par défaut
(resp. par excés) de h et une évaluation par excés (resp. par défaut) de g.%3)

Application du principe d’augmentation. Soient G un domaine simple-
ment connexe; 2’ = f(z) une fonction analytique dans G; G, un do-
maine simplement connexe contenant f(G). Sip,qeG,ona by, g <h,q.

En effet : Soit {y}, resp. {y,}, la famille des coupures séparant p de g

21) hyeq est normée comme suit : si G est le cercle-unité, horg = (1/2)In (1 + 7)/(1 — 7)
= Ar Th r (fonction inverse de la tangente hyperbolique : r = Thho,q); et gorq = —Inr.

22) Tl est essentiel pour la validité de (13) que @ soit simplement connexe.

23) Beurling a indiqué dans sa thése [2] un probléme de variation caractérisant A, et
conduisant & des évaluations par défaut ; ce probléme est tout & fait distinet du notre.
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dans G, resp. p’ de ¢’ dans G ; comme en (I, 3, D), on montre que chaque
v, contient une y'; Ly, > L,., > L,, (principe d’augmentation,
I, 2, F), donc h, <h selon (13). Ce cas particulier montre que notre
principe est ausst en relation avec le principe de Nevanlinna sur la longueur
hyperbolique : celle-ci ne peut jamais étre augmentée par une application
analytique 24).

Chapitre III. Applications.

§1. Variation de la distance hyperbolique par une déformation
du domaine

A. Je considére deux domaines simplement connexes GC@’' em-
boités, de frontieres disjointes I', I''. Je désignerai par le signe ’ les gran-
deurs relatives & G’. Soient p et ¢ deux points intérieurs ou frontaliers
de @. L’inégalité h;q < h,, (monotonie) est bien connue, elle est équi-
valente au lemme de Schwarz pour le cas d’'une fonction univalente. —
Sous nos hypothéses, le module ypp. (du domaine doublement connexe
G’ — G — I') n’est pas nul ; je veux alors remplacer I'inégalité de mono-
tonie par une autre plus forte.

J’écris h pour h,,, et u pour upp.. Soit {c} (resp. {¢'}) la famille définie
au Chapitre II, § 3, et soit {y, .} la famille des courbes fermées séparant
I'deI”; {c'}>{c}v {ypr.}; done, en vertu de (I, 2, D, {),

Mi{c'y > MA{c} + M{yrp.} ,
c’est-a-dire, selon (I1I, 13),

1 1

ey = Sy T ok M) 20 F o

ou g =g,, estla fonction de Green.

B. Cas limite h -0, soit g »oco: b <e ™ (h+0MR?)); g >¢
+ 27u + O(e%). Ces évaluations sont valables uniformément, quelle
que soit la maniére dont A — 0. — Notons que I'inégalité h' < e 2 }h
est valable pour tout » (démonstration élémentaire).

Soit p fixe, intérieur & G ; lorsque ¢ — p, M ({c'} — {c}) reste borné;
il s’ensuit facilement (comme en (I, 3, C)) que g’ = g + O(1). Ce résultat
connu permet de définir la constante de Robin y,:9=In(1/|q —p]|)

34) Précision importante: Si I'on prend pour G et G, des surfaces universelles de re -
couvrement, le raisonnement ci-dessus démonire ce principe de Nevanlinna lui-méme.
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+ y, + o(1) lorsque ¢ — p; et notre cas limite de (1) exprime 1'inéga-
lité connue y, — y, > 2zpu.

C. Cas ou h (resp. g) est inconnu (on s’en désintéresse). Les inégalités
(1) fournissent le théoréme général suivant, qui est en réalité & la base du
§ 3 du Chapitre II :

Tout continu dans Q' contenant p et q détermine avec I un domaine
doublement connexe de module

1

nE gy = ).

Cas limite p-—>oco: b < 4e ™ 4 0 **); ¢ >2au —In4 4
O (¢~*™*). Supposons que G?? reste fixe ; lorsque u —>oco, I" se referme
sur un point £’. Soit {£} la famille des courbes fermées séparant E’ de
p et ¢, mais non pas de I'; {c¢'}<{ypp/} v {£}, donc, selon (I, 2, D, e),
My < M{ypp.} + M{&}, ce qui démontre que &' = e 20D .
g =2npu+ O(1).

D. Les inégalités (1) ne peuvent pas étre améliorées, la borne indiquée
est exacte. En effet, étant données des valeurs kq, kg et u, telles que I’éga-
lité soit réalisée dans (1), on peut construire des figures @' DG3 p, q
telles que h = hy, A’ = h, et u = u,: il suffit de choisir pour I" et I"
des ellipses convenables, de foyers p et g. — Plus généralement, quel que
soit G'??, coupons G’ le long du segment hyperbolique (relativement & G')
n = pq; soit u la fonction harmonique nulle sur I" et = 1 sur % ; pour
que I’on ait 1’égalité dans (1), il faut et il suffit que I" soit une courbe de
niveau de u. '

E. Hadamard [5] [6] (cf. Schiffer [21], p. 292) a donné une formule
permettant de calculer la variation exacte de la fonction de Green par
une déformation infinitésimale d’un domaine dont la frontiére a presque
partout une tangente. La formule d’Hadamard peut étre comparée & (1)
si en outre le domaine est simplement connexe. Elle est toujours meilleure
que (1), & condition que I’on connaisse exactement quelle est la variation de la
frontiére. Au contraire, (1) ne suppose pas la variation infinitésimale, et
on peut I'appliquer dés que I’on connait u (ce n’est qu’une donnée globale
sur la déformation).

§ 2. Variation de la mesure harmonique par une déformation du domaine

A. Soient (fig. 2) G un domaine de Jordan de frontiére I", § un arc-
frontiére de @ et « une coupure de G, & extrémités sur I' — f§; « partage
G en deux domaines G, (adjacent & f) et Gy ; soit enfin p un point de
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Gy. — J'écrirai wg PouUr w,sq, W, POUT ®,qg, , €6 uy POUr pyg, . — Le
principe de déformation de Carleman dit que w; < w,; nous voulons
permettre de préciser cette inégalité chaque fois que ’on connaitra pour
Y2 une évaluation par défaut.

Soient {y} la famille des coupures dans  séparant p de §; {y,} celle
des coupures dans G/, séparant p de o; et {y,} celle des coupures dans
G, séparant o de . {y}> {y;} v {ys}; donc, en vertu de (I, 2, D, f),
M{y} > M {y,} + M{y,}, c’est-a-dire, selon (II, 12),

" (sin nw3> > v(sin n;)a> + ‘L;2 . (2)

2

fig. 3

B. Cas limite w,—0: wg<e ™:(w, 4 O(w})). Appelons I la
frontiére de G,. Soit {¢} la famille des coupures séparant p de §, mais
nonpasdea; {y} = {y;} v {{}; envertude (I, 2,D,e), M {y} < M {y,}
+ M {£}. Si p tend vers un point intérieur de Uarc I'y — a, on voit
facilement (répartition constante concurrente) que M {£} reste borné
supérieurement. Donc M {y} = M {y,} 4+ 0(1), d’ot wg= w, ",
wg et w, sont du méme ordre de grandeur.

C. Cas ou w, est quelconque, inconnu (fig. 3). (2) donne le théoréme
général suivant, qui est en réalité a 1’origine du § 2 du Chapitre II:
Tout continu A dans G + I', jorgnant p @ I' — B, détermine dans @

un quadrilatére de module u, 5 < 2v (sin —7}——;-)’3—) ‘

Cas limite Py —>00: wg < %e“”"” + O (e™3e) |

Supposons que GY* reste fixe et que B se réduise progressivement & un
point E, tandis que G, est augmenté ou ne change pas; soit {£{} la
famille des arcs séparant £ de p mais non pas de « (dans le grand domaine
G = réunion des domaines intermédiaires); {y}C{y,}v {£}; selon
(I, 2,D,e), M{y} < M{y,} + M{s}; don

In wg = — 7w, + O(1) . (3)

324



Si p,qe@G,, nous avons donc

wpg = wyg- €D ; (3)
mais (I, 3, C) montre que le choix de « ne joue pas de réle pour le com-
portement asymptotique de u, (addition de O(1)), donc:

(3') reste valable pour tous p et ¢ dans G.

D. L’évaluation (2) ne peut pas étre améliorée, la borne indiquée est
exacte. En effet, étant données des valeurs o), ol et pj réalisant ’égalité
dans (2), on peut construire une figure G*# et ac@ telles que wg = wy,
w, = ) et u, = pd. On choisira par exemple, dans un faisceau de
coniques homofocales dont p est un foyer, pour I' — f un arc d’ellipse,
pour 8 et a des arcs d’hyperboles. — Plus généralement, quel que soit
G*®, soit a le point-frontiére partageant I' — B en deux arcs d’égale
mesure harmonique au point p. Soit 7 le segment hyperbolique pa rela-
tivement au domaine G'; soit » la fonction harmonique dans G — 7,
solution du probléeme de Dirichlet-Neumann suivant: u = 0 sur f,
w=1 sur n, ou/on = 0 sur I' — f. Pour que I'égalité ait lieu dans
(2), il faut et il suffit que « soit une ligne de niveau de u.

E. La borne exacte fournie par (2) est beaucoup meilleure que celle
contenue dans I'inégalité

wg = Wy SUPg e Wepg (4)

due & Ostrowski ([4], p. 44—45). Cette inégalité (reposant sur un raison-
nement élémentaire de théorie du potentiel) n’est jamais la meilleure
possible si p est intérieur & G, .

§3. Applications. Théoréme général de Phragmén-Lindelof

A. Considérons (fig. 4) le cas par-
ticulier olt « et § sont des segments
rectilignes paralleles x=a et xr=b.
G étant simplement connexe, la
droite =1 (@ <A<b) a un et
un seul intervalle 0, (de longueur
6(2)) dans G qui sépare p de fB;
0,=a, 0,=24. fig. 4

Les segments infiniment voisins 6,, 6, ,;, déterminent avec I' un
quadrilatére de module du(x) = ug_o, 4z = dz/0 gx); en vertu de la

suradditivité des modules, u, = u,g > f du(x) = [ dz/0(x); je désigne-
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rai cette intégrale par x = u(a, b).25) (2) donne maintenant

. TTwg . T u
v(sm 3 )2v<sm 5 )—!——2—. (5)

On remarquera que, vu la restriction imposée aux arcs a et § (qut n’est
pas de nature topologique), I'inégalité (5) a perdu la propriété de (2) d’étre
la meilleure possible.

B. Je veux comparer cette évaluation avec I'inégalité
wg < wye€ (6)

que R. Nevanlinna ([16], p. 71) a obtenue (sous des hypothéses un peu
plus générales) & partir du principe de déformation de Carleman, en appli-
quant de fagon continue I'inégalité (4) le long de I'intervalle a < x < b.26)

a) Cas o w, est quelconque, inconnu.

Pour u — 0, (6) est beaucoup meilleure que (5).

Pour u —>oo, par contre, (5) donne

wp <~ ¢~ 4 O(e=57F), (&)

qui est meilleure que (6).
Si u=1/2, (5) donne wg < 1/2, tandis que (6) donne
2
wg < e =~ 1/1,89 ;

on voit que (5) est déja un peu meilleure dans ce cas.

b) Dans le cas o4 w, a une valeur connue (ou évaluée par exces), I’avan-
‘ tage de (5) sur (6) (pour u pas trop petit) est encore renforcé. Voici quel-
ques exemples :

Pour u —>oco et w, = 1/2, (5) donne

8 _.a-=% - 8 -
wp S —e P4 Ol ) N g — e (5")

tandis que (6) donne seulement wg < (1/2) e =t o)

) L’évaluation u, > u peut aussi étre obtenue comme suit: soit {0}={0z}g<z<b;
I'inégalité de Schwarz montre que g, = 1/6(z) sur 0, est extrémale du PLE {f}; donc

b -
M{0} = 0{ dz/0(x) = u. Soit {y} la famille des arcs séparant o de f dans &,; {y}D {0},

donc u, = M{y}> M {0} = u. Cette méthode se laisserait généraliser & des domaines
multiplement connexes.

26) Comme (4) ne fournit pas la borne exacte, il faut s’attendre & ce que (6) soit d’autant
moins précise que l'intervalle b — a est plus grand.

27) En appliquant l'inégalité (4) d’Ostrowsks au résultat (5'), on obtient une évaluation
différant de (5”) par le seul facteur 1/2 au lieu de 1/4,8; (5”) est donc plus forte, et on voit
par cet exemple combien la formule générale (2) fournit un mécanisme d’approximation plus
adéquat.
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Pour p = 1/2 et w, = 1/2, (5) donne
wg < (2/m) arcsin (3 — 2 VE) ~ 0,11 ;

tandis que (6) donne wg < e~*7/2 ~ 0,264,
Si w, -0, (5) donne wg < e~ (w, + O(w})), évaluation meilleure
que (6), d’autant plus que u est plus grand.

C. Théoréme général de Phragmén-Lindelof.

Soient (cf. fig. 1) G un domaine de Jordan (de frontiére I'), qu’'une
coupure 0, partage en deux domaines @, et Gy ; p un point de G,; {6,}
(0 < 2 <oo, A = parameétre continu ou discret) des coupures emboitées
intérieures & G, (0, sépare p de tous les 6),, o 1A' > A) telles que
Hoy = UBy6,—0co quand A —oco. Les 0, convergent vers un point £ de I

Soit % une fonction sous-harmonique dans @, telle que

lim sup, . u(2) <0

pour chaque (el — E. Je pose u) = Maxzeo, u(2) et

o,= lim inf, _, (u)e ") | (7)
St o9 >0, alors
. AWpe
u(p) < _;St_o_o e—2nv(smm._2”_9) (8)

Démonstration. Il existe un A aussi grand que l'on veut, tel que
uy < (o + 0(1))e™or . En vertu de (2), on a

WP,

) . (1+0(1)),

u(p) < Uy, e, < (0, + 0(1)) ™0 % e ~Har—2a» (sin
d’ou (8).
On peut aussi interpréter (8) de la facon suivante : Sv
uy = Max,e u(2) =1 ,
alors, pour toute suite {0,} du type considéré,
lim inf, _  (u)e™"or) > 78 .

Que peut-on dire si o, = 0? Alors » <0 dans G,. Mais on a vu
(I, 38, C) que o) = p,» + O(1) lorsque A —co, x restant fixe. Par
conséquent les o, sont soit tous nuls, soit tous différents de zéro. oy =0
entraine ¢, = 0 pour tous les », donc (en vertu de (8), ot 'on rem-
placera l'indice 0 par ) v <0 dans UQ, = (.

Théoréme 1. S o, < 0, alors uw < 0 dans tout G .
La démonstration a été donnée pour le cas oo =0; si ¢< 0, il
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existe une suite partielle {4,} (—>oco) telle que u), <0; u <0 dans
les G),, donc dans UGy, =G: 8i 0y< 0, alors u <0 dans tout G.%)

Théoréme 2. o, > —oco.

Démonstration. Raisonnons par l'absurde: soit ¢, = —oo. Pour
tous M >0 et 4> 0, il existe alors un arc 0, tel que 2> A4 et
uy e "r < — M. En vertu de (3),

u(p) <wuy Wpe, < — M .e™or .g=or+ O — _ Jf.O0W

donc # = —oo dans G,; cela contredit I’hypothése que u est sous-
harmonique.

D. En particulier, si les 0, sont des segments verticaux x = A4,
E étant a l'infini (cas limite de A), (8) est valable a fortior: avec, au lieu
de oy, 0o= liminf, _(u)e ") >0 par hypothése. Comme
| 6| <l0oo|, le théoréme 1 devient: Si o, <0, alors u <0 dans
tout G (et w <0 si 0,<0). Cest une forme connue du théoréme de
Phragmén-Lindelof. — Par contre, on n’a pas le droit de remplacer o, par
o, dans le théoréme 2.

De fagon analogue, il est facile d’appliquer I'inégalité (8) et de formuler
la théoreme 1 pour le cas ou les 0, sont des arcs de cercles concentriques.
On obtient les théorémes connus.

E. Revenons a la figure 4, considérée sous A. Le segment o sépare ¢f
en G, (adjacent & B) et G,. Il existe un z, (@ < x, << b) tel que u(a, x,)
= (2, b) = w/2; en vertu de (5), on a, en tout point z,e0,,
Wyng, <@ € @, <, o @ est défini par »(sinzw/2) = p/4;
donc o, < 2w ; d’ou I'inégalité

v(sin nwzozuB,Gz) > __i;:i . (9)

I1 existe donc toujours une transversale verticale 0, telle que chacun de ses
points satisfasse (9)2°).
L’inégalité (9) n’est pas la meilleure possible, car (5) ne I’est pas 20).

O,QUB,G2

28) Rappelons que (3') est valable ici, et montre aussi directement que le point-fron-
tiere K, singulier pour %, influe sur « (p) soit pour tout p e @, soit pour aucun peG.

2%) Comme je le montre dans une autre publication ([9], formule (1)), il existe dans le
quadrilatére G, une coupure y (pas mécessairement verticale) séparant o de f et en tout
point de laquelle on a (relativement & G,) wgup < w, ¢’est-a-dire

v(sin & waup/2) = plt 9)

et cette évaluation est exacte. 11 est intéressant de constater que la borne pour o dans (9)
est deux fois plus petite (meilleure) que dans (9).

30) Cependant, dans tout le domaine 0 < w < 1 qui nous intéresse, (9) est plus précise
que Pl'inégalité de Nevanlinna ([16], p.73): In wgup < — (2/7) u + In 2. Dans le cas
limite gy — co notamment, (9) donne

In waup < — (#/2) p + In (16/7) + o (1) . (9)
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§4. Variation d’une fonction harmonique
dans des domaines simplement connexes emboités

A. Soient G un domaine simplement connexe ; p et ¢ deux points inté-
rieurs ; # une fonction harmonique dans G.

On démontre facilement (application conforme de G sur un cercle et
usage de l'intégrale de Poisson) I'inégalité

| w(p) — u(q) | S—%-Varg u-arcsin Th i (10)

peG >
ou Vargu = supgu — infyu.

B. Considérons deux domaines emboités G @’ simplement con-
nexes, de frontiéres disjointes I" et I". J’écris u pour upp.. — Soit
harmonique dans @' .

En vertu du § 1, »(ThA') > »(Th &) 4+ u. Si les points p et ¢ sont
dans G, nous avons donc, grace a (10),

. T
v(sm

Si k,,,q est inconnu, cette inégalité fournit le théoréme général suivant :
Soit £ un continu dans G', et soit u le module du domaine doublement
connexe composante de Q' — E ; alors, pour toute fonction w harmonique

dans tout @', Nsin (2 Vargu >
2 Vargu)) =¥

et ) > 1+ »(Th hyyg) - (11)

L’analogie avec le théoreme général (I11, 2, C) est frappante. On voit
que le quotient des variations prend la place de la mesure harmonique.

C. Soit » une fonction harmonique dans tout le plan ouvert. — Sup-
posons que l'on ait une famille de domaines simplement connexes G,
(0 < A< o0) emboités (GhcG) si A< A’), dont la réunion soit le
plan ouvert. Soit I'y le contour de (), et appelons u,, le module du
domaine doublement connexe de contours I, et I'y. Je pose

o, = liminf, __ (Varg, w-e72") . (12)

Lorsque A —>oco, pg) —>oo. Les inégalités trouvées ci-dessus donnent
alors, si pet q eG,,

8
|u(p) —u(g) | < — gp-e” " hipear) (13)

et 8
Varg v < — %o -
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Théoréme. St o, = 0, wu est constante.

Ces inégalités et ce théoreme sont formellement trés analogues au
théoréme général de Phragmén-Lindelof (II1, 3, C). Ce n’est pas un pur
hasard : comme me l’a fait remarquer dans une conversation le Prof.
Kaplan, le théoréme classique de Phragmén-Lindelsf (pour le demi-plan)
peut étre démontré & ’'aide d’une propriété bien connue sur la croissance
des fonctions entiéres. Cette observation est & I’origine du présent para-
graphe. — De méme, le théoréme 1 (III, 3, C) peut étre déduit du théo-
reme ci-dessus.

D. 8i nous opérons le passage & la limite ¢ —p dans A4, nous ob-
tenons de (10), en désignant par R(p, @) le rayon conformes3!) de Q'

enp, 2 Varg u

[ grad u(p) | < *ﬂ—m . (10%)

Cette inégalité est valable a fortior: si ’on remplace le rayon conforme
R(p, @) par le rayon intérieur »(p, Q') (cf. § 6, A).
Le méme passage & la limite donne, & partir de (13), si p € G,,

2 1 )
Igra‘du(p)l_?';'m-o’o. (13)

§ 6. Evaluation par défaut de la distance hyperbolique

A. Soit (fig. 5) G un domaine de Jordan, que deux coupures dis-
jointes a et 8 partagent en trois domaines G, (adjacent & «), G, (adj. & «
et B), G; (adj. a B). Appelons I' la fron-
tiére de G, I'; celle de G,. Soient p € G,
et q €eG,. Je me propose d’évaluer par

défaut h=h,  (ou par excés g=g,.q),

connaissant w, = w,.q,, Y2 = Mypg, ©F

_ 32
W3 = Wypgq, - )

Soit {)’}s resp. {7’1}’ {72}’ {')’3}’ la
famille des coupures dans @, resp.

G,, G,, G5, séparant p de q, resp. p de o, o de B, p de q. Alors
{r}2{r1} v {ya} v {s}; donge, selon (I, 2, D, {),

M{y} > M{Vl} + M{Yz} + M {y;} .

31) C’est le rayon R du cercle |w| < R, image conforme de @ par une application
w(z) telle que w(p) = 0 et w'(p) = 1.

32) Considérons p et ¢ comme deux prisonniers, dans les cellules G; (de porte «) et Gy
(de porte B), G, étant le corridor de la prison. Il est intuitif qu’il sera difficile aux prison-
niers d’entrer en contact (h grand) si le corridor est long et étroit (u, grand) et si chacun
d’eux est maintenu éloigné de la porte de sa cellule (w, et w, petits).

330



En remplagant ces longueurs extrémales réciproques par leurs valeurs,
données par (I1I, 13), (IL, 12) et (I, 3, a), nous pouvons mettre cette iné-
galité sous la forme

1 Tw 7% Tw
—2h : 1 2 . 3
e R > .
v(e™") 87 (e ) v(sm 5 ) -+ 5 + v(sm 3 ) (14)
B. Cas ot u, et wy sont quelconques, inconnus (on 8’en désintéresse) 32) :
» étant décroissante, (14) donne e~ 2* <sin L. Ce n’est pas autre

chose que la solution d’un probléme de Carleman-Millouax 34).
Cas limite w, — 0: (14) donne

g <maw+ 0(w)) ¥) . (14')

Lorsque (@, a, § et q restant fixes) p tend vers un point intérieur &
Parc Iy — «, M{y,} -oco, mais M({y} — {y,}) reste borné supé-
rieurement; d’ou (I, 2, D, e) M{y} = M {y,} + O(1), c’est-a-dire

g = w,-e’V.

C. Caslimite w, —>0 et w, —>0:

2

0 < ooy e+ O(@ia) + Owy0d) ) (14)

St p et q tendent vers des points-frontiére intérieurs aux arcs Iy — o,
resp. I's — B,
g = w; v, %Y . (15)

En effet, soit {£} = {y} — {y.} — {ys}; en vertu de (I, 2, D, e),

My} + Miys} < My} < My} + My} + M {£}. Lors du pas-
sage & la limite, M {£} reste borné. En utilisant (II, 12') et (II, 13”), on

obtient alors (15).

Remarque. Un raisonnement élémentaire de théorie du potentiel, cal-
qué sur celui qui conduit & I'inégalité (4) d’Ostrowski, montre que

/
g < W, 'Ma’xsecx Wg 8,616 'Ma‘xteﬂ Fte0 - (4 )

33) L’ancien prisonnier ¢ est maintenant en liberté ; la prison ne comprend que la cellule

ou est enfermé p.

34) Cf. Nevanlinna [16], p. 104, oi1 le probléme traité est plus général. La solution in-
diquée (exacte) est équivalente & notre inégalité.

35) Si @, est convexe et si « est vu de p sous un angle euclidien y; — 0, l'inégalité de
Carleman w, < w,/n permet de conclure de (14') que g < w; + O(p3).

38) Si G, et G, sont convexes et si I’on voit « de p (resp. f de ¢) sous un angle euclidien
y, > 0 (resp. g, — 0), l'inégalité de Carleman permet de conclure de (14”) que

9 < yiyse (1l + o(1)) .
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Dans le cas limite w, -0, w, — 0, avec (pour simplifier) u, inconnu
ou nul, introduisons dans (4') 'évaluation de g, , donnée par (14'):
916 < ™ w; (en négligeant les termes d’ordre supérieur) ; nous obtenons
9 = Gpg < T w, w3. La borne est plus faible que dans I’évaluation
exacte g < (7%8) w, w; (cf. (14")). Comme au § 3, B, nous voyons qu'’il
v a lieu d’éviter autant que possible ’emploi d’inégalités du type (4) ou
(4') : elles affaiblissent les évaluations.

D. Casou w, et wy sont quelconques, inconnues : (14) donne le théoréme
général suivant :

Deux continus disjoints A et B dans G + I', reliant I' @ p, resp. & q,
déterminent dans G un quadrilatére de module

Pap < 2v(e?*) = l/(4v(e"")) .

Cas limite py —>oco0: h > (7/2) s — In 2 4 O (e72™2),

Si Gy, Gy, p, q sont fixes et p, >oo (rétrécissement du corridor),
h = (x/2) s + O(L).

En effet, M ({y} — {y,}) reste borné, donc (I, 2, D, e)

My} < M{y} < M{y,} +0(Q1) ;
et, par (II, 13"), nous obtenons notre formule asymptotique.

E. L’évaluation (14) ne peut pas étre améliorée, la borne indiquée est
exacte. En effet, 1’égalité a par exemple lieu dans (14) si I" est une ellipse,
o et f§ des arcs d’hyperboles, ces trois coniques appartenant au méme
faisceau homofocal de foyers p et ¢. — Plus généralement, si I'on donne
Q"1 et des valeurs ), uj et w] telles que le systéme (b, wf, 1, w?) réalise
I’égalité dans (14), on peut toujours construire des arcs « et g tels que
w, = o, py = ud et w, = w): p et g déterminent sur la droite hyper-
bolique pq (relativement & @) trois segments ; soient & celui qui joint p
a I' et n celui qui joint ¢ & I'; j’appelle u la fonction harmonique dans
G — & — n nulle sur #, = 1 sur & et dont la dérivée normale s’annule
sur I'. Pour que I’égalité soit valable dans (14), il faut et il suffit que « et
p soient des lignes de niveau de wu ; il est facile de calculer lesquelles il
faut choisir.

F. Cas ou U'on connait une borne w majorant & la fois w, et w,, u®
étant inconnu ou nul :

Je suppose w; < w et w, < w (par exemple v = Max (w,, ®;)).
(14) donne (cf. II, 2) 8v(e~?) < 8v(cos w w/2), d’ol, » étant décroissante,

Thh = e ? > cos (n w/2) . (16)
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Ce résultat peut aussi étre formulé de la fagon suivante :

Théoréme. Etant donnés, dans un domaine de Jordan G, deux points
P, q, 1l n’est pas possible de construire dans G une coupure o séparant p de
q telle que w,, et w,, (relativement aux domaines partiels) soient tous deux
inférieurs a 2/n arccos e 7.

Il existe un et un seul arc « réalisant w,, = w,, = 2/m arccos e~?,
c’est la ligne de niveau % = 1/2 de la fonction harmonique % considérée
sous K.

§ 6. Rayon intérieur, mesure harmonique et modules

A. 8Si p est un point intérieur d’un domaine @, j’appelle rayon inté-
rieur de G en p le rayon 7(p) du plus grand cercle de centre p dont tout
Iintérieur soit dans G'. — D’autre part, j’appelle toujours rayon conforme
de G en p le rayon R(p) du cercle |w| < R sur lequel la surface uni-
verselle de recouvrement de G' peut étre appliquée conformément par
une fonction w(z) telle que w(p,) =0, w'(p,) =1, p, étant un des
points ,,au-dessus de p“ sur cette surface 7).

On sait (conséquence du lemme de Schwarz) que r(p) < R(p), d’ou
I'on déduit, pour un élément d’arc hyperbolique au point p,

dh, = ds|R(p) < ds/r(p) ,

ou ds est la longueur euclidienne de cet élément d’arc. Si p et ¢ sont
deux points d’un domaine G,
| dz |

hpge < r(z) ’

I'intégrale portant sur un arc rectifiable quelconque c,, joignant q & p.

B. Soit G; un domaine simplement connexe (sur la sphére de Rie-
mann) dont la frontiére est une courbe de Jordan I'}, et sur lequel on a
désigné un point intérieur p et un arc-frontiére «. Soit G le domaine
simplement connexe de frontiére Iy — «. Je définis le rayon intérieur
r(z) relativement & G (et non & G,!). Soit ¢ un arc rectifiable quelconque

joignant p a « dans G, ; alors
[ el
> 2/m arcsin e ¢ '@ (17)

N

87) Le terme ,,rayon intérieur a parfois été utilisé pour désigner notre rayon conforme :
je mets en garde le lecteur contre toute confusion.
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En effet, soit ¢ 'extrémité de ¢ sur o; on a

| dz |
"o <

et, en vertu de (II1, 5, B) 01-dessus, on trouve (17).

C. Soit (fig. 6) @ un quadrilatére (8'«’'f"a") (sur la sphére de Rie-
mann) ; soit ¢ un arc rectifiable dans @, joignant g’ & §”. — Appelons D
le domaine doublement connexe de
contours o’ et «"; et U sa surface
universelle de recouvrement. Le
rayon intérieur r(z) de D en un point
quelconque z de ¢ est égal & la dis-
tance euclidienne de z & o' v . Donc

_ ldz ]| |
hc,U"” c,D — r(z) ’

d’ol1, en vertu du théoréme général (I1I, 5, D) ci-dessus (que nous appli-
quons au domaine simplement connexe U),

_ldz|
-2
,uﬂ:ﬂ,fQ S 21’(6 c T(Z)) (18)

Grace a (I, 9'), il en résulte I’inégalité élémentaire mais plus faible

Perprg = fl;fz)l +—In2 3. (18%)

D. Je vais résoudre ici un probleme lié aux précédents, mais qui ne
nécessite pas I'usage des méthodes développées dans ce travail.

a) Soit D un domaine doublement connexe, de contours I” et I'” ; on
peut définir dans D une métrique hyperbolique griace a sa surface uni-
verselle de recouvrement. Soit u le module de D, et soit A, la longueur
hyperbolique d’une courbe fermée rectifiable y séparant I de I'" ;

. 7
min,, h, = T

38) Nevanlinna ([16], p. 79) donne une évaluation qui peut s’écrire sous la forme sui-

vante : ugprg< (7/2) In (47) + = £ | dz |/r(z); elle est toujours moins forte que (18'),

(19)

done a fortior: que (18). — Ainsi que le montre une autre publication ([9], formules (1) et
(4)), I'évaluation 2 f|dz|/r(z) > —In (2n(1 — my )) (Nevanlinna, ibid.) peut, en vertu
c

de (18), étre remplagée par la suivante: f|dz|/r(z) > — In tg ((7/4)(1—my)), qui est
c
toujours plus forte.
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Démonstration. Je choisis comme domaine normal (représentant la con-
figuration de D) le cylindre obtenu & partir du rectangle 0 < z < a,
0 < y < & en identifiant chaque point-frontiére ¢y avec le point-fron-
tiére a + 1y ; a est déterminé par u = m/a. La surface universelle de
recouvrement est la bande 0 <y <=z; par la fonction w = e?, je
Papplique conformément sur le demi-plan supérieur ; » devient un are »’

joignant les deux demi-cercles supérieurs |w| =1 et |w| =¢% Ona
1 Jdw] . . | dw | d ., a_ =
dh—_z_' v Ay = __"f —-—“f’;.“"hyb_ﬁ_:cjﬁ

(y, est le segment » =0, 1 <wv <e?). ) c.q.f. d.
b) Introduisons pour A4, ’évaluation établie sous A : nous obtenons

7T | dz | 40
2p ‘<‘¢¢‘ r(2) ) (0
y

Remarque. Coupons D par un arc g joignant I"a I ; Q@ = (B'I"p"I"");
on déduit immédiatement de (I, 3, a et b) que

1 __'¢' | dz |
Hgrgng = ,ur'z’”q 5 (2)

Comparons cette évaluation & (18), également appliquable ici (en consi-
dérant @ sur une surface de recouvrement, g’ et §” étant sur deux feuillets
différents). (18) est formellement moins bonne, car »(r) > (1/2x)In 1/r;
mais il peut y avoir des points zeyp ou 74(2) >rp(2), ce qui parle
pour (18).

§ 7. Remarque sur les théorémes de Koebe et d’Ahlfors

On peut obtenir facilement les théorémes de Koebe et d’Ahlfors a
Paide des résultats précédents. Voici les grandes lignes de la démonstra-
tion.

a) Etant donnés sur la sphére de Riemann 8 trois pointsa; b; p # oo,
trouver une borne supérieure pour R(p, Q) valable pour tout domaine sim-
plement connexe Q ne contenant pas les points a et b (Koebe).

On raméne ce probléme & celui qui est résolu en (III, 1, C), en en-
levant de S un cercle infinitésimal de centre p.

39) On voit de plus qu’une seule courbe y, dans D réalise ce minimum.
40) Sario ([19], p. 29) a fait un premier pas dans cette direction en démontrant que
e2np— 1> nd/4L, o d < 2r(2) et L = longueur de p.
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b) On donne deux points a, b et un arc ¢ (d’extrémités p et q). Trouver
une borne inférieure pour la longueur hyperbolique h, 4, valable pour tout
domaine simplement connexe Q ne contenant pas les points a, b.

c) On donne quatre points a, b, p, q. Trouver une borne supérieure pour
le module u(D%]), valable pour tout domaine doublement comnexe DV}
sur S, dont le complément est formé d’un continu E,, contenant a et b, et
d’un continu K,  contenant p et q.

On passe de b) & c¢) en appliquant de nouveau le théoreme général
(I11, 1, C).

d) Soient G la bande 0 < y <m; E, un continu dans G jorgnant — oo
a un point z, = x, + 1y, ; Eyun continu dans G joignant + oo & un point
2o = Xy + 1Y,. K, et E, déterminent dans G un quadrilatére Q. Trouver
une borne supérieure pour pg g o, ne dépendant que de 6 = x, — x; (=0)
(Ahlfors).

Solution : pp 5o < us = 4v((1 + ea)‘l/z). — On passe de ¢) & d) en
posant le probléme d’Ahlfors d’abord pour le demi-plan.
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