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Die akzessorische Irrationalitât der
Gleichung funften Grades

von Mario Howald, Basel

Herrn Professor Andréas Speiser zum siebzigsten Oeburtstag gewidmet

Einleitung

Bei der Rûckfiïhrung der allgemeinen Gleichung funften Grades auf
einparametrige Resolventen treten nach einem Satz von Kronecker (Nr. 5)
unvermeidlich akzessorische Irrationalitâten auf. - Der Einblick in die
Natur dieser Irrationalitâten ist R. Brauer gelungen (siehe : Ausblick). -
Félix Klein rûckt als Resolvente die Ikosaedergleichung in den Vorder-
grund und gibt in seinen ,,Vorlesungen liber das Ikosaeder" zwei daraus
folgende Auflôsungsmethoden an. Innerhalb der ,,zweiten" Méthode -
sie steht in Beziehung zum ternâren Formenproblem des Ikosaeders -
tritt als akzessorische Irrationalitât Vd auf.

Die vorliegende Arbeit beschâftigt sich mit dem Radikanden d auf
Grund der Darstellung in dem Lehrbuch von A. Speiser [1, p. 250 ff.].

Im Abschnitt I findet sich eine selbstândige, kurze Darstellung der
Kleinschen Auflôsungstheorie fur die allgemeine Gleichung funften Grades

O5(x) x* + axx^ + a2x? -f azx2 + aéx -f- a5 0

(die at sind - wenn nichts anderes gesagt wird - als Unbestimmte ûber
dem Kôrper Po der rationalen Zahlen aufzufassen, und die Wurzeln oc{

von G5(x) 0 werden als verschieden vorausgesetzt).
Der Abschnitt II enthâlt die Ergebnisse (§1) meiner Untersuehung.

Davon sei hier angefuhrt, dafi d fur den gewâhlten Ansatz im allgemeinen
ein homogènes Polynom von 1830 Summanden von der Gestalt

Ç (;,... : ganz, > 0)

ist. Die ûberraschend einfache Méthode, welche gestattet, das Riesen-

polynom mit geringer Muhe zu tiberblicken, besteht im wesentlichen
darin, daB man Symmetrien der Ikosaedergruppe voll ausnûtzt. Nicht
unerwâhnt soll bleiben, daB sich dièse Méthode aus der Bearbeitung von
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Spezialfâllen (S. 287, 1., 2.) erst allmâhlich ergab. Nun, da sie gefunden
ist, scheint nichts naher zu liegen als gerade sie.

Rûckblickend darf ich sagen : Die vorliegende Arbeit, die das Ergebnis
einer Anregung durch Herrn Professor Speiser ist, wâre wohl niemals
entstanden, wenn nicht zu meinem Vertrauen in das Ikosaeder noch die

gûtige Anteilnahme Herrn Professor Speisers hinzugekommen wâre. -
Ich denke noch heute - nicht ohne Vergnugen - daran, wie Herr Professor
Speiser mich einmal ermunterte, auf dem damais noch ungewissen Ge-
biet weiterzurechnen, indem er kein geringes Vorbild hinstellte : Euler.

I. Ûber die Kleinsche Théorie der allgemeinen Gleichung îûnïten Grades

Gb(x) 0

1. Félix Klein (1849 bis 1925) gibt dem Abehchen Beweis, ,,da6 es un-
môglich ist, die Auflôsung der allgemeinen Gleichung funften Grades auf
eine Reihenfolge reiner Gleichungen zuruckzufiïhren, seine positive Wen-
dung. Die Aufgabe muB sein, die Auflôsung der Gleichungen funften Grades

mit Hilfe einer Ikosaedergleichung zu bewerkstelligen.u [2, p. 483.] -
Die einparametrige Ikosaedergleichung vom 60. Grad

1728 f*(x) '

H{x) - x20 - 1 + 228(z15 - sfi) - 494a;10

f(x) x(x10 + 11 a^ — 1) X : ein Parameter

lâBt sich ,,als eine Normalgleichung sui generis ansehen, welche sich ver-
môge ihrer ausgezeichneten Eigenschaften als die nâchste Verallgemeine-
rung der ,reinen' Gleichungen

xn X (2)

darstellt" (1. c). Denn die 60 Wurzeln der Ikosaedergleichung lassen sich
durch die bekannten Ikosaedersubstitutionen aus einer beliebigen unter
ihnen berechnen, ,,wie die n Wurzeln von (2) aus einer derselben durch

2nik
die n Substitutionen x' e n x " (1. c).

Ich verzichte - unter Hinweis auf Kleins ,,Ikosaederbucha [3] und die

Darstellung in Dickson-Bodewig [4, p. 196 fi\] - darauf, hier die Ikosaedergleichung

zu entwickeln. Die Ikosaedersubstitutionen hingegen seien

noch nâher charakterisiert.

2. Aile automorphen Drehungen des Ikosaeders bilden die Ikosaeder-

gruppe ©^ von der Ordnung 60. Die Erzeugenden von ©^ sind :
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2jt
Drehung S um as durch

Drehung T um at durch n.

(vgl. Kg.),

Nimmt man noch die Drehung U S2TSSTS2T um au durch n hinzu,
so lâfit sich (Si durch das Schéma darstellen :

[3, p. 26].

Schrâgbild einea Ikosaeders mit fiinf Oktaedern und drei Dreha«hsen

Die Tatsache, daB die 30 Kantenmitten des Ikosaeders - je zu sechst

genommen - Ecken von 5 Oktaedern sind, macht folgende Aussage geo-
metrisch anschaulich : die ©z ist einstufig isomorph zur alternierenden
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Grappe îlgo von 5 Elementen, und zwar gilt (wenn 1, 2,.. 5 die Num-
mern der Elemente sind) :

S (12345), T (12)(34), 17 (14)(23)

Den Ikosaederdrehungen lassen sich in bekannter Weise unimodulare,
linear-gebrochene Transformationen der Gauflschen Ebene zuordnen.

Die Erzeugenden der nicht-homogenen Substitutionsgruppe
sind :

e — e* s* — ea

8: z'= ' — F*

V*

Schreibt man die vorigen Substitutionen homogen, so sind die Erzeugenden

der homogenen Substitutionsgruppe ffigj, :

?7:

3. Fur die weitere Betrachtung ist erforderlich, von den beiden Auf-
lôsungsmethoden fur G6(x) 0, die Félix Klein vorschlagt, die ,,zweiteu
zu skizzieren [3, p. 239 fï.]; sie geht in drei Schritten vor :

1. a) Man konstruiert aus den Wurzeln at von G5(x) 0 eine ,,Wurzel"
«(au a5) der Ikosaedergleichung ; das heifit eine GrôBe, die
sich nach ©^ substituiert (wenn (xt den Permutationen von 3I60

unterworfen werden).

b) Durch Einsetzung dieser ,,Wurzel" in (1) wird der Parameter X als

Funktion der Koeffizienten at und der VD II (oc{ — a,) von
i<i

Qê(x) 0 berechnet; so gewinnt man die Ikosaedergleichung als

Resolvente fur G5(x) 0.

2. Man berechnet eine Wurzel x (die ,,Ikosaederirrationalitàt") der so
erhaltenen speziellen Ikosaedergleichung. Dieser - transzendente -
Teil der Lôsung gelingt mit Hilfe hypergeometrischer Reihen (,,wie
die transzendente Auflôsung der Gleichung xn X durch die
binomische Reihe" [2, p. 483]) ; man vergleiche hierzu [3, p. 62 ff.,
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81]. - Dieser Teil kann auch mit Hilfe der elliptischen Punktionen
bewaltigt werden [3, p. 126 flf., 131].

3. Aus der gewonnenen Ikosaederirrationalitàt werden rûckwârts die

oc{ bestimmt [3, p. 248 ff.]. Dieser dritte Teil ist - wie der erste -
algebraischer Natur.

Im weiteren wird uns nur der Teilschritt la beschâftigen.

4, Man adjungiere VD zu P0(aly. a5). In bezug auf

P0(al9...9a,9V5)

wird die Galoische Gruppe von O5(x) 0 die Gruppe %eo. VD ist eine
natiirliche Irrationalitât fur G5(x) 0, da sie ein Polynom in den <xt

ist, dessen Wert aber nicht in P0(a1,..., a5) liegt.
Es sollnunnach la) x(<xly. oc5) konstruiert werden. Hierzu benutzt

Félix Klein die Tatsache, dafi ©f sich als ternàre Substitutionsgruppe
©^ von der Ordnung 60 darstellen làBt. Die Erzeugenden S, T, U von
(5qq kann man [1, p. 254] mit Hilfe der quadratischen Form

M*!, z2) Axz\ + 2A0zxz2 - A2z\ (3)

finden, indem man auf zlt z2 die Substitutionen 8, T, U von
tibt. Es gehe durch eine solche Substitution fx liber in

^120 aus-

-f- 2A0z1z2 A2z2

Die Rechnung ergibt :

S: T: e)A2)

U: 1 A2

Die Déterminante d A\ +

(4)

von f^, z2) bildet mit drei weiteren

Invarianten [3, p. 215, 218] das voile Invariantensystem der ©$>.

Das ternâre Formenproblem lautet : aus beliebigen (aber mit einer
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Syzygie vertrâglichen) Werten der vier erwâhnten Invarianten, die 60

zugehôrigen Wertsysteme der Ao, A±, A2 zu bestimmen [3, p. 219].
Aus /x 0 folgt :

r _ i _jc — — —
z2

x substituiert sich nach ©$, wenn Ao, Ax, A2 die Grappe ©^ er-
fahren [1, p. 255]. Nun bleibt nur noch der letzte Schritt zu tun : AQ,

A1} A 2 als Funktionen der at so zu konstruieren, daB sie ©^ erfahren,
wenn die oct die Permutationen von 3I60 erleiden. Dies gelingt [1, p. 253,

254] ; das Ergebnis lautet :

VU Ao V~5 u^ + u0 + ux + u2 + u3 + Ut

ViA1= 2(uo +eu^ e2u2 +e?u3 +etut) (5)

VôA2= 2 (u0 + e4 % + e3 u2 + e2 uz + e ut)

(die Numerierung der u^ (ju, 1,..., 4) ist entgegengesetzt zu der in
[1]).

Dabei haben die Symbole u^ u^ (// 0, 1,..., 4) folgende Bedeu-

tung:

^oo W1~W2 ^ % ^2^+3 — W2fjL+4 (/M 0, 4) (6)

Hierin bedeutet wx eine beliebige ùber P0(al9..., a5) rationale Funk-
tion der atJ die zu der durch 8 erzeugten Untergruppe 3 s von îïeo ge"
hôrt ; die wv (v 1, 2,. 12) gehen aus w1 hervor durch die Anwen-
dung von

E, U, T, UT, TS, UTS,..., TS\ UTS*

welche Reprâsentanten der 12 rechtseitigen Nebenklassen nach 3 s ûi
%^ sind ; genauer gesagt :

E : wx, U : wx -> w2

TS* : wx -> w2fl+z UTS» : wx -> w2(JL+, (7)

(/i 0,l,...,4)
5. Man beachte :

1. Zur Konstruktion der Ao, Alf A2 ist die numerische Irrationalitàt

e e6 erforderlich.

2. Zur Konstruktion von »(alJ...,a5) ist zudem die Irrationalitàt
Vd VA* + AXA2 nôtig.
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Beide Irrationalitaten sind der G5 (x) 0 akzessorisch : sie liegen
nicht in P0(a1,..., a5, \D) und sind nicht ganze rationale Funktionen
der Wurzeln oct von O^(x) 0.

Die numerische Irrationalitat e erhalt weiter keme Beachtung ; man
denkt sie sich zum Grundkorper von Anfang an adjungiert.

Interessanter ist Vd. Von dieser akzessorischen Irrationalitat sagt
der von Leopold Kronecker (1823 bis 1891) im Jahr 1861 aufgestellte und
von Félix Klein 1877 (zur Geschichte : [2, p. 503]) bewiesene Satz : sie

ist unumganglich, da die erreichte Resolvente (die Ikosaedergleichung)
einparametrig ist. Die Kroneckersche Formulierung des Satzes [5, p. 612] :

,,Aber erst vor kurzem ist es mir gelungen, die Hauptfrage zu erledigen
und festzustellen, daB die Reduktion der algebraischen Funktion : W auf
Funktionen einer Variablen und deshalb uberhaupt die Auflosung der
allgemeinen Gleichungen funften Grades mit Hilfe von algebraischen
Funktionen einer Variablen unmoglich ist, wenn dabei jener oben an-
gefuhrte und fur die Auflosung der Gleichungen durch Wurzelzeichen
geltende Satz Abeh bestehen bleiben soll." Der erwahnte Satz von Abel
ist in der Kronecker&chen Mitteilung folgendermaBen wiedergegeben
[5, p. 609] : ,,Wenn eine Gleichung algebraisch auflosbar ist, so kann
man der Wurzel allezeit eine solche Form geben, daB sich aile algebraischen

Funktionen, aus welchen sie zusammengesetzt ist, durch rationale
Funktionen der Wurzeln der gegebenen Gleichung ausdrucken lassen."

Nun gehe ich zu der eigentlichen Aufgabe uber : d fur eine bestimmte
Wahl von ^(o^,.. oc5) explizit darzustellen. Aus dem Bisherigen wird
ersichtlich, daB d in P0(a1,..., a5,VD, e) liegt. Es wird sich zeigen

(Nr. 7), daB d in PQ(al9..., a5i VD, VI) enthalten ist.

II. Berechnung der akzessorischen Irrationalitat Vd im Fall

§1. Vorblick und Ergebnisse

6. Im ersten Abschnitt hat sich als Déterminante einer quadratischen
Form (3) ergeben :

d A20 + AXA2

Dièse bleibt ungeândert, wenn Ao, Al9 A2 die ternaren Ikosaedersubsti-
tutionen (4) erfahren. Mit Hilfe der Formeln (5), (6), (7) konstruiert man
d(al5. oc6) aus den funf Wurzeln <xt (i 1,..., 5) von O5(x) 0

so, daB d(alf..., <x6) ungeândert bleibt, wenn otl9 a2,..., a5 der alter-
nierenden Gruppe 3l60 von 5 Elementen unterworfen werden.
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Die ersten beiden Schritte (§ 2), um Genaueres ûber die Gestalt von
d(a1,..., a6) zu ermitteln, sind : Darstellung von d mit Hilfe

l. der u^u^ (ju, 0, 1,. 4) :d(u)
2.derwv (v 1, 2,..., 12) : d(w)

Betrachtet man die Substitutionen der wv und der u^, u^ unter den Er-
zeugenden von %^ :

S (12345) T (12) (34) U (14) (23)

so ergibt sich :

1. &d(u) 5Ut + 2VE U2

2. 5d(w) 5(îfx ~2W2) + 2V~E (Tf3 - 174)

wo Uli U2, WXi W2, Wz, WA einzeln invariant sind gegen
Um weiter zu dringen (§ 3), wâhle ich

alalal {p,...,t: ganz, > 0)

wobei die Summe ûber die 5 Glieder zu erstrecken ist, die aus dem hin-
geschriebenen durch Anwendung von 8^ (ju, 0, 1,..., 4) hervor-
gehen. Auf Grund der Unterinvarianten W gewinnt man leicht einen
Ûberblick (Nr. 11) ûber die nunmehr vorliegenden Verhâltnisse. Es er-
geben sich vier Falle (d(ocl9..., oc5) sei wie d (u) in zwei Teile zerlegt) :

1. p,q,r, s,t aile voneinander verschieden ; d zerfàllt in
15 verschiedene symmetrische Polynôme (450 Glieder),
23 versehiedene alternierende Polynôme (1380 Glieder),
deren Grad 2 (p + <Z + t + 8 + t) ist ;

2. p,q,r verschieden, s t; d zerfàllt in
15 verschiedene symmetrische Polynôme (Gesamtzahl :

10 + 2 • 5 20 ; Gliederzahl : 540 + 2 • 180 900)
10 verschiedene (paarweise verwandte, Nr. 11, b) alternierende

Polynôme (10-60 600 Glieder),
insgesamt : 30 Polynôme (1500 Glieder) ;

3. p; q r, s t; d zerfàllt in
8 verschiedene symmetrische Polynôme (Gesamtzahl :

27 + 1 15 ; 2-175 + 120 470 Glieder),
2 verschiedene (verwandte) alternierende Polynôme (Gesamtzahl :

3; 3-60= 180 Glieder),
insgesamt : 18 Polynôme (650 Glieder) ;
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4. p z£ qy r s — t;d zerfâllt in
5 verschiedene symmetrische Polynôme, insgesamt : 2-5=10

symmetrische Polynôme (300 Glieder).

SchlieBlich § 4) fiihre ich die Rechnung fur

1. p 2, q= 1, r s t 0

2. p 3, # 2, r=l, s £ 0

bis zur Darstellung von d mit Hilfe der Koeffizienten ai von (?5(as) 0.
Die Ergebnisse sind beziehungsweise :

1. 5d (5 — 2 V5)( 8^a3 + Za\a\ 16aa4 + 38^^^
a + 40aa 45a) ; '

2. 5d 5 -{2a\a^ 2ai^ 10a|a3a5 8a^a| + 20a2a^a4 9a)
9a*)

^

(hier wurde die Gleichung in der Gestalt x5-^a2x3-}-aBx2-{-a^x-{-a5 0

angenommen).
Fxir beide Fâlle werden numerische Beispiele angefuhrt (die auch zu

Kontrollzwecken verwendet wurden) :

zu 1) :

z6 — 3a^ — 5a? + I5x2 + ±x — 12 0

olx 1, a2 — 1, a3 2, a4 — 2, a6 3

5d= (5 - 2 ]/ô). 2464 ;

zu 2):
a) a^ — 5a^ + 4œ 0

«i 1, a2 — 1, 0^ 2, «4 — 2, a5 0

d 360.(5 +
b) a* — 23a^ + 6x2 + 112z - 96 0

«! 1, a2 2, «s — 3, a4 4, «5 — 4

5rf 5-11654856 + 2l/5-4147524

An Hand dieser numerischen Beispiele sieht man leicht, daB Vd im

allgemeinen irrational ist ûber P0(a1?..., a5, VD, Vb). Da at und VD
in diesen Fâllen rational sind, muB nur nachgewiesen werden, daB Vd

irrational ist ûber PQ(V5). Dies ist getan, wenn feststeht, daB d nicht
das Quadrat einer Zahl r aus P0(V5) ist. Zum Beispiel :

36.(50+
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wâre d r2, so muBte die Norm von 50 + 10 Vô

(50 + 10V5)(50 - ÎO^Ô) 2000

eine Quadratzahl sein ; dies ist aber nicht so.

§ 2. Darstellung von d als Polynom in den u^9 u^ einerseits und den wv
andrerseits.

7. Setzt man in d A\-\- AXA2 fur Ao, Alr A2, die Ausdrùcke (5)
ein, so folgt nach kurzer Rechnung :

5d(u) 5UX + 2 VU U2 (10)
wo

Ux ul + u\ + u\ + u* + u\ + u\
U2 U21 + U22 - C723

^21 ^00 (U0 + Ul + U2 + U

UZ2 UqUj, + UXU2 + U2U3

Dièse Gliederung berucksichtigt das Verhalten der u^, u^ gegenuber S,
T, U. Zur Begrlindung seien zunâchst (in Zyklenschreibweise) die Sub-
stitutionen der wv (v 1, 2,..., 12) angegeben. Ich setze

wx 27^ («!,..., a6) (12)

Dabei bedeutet ç>0(ai,. • •, oc5) irgendeine (nicht zyklische) liber Po ratio-
nale Funktion der ocj aus der 9^ (ax,. a5) durch die Operationen 8p
(fi 0, 1,..., 4) hervorgehen. Aus wx môgen nach (7) die wv gebildet
sein. Unter der Voraussetzung, daB in ç?0 die Anordnung der Variablen-
Indizes sich in die naturliche Ordnung 1,2,3,4,5 hôchstens unter
Umkehrung des Durchlaufungssinnes einordnen làBt, ergibt sich folgen-
des Verhalten der wv gegenuber S, T, U :

1. Anwendung von S (1 2 3 4 5) :

(wj definitionsgemàB
(w2) da U (14)(23) in der Anordnung 1, 2, 3, 4, 5 lediglich

den Durchlaufungssinn ândert (Figur)

definiti mâB m

2. Anwendung von T (12) (34) :

(^1^3) (^2^4) definitionsgemàB
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(w6wii) da S(TS)T TS*
(wtw1%) S*(UTS)T UTS* (mit Hilfe der geo-

metrisch evidenten Beziehung US* — SU
auf Voriges zuriïckfùhrbar)

(w7w8) S*(TS*)T UTS*

(w9%) S*(TS*)T UT S*

3. Anwendung
(WlWa)

(wbw12)

(wewu)
(w7w10)

(w&w9)

von U (14) (23)

definitionsgemâB
da TU UT

(TS)U £7

(£7T£)[7
(TS*)U
(UTS2)U

i

(Ikosaeder
y#4
T£4
7TaS3

T£3

Aus diesen Permutationen ergibt sich wegen (6) weiterhin :

Damit wird ersichtlich :

Ux, U21, U22, U23 sind einzeln invariant gegenûber S und C7

Ul9 U2 sind je invariant gegenûber T.

Man beachte noch, daB (11) zyklisch geschrieben ist ; dièses Prinzip wird
im folgenden ausgiebig verwendet.

8. In (11) werden nun fur u^, u^ die Binôme (6) eingesetzt. Das Er~

gebnis der einfachen Ausrechnung schreibe ich abgekûrzt, indem ich von
einem Zyklus nur den Anfûhrer hinschreibe. Zudem stehen in eckiger
Klammer Elemente (Zyklen), welche durch die Permutation U inein-
ander ûbergefûhrt werden. So ergibt sich :

U1=W1~2W2
Wx \w\ + w\] + [w\ H \-w\-\ ] (12 Glieder)
W2 [wxw2] + [wzwA + • • • ] (6 Glieder)

uz=w3- w4

+ [wsw8 H ] + [wiw1 H ] (30 Glieder)

+ [^4^5 +•••] + [wzw1 + • • • + w*w& + • • • ] (30 Glieder) ;
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5d 5(Tf1 — 2W2) + 2V5(WB- Wé) (13)

Da Ux und U% je invariant sind gegen %i0, folgt : W^ (/a 1,..., 4) ist
invariant gegen 21^. DaB W^, als Polynom in den wv, keine Unter-
invariante bezûglich SHqQ enthâlt, ist leicht festzustellen : man iibe auf die
Elemente der ersten eckigen Klammer (des ersten Zyklus) die Substitution
T aus ; dadurch wird in jeder der ubrigen Klammern ein Elément erreicht.

§ 3. Darstellung von d als Polynom in den <xt fur den Fall (p^ocfaloclotlotl.

9. Von nun an ist

(p0 (4 af o£ aj 4 (p,q,...,t: ganz > 0)

wo 0Lt die funf verschiedenen Wurzeln von O5(x) 0 sind. Hôchstens
drei der Exponenten p,q,. .,t diirfen einander gleich sein, da sonst
d 0 ist ; aus demselben Grund soll p q, r s t ausgeschlossen
bleiben. Zur AbMrzung soll im folgenden gelten :

(j,kj,m,n) =Eot{oc*4ot™o%
Damit wird

,r9s,t) (14)

wo iiber aile aus (p, q, r, s, t) durch wiederholte Anwendung von
S (tsrqp) hervorgehenden verschiedenen Glieder zu summieren ist.
Bildet man nun d auf Grund dieser Wahl von wl9 so ergibt sich ein
homogènes Polynom vom Grad 2(p + q + r + s + t). Aus (13) schlieBt
man : d zerfàllt in mindestens vier alternierende Polynôme. Es wird sich
zeigen, da6 die Unterinvarianten W^ als Polynôme in den ol{ noch weiter
zerfallen. Die Méthode, nach der ich zur endgûltigen Gliederung von
d(<xx,..., a6) verfahre, sei gleich erlâutert.

In Wp komme das Glied (j, Jc,l, m, n) vor. Wegen der Invarianz von
Wp gegen 31^ mùssen mit diesem Glied aile 60 durch Anwendung von
iHm daraus hervorgehenden Glieder auch in W^ vorkommen. In bezug
auf dièse 60 Glieder mûssen folgende Falle unterschieden werden :

1) j, k,l,m,n sind aile voneinander verschieden : die 60 Glieder sind
aile voneinander verschieden und bilden in ihrer Gesamtheit die zu

(j,k,l,m,n) gehôrenden ,,geraden" Anordnungen, deren Summe ein
alternierendes Polynom A (ocl9..., <x6) ist. - Durch Anwendung irgend-
einer ungeraden Permutation (zum Beispiel einer Transposition) gehe A
ûber in das Polynom A1', welches die Summe der zu (;", k, l, m, n)
gehôrenden ,,ungeraden" Anordnungen ist. - Als alternierendes Polynom
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ist A darstellbar in der Form

wo 8X, 82 symmetrische Polynôme in den <xt sind (8X A -f- A',
82VD A -A1) [6, p. 170].

2) j, k, l verschieden, m n: die ,,geraden" und ,,ungeraden" An-
ordnungen sind nicht mehr unterscheidbar ; die 60 Glieder bilden die

5!
Gesamtheit der nun noch môglichen ~ verschiedenen Anordnungen,

deren Summe ein symmetrisches Polynom ist.

3) Die Fàlle j ^ k l,m n
j^z]c,l m n

j k,l m n
j}]c l — m n

liefern ebenfalls symmetrische Polynôme, deren Gliederzahlen allerdings
kleiner als 60 sind : 30, 20, 10, 5.

10. Ich wende dies nun der Reihe nach auf W^ {jll 1,..., 4) an.
Da Wp als Polynom in den wv keine Unterinvariante bezûglich %^ ent-
hàlt, kann ailes aus seinem ersten Glied erschlossen werden :

(2p, 2q, 2r, 2s, 2t) + 2[(p + t, q + p,r + q, s + r,t + s)

+ (p + s,q + t,r + p,8 + q,t + r)]+.--
Aus den drei hingeschriebenen Gliedern von w\ entsteht das ganze

Polynom Wx durch Anwendung von %m. Denn es ergibt sich auf Grund
von Nr. 9, 1) : Wx hat mindestens 180 Summanden. Da8 Wx nicht mehr
als 180 solcher Summanden enthalten kann, ist klar : Wx hat 12 Glieder

von der Form w\, von denen jedes 15 Summanden liefert (vgl. Nr. 8),
Wx wird also durch drei alternierende Polynôme zu je 60 Gliedern ge-
bildet.

2) W2 wlw2 H S{p,q,r,8,t)-E{s,r,q,p, t) -\

(Die Bedeutung von Z ist aus einem Vergleich mit (14) ersichtlich.)

Man multipliziere den v-ten Summanden der ersten Summe mit dem
*>-ten Summanden der zweiten Summe (v 1, 2,..., 5). Aus den so er-
haltenen fûnf Produktgliedern schlieBt man mit Hilfe von Nr. 9, 3)
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âhnlich wie bei Wt, daB W2 aus fûnf symmetrischen Polynomen zu je
30 Summanden besteht.

3) WB w1w9+..>=i:{p,q9r,8,t).i:(q,p,89r,t)+...
Man multipliziere zuerst wie bei W2, sodann - um Glieder aus ver-

schiedenen alternierenden Polynomen zu erhalten - den y-ten Summanden
der ersten Summe mit dem fi-ten Summanden der zweiten Summe
(v l,2,...,5;/* v+ 1

> v + 2,..., 5). Dièses Vorgehen hat seinen
Grund darin, daB infolge von T (12) (34) Produktglieder wie

(p,q,r, s,t)-(p, t,r, q, s) und (t, p, q,r, s)>(q, p, s,r,t) bei der Multi-
plikation auftreten ; nach Nr. 11 a) gehôren sie aber zum selben
alternierenden Polynom. - Hat man die Multiplikation in der angegebenen
Art ausgefuhrt, so sieht man leicht : Ws besteht aus fiïnf symmetrischen
Polynomen zu je 30 Summanden und aus 10 alternierenden Polynomen
zu je 60 Summanden.

4) Wi w1wi+.-.= Z(p,q,r,s,t)-Z(r,s,p,q,t)+...
Man verfahre wie bei WB (hier wegen UT (13) (24)). Ergebnis : TF4

zerfàllt wie W3 und hat genau 750 Summanden.

11. Die explizite Darstellung von d fur die vier in Nr. 6 erwâhnten Fâlle
ergibt sich nun ohne weiteres auf Grund der in Nr. 10 skizzierten allge-
meiiien Gestalt von d. Bei der Durchfïïhrung sind folgende Bemerkungen
nûtzlich : Sei S(j, k,l,m,n) (bzw. A(j 9k,l>m9n)) das symmetrische
(bzw. alternierende) Polynom S aja*^l0^0^» wo ûber aile verschiedenen
Glieder zu summieren ist, die aus dem ersten durch Anwendung von
S120 (bzw. 2I60) hervorgehen. Dann gilt :

a) A (j, k, l, m, ri) A (k, j, m, l, n)9 da die Anordnungen der Expo-
nenten durch gerade Permutationen auseinander hervorgehen ;

b) A(j,k,l,m,n) =£ A(Jc,j,l,m, ri), da die Anordnungen der Expo-
nenten durch ungerade Permutationen auseinander hervorgehen ; ich
nenne solche alternierende Polynôme verwandt (im folgenden sind
solche in eckigen Klammern zusammengefaBt) ;

c) [A(j,kJ,min)+A(k,j,l,myn)]==8(j,Jc,limyn)
[A(j9k9l9m9n) — A(k, j ,1, m,ri)] oVD
(a : symmetrisches Polynom).

Da im folgenden lediglich die Fâlle 2 und 4 von Nr. 6 weiter bearbeitet
werden sollen, beschrânke ich mich auf deren explizite Darstellung. Da-
bei ist d in der Gestalt (10) zugrunde gelegt.

292



1) p,q,r verschieden, s t :

- 2(St -Sz-Sz-St- 5.) + S(2p, 2q, 2r, 2s, 2s)

- 2S(p + r,p + r,2q,2s,2s) + 2A(p + s,p + q,q + r ,r + s,2s) ;

2 81-8t-89 + 8i + 8i + S(p + q,p + q, 2r, 2s, 2s)

+ 8(2p, q + r,q + r, 2s, 2s) + 8(2p, q + s,q + s, 2r, 2s)

- S(2p,2q,r + s,r + s, 2s) - 8(p + s, p + s, 2q,2r, 2s)
— 8(p + q,p + r,q + r, 2s, 2s)

+ [A{p + s,q + r,p + r,2s,q + s) — .]
+ [A{2s,p + r,p + q,r + s,q + s) — ...]
+ [A(2s,r + s,2p,q + s,q + r) - ..]
+ [A(2r,q + s,2s,p + s,p + q) -...]
— A(p + q,q + r,r + s,p + s,2s) ;

hierin ist zu setzen :

Sx S (p + r,p + s,q + s,q + s,r + s)
S2 S(p + s,p + s,q + s,q + s, 2r)
SB 8(2p, q + s,q + s,r + s,r + s)

Si 8(p + s,p + s,q + r,q + r,2s)
S5 S(p + q,p + q,r + s,r + s, 2s)

2) p =£q, r s t:
Im vorigen ist r fur s zu setzen ; nun treten keine alternierenden

Polynôme mehr auf :

U1 - U2 3S(2p, 2q, 2r, 2r, 2r)

,p + r,q + r,2r,2r)
r,p + r, 2q, 2r, 2r) - S(2p, q + r,q + r, 2r, 2r)
q,p + q,2r,2r,2r)]

§4. Darstellung von d mit Hilfe der Koefflzienten at von Gh(x) 0

fur <p0 ocloc29 <p0 <xlotloc3. Numerische Beispiele.

12. Zunâchst sei in Nr. 11, 2) gesetzt :

p 2, q l, r s t 0

Es ergibt sich :

Ut= -U2= 3S(4,2) + 2£(3,2,1) - 25(4,1,1) - 65(3,3) - 65(2,2,2) ;

Gliederzahlen : je 130 fur U1 und U2.

Mit Hilfe der Tabellen von Faà di Bruno [7, p. 312] werden U1, t/2 als

Polynôme in den at ausgerechnet. Das Ergebnis ist in (8) zu finden.
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Ein numerisches Beispiel :

a* - 3a* - 5a* + 15a2 + 4x - 12 0

hat als Wurzeln

<xt 1, a2 — 1, «3=2, a4 — 2, ocB 3

Nun wird d auf zwei Wegen ausgerechnet :

l)aus d(u); (10), (6), (14), (7) :

u» U + 10 «o 10 - 16 % - 13 - 7

u2 4 — & ^ — 7 — 31 u4 19 — 17 ;

U1== - U2 2464 ;

2) aus d(a); (8) :

U1= — U2 2464

13. Zu einem anderen Beispiel setze man in Nr. 11, 1)

p 3 2 r= 1 s * 0.
Dies ergibt :

^ 2(8t + 02 - S8Z -St~ 685 - 86) + 8(6, 4, 2) - 6#(4, 4, 4) ;

C72 8X - 82 - 3£8 - Sà + 68S + 8B - S(6, 4, 1, 1)

+ 8(6, 3, 3) + 30(6, 2, 2, 2) + flf(5, 5, 2) - flf(5, 4, 3)

+ 20(4, 4, 3, 1) - 20(4, 4, 2, 2) - 0(4, 3, 3, 2)

+ [A(5, 4, 2, 1,0) -...] + [4(6, 3, 2, 1,0)-...] ;

0X 0(4, 3, 2, 2, 1) 02 0(5, 3, 3, 1) 03 0(3, 3, 2, 2, 2)

04 0(6, 2, 2, 1, 1) 05 0(3, 3, 3, 3) 06 0(5, 5, 1, 1)

Fur den alternierenden Teil A in U2 muB wegen Nr. 11, c) gelten:
A o*VD. Da VD in den a< den Grad 10 und A den Grad 12 haben,
folgt :

a a-0(2, 0, 0, 0, 0) + 6-0(1, 1, 0, 0, 0) (a, b ganz)

Zur Bestimmung der beiden Konstanten a, 6 ist erforderlieh, daB die

ausmultiplizierte Gestalt von VD bekannt sei.

Dièse Gestalt kann durch folgende Ûberlegung anschaulich werden :

Der Summand oj o^ c^ aj ol\ kommt in VD ein einziges Mal vor ; damit
auch 4(4,3,2,1,0) (vgl. Nr. 9, 1). Da aber VD bei Transposition
das Vorzeichen wechselt, muB mit 4(4,3,2,1,0) notwendig auch

— 4(3, 4, 2, 1, 0) darin enthalten sein. Hiermit ist VD schon vôllig
ausgeschôpft : denn andere als die schon erwâhnten Summanden mussen
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mindestens zwei gleiche Exponenten aufweisen, und somit - wegen des
Alternierens bei Transposition - in Paaren sich annullieren. Also ist
schlieBlich :

1^ 4(4, 3, 2, 1,0) -4(3, 4, 2, 1,0)

Nun soll nach dem friiher Gesagten A aVD sein. Fuhrt man die
Multiplikation rechts in ihren ersten Ziigen durch und nûtzt dabei wie
bisher die Tatsache aus, daB alternierende und symmetrische Polynôme
vorliegen, so ergibt ein einfacher Koeffizientenvergleich :

a=1, 6=2.
So folgt endlich :

A VD-82(l, 0, 0, 0, 0)

Mit Hilfe der Tabellen von F. N. David und M. G. Kendall [8, p. 431 fi\]
wird obige Darstellung von d in Potenzproduktsummen ersetzt durch
eine solche in Potenzsummen : s} 8(j, 0, 0, 0, 0). Zur Vereinfachung
werde G5 (x) 0 in die Gestalt

x5 -f a2a? + a<zx% + a*x + «5 0

gebracht ; so wird st 0, und es ergibt sich damit :

\0d 5'\ôs10s2 — 6s8sl — 4:S7s3s2 — 5^ + 6s6s4s2 + 2sesl

-f- 45653 S5S2 ~h 45553S2 ^4<^3^2 255 £

Der letzte Schritt zum Ziel besteht nun noch darin, daB fur die
Potenzsummen Polynôme in den Gleichungskoeffizienten ai eingesetzt werden ;

dièse findet man mit Hilfe der Newtonschen Formeln. Die sich ergebende
Gestalt von d ist in (9) angegeben.

Zwei numerische Beispiele :

1. Auf Grund der in Nr. 6 unter 2 a angegebenen speziellen Gleichung.
Einerseits ist nach (9): 5d 5-1800 + 2-Vë- 900 ; andrerseits folgt
aus (10), (6), (14), (7) wegen wx wz — w9 — w10 =10, wz w4

— w7 — w% 40, w5 wB wn w12 — 20 :

5d 5-1800 + 2.^5.900

2, Auf Grund der in Nr. 6 unter 2b angegebenen speziellen Gleichung
rechne man wie vorhin d zweimal aus. Beide Maie ergibt sich :

5d 5-11654856 + 2-^5.4147524
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Âusblîck

Innerhalb der Kleinschen ,,zweiten" Auflôsungsmethode (Nr. 3) wâre
der nàchste Schritt : den Parameter X zu berechnen. Vorderhand scheint
die Rechnung hierzu umfangreich und unubersichtlich zu sein ; doch hat
die Frage, wie sie zu bewàltigen sein mag, nach dem Bisherigen etwas
Verlockendes. - Mit diesem - noeh auszufiïhrenden - Schritt ware die
Brticke von der allgemeinen Gleichung fûnften Grades zur Ikosaeder-
gleichung konkret geschlagen.

Im Zusammenhang mit der Ikosaedergleichung môge hier noch auf
eine Arbeit hingewiesen werden. Herr Ott-Heinrich Keller berechnet
[9, p. 456 flf.] auf Grund seiner Umgestaltung einer Hilbertsohen Formel
die Diskriminante A der Ikosaedergleichung ohne Kenntnis der Kôrper-
basis :

A 5785- 3210-2420-Z40-(l — X)30

Nach dem Kroneckerschen Satz ist der erwâhnte Briickenschlag ohne
akzessorische Irrationalitàt nicht môglich. Herr Professor R. Brauer
gibt nun f 10, p. 473 ff.] - unter anderem aus der Théorie der Algebren -
einen Einblick in die Natur der akzessorischen Irrationalitàten, und
zwar nicht nur fur G5(x) 0. Er zeigt, daB die Auflôsung einer in Po
rationalen Gleichung f(x) O dann und nur dann mit einem Formen-
problem âquivalent ist - auf ein Formenproblem rûckfuhrbar ist - wenn
unter gewissen aufzustellenden einfachen normalen Algebren eine voll-
standige Matrixalgebra vorkommt. Tritt keine solche vollstàndige
Matrixalgebra auf, so kann die Ruekfuhrbarkeit durch Kôrpererweite-
rung erzwungen werden. Und zwar mu8 der Erweiterungskôrper Zer-
fâllungskôrper einer der erwâhnten Algebren sein ; dièse wird dann eine

vollstàndige Matrixalgebra. - Im Fall der O5(x) 0 ist der Index der
zugehôrigen Algebren gleich 2 ; zur Rûckfuhrung auf die Ikosaedergleichung

ist die Adjunktion einer Quadratwurzel zum Kôrper
Po (VD, e) notwendig, die wegen der Einfachheit der alternierenden
Gruppe von funf Elementen akzessorische Irrationalitàt ist.

Herr Professor Brauer teilte mir in einem Brief (11. September 1953)

mit, dafi er selbst eine Arbeit verfaBt habe, von der aber nur ein ganz
kurzer ,,Abstraet" [11, p. 625] verôffentlicht sei. In dieser Arbeit stellt
Herr Professor Brauer auf Grund invarianten-theoretischer Ûberlegun-

gen ein Polynom A in den a^ (i 0, 1,..., 4) von

q + t + 2 H =0
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auf, dessen Quadratwurzel als akzessorische Irrationalitât verwendet
werden kann.
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