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Die akzessorische Irrationalitiit der
Gleichung fiinften Grades

von Mario HowaLp, Basel

Herrn Professor Andreas Speiser zum siebzigsten Geburtstag gewidmet

Einleitung

Bei der Riickfiihrung der allgemeinen Gleichung fiinften Grades auf
einparametrige Resolventen treten nach einem Satz von Kronecker (Nr.5)
unvermeidlich akzessorische Irrationalititen auf. — Der Einblick in die
Natur dieser Irrationalititen ist E. Brauer gelungen (siehe : Ausblick). —
Felixz Kleivn riickt als Resolvente die Ikosaedergleichung in den Vorder-
grund und gibt in seinen ,,Vorlesungen iiber das Ikosaeder” zwei daraus
folgende Auflosungsmethoden an. Innerhalb der ,,zweiten“ Methode —
sie steht in Beziehung zum terniren Formenproblem des Ikosaeders —

tritt als akzessorische Irrationalitit Vd auf.
Die vorliegende Arbeit beschiftigt sich mit dem Radikanden d auf
Grund der Darstellung in dem Lehrbuch von A. Speiser [1, p. 250 ff.].
Im Abschnitt I findet sich eine selbstdndige, kurze Darstellung der
Kleinschen Auflosungstheorie fiir die allgemeine Gleichung fiinften Gra-
des
Gs(x) = 2° + a;2* + a,2° + az2? + a,2 + a; =0

(die @, sind — wenn nichts anderes gesagt wird — als Unbestimmte iiber
dem Korper P, der rationalen Zahlen aufzufassen, und die Wurzeln «;
von G4(xz) = 0 werden als verschieden vorausgesetzt).

Der Abschnitt IT enthdlt die Ergebnisse (§ 1) meiner Untersuchung.
Davon sei hier angefiihrt, dafl d fiir den gewédhlten Ansatz im allgemeinen
ein homogenes Polynom von 1830 Summanden von der Gestalt

dakodaa? (f,...: ganz, >0)

ist. Die iiberraschend einfache Methode, welche gestattet, das Riesen-
polynom mit geringer Miihe zu iiberblicken, besteht im wesentlichen
darin, daB man Symmetrien der Ikosaedergruppe voll ausniitzt. Nicht
unerwidhnt soll bleiben, daB3 sich diese Methode aus der Bearbeitung von
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Spezialfillen (S. 287, 1., 2.) erst allmédhlich ergab. Nun, da sie gefunden
ist, scheint nichts ndher zu liegen als gerade sie.

Riickblickend darf ich sagen : Die vorliegende Arbeit, die das Ergebnis
einer Anregung durch Herrn Professor Speiser ist, wére wohl niemals
entstanden, wenn nicht zu meinem Vertrauen in das Ikosaeder noch die
giitige Anteilnahme Herrn Professor Speisers hinzugekommen wire. —
Ich denke noch heute — nicht ohne Vergniigen — daran, wie Herr Professor
Speiser mich einmal ermunterte, auf dem damals noch ungewissen Ge-
biet weiterzurechnen, indem er kein geringes Vorbild hinstellte : Euler.

I. Uber die Kleinsche Theorie der allgemeinen Gleichung fiinften Grades
G5 (.’L‘) . O

1. Felvx Klein (1849 bis 1925) gibt dem Abelschen Beweis, ,,dafl es un-
moglich ist, die Auflosung der allgemeinen Gleichung fiinften Grades auf
eine Reihenfolge reiner Gleichungen zuriickzufithren, seine positive Wen-
dung. Die Aufgabe muB sein, die Auflosung der Gleichungen finften Gra-
des mit Hilfe einer Ikosaedergleichung zu bewerkstelligen.” [2, p. 483.] —
Die einparametrige Ikosaedergleichung vom 60. Grad

H? ()
1728 f5(a)
H(z) = — 2% — 1 4 228(x' — 25) — 494210 |
f(x) = x(2®+ 1125 — 1) , X : ein Parameter

= X , (1)

148t sich ,,als eine Normalgleichung sut generis ansehen, welche sich ver-
moge ihrer ausgezeichneten Eigenschaften als die néchste Verallgemeine-

rung der ,reinen‘ Gleichungen
2" = X (2)

darstellt” (1. c.). Denn die 60 Wurzeln der Tkosaedergleichung lassen sich
durch die bekannten Ikosaedersubstitutionen aus einer beliebigen unter

ihnen berechnen, ,,wie die # Wurzeln von (2) aus einer derselben durch
2ntk
die » Substitutionen 2’ =e¢ » x ¢ (L c.).
Ich verzichte — unter Hinweis auf Kleins ,,Ikosaederbuch“ [3] und die
Darstellung in Dickson- Bodewig [4, p. 196 ff.] — darauf, hier die Tkosaeder-
gleichung zu entwickeln. Die Ikosaedersubstitutionen hingegen seien

noch niher charakterisiert.

2. Alle automorphen Drehungen des Ikosaeders bilden die Ikosaeder-
gruppe ®; von der Ordnung 60. Die Erzeugenden von ®; sind :
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Drehung § um a, durch —2—5— (vgl. Fig.),
Drehung 7' um a, durch =.

Nimmt man noch die Drehung U = 827837 82T um a, durch z hinzu,
so lafit sich ®, durch das Schema darstellen :

8w, SeT8», SeU, SETS'U (u,v=0,1,..., 1) [3, p. 26].

Schriagbild eines Tkosaeders mit fiinf Oktaedern und drei Drehachsen

Die Tatsache, daf3 die 30 Kantenmitten des Ikosaeders — je zu sechst
genommen — Ecken von 5 Oktaedern sind, macht folgende Aussage geo-
metrisch anschaulich : die ®, ist einstufig isomorph zur alternierenden
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Gruppe g von 5 Elementen, und zwar gilt (wenn 1,2,...,5 die Num-
mern der Elemente sind) :

S = (12345), T = (12)(34), U = (14)(23) .

Den Ikosaederdrehungen lassen sich in bekannter Weise unimodulare,
linear-gebrochene Transformationen der Gaupfschen Ebene zuordnen.

Die Erzeugenden der nicht-homogenen Substitutionsgruppe G
sind :

. e-——-s‘z+ g4 — g¥
S: z,(e= 33!_%). P 2= Vs Vs
’ e“~83z+s~e4 ’
U: 2 = —%. L ¥

Schreibt man die vorigen Substitutionen homogen, so sind die Erzeugen-
den der homogenen Substitutionsgruppe &) :

S 2 = + 62, . V52, = F (e — M)z + (2 — &)z,

. 2, = + &%z, . ng;:: 4 (62 — &%)z, + (¢ — &)z,
U: T
2, = k2

3. Fiir die weitere Betrachtung ist erforderlich, von den beiden Auf-
losungsmethoden fiir G4(x) = 0, die Feliz Klein vorschligt, die ,,zweite*
zu skizzieren [3, p. 239 ff.]; sie geht in drei Schritten vor :

1. a) Man konstruiert aus den Wurzeln «; von G5(z) = 0 eine ,,Wurzel“
x(ay, ..., as) der Ikosaedergleichung ; das heilit eine Grolle, die
sich nach G substituiert (wenn «; den Permutationen von g,
unterworfen werden).

b) Durch Einsetzung dieser ,,Wurzel“ in (1) wird der Parameter X als
Funktion der Koeffizienten a; und der VD = IT (o; — o;) von

t<j
Gs(z) = 0 berechnet ; so gewinnt man die Tkosaedergleichung als
Resolvente fiir G4(x) = 0.

2.  Man berechnet eine Wurzel z (die ,,Ikosaederirrationalitit) der so
erhaltenen speziellen Tkosaedergleichung. Dieser — transzendente —
Teil der Losung gelingt mit Hilfe hypergeometrischer Reihen (,,wie
die transzendente Auflésung der Gleichung 2" = X durch die
binomische Reihe“ [2, p. 483]) ; man vergleiche hierzu [3, p. 62 ff.,
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81]. — Dieser Teil kann auch mit Hilfe der elliptischen Funktionen
bewiltigt werden [3, p. 126 ff.; 131].

3.  Aus der gewonnenen Ikosaederirrationalitit werden riickwirts die
a; bestimmt [3, p. 248 ff.]. Dieser dritte Teil ist — wie der erste —
algebraischer Natur.

Im weiteren wird uns nur der Teilschritt 1a beschéftigen.

4. Man adjungiere VD zu P,(a,,...,as). In bezug auf
Py(ay,...,as, VD)

wird die Galoische Gruppe von G4(z) = 0 die Gruppe Wy,. VD ist eine
natiirliche Irrationalitdt fiir G;(x) = 0, da sie ein Polynom in den «;
ist, dessen Wert aber nicht in Py(a,, ..., a;) liegt.

Es soll nun nach 1a) z(«, ..., a;) konstruiert werden. Hierzu benutzt
Feliz Klein die Tatsache, dafl ®, sich als terndre Substitutionsgruppe
G von der Ordnung 60 darstellen 1iBt. Die Erzeugenden S, 7', U von
G kann man [1, p. 254] mit Hilfe der quadratischen Form

f1(21,25) = Alzi + 24422, — Azzg (3)

finden, indem man auf z,,2, die Substitutionen 8, 7', U von G{, aus-
iibt. Es gehe durch eine solche Substitution f, iiber in

/ 72 / /
fi(zy, 2) = 4123 + 244212, — Ay2;

Die Rechnung ergibt :

1
Ac,)*':Ao A(,=V—3(A0+A1+A2)

S:l Al =64, T:] 4 = 7% @24, + (2 + ) 4, + (6 + ) 4y)
Al = &4, Al =—Vl—.5_(2A(,+(e4+s)A1+(82+63)A2)
Al = — 4, (4)

U:l 4= — 4, .

A; = — 4,

Die Determinante d = A2 + 4,4, von f,(2,, 2,) bildet mit drei weite-
ren Invarianten [3, p. 215, 218] das volle Invariantensystem der G.
Das ternire Formenproblem lautet: aus beliebigen (aber mit einer
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Syzygie vertriglichen) Werten der vier erwihnten Invarianten, die 60
zugehorigen Wertsysteme der 4,, 4,, 4, zu bestimmen [3, p. 219].
Aus f, = 0 folgt:

x__fl___ ‘”Ao:f:VA<2>+A1A2

%9 4,

x substituiert sich nach &), wenn 4,, 4,, 4, die Gruppe G er-
fahren [1, p. 255]. Nun bleibt nur noch der letzte Schritt zu tun: A4,,
4,, 4, als Funktionen der «; so zu konstruieren, da sie G erfahren,
wenn die «; die Permutationen von %y, erleiden. Dies gelingt [1, p. 253.
. 254]; das Ergebnis lautet :

V5 Ay =V5u, + up + uy + wy + s + u,
V5 A, 2(uy + e uy + €2 u, + 6 ug + £ uy) (5)
V5 A4, = 2(up + € uy + & uy + €2 Uy + € ty)

(die Numerierung der », (u = 1,...,4) ist entgegengesetzt zu der in

[1]).
Dabei haben die Symbole u,,, u, (u=0,1,...,4) folgende Bedeu-
tung :

”w

Uy = Wy — Wy , Uy = Woyut3 — Wapta (u=20,...,4) . (6)

=]

Hierin bedeutet w, eine beliebige iiber P,(a,, ..., a;) rationale Funk-
tion der «,, die zu der durch S erzeugten Untergruppe 3, von Uy, ge-
hort ; die w, (v =1,2,...,12) gehen aus w; hervor durch die Anwen-

dung von
E,U,T,UT,TS,UTS,..., T8, UTS*,

welche Représentanten der 12 rechtseitigen Nebenklassen nach 3, in
Wgo sind ; genauer gesagt :

E:w,, U:w, - w, ,
TS#:wl——>w2p+3 , UTSE: w, —> Wayyq (7)
(k=20,1,...,4).
b. Man beachte :

1. Zur Konstruktion der A,, A,, A, ist die numerische Irrationalitéit
27t

e = eb5 erforderlich.

2. Zur Konstruktion von z(x,,...,a;) ist zudem die Irrationalitdt
Vd =V A%+ A,A, notig.
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Beide Irrationalititen sind der G;(x) = 0 akzessorisch: sie liegen

nicht in Py(a,, ..., as, VD) und sind nicht ganze rationale Funktionen
der Wurzeln «; von G(z) = 0.

Die numerische Irrationalitédt ¢ erhdlt weiter keine Beachtung ; man
denkt sie sich zum Grundkérper von Anfang an adjungiert.

Interessanter ist Vd. Von dieser akzessorischen Irrationalitiit sagt
der von Leopold Kronecker (1823 bis 1891) im Jahr 1861 aufgestellte und
von Felix Klein 1877 (zur Geschichte : [2, p. 503]) bewiesene Satz: sie
ist unumgénglich, da die erreichte Resolvente (die Ikosaedergleichung)
einparametrig ist. Die Kroneckersche Formulierung des Satzes [5, p. 612] :

,»Aber erst vor kurzem ist es mir gelungen, die Hauptfrage zu erledigen
und festzustellen, dafl die Reduktion der algebraischen Funktion : W auf
Funktionen einer Variablen und deshalb iiberhaupt die Auflosung der
allgemeinen Gleichungen fiinften Grades mit Hilfe von algebraischen
Funktionen einer Variablen unmoglich ist, wenn dabei jener oben an-
gefiihrte und fiir die Auflosung der Gleichungen durch Wurzelzeichen
geltende Satz Abels bestehen bleiben soll.“ Der erwidhnte Satz von A4bel
ist in der Kroneckerschen Mitteilung folgendermaflen wiedergegeben
[5, p. 609]: ,,Wenn eine Gleichung algebraisch aufldsbar ist, so kann
man der Wurzel allezeit eine solche Form geben, dafl sich alle algebra-
ischen Funktionen, aus welchen sie zusammengesetzt ist, durch rationale
Funktionen der Wurzeln der gegebenen Gleichung ausdriicken lassen.*

Nun gehe ich zu der eigentlichen Aufgabe iiber : d fiir eine bestimmte
Wahl von w,(«y, ..., o;) explizit darzustellen. Aus dem Bisherigen wird

ersichtlich, dafl d in Py(a,,..., as, YD , &) liegt. Es wird sich zeigen
(Nr.7), daB d in Py(a,, ..., as, VD,V5) enthalten ist.

I1. Berechnung der akzessorischen Irrationalitiit V/d im Fall
w, = Zalolofoiol .
§ 1. Vorblick und Ergebnisse

6. Im ersten Abschnitt hat sich als Determinante einer quadratischen

Form (3) ergeben :
d= A2+ 4.4, .

Diese bleibt ungeindert, wenn 4,, 4,, 4, die ternidren Ikosaedersubsti-
tutionen (4) erfahren. Mit Hilfe der Formeln (5), (6), (7) konstruiert man
d(ay,...,as) aus den fiinf Wurzeln o, (¢+ =1,...,5) von G4(z) =0
so, dal d(ay, ..., a;) ungeindert bleibt, wenn «, as,..., as der alter-
nierenden Gruppe g von 5 Elementen unterworfen werden.
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Die ersten beiden Schritte (§ 2), um Genaueres iiber die Gestalt von
d(ay, ..., as) zu ermitteln, sind : Darstellung von d mit Hilfe
1. der ug,,w, (u=20,1,...,4):d(w) ,

2.derw, (»=1,2,...,12) :d(w) .

Betrachtet man die Substitutionen der w, und der u,, u, unter den Er-

zeugenden von g, :

S = (12345) , T =(12)(34), U = (14)(23),

n

so ergibt sich :
1. 5d(w)=56U,+2V5U,,
2. 5d(w)=5(W,—2W,) +2V5s (W, — W,) ,

wo U,, U,, W,, W,, Wy, W, einzeln invariant sind gegen Uy, .
Um weiter zu dringen (§ 3), wihle ich

w, = X of of of of of (p,...,t: ganz, > 0) ,

wobei die Summe iiber die 5 Glieder zu erstrecken ist, die aus dem hin-
geschriebenen durch Anwendung von S¢ (¢ =0,1,...,4) hervor-
gehen. Auf Grund der Unterinvarianten W gewinnt man leicht einen
Uberblick (Nr. 11) iiber die nunmehr vorliegenden Verhéiltnisse. Es er-
geben sich vier Félle (d(ay, ..., «;) sei wie d(u) in zwei Teile zerlegt) :

1. p,q,r,s,talle voneinander verschieden ; d zerfillt in
15 verschiedene symmetrische Polynome (450 Glieder),
23 verschiedene alternierende Polynome (1380 Glieder),
deren Grad 2(p +q +r + s + ¢) ist;

2. p,q,r verschieden, s =1t; d zerfillt in
15 verschiedene symmetrische Polynome (Gesamtzahl :
10 4+ 2.5 = 20; Gliederzahl: 540 4 2.180 = 900)
10 verschiedene (paarweise verwandte, Nr. 11, b) alternierende
Polynome (10.60 = 600 Glieder),
insgesamt : 30 Polynome (1500 Glieder) ;

3. p; q=r, s=t; dzerfillt in
8 verschiedene symmetrische Polynome (Gesamtzahl :
2.7 4 1=15; 2.175 4+ 120 = 470 Glieder),
2  verschiedene (verwandte) alternierende Polynome (Gesamtzahl :
3; 3.60 = 180 Glieder),
insgesamt : 18 Polynome (650 Glieder) ;
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4. pF#q, r=s8=1t; dzerfillt in
5 verschiedene symmetrische Polynome, insgesamt: 2.5 = 10
symmetrische Polynome (300 Glieder).

SchlieBlich (§ 4) fithre ich die Rechnung fiir
. p=2, q=1, r=8=1=0
2. p=3, q=2, r=1, s=1t=0

bis zur Darstellung von d mit Hilfe der Koeffizienten a, von Gj(x) = 0.
Die Ergebnisse sind beziehungsweise :

1. 5d = (5 — 2V5)(— 8a%a, + 3a%a® — 16a2a, + 38a,a,a, (8)
— 12a + 40a,a, — 4542) ;

2. bd = 5-(2a3a, — 2ada? — 10ala,a; — 8alal + 20a,ala, — 9a3)

- 9
+ 2V'5-(dba, + ala? + 5a2aza; — 4ata; — l4ayala, + 9a3) ®

(hier wurde die Gleichung in der Gestalt a°-a,23+az2*+a,x+a; = 0
angenommen).

Fiir beide Fille werden numerische Beispiele angefiihrt (die auch zu
Kontrollzwecken verwendet wurden) : ‘

zu 1):
8 — 32t — b + 1522 + 42 — 12 =0
a1=1, Ot2=_—- 1, 0t3:2, a4=“—2, a5=3
5d = (5 — 2 V'5)-2464 ;

zZu 2):

a) a*—5a+4x=0
=1, a=—1, o=2, o=—2, o=0
d = 360-(5 + V5);

b) x® — 232% + 622+ 1122 — 96 =0
=1, =2, ogq=—3, o=4, o= —4
5d — 5.11654856 + 2V5.4147524 .

An Hand dieser numerischen Beispiele sieht man leicht, da@ Vd im
allgemeinen irrational ist itber Py(a,,..., a;, VD, Vg). Da a; und VD
in diesen Fillen rational sind, muB8 nur nachgewiesen werden, daf3 Vd
irrational ist iiber P,(V'5). Dies ist getan, wenn feststeht, daB d nicht
das Quadrat einer Zahl r aus P,(V5) ist. Zum Beispiel :

d = 36-(50 + 10V5) ;
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wire d = 72, so miiBte die Norm von 50 4 10V5

(50 4+ 10 V'5)(50 — 10 ¥V'5) = 2000
eine Quadratzahl sein ; dies ist aber nicht so.
§ 2. Darstellung von d als Polynom in den u,,, w, einerseits und den w,

andrerseits.

7. Setzt manin d = A2 + 4,4, fir A4,, 4,, A,, die Ausdriicke (5)
ein, so folgt nach kurzer Rechnung :

5d(u) =5U, +2V5U, , (10)

WO

|

W+ ud o ud ol ol

= Up + Up — Uy

Ugr = U, (g + %y + uy + ug + u,) (11)
Ujgy = upy + Uty + Uy + Ugt, + U,

Usy = UgUy + Uy Uy + UsUy + UgUy + UsUy

U,
U,

Diese Gliederung beriicksichtigt das Verhalten der w, , u, gegeniiber S,
T, U. Zur Begriindung seien zunéchst (in Zyklenschreibweise) die Sub-
stitutionen der w, (» =1, 2,..., 12) angegeben. Ich setze

wlog, ey ag) (12)

Dabei bedeutet ¢,(c,, ..., as) irgendeine (nicht zyklische) iiber P, ratio-
nale Funktion der «,, aus der Puloas . oy o) durch die Operationen S
(0. =0,1,...,4) hervorgehen. Aus w, mogen nach (7) die w, gebildet
sein. Unter der Voraussetzung, dal in ¢, die Anordnung der Variablen-
Indizes sich in die natiirliche Ordnung 1, 2, 3, 4,5 hochstens unter
Umkehrung des Durchlaufungssinnes einordnen 1d8t, ergibt sich folgen-
des Verhalten der w, gegeniiber S, 7', U :

1. Anwendung von S = (12345):
(w,) definitionsgemaf
(w,) da U = (14)(23) in der Anordnung 1,2,3,4,5 lediglich
den Durchlaufungssinn dndert (Figur)
(ws w5 w, wewy;)

definitionsgemaf3 .
(W4 WeWs Wi W1,)
2. Anwendung von 7 = (12)(34):
(wyws)  (waw,) definitionsgemé&
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(wswyy) da S(T8)T = T8

(wews,) S4(UTS)T = UTS* (mit Hilfe der geo-
metrisch evidenten Beziehung U St = SU
auf Voriges zuriickfiihrbar)

(w,wg) S3(T8)T = UTS8?

(wy wy) S2(TS)YT =UTS? .
3. Anwendung von U = (14)(23):

(wyw,) definitionsgemal3

(wawy) da 7TU = UT  (Ikosaeder!)

(wswy,) (IT'SYU = UT8

(wgwq,) (UTS)U = T8

(w,wyy) (I'SHU =UTS3

(wgwy) (urs:)u =18 .

Aus diesen Permutationen ergibt sich wegen (6) weiterhin :

S: (U ) (U Ug U Uy)
T (oo Uo) (g Ug) (g — ) (Ug — Up)
U: (Yoo — U ) (Ug — Up) (g — Uy) (U — ug) .

Damit wird ersichtlich :

U,, Uy, U,yy, U,y sind einzeln invariant gegeniiber S und U
U,, U, sind je invariant gegeniiber 7.

Man beachte noch, dal (11) zyklisch geschrieben ist ; dieses Prinzip wird
im folgenden ausgiebig verwendet.

8. In (11) werden nun fir %, , «, die Binome (6) eingesetzt. Das Kr-
gebnis der einfachen Ausrechnung schreibe ich abgekiirzt, indem ich von
einem Zyklus nur den Anfiihrer hinschreibe. Zudem stehen in eckiger
Klammer Elemente (Zyklen), welche durch die Permutation U inein-
ander iibergefiihrt werden. So ergibt sich :

U,=W,—2W,
Wy = [} + ul] + [+ 0f 4] (12 Glieder)
W, = [wyw,] + [wywy + - -] (6 Glieder)
U,=W; — W,
Wy = [wywg + -+ wywy +- -]+ [wyws + - -+ wywg +-- -]
+ [wswg +- - - ] + [wywy, - - -] (30 Glieder)
Wi=[wyw, +-- -+ wyws +- -]+ [wywg + -]
+ [wews +- -]+ [waw, + -+ wawg +- - -] (30 Glieder) ;
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5d = 5(W, — 2W,) + 2V5 (W, — W,) . (13)

Da U, und U, je invariant sind gegen Wy, folgt: W, (u = 1,..., 4) ist
invariant gegen g,. DaB W,, als Polynom in den w,, keine Unter-
invariante beziiglich g, enthélt, ist leicht festzustellen : man iibe auf die
Elemente der ersten eckigen Klammer (des ersten Zyklus) die Substitution
T aus ; dadurch wird in jeder der iibrigen Klammern ein Element erreicht.

§ 3. Darstellung von d als Polynom in den «, fiir den Fall py=0oradnfxqnl.

9. Von nun an ist

(pozafagaga:ag (pyq,"':t:ga‘nz >O)a
wo o, die fiinf verschiedenen Wurzeln von G;(xz) = 0 sind. Hochstens
drei der Exponenten p,q,...,¢ diirfen einander gleich sein, da sonst
d = 0 ist; aus demselben Grund soll p = ¢q, r = 8 =t ausgeschlossen
bleiben. Zur Abkirzung soll im folgenden gelten :

: — 7kl m n
(G, k,l,m,n) =of oy o oy’ of .

Damit wird
w, = 2 (p,q,r,8,t) , (14)

wo tiiber alle aus (p,¢,7r,s,t) durch wiederholte Anwendung von
S = (tsrqp) hervorgehenden verschiedenen Glieder zu summieren ist.
Bildet man nun d auf Grund dieser Wahl von w,, so ergibt sich ein
homogenes Polynom vom Grad 2(p + ¢ + r + s 4+ t). Aus (13) schliefit
man : d zerfillt in mindestens vier alternierende Polynome. Es wird sich
zeigen, dafl die Unterinvarianten W, als Polynome in den «; noch weiter
zerfallen. Die Methode, nach der ich zur endgiiltigen Gliederung von
d(ay, ..., a;) verfahre, sei gleich erldutert.

In W, komme das Glied (5, k,1, m,n) vor. Wegen der Invarianz von
W, gegen Uy, miissen mit diesem Glied alle 60 durch Anwendung von
g daraus hervorgehenden Glieder auch in W, vorkommen. In bezug
auf diese 60 Glieder miissen folgende Fille unterschieden werden :

1) 4,k%k,1, m, n sind alle voneinander verschieden : die 60 Glieder sind
alle voneinander verschieden und bilden in ihrer Gesamtheit die zu
(9,%,1, m,n) gehdrenden ,geraden“ Anordnungen, deren Summe ein
alternierendes Polynom A («y,..., as) ist. — Durch Anwendung irgend-
einer ungeraden Permutation (zum Beispiel einer Transposition) gehe 4
iiber in das Polynom A’, welches die Summe der zu (4, k,1,m,n) ge-
horenden ,,ungeraden“ Anordnungen ist. — Als alternierendes Polynom
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ist A darstellbar in der Form

4= %(‘814‘82'/5) )
wo S;, S, symmetrische Polynome in den «, sind (8, =4 4 4/,
S, VD=4 — A') [6,p.170].

2) 7, k, 1 verschieden, m = n: die ,,geraden® und ,,ungeraden® An-
ordnungen sind nicht mehr unterscheidbar; die 60 Glieder bilden die

: . 5! :
Gesamtheit der nun noch méglichen 5T verschiedenen Anordnungen,

deren Summe ein symmetrisches Polynom ist.

3) Die Fille jFk=1,m=mn
j#k,l=m=mn
j=k,l=m=mn
j,k=1l=m=mn

liefern ebenfalls symmetrische Polynome, deren Gliederzahlen allerdings
kleiner als 60 sind : 30, 20, 10, 5.

10. Ich wende dies nun der Reihe nach auf W, (¢ =1,...,4) an.
Da W, als Polynom in den w, keine Unterinvariante beziiglich g ent-
hilt, kann alles aus seinem ersten Glied erschlossen werden :

1) W1=wf+"'
= (2p, 2¢,27,28,2t) + 2[(p + ¢, g+ p,r+q, 8+ 7, t+ )
+p+s,9+t,r+p,8s+q,t+7]+--- .

Aus den drei hingeschriebenen Gliedern von w} entsteht das ganze
Polynom W, durch Anwendung von %Ug,. Denn es ergibt sich auf Grund
von Nr. 9, 1): W, hat mindestens 180 Summanden. Dal W, nicht mehr
als 180 solcher Summanden enthalten kann, ist klar: W, hat 12 Glieder
von der Form w?, von denen jedes 16 Summanden liefert (vgl. Nr. 8).
W, wird also durch drei alternierende Polynome zu je 60 Gliedern ge-
bildet.

2) Wo=wyw,+---=2(p,q,7,8,t)-2(8,7,¢,p,8) 4~
(Die Bedeutung von X ist aus einem Vergleich mit (14) ersichtlich.)

Man multipliziere den »-ten Summanden der ersten Summe mit dem
v-ten Summanden der zweiten Summe (v = 1, 2,..., 5). Aus den so er-
haltenen fiinf Produktgliedern schlieBt man mit Hilfe von Nr.9, 3)
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dghnlich wie bei W,, dal W, aus fiinf symmetrischen Polynomen zu je
30 Summanden besteht.

3) Wo=wws+---=2(p,q,7r,8,0)-2(q,p,s,7,t) +--- .

Man multipliziere zuerst wie bei W,, sodann — um Glieder aus wver-
schiedenen alternierenden Polynomen zu erhalten — den »-ten Summanden
der ersten Summe mit dem u-ten Summanden der zweiten Summe
v=1,2,...,5,u=v+1,v+4+ 2,...,5). Dieses Vorgehen hat seinen
Grund darin, daf infolge von 7 = (12)(34) Produktglieder wie
(p,q,r,8,t)-(p,t,r,q,8) und (¢, p,q,7,8)-(q,p,s,r,t) beider Multi-
plikation auftreten; nach Nr. 11 a) gehoren sie aber zum selben alter-
nierenden Polynom. — Hat man die Multiplikation in der angegebenen
Art ausgefiihrt, so sieht man leicht : W, besteht aus fiinf symmetrischen
Polynomen zu je 30 Summanden und aus 10 alternierenden Polynomen
zu je 60 Summanden.

4) Wo=ww,+ - -=Z(p,q,7,8,8)-Z@,s,p,q,t +-- .

Man verfahre wie bei W, (hier wegen U7T = (13)(24)). Ergebnis: W,
zerfillt wie W, und hat genau 750 Summanden.

11. Die explizite Darstellung von d fiir die vier in Nr. 6 erwidhnten Fille
ergibt sich nun ohne weiteres auf Grund der in Nr. 10 skizzierten allge-
meiten Gestalt von d. Bei der Durchfiihrung sind folgende Bemerkungen
niitzlich : Sei S(j,k,1, m,n) (bzw. A(j, k,l, m,n)) das symmetrische
(bzw. alternierende) Polynom X of afolaf'af, wo iiber alle verschiedenen
Glieder zu summieren ist, die aus dem ersten durch Anwendung von

Si00 (bzw. Ugy) hervorgehen. Dann gilt :

a) A, k,l,m,n)=A(k,j,m,l,n), da die Anordnungen der Expo-
nenten durch gerade Permutationen auseinander hervorgehen ;

b) A(j,k,l,m,n) = A(k,j,l, m,n), da die Anordnungen der Expo-
nenten durch ungerade Permutationen auseinander hervorgehen ; ich
nenne solche alternierende Polynome wverwandt (im folgenden sind
solche in eckigen Klammern zusammengefal3t) ;

c) [AG,k,l,m,n) + Ak,j,l,m,n)]=80,k,l,m,n),
[AG,k,l,m,n) — Ak,j,l,m,n)] =0o-VD
(6: symmetrisches Polynom).

Da im folgenden lediglich die Félle 2 und 4 von Nr. 6 weiter bearbeitet

werden sollen, beschrinke ich mich auf deren explizite Darstellung. Da-
bei ist d in der Gestalt (10) zugrunde gelegt.
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1) p,q,r verschieden, s =¢:
U1:2(Sl——82*S3"—S4_—SS)+S(2p92Q327‘:28’2s)
—28(p +r,p+r,29,28,28) + 24A(p+s,p+q,9 +7r,r + 5,25);

Uy=8;—8, =8+ 8+ 8 +8@+4q,p+q,2r, 2s,2¢s)
+8S2p,9+r,q+1r,2s,28) +8S2p,q+ s,q9 + s, 2r, 2s)
+Sp+r,p+s,29,7r4+5,28) —28(p+r,p+r,qg+s,9+s,2s)
— S(2p, 2q,r + 8,7+ 8,28) — S(p + s,p + s, 2q, 27, 28)
—Sp+q,p+r,q+r,2s,2s)
+[A@+s,.g+r,p+r,28,9+38) —...]
+M4@2s,p+r.p+qg,r+s,9+8) —...]

+ [4(2s,r +5,2p, 9+ s, g +71) —...]
+[4@2r,q+s,28,p+s,p+¢q —...]
—Alp+q,9+7r,r+s,p+s,28) ;

hierin ist zu setzen :

Slzs(p+Tap+s7q+8’Q+8>T+8)
S,=8(p+s,p+s,qg+s,q9+s,2r)
S, =82p,q+s,9+s,r+s,7r+9)
S,=8p+s,p+s,q+r,q9+r,29)
Ss=8(p+qg,p+q,r+s,7+8,28).

2) pFq, r=8=1:

Im vorigen ist 7 fiir s zu setzen ; nun treten keine alternierenden Poly-

nome mehr auf :

U,=—U,=382p, 2q, 2r, 27, 27)

+2-[Sp+q¢,p+r.q+r,2r, 27)
—8S(p+r,p+r,2q,2r,2r) —S2p,q+r,q9+ r,2r,27)
—38(p+4q,p+ q,2r,2r,2r)] .

§ 4. Darstellung von d mit Hilfe der Koeffizienten a, von G;(x) = 0
fiir 9, = a’x,, @, = aSadx,. Numerische Beispiele.

12. Zunichst sei in Nr. 11, 2) gesetzt :

p=2, q=1, r=8=t=0.
Es ergibt sich :

U, = —U,=38(4,2) +28(3,2,1) — 28(4,1,1) — 65(3,3) — 65(2,2,2) ;

Gliederzahlen : je 130 fiir U, und U,.
Mit Hilfe der Tabellen von Faa di Bruno [7, p. 312] werden U,, U, als
Polynome in den a; ausgerechnet. Das Ergebnis ist in (8) zu finden.
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Ein numerisches Beispiel :

25 — 3t — b2 + 1622 + 42 — 12 =0
hat als Wurzeln

Otl-—_—]., 0t2=-—1, (x3=2, 01,4-——‘—-2, 06523.
Nun wird d auf zwei Wegen ausgerechnet, :

1) aus d(u); (10), (6), (14), (7):

2) aus d(a); (8):
U, = — U, = 2464 .

13. Zu einem anderen Beispiel setze man in Nr. 11, 1)
p=3, qg=2, r=1, s=t=0.

Dies ergibt :
Uy =2(8, +8, —38; — 8, — 68, —8,) +5(6,4,2) — 68(4,4,4) ;
U,=8; — 8, — 38 — 8,4+ 68,4+ 8 — S(6,4,1,1)
+ 5(6,3,3) + 38(6,2,2,2) + 8(5,5,2) — 85,4, 3)
+28(4,4,3,1) —28(4,4,2,2) — S(4, 3,3,2)
+ [A4(5,4,2,1,0) —...]+[4(6,3,2,1,0) —...];
S;==8(4,3,2,2,1), 8,=48(,3,3,1), §=2803,3,2,2,2),
S, =4~86,2,2,1,1), 8,=8(3,3,3,3), 8=048(,5,1,1)

Fiir den alternierenden Teil 4 in U, muBl wegen Nr.11, c) gelten:
A =0o.VD. Da VD in den «; den Grad 10 und 4 den Grad 12 haben,
folgt :

c=a-8(2,0,0,0,0)+56-8(1,1,0,0,0) , (@, b ganz) .

Zur Bestimmung der beiden Konstanten a,b ist erforderlich, dafl die

ausmultiplizierte Gestalt von VD bekannt sei.
Diese Gestalt kann durch folgende Uberlegung anschaulich werden :

Der Summand of o o? o} o kommt in VD ein einziges Mal vor ; damit
auch A(4,3,2,1,0) (vgl.Nr.9,1). Da aber VD bei Transposition
das Vorzeichen wechselt, muBl mit A4 (4, 3, 2,1, 0) notwendig auch

— A(3,4,2,1,0) darin enthalten sein. Hiermit ist VD schon vollig
ausgeschdpft : denn andere als die schon erwéhnten Summanden miissen
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mindestens zwei gleiche Exponenten aufweisen, und somit — wegen des

Alternierens bei Transposition — in Paaren sich annullieren. Also ist
schlieBlich :

VD = A(4,3,2,1,0) — A(3,4,2,1,0) .

Nun soll nach dem friither Gesagten 4 = o-V'D sein. Fithrt man die
Multiplikation rechts in ihren ersten Ziigen durch und niitzt dabei wie
bisher die Tatsache aus, da} alternierende und symmetrische Polynome
vorliegen, so ergibt ein einfacher Koeffizientenvergleich :

a=1, bh=2 .
So folgt endlich :
A=VD.8*1,0,0,0,0) .
Mit Hilfe der Tabellen von F. N. David und M. G. Kendall [8, p. 431 ff.]

wird obige Darstellung von d in Potenzproduktsummen ersetzt durch

eine solche in Potenzsummen : s; = 8(4, 0, 0, 0, 0). Zur Vereinfachung

werde G;(x) = 0 in die Gestalt
2+ a,x® + a2 + ayx +as; =0
gebracht ; so wird s; = 0, und es ergibt sich damit :
10d = 5-[58;48, — 68582 — 48,8;8, — 582 + 6868482 + 2848

2 2 2 2
-+ 4%,_33 — 878y + 4858387 — 8,838, — 28582 — 85 — 82s2]
+ V5.[58198, — 108582 — 52 + 108,8,8, + 48682 — 82,
+ 48,8587 — 38,838, — 4858 + 83— 58] .

Der letzte Schritt zum Ziel besteht nun noch darin, daf fiir die Potenz-
summen Polynome in den Gleichungskoeffizienten a, eingesetzt werden ;
diese findet man mit Hilfe der Newtonschen Formeln. Die sich ergebende
Gestalt von d ist in (9) angegeben.

Zwei numerische Beispiele :

1. Auf Grund der in Nr. 6 unter 2a angegebenen speziellen Gleichung.
Einerseits ist nach (9): 5d = 5-1800 + 2.V5-900; andrerseits folgt
aus (10), (6), (14), (7) wegen w; = w3 = — Wy = — Wy = 10, w,; = w,
= —w, = — wy = 40, Wy = Wg = Wy, = W, = — 20:

5d = 51800 + 2-V'5.900 .

2. Auf Grund der in Nr. 6 unter 2b angegebenen speziellen Gleichung
rechne man wie vorhin d zweimal aus. Beide Male ergibt sich :

5d = 5-11654856 1 2.V5.4147524 .
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Ausblick

Innerhalb der Kleinschen ,,zweiten” Auflosungsmethode (Nr. 3) wire
der néchste Schritt : den Parameter X zu berechnen. Vorderhand scheint
die Rechnung hierzu umfangreich und uniibersichtlich zu sein ; doch hat
die Frage, wie sie zu bewiltigen sein mag, nach dem Bisherigen etwas
Verlockendes. — Mit diesem — noch auszufithrenden — Schritt wire die
Briicke von der allgemeinen Gleichung fiinften Grades zur Ikosaeder-
gleichung konkret geschlagen.

Im Zusammenhang mit der Ikosaedergleichung moge hier noch auf
eine Arbeit hingewiesen werden. Herr Ott-Heinrich Keller berechnet
[9, p. 456 fI.] auf Grund seiner Umgestaltung einer Hilbertschen Formel
die Diskriminante A4 der Tkosaedergleichung ohne Kenntnis der Korper-

basis :
A — 5785, 3210, 2420,X40, (1 — X)30 .

Nach dem Kronmeckerschen Satz ist der erwihnte Briickenschlag ohne
akzessorische Irrationalitit nicht moglich. Herr Professor R. Brauer
gibt nun [10, p. 473 ff.] — unter anderem aus der Theorie der Algebren —
einen Einblick in die Natur der akzessorischen Irrationalititen, und
zwar nicht nur fiir G5(z) = 0. Er zeigt, dal die Auflésung einer in P,
rationalen Gleichung f(x) = 0 dann und nur dann mit einem Formen-
problem #dquivalent ist — auf ein Formenproblem riickfiihrbar ist — wenn
unter gewissen aufzustellenden einfachen normalen Algebren eine voll-
stindige Matrixalgebra vorkommt. Tritt keine solche vollstdndige
Matrixalgebra auf, so kann die Riickfiihrbarkeit durch Korpererweite-
rung erzwungen werden. Und zwar mull der Erweiterungskoérper Zer-
fallungskoérper einer der erwdhnten Algebren sein ; diese wird dann eine
vollsténdige Matrixalgebra. — Im Fall der G;(x) = 0 ist der Index der
zugehorigen Algebren gleich 2; zur Riickfiihrung auf die Ikosaeder-
gleichung ist die Adjunktion einer Quadratwurzel zum Korper
P, (V_D_, ¢) notwendig, die wegen der Einfachheit der alternierenden
Gruppe von fiinf Elementen akzessorische Irrationalitét ist.

Herr Professor Brauer teilte mir in einem Brief (11. September 1953)
mit, dafl er selbst eine Arbeit verfafit habe, von der aber nur ein ganz
kurzer ,,Abstract [11, p. 625] veroffentlicht sei. In dieser Arbeit stellt
Herr Professor Brauer auf Grund invarianten-theoretischer Uberlegun-
gen ein Polynom A indena, (+ =0,1,...,4) von

aox5+5a1x4+ 1002x3-{—°--:—*0
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auf, dessen Quadratwurzel als akzessorische Irrationalitit verwendet
werden kann.
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