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Zur Minkowskischen Dimensions- und
MabBbestimmung beschriinkter Punktmengen
des euklidischen Raumes

Seinem verehrten Lehrer Herrn Prof. Dr. W. Scherrer zum
sechzigsten Geburtstag zugeeignet

von H. DEBRUNNER, Bern

In der Punktmengenlehre hat sich der Ubergang von einer Menge 4
zur dulleren Parallelmenge A, im Abstand g als eine der fruchtbarsten
Operationen erwiesen. Schon G. Cantor versuchte zur Volumenmessung
von A das Volumen der einfacher strukturierten Menge 4, heranzu-
ziehen und untersuchte auch Anwendungen auf den Dimensionsbegriff1).
Ins Zentrum riickte diese Begriffsbildung, als H. Minkowsk:?) das Ver-
halten des Volumens V (4,) als Funktion des Parallelradius ¢ — wie es
fir konvexe Korper etwa durch den bekannten Steinerschen Satz zum
Ausdruck kommt — zur Definition von MafBzahlen ausnutzte, und als
mit der Losung isoperimetrischer Fragen und in der Theorie der kon-
vexen Korper Disziplinen entstanden, die die Anwendbarkeit der so
definierten Mengenfunktionale in ein glinzendes Licht stellten.

Insbesondere erwies es sich als moglich, durch den Vergleich des
asymptotischen Verhaltens von V(4,) mit linearen und quadratischen
Funktionen von p im Raum die unterdimensionalen Mafizahlen Lénge
und Flicheninhalt zu gewinnen und zugleich gewissen Aufschlufl iiber
die dimensionelle Struktur von 4 zu erhalten. In konsequenter Weiter-
verfolgung dieser Gedankenginge definierte G. Bouligand 3) Dimensions-
zahlen durch die Wachstumsordnung des Volumens V (4,) und gelangte

1) letzteres in unveroffentlichten Arbeiten; nach einer Bemerkung von @. Bouligand.
) H. Minkowski, Uber die Begriffe Lange, Oberflache und Volumen, Jahres-
ber. Deutsch. Math. Verein 9, 115-121, 1901 = Ges. Abhandlungen I, 122-127 (1911).
3) @. Bouligand, Dimension, étendue, densité, C. R. Acad. Sci. Paris 180 (2)
245-248, 1925. — Sur l'aire d'un domaine plan, Bull. Sci. Math. 52, 556-63, 1928. —
Ensembles impropres et nombre dimensionnel, ibid. 52, 320-344, 361-376, 1928. —
Sur la notion d’ordre de mesure d’'un ensemble fermé, ibid. 53, 185-192, 1929. --
Sur la construction de Cantor-Minkowski, Ann. Soc. Polon. Math. 9, 21-31, 1931.
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damit zu einer kontinuierlichen Dimensionsskala, dhnlich wie auch
F. Hausdorff %) aus dem Caratheodoryschen Mafibegriff eine kontinuier-
liche Dimensionsskala entwickelt hatte.

Die Realisierung solcher nach dem Verfahren von Cantor-Minkowsk:
gebildeten nichtganzen Dimensionszahlen untersuchte kiirzlich H. Had-
wiger ®) ; er erbrachte den Nachweis, da im k-dimensionalen euklidi-
schen Raum zu jeder reellen Zahl i im Intervall 0 <u <k Mengen dieser
Dimension existieren, und daf3 dabei noch untere und obere Maflzahlen
a und g im Intervall 0 <a<f<oco vorgeschrieben werden kénnen. Die
Untersuchung der Grenzfille 0, k bzw. oo als Werte der Dimensions- und
MaBzahlen bildete den Ausgangspunkt der vorliegenden Arbeit. Dabei
erwies sich die von G. Bouligand vorgesehene Aufspaltung der Dimen-
sionszahl yx in eine untere £ und eine obere u als dem Problem ange-
messen. Die derart erweiterte Fragestellung ,,Gibt es Mengen, fir die die
Potenzfunktionen M ok—¢ und M o+ exakte Grenzen des asymptotischen
Verhaltens der Parallelvolumenfunktion fir o — 0 bilden?* wird im fol-
genden durch einen umfassenden Existenzsatz (§ 5) beantwortet. Der
Beweis stiitzt sich ganz auf die Verhiltnisse bei linearen Mengen, indem
im eindimensionalen Raum das asymptotische Verhalten der Parallel-
volumenfunktion vollstindig charakterisiert werden kann (§ 6). Ver-
schiedene der folgenden Uberlegungen und Konstruktionen lehnen sich
eng an solche in den zitierten Arbeiten von G. Bouligand und H. Had-
wiger an ; der verinderten Begrifisbildungen wegen lie} sich die Wieder-
gabe nicht umgehen, doch befleifligt sie sich méglichster Knappheit.

§1. Untere und obere Minkowskische Dimension und MaBzahl

Es sei 4 eine beschriinkte, nichtleere, aber sonst beliebige Punktmenge
des k-dimensionalen (k > 1) euklidischen Raumes R,. 4, bedeute die
duBere Parallelmenge im Abstand ¢>0 von A, d.i. die Menge aller
Punkte P, fiir die P@ < fiir ein Q ¢ A. Mit deren Jordanschem In-
halt ¢) V(4,) bilde man fiir beliebige reelle Zahlen 7 die ,,charakteristi-

schen Quotienten‘
V(4
0, ) = —=0 1)

4) F'. Hausdorff, Dimension und auleres Maf3, Math. Ann. 79, 157-179, 1918.
5) H. Hadwiger, Zur Minkowskischen Dimensions- und MaBbestimmung
beschriankter Punktmengen des euklidischen Raumes, Math. Nachr. 4, 202-212,

1950.
oy V(4,) existiert fur ¢ > 0, wie F. Behrend, Math. Ann. 111, 289-292, 1935 nach-

gewiesen hat.
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und bestimme die Hauptlimites

¢.(4) = lim ¢.(4, o) (2)
e->0
¢.(4) = Zifl; 2.(4,0) , (3)

wobei auch der uneigentliche Wert - oo zugelassen sei. Als untere bzw.
obere Minkowskische Dimension p(A) bzw. u(A) der Menge A bezeichnen

wir die Zahlen
p(4) = inf v [¢,(4) = 0]7) (4)

B(4) = inf 7 [g,(4) = 0] . (5)
Miihelos bestitigt man die Beziehung
0< pd) <EA) <k . (6)

Mit der fiir » > 0 definierten Hilfszahl

3
w, = —— , (7)

r(i+3)

die fiir ganzzahliges » das Volumen der x»-dimensionalen Einheitskugel
angibt, bilden wir fiir jedes v im Intervall 0 < v <% die Zahl

M4, q =L ©
Wg—x
und deren Hauptlimites
. qx (4)
LMz(A) = lim .M.,(A, 9) = - (9)

2->0

M, (4) = Tm M,(4, 9) = L4)

28>0 Wi —v

(10)

Fiir diese Zahlen gelten (gleich wie fiir ¢,(4) und g¢.(4)) die Bezie-
hungen
0< M (A) <M(A) <o (11)

M. (4)=0 [v>p(4)], (12)

7) In eckigen Klammern werden zu beachtende Nebenbedingungen angefiihrt. Infimum
bzw. Supremum sind gré8te untere bzw. kleinste obere Schranke, bei endlichen Mengen
* also kleinstes bzw. groStes Element. '
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M. (4) =0 [v>pu(d)], (13)
M, (A) = co[v<p(4)], (14)
M, (4) =co[t<u(d)] . (15)

Positive endliche Werte sind allein fiir 7 = u(4) bzw. 7 = n(4) mog-

lich. Diese Werte
V(4,)

M(4) =M, (4) = _1;;@6 b E (16)
M (A) = M;(A) = Iim V(4e) (17)

e>0 Op_pOFH

bezeichnen wir als wuntere bzw. obere Minkowskische Mafzahlen der
Menge A. 8)
Eine Menge 4, fiir die

pAd)=pd)=un, MA)=MA4) =M (19)

gilt, heiBBe 1m Minkowskischen Sinne u-dimensional mefbar.

Diese Definitionen rechtfertigen sich dadurch, da@l sie bei Mengen von
hinreichend normaler Struktur Werte liefern, die mit den nach andern
iiblichen Verfahren gebildeten entsprechend benannten Werten iiberein-
stimmen. So sind (als elementarstes Beispiel) j-dimensionale Wiirfel
(0<j <k, j ganz) der Kantenlinge L im R, nach obigen Definitionen
j-dimensional mefbar und ihre Minkowskischen Maf3zahlen betragen L7,
Anderseits existieren Mengen, fiir welche untere und obere Minkowski-
sche Dimension bzw. Mafizahl nicht zusammenfallen. Um den vollen Spiel-
raum realisierbarer Werte anzugeben, bezeichnen wir mit (u, M ; u, M),
die Klasse aller Mengen A des R,, fir die u(4) = pu, __l![_ (4) =M,
u(A) = u, M(A) = M, und suchen im folgenden (§ 5) die notwendigen
und hinreichenden Bedingungen fiir Wertequadrupel u, M, n, M mit
nichtleerer Klasse (u, M ; pu, M),. Vorbereitend soll zuniichst das Ver-
halten der Dimensions- und MafBzahlen bei verschiedenen Mengenopera-

tionen untersucht werden.

§2. Das Verhalten bei kartesischer Produktbildung

Satz 1. Sind R, und R, 2wei zueinander orthogonale komplementire
Unterraume des R, wund gehiren die beschrinkien, nichileeren Mengen A°

8) Die von H. Hadwiger, loc. cit. Fulnote 5 betrachteten Dimensions- und MaBzahlen
stimmen mit u(A4), Mz (A), Mp(A) bzgl. iiberein.
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J2ro—kog, (AY)q, (4% <g, (49)<

des R, beziiglich zu den Klassen (u;, M, ;pu;, M,), (i =0, 1, 2) und ist
A?° kartesisches Produkt von A und A2,

A = Al x A2 | (20)
so gilt fiir die Dimensionszahlen :
e + -/22

—121 + Ha
Zusatz. Fir p, = p, = py ist daher

g1+gzsgo_<_{ }s”‘ogﬁﬁuz. (21)

Po = Py T+ U3 , Bo =ty + ps . (22)
Weiter gilt vn diesem Fall

WDky—py Wky—pg WDky—py Wko—py —
T M M, < M, < = M, M 23
Vzko—g-owkr'__lf_o = et =5 el =S Wko—po 7 (23)

Wky—py Wko—py — —_— WDy, 0, Op, _
Totemom, — TaiMy< Mo = i CecBe 3T M,. (24)

0T W, g TR

Beweis. Leicht einzusehen ist die Beziehung

ASc AlxAic 4 ,, (25)

wenn beachtet wird, daB alle sich auf 4°¢ beziehenden Operationen im
R,, vorzunehmen sind. Fiir die (k,-dimensionalen) Parallelvolumina
V(4i) folgt daraus

V(AQ) < V(4,) V(4p) < V(4y,,) - (26)

Der Ubergang zu den charakteristischen Quotienten und von diesen zu
deren Hauptlimites ergibt, falls man analog zu der wegen der Komple-
mentaritit giiltigen Beziehung ky = k, 4+ k, auch 7, = 7, + 7, setzt:

g, (4% q.,(4%)
g.,(4% ¢, (4%
Aus diesen Ungleichungen ?) 148t sich leicht auf (21) schlieBen : Fiir jede
Wahl von rl<él, 7, <ps Wwird nach der (11)—(15) vorhergehenden

Bemerkung ¢, (4°) =oco, somit ist wy > 7, + 75, also auch yy >y,
+ uy. In gleicher Weise bestétigt man die iibrigen Teilbeziehungen von

9) Ausdriicke, in denen ein Produkt 0.oco vorkommt, sind als hinfallig anzusehen.
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(21). Die Ungleichungen (23) und (24) des Zusatzes folgen bei Beriick-
sichtigung von (9) und (10) aus (27), wenn die 7 durch u ersetzt werden,
womit der Beweis abgeschlossen ist.

Die Aussage von Satz 1 148t sich wesentlich verschirfen, wenn die zur
Zylinderbildung dienenden Mengen kongruent sind ; diesen Sachverhalt
beschreibt '

Satz 2. Ist k=mn (1 <m,n <k; m,n ganz) und spannen die
m paarweise orthogonalen Unterrdume R. (1 = 1,...,m) der Dimension
n den R, auf, sind weiter A* (1 = 1,...,m) untereinander kongruente
Mengen der Klasse (uy, My; py, M), des R, so gehort das kartesische
Produkt A = A'x---xA™ zur Klasse (u, M ; u, M),, wo abkirzend

po=mu, @=mp, (28)
[ w::_l"'l w,;:'-lil l

M=M" = < i< 29

— =t | Vm*Por—p — - Wk—p (29)
. r~ wm~ _ wm.—_ b

M = j M; V'rTz"jl_‘Z)l - <A< —= (30)
k-[J, k""[-‘: o

gesetzt ist.
Beweis. Analog zu (25) gilt im vorliegenden Fall

A, CAyx--- xARcA (31)

Qym °

Wird V(4,) k-dimensional, V(4}) n-dimensional gemessen, so folgt
mit Hilfe der vorausgesetzten Kongruenz

V(de) < {V(49)}™ < V(4 (32)
und mit v =mm,
¢.(4, 0) < {g.,(4%, )} < Vm*~"q,(4, ol/m) . (33)

Dasselbe gilt fiir jeden der Hauptlimites, woraus sich durch geliufige
SchluBweise (28) ergibt. Fiir 7, = u; bzw. 7, = u, lassen sich daraus
mittels (9) und (10) sofort die Ung_leichungen (29) und (30) gewinnen,
w. z. b. w.

Wir werden Satz 2 im folgenden nur fiir den Fall linearer Mengen, also
fir » =1, m =k, anzuwenden haben.

Ein interessanter Spezialfall von Satz 1 liegt vor, wenn eine Menge,
etwa A2, lediglich aus dem auch zum R, gehorigen Ursprung O, des R,,
besteht. Dann ist nimlich 4° mit 4? identisch, und die Beziehungen bei
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kartesischer Produktbildung lassen sich als Beziehungen bei der Aus-
messung einer und derselben Menge in verschiedenen Einbettungsriumen
interpretieren. Hier gilt

Satz 3. Ist A eine beschrinkte, nichtleere Menge in einem Unterraum
R,, des R, [0 <ky<ko], die zugleich zu den Klassen (u,, M, ; by, My,
und (ug, My; e, M ok, gehort, so ist

Mo = M1, ﬁo = ﬁl (34)
My=aM, |1<i< Lot Oh-h (35)

el 2420 | 2 P |

J— e — [ — Wp. 7. W —k )
M =M 123> 0k Sh | 36
1 | - - V2ko—ﬂowk0_:-‘0j ( )

Zusatz. Fir
My =W = u, _]_M_lele (37)
18t auch

Mo=po=pu, My=My=M . (38)

Beweis. Die Beziehungen (34), (35) und (36) folgen weitgehend aus dem
Zusatz zu Satz 1 ; denn fiir die Menge O, = R, - R, giltja p, = u, =0,
M, = M,=1. Es bleibt einzig 2 <1 < 1 nachzuwelsen Dazu gehen
wir aus von einer (25) verschirfenden Integralrelation. Sind nimlich die
Voraussetzungen von Satz 1 erfiillt, so durchdringt ein zum R, parallel
gefiihrter Trigerraum im Abstand o von A2 die Menge A} in einer zu
Ays—s C R, kongruenten Menge, so daB

V(49) j V(A\,g,“oz) av, (39)
XH
resultiert, wo dV, das Volumendifferential des R, bezeichnet. Fiir

A? = 0, ist o der Abstand von O,, also betrigt dV, als k,-dimensionale
Kugelschale AV, = ky o, ¥ 'do . (40)

Dies in (39) eingesetzt ergibt bei Umformung geméf (1) und (8) und Sub-
stitution von ¢ = ¢ ¢!

Mt(Ao’ 0) — k,?,wal:g Wiy —7 j'M (Al Ql/l ___ t2) Vl t2k1—‘rtk2-—1dt
ko—z
— k2wk2 wkl""f b3 zkl—fl ’Gg -1
= M j y1 —¢2 th2—1dt (41)
=M*, [ inf M (ALo)<M*< sup M, 4%0))].

0<e’'<e 0<e’'<e

264



Dabei wird fiir die letzten Umformungen der erweiterte erste Mittelwert-
satz der Integralrechnung herangezogen und das Integral mit Beriick-
sichtigung von (7) ausgewertet. Fir = = p, bzw. v = u, ergibt sich
hieraus My > M,, My <M,, d. h. 1>1>17.

Fiir u-dimensional meBbare Mengen behauptet der Zusatz auBer der
schon durch (34) bewiesenen Invarianz der Dimensionszahlen auch die
der Mafizahlen bei Einbettung in einen hoher-dimensionalen Raum. In
der Tat : die gleichzeitige Beriicksichtigung von (11), (35) und (36) ergibt
M, <M,<My,<M, woraus die Behauptung abgelesen werden
kann19),

Man kénnte vermuten, daB stets A =1 = 1 gilt, daB also die Min-
kowskischen MaBzahlen vom Einbettungsraum unabhingig sind. Die
Durchrechnung am Beispiel des Cantorschen triadischen Diskontinuums
D vom Durchmesser 1 zeigt aber das Gegenteil. D gehort ndmlich zu den
Klassen (u,M;u, M), und (u,AM;u,AM),, wobei sich folgende
Werte ergeben : B

_ log 2
~ log 3

— 0,6309. .. :

e NP
9k g 2 r( ”): 1,911... ;

|

2
Lu (1 —prtM=0966...M ;
,0

|
fd

06... ;

e S
[

|

0,9822. .. .

Die Relation (39) 148t sich auch bei der Auswertung eines weitern
wichtigen Spezialfalles von Satz 1 heranziehen. Bedeutet nidmlich
A' = E,  den Einheitswiirfel des R, , so ergeben sich nach dem Zusatz
die Dimensionszahlen der Zylindermenge A°= E, xXA? zu pu,=k,
+ s, Mo = ky + pp. Dariiber hinaus it sich dann in (39) V(4,z=)
nach dem Steinerschen Satz iiber Parallelmengen konvexer Korper ab-
schitzen, nach unten durch 1, nach oben durch 1 4 O(p); also ist

V(4g) < V(4y) < V(41 +0(0) - (42)

Der Ubergang zu den charakteristischen Quotienten und den Minkowski-
schen MaBzahlen ergibt dann M, = M,, M,= M,. Dies beweist den

10) Einer brieflichen Mitteilung von Herrn M. Kneser zufolge bleibt die Minkowskische
MeBbarkeit einer unterdimensionalen Menge des R, auch bei Ausmessung in einem sie
enthaltenden Unterraum erhalten. Die Eigenschaft Minkowski-mefbar zu sein ist dem-
nach iiberhaupt unabhéngig von der Dimension des Einbettungsraumes.

265



Satz 4. Ist E, der Einheitswirfel eines Unierraumes R, des R,
Ae(p, M;u, _M——)kg eine beschrinkte, michtleere Menge eines zum R,
orthogonalen komplementiren Unterraumes R, , so gehért die Zylinder-

menge AXE, zur Klasse (u+ ky, M;u+ ky, M),.

§3. Das Verhalten bei Mengenaddition

Satz 5. Ist die Enifernung o6(A, B) der beschrinkten, nichtleeren
Mengen A und B des R, positiv, so gilt fur jede im Intervall 0 < v <k
liegende reelle Zahl ©

M (A)+M (B) _ _
M (A)+M (B)<M(A+B)<{_ <M/ (A+B)<M (A)+M(B)
und es 18t
#(4 + B) = sup {u(4), u(B)} (44)

sup{u(A), (B)} < u(A+ B)<inf {sup[u(A), & (B)], sup[a(A), (B} . (45)
Zusatz., Falls p(B) < u(4) oder u(A) < u(B) ist, gilt daher neben
(44) auch
#(4 + B) = sup {u(4), p(B)} . (46)
Der Beweis ergibt sich aus der Bemerkung, daB fiir 2p<d(4, B)
VI(A + B)e]l = V(4,) + V(B,) - (47)
Daraus schliet man in geldufiger Weise erst auf (43), von hier auf (44)

und (45).

§4. Das Verhalten bei Ahnlichkeitstransformation

Satz 6. Ist AA eine zur beschrinkten, nichtleeren Menge A des R, im
Verhilinis A:1 [0<A<oo] homothetische Menge, so gilt

u(Ad) = p(4) B(24) = E(4) (48)
M(AA) = EM(A) M(AA) = A*M(A) . (49)
Beweis. Die Funktionalbeziehung
VI(Ad)e] = 2¥V (4o) (50)
zieht fiir die charakteristischen Quotienten
2(A4, ) = A'q.(4, 47'0) (51)
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nach sich. Von hier aus gewinnt man (48) und (49) durch Anwendung der
Definitionen.
§6. Der Hauptsatz

Die Fragestellung nach den gegenseitigen Beziehungen zwischen den
Minkowskischen Dimensions- und MaBzahlen und nach den realisierbaren
Werten wird beantwortet durch den

Hauptsatz 7. Ist A eine beschrdnkie, nichtleere Menge der Klasse
(u, M ; u, M), des Ry, so gilt fir die Minkowskischen Dimensions- und
Mapzahlen eine der folgenden Beziehungen :

o) O<E=‘l7,=k 0<_M=M——<oo

B) O0=p=un<k 0 <M=M<oo M = M = positiv ganz
y) O<pu=p=k 0=M=M

0 O=p=p<k M=M=c

e) O<pu<p=k 0<M< oo M=0

{) O=pu<u=tk M =oo M=0

n O0=upu<p<k M =0 0<M < oo

d) O<u=up<k 0<M <M< oo

) O<pu<p<k 0 <M< oo 0< M < oo

Umgekehrt ist bei beliebig vorgegebenen u, M , u, M, sofern nur eine der
Beziehungen o) bis 1) erfullt ist, die Klasse (u, M ; u, M), nicht leer, das
heift es existiert eine Menge A des R, deren untere und obere Dimensions-
und Mafzahlen mit den vorgegebenen Werten bzgl. dibereinstimmen.

Beweis. Jede beschrinkte, nichtleere Menge 4 des R, gehort entweder
zum System U der Punktmengen X mit endlichem &uBlern Jordanschen
Inhalt V(X)>0, zum System B der endlichen Punktmengen oder
schlieBlich zum System € der nichtendlichen Jordanschen Nullmengen.
Wir unterscheiden demnach drei Fille :

a) Essei 4e¢¥W und V(4) = M>0. Fiir v =k fillt die Bestim-
mung von M (A4) und M_(A) zusammen mit der von Cantor!!) vor-
geschlagenen Inhaltsbestimmung, die aber stets den Wert V (A) liefert 12).
Daher findet man p(A4) = p(d) =%k, M(A4)=M(4)=M>0. Um-
gekehrt gibt es in U zu beliebig vorgegebenem M aus dem Intervall

1) @, Cantor, Uber unendliche Punktmannigfaltigkeiten, Math. Ann. 23, 473
bis 479, 1884.
12) Vgl. Enzykl. II/C 9a, 966.

267



0<M <oo Mengen mit V(A4) = M, zum Beispiel Wiirfel der Kanten-

1
linge M*. Damit ist fiir Mengen des Systems U der Hauptsatz bewiesen,
sowie der Existenzbeweis unter Voraussetzung von «) erbracht.

b) Es sei 4 eine Menge von n Punkten, also 4 ¢« 8. Die Anwendung
der Definitionen liefert u(4) = p(4) =0, M(4) = M(4) =n. Fir
endliche Mengen ist daher Bedingung B) erfiillt, umgekehrt ist auch der
Existenzbeweis unter Voraussetzung von g) erbracht.

¢) Ist Ae@, soist M,(A4) = My(A) =oc0, M,(4)= M, (4)=0.
Die Beziehungen y) bis ¢) erschopfen dann alle Moglichkeiten, die bei
Beachtung der notwendigen Bedingungen (6) und (11) denkbar sind.
Umgekehrt wird ein gemidB y) bis i) vorgegebenes Wertequadrupel
g, M, w, M auch durch eine Menge A €@ realisiert. Fiir £ = 1 (lineare
Mengen) wird dies in § 6 nachgewiesen. Dies vorausgesetzt, kann der all-
gemeine Nachweis wie folgt gefiihrt werden.

Wir konstruieren zunidchst eine meBbare Menge B der Klasse
(u, M ; u, M),. Dazu setzen wir

p==FK +v [0 <k, <k, kyganz, 0 <v» <1]1) . (52)

Nach Voraussetzung existiert dann eine lineare Menge B, der Klasse
(v, M ;», M),, und nach dem Zusatz zu Satz 3 gehort B, bei Einbettung
in einen R, , zur Klasse (v, M;v, M), , . Fir k, = 0 setzen wir
B = B, und sind am Ziel ; ist aber k£, >0, so gehort die Zylindermenge
B = B, xE,, zur geforderten Klasse, wenn £, den Einheitswiirfel eines
zum R, , orthogonalen komplementiren R, bedeutet (Satz 4).
Im weitern existiert eine Menge C e (0, co; p, M*),, wo je nach den
fiir A geforderten vorgegebenen Werten u und u gesetzt ist :
e {M [u<p] ) s
M—Mo<p=u].

Nach Voraussetzung existiert nimlich auf einer Geraden ¢, eine Menge

C, e(O, oo;—%,M*llk) , weil 0 g% <1, M*¥*>9. Sind nun C,
1

(¢=1,...,k) zu C, kongruente Mengen auf paarweise orthogonal-

stehenden Geraden @,, so ist nach Satz 2, den wir fir m =k, n =1

beanspruchen, die Zylindermenge C' = C,Xx---XC, in der Klasse

¥) Fir g =1,...,k—1 ist die Vorschrift nicht eindeutig. Hier mu3 v = 0 gesetzt
werden, sobald M =co, andernfalls » = 1.
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(0, co; u, AM*),, [0<A<oo], und nach Satz 6 ist die dilatierte Menge
O = A-Yr(" von der geforderten Art. Fiir den ausgeschlossenen Fall
u =0 sei C die leere Menge.

Mit Hilfe von (12) bis (15) berechnet man nun nach Satz 5, dal die
Menge A = B + C, falls nur B und C in positiver Entfernung ange-
ordnet sind, zur Klasse (u, M ;u, M), gehort, womit der Existenz-
beweis auch unter den Bedingungen y) bis ¢) erbracht ist.

§6. Lineare Mengen

Es sei A eine (beschrinkte) abgeschlossene!?), nichtendliche Jordan-
sche Nullmenge in einem R, , E das kleinste 4 enthaltende abgeschlossene
Intervall. £ — A ist offen und wie A Jordan-meQlbar, und es gilt

V(E — A) = V(E)>0 . (54)

E — A 14Bt sich nach bekannten Uberdeckungssiitzen als Vereinigungs-
menge von abzidhlbar vielen disjunkten offenen Intervallen F, dar-

stellen : -
E—-—A=2%E). (55)
1

Fiir jedes >0 haben nur endlich viele Intervalle K, einen Inhalt
V(E,) groBer als ¢; die unter sich verschiedenen der Zahlen V (&) kon-
nen daher in monoton fallender Folge angeordnet werden. Sei (2p,)
diese Folge, wobei also

0<o,1<0, [v=1,2,...]. (56)
Weiter gebe die Zahl
a,positivganz [v=1,2,...] (57)

an, wie oftmals 29, als Intervallinge unter den Zahlen V (Z,) auftritt ;
a, ist also die Vielfachheit, mit der 2, als Abstand aufeinanderfolgender
Punkte von 4 vorkommt. Beide Folgen brechen nicht ab ; andernfalls
wire mit der Anzahl der Intervalle £, auch die Menge der Begrenzungs-
punkte von E — A, also 4, endlich. Aus (54) und (55) schlieft man

daher auf o -
V(IE)=V(E —A)=2V£H)=2%a,p, *°) . (58)

1 1

14) Die Beschrankung auf abgeschlossene Mengen ist unwesentlich. Mit einer beliebigen
Menge ist auch deren abgeschlossene Hiille eine nichtendliche Jordansche Nullmenge,
entsprechende Parallelmengen sind identisch, infolgedessen stimmen auch die Minkowski-
schen Dimensions- und Maf3zahlen iiberein.

15) Die mittlere Gleichung ist am einfachsten durch den Ubergang zum Lebesgueschen
MaB zu verifizieren.

269



Nun gilt fiir die Parallelmenge 4, von 4
Ao =E, — ZE&Q) ) (59)

wo E{® ein zu E, konzentrisches abgeschlossenes Intervall vom Inhalt
V(E)) — 20 bedeutet, falls V(E,) > 2p, andernfalls aber leer ist. Mit
V(o) = V(4,) erhilt man daher

Vie) =V(E) + 20 —22a,(0, —0) [onsr <0 < 04l (60)
1
und die Anwendung von (58) ergibt, wenn noch
a, =1 (61)
gesetzt wird, das Resultat
V(e)=202a,+ 2 flav oy lownn<e=<oe.d. (62)
0 n

Die Funktion ¥V (p) ist also stetig und aus linearen Funktionen zusammen-
gestiickt, wobei die geradzahligen Richtungskoeffizienten fiir ¢ — 0
monoton gegen oo streben. Aus diesen Bemerkungen ergibt sich nun
unmittelbar

Satz 8. Ist A eine nicht endliche lineare Menge vom Jordanschen Inhalt
Null, so gehort thr eindimensionales Parallelvolumen V(o) = V(A4,) zur
Menge § der reellen Funktionen ¢(p), fir die ein R>0 existiert, derart
daf @(p) im Intervall 0 < o < R definiert ist und hier folgenden Bedin-

gungen genigt :
p(e") <g(e") [e'<0"] (Monotonie) (63)
e’ ¢le) 1
o pe) 1| <0 [o <o <o"] (Konvexitit von oben)  (64)
0" (") 1

lim ¢(g) = @(0) =0  (65) lim——~=0. (66)
e->+0 e->-+0 (p( )

Wir vermerken noch den aus (63) bis (65) leicht folgenden
Zusatz.
Fir (o) € e 18t p(o) stetig tm Intervall 0 < o < R, R>0 . (67)

Bedeutsam ist nun, daB in gewissem Sinne auch die Umkehrung gilt,
indem jede Funktion aus {; einer im R, realisierten Parallelvolumen-
funktion asymptotisch gleich ist. Etwas allgemeiner formulieren wir
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Satz 9. Gehoren die Funktionen f(o) und g (o) zu der in Satz 8 erklirten
Menge &g, und ist zudem

flo) <gle) [0<po¢<R; R>0], (68)

8o existiert eine lineare Menge A, fir deren eindimensionales Parallel-
volumen V(o) = V(4,) gilt:
Vi w— V(o)

S | 69 1
©9 0-1:-}1-10 g()

lim =1, (70)

>0 /(@)
Zusatz. Es kann sogar die Existenz von o,>0 gefordert werden, wofir

O =V(<g(+2 [0=<¢=<gl] (71)
gelten soll.
Die Hauptaufgabe des Beweises besteht in der Konstruktion zweier

unendlicher Folgen (@,) und (p,), die (56), (57) und (61) geniigen, fiir die
2'a,p, konvergiert und fiir welche die nach Ansatz (62) gebildete Funk-

0

tion ¥V (g) die Beziehungen (69), (70) und (71) erfiillt. Mit derartigen
Folgen konstruiert man niamlich die endlichen Mengen 4,,, deren Punkte
durch die Koordinaten

oo
A,z =22a,0, + 2P0m [p=0,...,a,,, — 1] (72)
0

festgelegt sind, und stellt mit den Satz 8 vorangestellten Uberlegungen
fest, daB die (beschrinkte) Vereinigungsmenge A4 = X' A4, fiir jedes

0
0>0 das Parallelvolumen V(4,) = V(p) besitzt, womit den Forde-
rungen von Satz 9 entsprochen ist.

Wir beginnen nun mit der Losung der Hauptaufgabe, indem wir bei
erfiillten Voraussetzungen von Satz 9 durch vollstindige Induktion die
Folgen (a,), (¢,) und eine Hilfsfolge («,) [» =0, 1,...] definieren.

Zunichst setzen wir @, = 1 und bestimmen feste Werte «;, 0, = 0}
so, dafl simultan gilt

®>0; 0<9o<R; ag+20,=1(00); xo+20=>f(0) [0<0=<p0]. (73)

Diese Bedingungen sind erfiillbar, etwa in folgender Weise: Sei
O<R' <R und op=sup {f(g) — 20} fiir 0 <p < R' Jedenfalls
ist ap>0, weil (66) —2 _ .0 fordert. Dieses Supremum wird aus

1 (o)

Stetigkeitsgriinden (vgl. (67)) angenommen, etwa fir ¢ = g,, also
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gilt oy = f(0o) — 20,. Dabei ist g < R'<R und g,>0, letzteres
weil nach (65) f(p) — 20 = 0 % «, fiir g=0. Schliefllich folgt aus der
Supremumeigenschaft f(p)—2p¢ < o fir 0 < p < R’, um so mehr fiir
0<e =0

Fir k= 0,...,» — 1 seien nun g,, «; und a, bestimmt, derart, dal
mit den Abkiirzungen &
Sk === Zav (74)
0
Vi(e) = ap + 2840 (75)
gelte : x>0 (76)
0r-1>0:>0 (0_, = R) (77)
Vile) = (o) fir 0<po <o . (78)

Fiir n = 1 sind diese Bedingungen offensichtlich erfiillt. Wir bestimmen
nun g,, a, und a, nach folgendem Verfahren : Fiir jedes a [0 < a<a,_,]
setzen wir

Kp—-1 — &

g“(a)=T[a=l,2,...]1“) (79)
und bestimmen damit
a(a) = infa [a e R, (x) - Ra(x)] , (80)
wo N, (x) die Menge der natiirlichen Zahlen a ist, fiir die
e* (@) <@nr (81)
und N,(x) die Menge der natiirlichen Zahlen a, fiir die
g(@)<Vauale) [0=<e<e*(¥]. (82)
Dann setzen wir
o, = info[aeN] , (83)
wo J die Menge der reellen o« [0 < o < «,_,] ist, wofiir
flo) Sa+t 20 {sp ta(@} [0 =<¢ <" a)] (84)
gilt. Mit 0, = a(e) (85)
en = 0"*"(an) (86)

sind die Folgenglieder auch fiir ¥ = n definiert.

18) Bei @%(x) ist a oberer Index. Gefahr fiir Verwechslung mit Potenzexponenten
besteht nicht.
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Wir untersuchen die Konstruktion schrittweise auf die Realisierungs-
moglichkeit hin und vermerken erst die Beziehungen

0 <o”(x) < () [0’ <a] (87)
lim %(a) = O . (88)

Weiter haben wir nachzuweisen, dal3 der Durchschnitt von R,(x) und
Ns(«) mnicht leer ist, somit als Menge natiirlicher Zahlen ein kleinstes
Element a («) enthilt. Nun ist aber 9t,(«) nicht leer, sondern enthilt fiir

Nl((x) = 2Qn—1

alle a>N,(«); N,y(«) ist nicht leer, weil nach (65) und (76) ein £>0
existiert, derart, dal g¢g(¢)<a,_; < V,_1(0) [0 <p <¢], und wegen
(88) gibt es dazu N,(a), so daB o™ <e [a>N,(«)]. Fir

a>sup {N (), Na(a)}

gilt demnach a e N,(a)N,(«). Fiir das eben als existierend nachge-
wiesene und selbst zu M, (x) und N,(«) gehorende Infimum vermerken

wir die Relationen
1 <a(a) <a() [a <o« (89)

e™*(B) < *(B) [o' <a] , (90)

die sich aus (79), (80) und (87) ablesen lassen.

Um fiir (83) die Existenz des Infimums «, nachzuweisen, zeigen wir,
daBl die mit (84) gebildete, jedenfalls beschrinkte Menge nicht leer ist.
In der Tat : Aus (75) und (78) schlieBen wir auf die Ungleichung

flo) <<an,_y + 20(8p—y + 1) [0 <o < 0nal s

aus ihr folgt die Existenz einer Zahl a<a,_,, fiir die noch

flo) Sa+20(8,,+1)  [0<0<0,4]

gilt, und mit Beriicksichtigung von (89) und Inanspruchnahme von (81)
fir ¢ = a(x) ist nun a ¢ N zu erkennen.

Die n-ten Folgenglieder konnen demnach wie angegeben gebildet
werden und zur vollstindigen Konstruktion der Folgen bleibt nur noch
zu zeigen, daf3 auch sie selbst den induktiven Voraussetzungen (76) bis
(78) geniigen.

Am leichtesten einzusehen, ndmlich unmittelbar aus (81), (85), (86)
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und (87) folgend, ist die (77) bestitigende Ungleichheit 0<p,<p,_;.
Mit ihr und der aus (79) und (86) flieBenden Beziehung

Xpo1 — Qp = 2a’n On (91)

gehen wir in die fiir £ = n — 1 als giiltig vorausgesetzte Relation (78)
und erkennen

Waire nun (78) fiir &k = n falsch, so existierte ein o', so daBl f(o’) >V (o),
und zwar infolge (65) und (92) im Intervallinnern, das heif3t

0<o' <p, = 0*“a,) .

Man konnte dann wegen (79) und (90) o' [o, <oa' <w, ;] so finden, daB
0<p' < p"M(a) < p*Na) fiir jedes o [a, <a <a'] erfilllt ist.
Anderseits existierte a”[x, <oa” <a,_,] derart, daB, wie man mit (89)
schliet, fir jedes a [a, < a < a”] gilte

@) >Vale) + (0 —a,) =+ 20" {8,y +a(x,)} = a+ 20" {8, 1+a(x)}.

Fiir alle a [, < a < inf (a/, «”)] wire dann (84) nicht erfiillt, das heil3t
a ¢ N, was mit (83) im Widerspruch steht. Also ist (78) auch fiir £ = »
richtig. Um schlieBlich noch «,>0 zu bestéitigen, betrachten wir den
Wert o* = 0°®(0), fiir den nach (79) 20*a(0) = o, , und nach (76),
(79) und (81) 0<p* < g,_, gilt. Fiir p* erhilt man infolge der eben auf-
gefiihrten Beziehungen und der fiir £ = n — 1 als richtig vorausgesetz-
ten Ungleichheit (78)

f(e*) — 29*(3n—1 -t a,(O)) = f(o*) — Vn-—l(Q*) <0.

Wir bestimmen nun

&= sup (f(e) — 2¢ {8,.1 +a(0)}) . (93)
0<e<e*

Wegen (66) ist ¢, >0; dieser positive Wert wird aus Stetigkeitsgriinden
auch angenommen, etwa fiir ¢ = po’. Weil p = 0 und nach der eben
ausgefiihrten Rechnung auch p = p* beim Einsetzen nicht positive
Werte liefern, fillt o' mit keinem dieser Werte zusammen, so daB
0<o' <p* = 0*9(0). Daraus folgt die Existenz von &,>0, derart,
daB fiir a<e, nach (79) noch o < p*®(«x). Fir 0<a < inf (e, &)
gilt dann wegen (90) 0<<o' < 0*(a) < p**(a) und zugleich

fle)>a+ 20" {8, +a(0)} > a+ 20 {s,, +a(x)} ,
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also ist gemdB (94) o ¢ M. Dies zeigt, daB «, = inf o > inf (¢, &) >0,
w.z. b. w. xen

Wir kommen endlich zur Verifikation der Eigenschaften, die fiir die
Folgen (a,), (0,), bzw. fiir die geméB (62) aus ihnen gebildete Funktion
V (o) gefordert wurden, und wir beginnen mit dem Nachweis von (69).

Wir verweisen erst auf die Ungleichheit (78) und behaupten, daB sie
scharf ist, daB also g [0 < g} < o,] existiert, so daB V,(o%) = f(o%).
Wire namlich im angegebenen Intervall stets f(g) <V,(0), dann miiBte
wegen der Stetigkeit dasselbe in einem grofern Intervall 0 < p < o,
[0, <e,] gelten. Man konnte dann o), <o, angeben, so daB fiir
g <a<a, gemiB (79) und (90) 0°¥(a) < p®*(a) < o/ erfiillt
wiire, weiter miiBte, wieder aus Stetigkeitsgriinden, ein o, [of, < o) < a,]
existieren, derart, da fir 0 < g < o, sogar f(o) <V,(0) — (o, — o),
das hei3t bei Beriicksichtigung von (89)

flo) < ap + 208y + a,) < o + 20 {8,y + a(o))}

zutrifft. Der Vergleich dieser Beziehungen mit (84) ergibt o) ¢ N, was
wegen 0<o, <, einen Widerspruch zu (83) darstellt. Die Zahl o,
fir die wie eben nachgewiesen V,(o%) = f(o)}) gilt, kann nicht im
Intervall 0 < gy <@, = 0¥*"*+Y(a,,,) liegen, sonst wire hier wegen
(68) g(or) > V,(or), im Widerspruch zu der bei der Bildung der (n+41)-
ten Folgenglieder beachteten Bedingung (82). Die bisherigen Ergebnisse
konnen wie folgt zusammengefaBlt werden: Es gilt (fir » = 0,1,...)

und es existiert g, derart, daB

flom = Valon) »  tnpi <on <o, - (95)

Weist man dazu noch die Beziehungen

V.(e) = V(o) [Ont1 < 0 < @,] (96)
lim g, = lim ¢} = 0 (97)

nach, so ist offenbar (78) erfiillt. Nun ist aber
f(e) = Valeh) = o + 2008, = 210y

also wegen der Monotonie auch f(g,) > 2np,. Beriicksichtigt man
0<g0,,1 < ox, so kann daraus (97) abgelesen werden. Weiter folgt auch
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lim o, = 0, wie man mittels (65) aus f(o.) = V,(05) > «,>0 ent-
7> 0
nimmt. Diese letzte Grenzbeziehung ergibt mit (91)

a, = Z(aw-l - 0‘v) = 2 za’va . (98)

n+1 n+1
oo

Damit ist einerseits die Konvergenz von X a,p, klargestellt, anderseits
0

zeigt sich nun durch Einsetzen in (75) und Vergleich mit (62) die Richtig-
keit von (96).

Um die zweite geforderte Eigenschaft, ndmlich (70), zu bestétigen,
geniigt es offenbar zu zeigen, daf

9(e,) < V(e [n=1,2,...] (99)
und
Vi) <gle)+ 20 [0<¢=<ugl (100)
zutrifit, da aus (97) und (99) lim Z((g)) > 1 folgt, aus (66) und (100)
2->0
hingegen Iim Y _ lim _ Ve :

e>o 9(0) e>0 9(0) + 20 —
Nun ergibt sich aus (82) ¢g(o)<V,_1(0) [0 < p<p,]; beriicksichtigt

man ncch die Stetigkeit und (96), so ist (99) offenbar erfiillt. (100) ist
wegen (97) und der in (95) an zweiter Stelle angefiihrten Relation erfiillt,
wenn wir fir n = 1,2,... nur

Vie) <glo)+ 20 [of<o<enal (101)

nachweisen konnen. Nun gilt infolge (95), (96) und (68)

V(Q:— ) - Vn 1( n—-l _“f n—l) < g(@:— ) ( n—1 ) + 2Qn 1 (102)
View) = Valen) = fen) < g(on) <g(oa) + 205 - (103)

Zeigen wir
Ve, = Valen) < 9g(en) + 204 » (104)

so ist (101) eine Folge dieser drei Ungleichungen, ist doch V (g) zwischen
or_, und g, und ebenso zwischen g, und g linear, die Funktion g¢(p)
+ 20 aber gleich wie g(p) konvex von oben. Mit der gleichen Schluf}-
weise, angewandt auf V,(p) und ¢(p) + 2¢ wird (104) zuriickgefiihrt
auf (103) und auf den Nachweis der Existenz von o, (n =1,2,...), so
daB

Valen) <glon) + 2005  on<e.<on (105)
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gilt. Diese letzte Existenzaussage bleibt uns also zu verifizieren. Der
Beweis verlduft getrennt, je nachdem bei der Konstruktion der n-ten
Folgenglieder bei (80) bis (82) a, — 1¢ N,(«,) oder 1<a, — 1¢ Ny(a,)
eintritt. Im ersten Fall wird (105) durch o = o, erfiillt. Fiir diesen
Wert gilt ndmlich o, < of_;, < 0,_;, dazu die Abschitzung

Vilen) < Vea(en) + 200 (106)
die man aus der direkt aus der Definition (75) entspringenden Gleichung
Valehs) = Vaa(ohs) + 20,054 — (4, — ) herleiten kann. Fir

a, = 1 braucht dazu nur an «o,<a, , erinnert zu werden; ist hin-
gegen 0<a, — 1¢ RN, (x,), so bedeutet dies nach (81)

9:#1 S0 = le“l (0x,) = e B

2(an — l)
oder nach geringer Umrechnung 2a,0: , — (o, ; — &,) < 20 ,. Die
derart bestdatigte Ungleichung (106) kann jetzt mittels (102), also
V. 1(0F_,) <g(oF_,), verschirft werden, so daB (105) fiir den Wert
o, = o._, resultiert. Im zweiten Fall, wo 0<a, — 1¢ RN,(x,) voraus-
gesetzt wird, existiert nach (82) o), so daB V,_ (o)) < g(0)), 0. <o,
<0 Y«,). Daraus folgt

Vn(Q;.) = Vn-l(Qolz) _ {O‘n——l — &y 2anQ:z}
< g(en) + 20n — {os — @ — 2(@, — Dea}
dabei ist der in der letzten Klammer stehende Ausdruck positiv, weil

Kp—1 — Ky

2@, — D en<2(@ — 1 o™ (o) = 2(@, — 1) 5o —75 = %

el

Also ist auch hier die Beziehung (105) erfiillt und damit der Beweis fiir
(70) vervollstandigt.

Als Korollar ergibt sich nun aus den Relationen (100) einerseits, (78)
und (96) anderseits noch die Zusatzforderung (71), womit der Beweis zu
Satz 9 abgeschlossen ist.

Bezeichnen wir mit §, die Menge der Funktionen

¢ () = a = konstant [0<a <<oo] , (107)
mit g die Menge der Funktionen
() = 2nyg [n positiv ganz| (108)

und hat §; die in Satz 8 prizisierte Bedeutung, wihrend %, B, € die
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zu Beginn des Beweises zu Hauptsatz 7 eingefithrten Mengensysteme
seien, so koénnen wir unser Resultat zusammenfassen in

Satz 10. Zu einer fir ¢>0 definierten Funktion f(o) existiert dann
und nur dann eine nichtleere beschrinkte Punktmenge A des R,, fir deren
etndimensionales Parallelvolumen

. V(de) _
ol-lilo 1 (o) B

erfillt ist, wenn es eine Funktion ¢(o) e oy + Fg + Tg gibt, derart daf

1 (109)

. ()

o e (110)
und zwar ist A in W, B oder €, je nachdem @ (o) zu Fyo, Fg oder Fe bzgl.
gehort, und umgekehrt.

Der Beweis fithrt diese Aussagen auf die in § 5a), b), Satz 8 und Satz 9
(wo f(e) =g(p) zu wihlen ist) dargelegten Verhiltnisse zuriick. Die
Ausfiihrung der Einzelheiten bietet keinerlei Schwierigkeit und darf hier
iibergangen werden.

Es bleibt uns jetzt noch Satz 9 in der Weise fiir Potenzfunktionen
auszuwerten, dal3 die zum Beweis des Hauptsatzes 7, Fall ¢) gemachte
Voraussetzung verifiziert wird. Es sei also ein Wertequadrupel p, M,
u, M vorgegeben, das eine der Bedingungen y) bis ¢) von Satz 7 fir
k =1 erfiillt. Wir setzen

flo) = F(g)o' £ g(e) = G(o)e** , (111)
dabei bedeute
| log o [ [M = 0]
F(o) =1 wn-p M [0< M <oo]
| log o | [M =oo] (112)
| log o | (M = 0]
Glo) =1 o,z M [0 <M <oo]
| log g | [M =oo].

Die Beziehungen ) bis ¢) bewirken, dal die Voraussetzungen von Satz 9
durch f(g) und g(p) befriedigt werden. Deshalb existiert eine Menge 4,
fir die (69) und (70) gelten, eine kleine Umrechnung zeigt aber die
Gleichwertigkeit dieser Limesrelationen mit wu(4) =u, M(4) = M,
w(d)=pu, M(A) =M, w.z.b. w.

(Eingegangen den 3. September 1953.)
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