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Zur Miiikow skischeii Dimensions- und
Mafibestimmung beschrânkter Punktmengen

des euklidischen Raumes
Seinem verehrten Lehrer Herrn Prof. Dr. W. Scherrer zum

sechzigsten Geburtstag zugeeignet

von H. Debbunner, Bern

In der Punktmengenlehre hat sich der tîbergang von einer Menge A
zur âuBeren Parallelmenge AQ im Abstand q als eine der fruchtbarsten
Operationen erwiesen. Schon G. Cantor versuchte zur Volumenmessung
von A das Volumen der einfacher strukturierten Menge AQ heranzu-
ziehen und untersuchte auch Anwendungen auf den Dimensionsbegriff1).
Ins Zentrum riickte dièse BegriflEsbildung, als H. Minkowski2) das Ver-
halten des Volumens V(AQ) als Funktion des Parallelradius g — wie es

fur konvexe Kôrper etwa durch den bekannten Steinerschen Satz zum
Ausdruck kommt — zur Définition von MaBzahlen ausnutzte, und als

mit der Lôsung isoperimetriseher Fragen und in der Théorie der kon-
vexen Kôrper Disziplinen entstanden, die die Anwendbarkeit der so
definierten Mengenfunktionale in ein glànzendes Licht stellten.

Insbesondere erwies es sieh als môglich, durch den Vergleich des

asymptotischen Verhaltens von V(AQ) mit linearen und quadratischen
Funktionen von q im Raum die unterdimensionalen MaBzahlen Lange
und Flacheninhalt zu gewinnen und zugleich gewissen AufschluB ûber
die dimensionelle Struktur von A zu erhalten. In konsequenter Weiter-
verfolgung dieser Gedankengânge definierte G. Bouligand3) Dimensions-
zahlen durch die Wachstumsordnung des Volumens V(AQ) und gelangte

*) letzteres in unverôffentliehten Arbeiten; nach einer Bemerkung von G. Bouligand.
2) H. Minkowski, Ûber die Begriffe Lange, Oberflâche und Volumen, Jahres-

ber. Deutsch. Math. Verein 9, 115-121, 1901 Ges. Abhandlungen I, 122-127 (1911).
3) G. Bouligand, Dimension, étendue, densité, C. R. Acad. Sci. Paris 180 (2)

245-248, 1925. - Sur Taire d'un domaine plan, Bull. Sci. Math. 52, 55-63, 1928. -
Ensembles impropres et nombre dimensionnel, ibid. 52, 320-344, 361-376, 1928. -
Sur la notion d'ordre de mesure d'un ensemble fermé, ibid. 58, 185-192, 1929. --

Sur la construction de Cantor-Minkowski, Ann. Soc. Polon. Math. 9, 21-31, 1931.
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damit zu einer kontinuierliehen Dimensionsskala, âhnlich wie auch
F. Hausdorff4) aus dem Caratheodoryschen MaBbegriff eine kontinuier-
liche Dimensionsskala entwickelt hatte.

Die Realisierung solcher nach dem Verfahren von Cantor-Minkowski
gebildeten nichtganzen Dimensionszahlen untersuchte kurzlich H. Had-
wiger5); er erbrachte den Nachweis, daB im Jfc-dimensionalen euklidi
schen Raum zu jeder reellen Zahl jli im Intervall 0<ju<k Mengen dieser
Dimension existieren, und daB dabei noch untere und obère MaBzahlen
oc und /S im Intervall 0<a</?<oo vorgeschrieben werden kônnen. Die
Untersuchung der Grenzfàlle 0, k bzw. oo als Werte der Dimensions- und
MaBzahlen bildete den Ausgangspunkt der vorliegenden Arbeit. Dabei
erwies sich die von G. Bouligand vorgesehene Aufspaltung der Dimen-
sionszahl // in eine untere (* und eine obère // als dem Problem ange-
messen. Die derart erweiterte Pragestellung ,,Gibt es Mengen, fur die die
Potenzfunktionen M_gk~~E und Mgk~iï exakte Grenzen des asymptotischen
Verhaltens der Paraïlelvolumenfunktion fur q -> 0 bilden?" wird im fol-
genden durch einen umfassenden Existenzsatz (§5) béantwortet. Der
Beweis stiitzt sich ganz auf die Verhàltnisse bei linearen Mengen, indem
im eindimensionalen Raum das asymptotisehe Verhalten der
Paraïlelvolumenfunktion vollstândig charakterisiert werden kann (§ 6). Ver-
schiedene der folgenden Ûberlegungen und Konstruktionen lehnen sich

eng an solche in den zitierten Arbeiten von G, Bouligand und H. Had-
wiger an ; der verânderten Begrifîsbildungen wegen lieB sich die Wieder-
gabe nicht umgehen, doch befleifligt sie sich môglichster Knappheit.

§1. Untere und obère Minkowskische Dimension und Maûzahl

Es sei A eine beschrânkte, nichtleere, aber sonst beliebige Punktmenge
des ifc-dimensionalen (k > 1) euklidischen Raumes Rk. AQ bedeute die
àuBere Parallelmenge im Abstand g > 0 von A, d. i. die Menge aller
Punkte P, fur die PQ < q fur ein Q € A. Mit deren Jordanschem In-
halt6) V(AQ) bilde man fur beliebige réelle Zahlen t die ,,charakteristi-
schen Quotienten"

4) F. Hausdorff, Dimension und âufieres Mafi, Math. Ann. 79, 157-179, 1918.
5) H. Hadwiger, Zur Mmkowskischen Dimensions- und Mafibestimmung

beschrànkter Punktmengen des euklidischen Raumes, Math. Naehr. 4, 202-212,
1950.

•) V(AQ) existiert fur q > 0, wie F. Behrend, Math. Ann. 111, 289-292, 1935 nach-
gewiesen hat.
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und bestimme die Hauptlimites

{A,Q) (2)

r(A,Q) (3)

wobei auch der uneigentliche Wert +00 zugelassen sei. Als untere bzw.
obère Minkowskische Dimension J^(A) bzw. [x{A) der Menge A bezeichnen
wir die Zahlen

OV) (4)

(^) O] (5)

Mtihelos bestâtigt man die Beziehung

0 <(±{A) <]i(A) <k (6)

Mit der fur x > 0 defînierten Hilfszahl

die fur ganzzahliges x das Volumen der ^-dimensionalen Einheitskugel
angibt, bilden wir fur jedes r im Intervall 0 < r < k die Zahl

und deren Hauptlimites
2r{A)

Mr(A) Hm JfT(il, e) (9)

Fiir dièse Zahlen gelten (gleich wie fur qx{A) und qx(A)) die Bezie-
hungen

0 < Mr{A) < Mt(A) <
(12)

7) In eckigen Klammem werden zu beachtende Nebenbedingungen angefûhrt. Infimum
bzw. Supremum sind groGte untere bzw. kleînste obère Schranke, bei endlichen Mengen
also kleinstes bzw. grôBtes Elément.
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Mt(A) 0 [r>^(J)] (13)

Mr(A) oo[r<ft(A)] (14)

Mr(A)=oo[r<7i(A)} (15)

Positive endliche Werte sind allein fur x jbt(A) bzw. t Je (A) mog-
lich. Dièse Werte

M{A) Jf^) lim 7(^j (16)— "5^ô M-vQ *

M (A) 3T-(^) îhïï F(^e)
(17)

bezeichnen wir als untere bzw. o6ere Minkowskische Mafizahlen der
Menge A 8)

Eine Menge A, fur die

fi{A) ^(^) // Jtf(^) - ïff^) M (19)

gilt, heiBe im Minkowskischen Sinne ju-dimensional mejibar.
Dièse Definitionen rechtfertigen sich dadurch, daB sie bei Mengen von

hinreichend normaler Struktur Werte liefern, die mit den nach andern
ûblichen Verfahren gebildeten entsprechend benannten Werten uberein-
stimmen. So sind (als elementarstes Beispiel) /-dimensionale Wurfel
(0</ < Je, j ganz) der Kantenlange L im Rk nach obigen Definitionen
7-dimensional meBbar und ihre Minkowskischen MaBzahlen betragen L7.

Anderseits existieren Mengen, fur welche untere und obère Minkowskische

Dimension bzw. MaBzahl nicht zusammenfallen. Um den vollen Spiel-
raum realisierbarer Werte anzugeben, bezeichnen wir mit (ju, M_; /i, M)k
die Klasse aller Mengen A des Rk, fur die /u(A) fi, M (A) M,
~jû(A) ]ï, M (A) M, und suchen im folgenden (§ 5) die notwendigen
und hinreichenden Bedingungen fur Wertequadrupel ju, M_, Jt, M mit
nichtleerer Klasse (ju, M ; ju,, M)k. Vorbereitend soll zunachst das Ver-
halten der Dimensions- und MaBzahlen bei verschiedenen Mengenopera-
tionen untersucht werden.

§2. Das Verhalten bei kartesischer Produktbildung

Satz 1. Sind Bki und Rk2 zwei zueinander orthogonale komplementare
Unterraume des Rk und gehàren die beschrankten, nichtleeren Mengen A1

8) Die von H, Hadwiger, loc. cit. FuBnote 5 betraehteten Dimensions- und MaBzahlen
stimmen mit Ji(A), M-jj{A)f ~MJi{A) bzgl. uberem.
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des Rki bezilglich zu den Klassen (/«,, Mj ; /ji? Mi)k (i 0, 1, 2) und ist
A0 kartesisches Produkt von A1 und A2,

A° A1xA2 (20)

so gilt fur die Dimensionszahlen :

1^1
+ ^2) _ __ _

_ \ < f*o < Pi + Pz • (21)
^1 + ^2)

Zusatz. Fur ^2 "]i2 ju2 ist daher

/fo (H + H ^0 ^1 + ^2- (22)

Weiter gilt in diesem Fall

(23)

-s
x &^M^ œko_-

M*M* • (24)

Beweis. Leicht einzusehen ist die Beziehung

^c^x^c^»^,
"

(25)

wenn beachtet wird, da8 aile sich auf A1 beziehenden Operationen im
Rki vorzunehmen sind. Fur die (&rdimensionalen) Parallelvolumina
V(A\) folgt daraus

V(A\) < V{A\) V{A\) < V(A\,Z) (26)

Der Ûbergang zu den charakteristischen Quotienten und von diesen zu
deren Hauptlimites ergibt, falls man analog zu der wegen der Komple-
mentaritât giiltigen Beziehung Jc0 kx + k2 auch r0 xx + r2 setzt :

Iq
(A1)^ (A2)]

q

Aus diesen Ungleichungen 9) lâBt sich leicht auf (21) schlieBen : Fur jede
Wahl von r1</I1, r2</i2 wird nach der (11)—(15) vorhergehenden
Bemerkung qTo(A°) =oo5 somit ist //0 > xx + r2, also auch ^0 > ^
+ jbt2. In gleicher Weise bestàtigt man die ûbrigen Teilbeziehungen von

•) Ausdriicke, in denen ein Produkt 0 • 00 vorkommt, sind als hinfâllig anzusehen.
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(21). Die Ungleichungen (23) und (24) des Zusatzes folgen bei Benick-
sichtigung von (9) und (10) aus (27), wenn die r durch [i ersetzt werden,
womit der Beweis abgeschlossen ist.

Die Aussage von Satz 1 laBt sich wesentlich verschârfen, wenn die zur
Zylinderbildung dienenden Mengen kongruent sind ; diesen Sachverhalt
beschreibt

Satz 2. Ist k mn (1 <m,n <k; m,n ganz) und spannen die

m pxarweise orthogonalen Unterràume Rln (i 1,..., m) der Dimension
n den Rk auf, sind weiter A1 (i 1,..., m) untereinander kongruente
Mengen der Klasse (^l3 M_x ; Ji1, M1)n des Rln, so gehôrt das kartesische

Produkt A Axx • • • xAm zur Klasse (/u, M_ ; Ji, M)k, wo abkûrzend

m fxx (28)

(29)
\m ^cok-f

(30)
cok_-

gesetzt ist.

Beweis. Analog zu (25) gilt im vorliegenden Fall

\ m (31)

Wird V(AQ) 4-dimensional, V{A\) w-dimensional gemessen, so folgt
mit Hilfe der vorausgesetzten Kongruenz

V(AQ) < {V{A\)r < V(AQfm) (32)

und mit r mr1

qr(A, q) < {qTl(A\ Q)}™ < fmk~*qT(A, Q]/m) (33)

Dasselbe gilt fur jeden der Hauptlimites, woraus sich durch gelaufige
SchluBweise (28) ergibt. Fur rt ^ bzw. r2 Ji2 lassen sich daraus
mittels (9) und (10) sofort die Ungleichungen (29) und (30) gewinnen,
w. z. b. w.

Wir werden Satz 2 im folgenden nur fur den Fall linearer Mengen, also

fur n 1, m k, anzuwenden haben.
Ein interessanter Spezialfall von Satz 1 liegt vor, wenn eine Menge,

etwa A2, lediglich aus dem auch zum Rki gehôrigen Ursprung O2 des Bk2
besteht. Dann ist nàmlich A0 mit A1 identisch, und die Beziehungen bei
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kartesischer Produktbildung lassen sich als Beziehungen bei der Aus-
messung einer und derselben Menge in verschiedenen Einbettungsrâumen
interpretieren. Hier gilt

Satz 3, Ist A eine beschrânkte, nichtleere Menge in einem Unterraum
Rki des Bko [0<k1<k0], die zugleich zu den Klassen (/il9 M_X ; "jÂXi Jfcf1)fci

und (fx0, Jf0 ; /ïo> Mo)ko gehort, so ist

(35)

M =lMt \l>J>^-ba)k^]. (36)

Zusatz. Fur
tfi ?i /*, M1 M1 M (37)

ist auch

N ^o V M^o M0 M (38)

Beweis. Die Beziehungen (34), (35) und (36) folgen weitgehend aus dem
Zusatz zu Satz 1 ; denn fur die Menge O2 Bkz • Rki gilt ja /^2 Jî2 0,
M2 M2 1. Es bleibt einzig 2 < 1 < A nachzuweisen. Dazu gehen
wir aus von einer (25) verschàrfenden Integralrelation. Sind nâmlich die
Voraussetzungen von Satz 1 erfûllt, so durchdringt ein zum Rki parallel
gefuhrter Tràgerraum im Abstand a von A2 die Menge A°Q in einer zu
^g2_q2 c Eki kongruenten Menge, so da8

lV2 (39)
4

resultiert, wo dV2 das Volumendifferential des Rk2 bezeichnet. Fur
A2 O2 ist a der Abstand von O2, also betràgt dV2 als fc2-dimensionale
Kugelschale

dV2 k2œk, o*^do (40)

Dies in (39) eingesetzt ergibt bei Umformung gemàB (1) und (8) und
Substitution von t g q~x

Mr{A°, Q)

V

[ inf Mx{A\Qr)<M*< suP Mt(A\Qr)].
o<q'<q
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Dabei wird fur die letzten Umformungen der erweiterte erste Mittelwert-
satz der Integralrechnung herangezogen und das Intégral mit Beruck-
sichtigung von (7) ausgewertet. Fur r /u0 bzw. r Ji0 ergibt sich
hieraus M* > M_x, Mo <Mly d. h. A > ï > L

Fur //-dimensional meBbare Mengen behauptet der Zusatz auBer der
schon durch (34) bewiesenen Invarianz der Dimensionszahlen auch die
der MaBzahlen bei Einbettung in einen hôher-dimensionalen Raum. In
der Tat : die gleichzeitige Berucksichtigung von (11), (35) und (36) ergibt
M1 < M_0 < Mo < M woraus die Behauptung abgelesen werden
kann10).

Man konnte vermuten, daB stets X 1 1 gilt, daB also die Min-
kowskischen MaBzahlen vom Einbettungsraum unabhangig sind. Die
Durchrechnung am Beispiel des Cantorschen triadischen Diskontinuums
D vom Durchmesser 1 zeigt aber das Gegenteil. D gehort namlich zu den
Klassen (jli, M_; jh, M)x und (//, X M_ ; /u, Â M)3, wobei sich folgende
Werte ergeben :

2 ;=MU-;
M_ ^-^(l — iif~x-~M 0,966. ..3? ;

A 1,006... ;

l 0,9822...

Die Relation (39) laBt sich auch bei der Auswertung eines weitern
wichtigen Spezialfalles von Satz 1 heranziehen. Bedeutet namlich
A1 Ek± den Einheitswurfel des Rki, so ergeben sich nach dem Zusatz
die Dimensionszahlen der Zylindermenge A0 Eki xA2 zu /u0 kx

-f- ju2, ~jH0 lc1 + /j2. Daruber hinaus lâBt sich dann in (39) V(A\jQ^_a2)
nach dem Steinerschen Satz uber Parallelmengen konvexer Korper ab-

schâtzen, nach unten durch 1, nach oben durch 1 + O(q) ; also ist

V(A\) < V(A\) < V(A\){\ + O(ô)) (42)

Der Ûbergang zu den charakteristischen Quotienten und den Minkowski-
schen MaBzahlen ergibt dann M_Q M_2, Mo M2. Dies beweist den

10) Einer brieflichen Mitteilung von Herrn M. Kneser zufolge bleibt die Mmkowskische
MeBbarkeit einer unterdimensionalen Menge des Rk auch bei Ausmessung m einem sie
enthaltenden Unterraum erhalten. Die Eigenschaft Minkowski-meBbar zu sein ist dem-
nach uberhaupt unabhangig von der Dimension des Embettungsraumes.
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Satz 4. Ist Eki der EinheitswUrfel eines Unterraumes Bkl des Rk,
A e (f£, M_\ p, M)kt eine beschrânkte, nichtleere Menge eines zum Rki
orthogonalen komplementâren Unterraumes Bkz, so gehort die Zylinder-
menge A xEki zur Klasse (fi + kl9 M^;"ji + kl9 M)k.

§3. Das Yerhalten bei Mengenaddition

Satz 5. Ist die Entfernung ô (A, B) der beschrânkten, nichtleeren
Mengen A und B des Bk positiv, so gilt fUr jede im Intervall 0 < r < k
liegende réelle Zahl t

IMT(A)+MT(B)\ _ _MT(A)+Mr(B)<Mx(A+B)<\- r <MX{A+B)<MX{A)+MX(B~ ~ \Mx{A)+Mx(B)\
und es %st

]i(A + B) sup fii(A), ]l(B)} (44)

Zusatz. Falls "jH(B) < fi(A) oder ]1(A) < (i(B) ist, gilt daher neben

(44) auch

Ë(A + B) sup {fi(A), t(B)} (46)

Der Beweis ergibt sich aus der Bemerkung, daB fur 2q<ô(A, B)

V[(A + B)Q] V(AQ) + V(BQ) (47)

Daraus schlieBt man in gelaufiger Weise erst auf (43), von hier auf (44)
und (45).

§4. Das Yerhalten bei Âhnlichkeitstransformation

Satz 6. Ist XA eine zur beschrânkten, nichtleeren Menge A des Rk im
Verhaltnis A : 1 [0< A<oo] homothetische Menge, so gilt

Jt(A) (48)

^
^ Xï~M{A) (49)

Beweis, Die Funktionalbeziehung

V[(XA)XQ] WV(AQ) (50)

zieht fur die eharakteristischen Quotienten

qx{XA,Q) Xxqx(A,X^Q) (51)

266



nach sich. Von hier aus gewinnt man (48) und (49) durch Anwendung der
Definitionen.

§5. Der Hauptsatz

Die Fragestellung nach den gegenseitigen Beziehungen zwischen den
Minkowskischen Dimensions- und MaBzahlen und nach den realisierbaren
Werten wird beantwortet durch den

Hauptsatz 7. Ist A eine beschrânkte, nichtleere Menge der Klasse
(ju, M_; fx, M)k des Bk, so gilt fur die Minkowskischen Dimensions- und
Ma/izahlen eine der folgenden Beziehungen :

M positivganz

M 0

oc)

P)

y)
à)

0
ri)

â)

0

0

0

0

0

0

0

0

0

0

<

<

<

<
<

JLl

~ix

11:
l
11:

11:

11:

11:

11:

a

—

<
<
<

<

1:1

1:1

1:1

1:1

1:1

ix
1:1

1:1

1:1

<

<

<
<
<

k
k

k

k
k

k

k
k
k

0

0

0

M
0

M
M
0

0

<
<

<

<
<

M

M
M

K
oo

oo

M
M

<

<
<

M <oo
If<oo
M
oo

oo

M < o

oo

< oo

0 < M < oo

Umgekehrt ist bei beliebig vorgegebenen /x, M_,]x, M, sofern nur eine der

Beziehungen oc) bis t) erfûllt ist, die Klasse (fx, M ; fx, M)k nicht leer, das

heijit es existiert eine Menge A des Rk, deren untere und obère Dimensions-
und Ma/izahlen mit den vorgegebenen Werten bzgl. ûbereinstimmen.

Beweis. Jede beschrânkte, nichtleere Menge A des Rk gehôrt entweder

zum System 91 der Punktmengen X mit endlichem âuBern Jordanschen
Inhalt V(X)>0, zum System SB der endlichen Punktmengen oder
schlieBlich zum System G der nichtendlichen Jordanschen Nullmengen.
Wir unterscheiden demnach drei Falle :

a) Es sei A *% und 7(il) M>0. Fur r k fâllt die Bestim-

mung von M_T(A) und MX(A) zusammen mit der von Cantor11) vor-
geschlagenen Inhaltsbestimmung, die aber stets den Wert F (A) liefert12).
Daher findet man (x{A) ]x(A) k, M_{A) M(A) M>0.
Umgekehrt gibt es in 51 zu beliebig vorgegebenem M aus dem Intervall

n) G. Cantor, Ûber unendliche Punktmannigfaltigkeiten, Math. Ann. 23, 473
bis 479, 1884.

12) Vgl. Enzykl. II/C 9a, 966.
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0<Jlf <oo Mengen mit V (A) M, zum Beispiel Wurfel der Kanten-

lange Mk. Damit ist fur Mengen des Systems % der Hauptsatz bewiesen,
sowie der Existenzbeweis unter Voraussetzung von a) erbracht.

b) Es sei A eine Menge von n Punkten, also A € 25. Die Anwendung
der Definitionen liefert p(A) Ji(A) 0, M(A) M(A) n. Fur
endliche Mengen ist daher Bedingung /?) erfullt, umgekehrt ist auch der
Existenzbeweis unter Voraussetzung von /?) erbracht.

c) Ist Ae&, so ist M0(A) M0(A) =00, Mj^A) Mk(A) 0.
Die Beziehungen y) bis t) erschôpfen dann aile Môglichkeiten, die bei
Beachtung der notwendigen Bedingungen (6) und (11) denkbar sind.
Umgekehrt wird ein gemàB y) bis t) vorgegebenes Wertequadrupel
jbi, M_, ~jH, M auch durch eine Menge ic£ realisiert. Fur k 1 (lineare
Mengen) wird dies in § 6 nachgewiesen. Dies vorausgesetzt, kann der all-
gemeine Nachweis wie folgt gefûhrt werden.

Wir konstruieren zunàchst eine meBbare Menge B der Klasse

(fi, Jf ; /a, M)k. Dazu setzen wir

p^zki + v [0 < *!<£, hx ganz, 0 < v < 1]13) (52)

Nach Voraussetzung existiert dann eine lineare Menge Bx der Klasse

(v, M_ ; v, M)t, und nach dem Zusatz zu Satz 3 gehôrt Bx bei Einbettung
in einen Bk_ki zur Klasse (v, M_ ; v, M)k_ki. Fur kx 0 setzen wir
B Bx und sind am Ziel ; ist aber kx > 0, so gehôrt die Zylindermenge
B Bx xEki zur geforderten Klasse, wenn Eki den Einheitswûrfel eines

zum jRfc_fcl orthogonalen komplementâren Rki bedeutet (Satz 4).
Im weitern existiert eine Menge C e (0, 00 ; Jt, M*)k9 wo je nach den

fur A geforderten vorgegebenen Werten fx und jû gesetzt ist :

(53)

Nach Voraussetzung existiert namlich auf einer Geraden G1 eine Menge

<71€(o,oo;-Ç,-*f*1/*), weil 0<|^<l5 Jf*1/A;> 0. Sind nun C,

(i 1,..., i) zu Cj kongruente Mengen auf paarweise orthogonal-
stehenden Geraden G€, so ist nach Satz 2, den wir fur m k, n 1

beanspruchen, die Zylindermenge C C1 x • • • X Ck in der Klasse

18) Fur fi 1 ,...,& — 1 ist die Vorschrift nicht eindeutig. Hier mufi v 0 gesetzt
werden, sobald Jjf co, andernfalls v 1.
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(0, oo ; p, XM*)fc, [0< A<oo], und nach Satz 6 ist die dilatierte Menge
G — Jr^C von der geforderten Art. Fur den ausgeschlossenen Fall
Jt 0 sei C die leere Menge.

Mit Hilfe von (12) bis (15) berechnet man nun nach Satz 5, daB die

Menge A B -\- C, falls nur B und C in positiver Entfernung ange-
ordnet sind, zur Klasse (//, M^;Jt, M)k gehôrt, womit der Existenz-
beweis auch unter den Bedingungen y) bis i) erbracht ist.

§6. Lineare Mengen

Es sei A eine (beschrànkte) abgeschlossene14), nichtendliehe Jordan-
sche Nullmenge in einem E1, E das kleinste A enthaltende abgeschlossene
Intervall. E — A ist offen und wie A Jordan-meBbar, und es gilt

V(E - A) V(E)>0 (54)

E — A lâBt sich nach bekannten Ûberdeckungssâtzen als Vereinigungs-

menge von abzâhlbar vielen disjunkten offenen Intervallen Ex dar-
stellen : M

E — A ZEX (55)
i

Fiir jedes e>0 haben nur endlich viele Intervalle Ex einen Inhalt
V(Ex) grôBer als e ; die unter sich verschiedenen der Zahlen V(Ex) kôn-
nen daher in monoton fallender Folge angeordnet werden. Sei (2qv)
dièse Folge, wobei also

0<Qv+1<Qv [^ =1,2,...] (56)

Weiter gebe die Zahl

av positiv ganz [ v 1,2,...] (57)

an, wie oftmals 2qv als Intervallânge unter den Zahlen V(Ex) auftritt ;

av ist also die Vielfachheit, mit der 2qv als Abstand aufeinanderfolgender
Punkte von A vorkommt. Beide Folgen brechen nicht ab ; andernfalls
wâre mit der Anzahl der Intervalle Ex auch die Menge der Begrenzungs-
punkte von E — A, also A, endlich. Aus (54) und (55) schlieBt man
daher auf «, ^

V(E) =V(E-A)=Z V(EX) 2Zay Qv *) (58)
i i

14) Die Besehrankung auf abgeschlossene Mengen ist unwesenthch. Mit einer behebigen
Menge ist auch deren abgeschlossene Huile eine nichtendliehe Jordansche Nullmenge,
entsprechende Parallehnengen suid identisch, mfolgedessen stimmen auch die Minkowski-
schen Dimensions- und MaÔzahlen uberein.

15 Die mittlere Gleichung ist am einfachsten durch den Ûbergang zum Lebesgueschen
MaB zu venfizieren.
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Nun gilt fur die Parallelmenge AQ von A

Ae Ee- ZB$> (59)

wo J5(xe) ein zu Ex konzentrisches abgeschlossenes Intervall vom Inhalt
V(EX) — 2q bedeutet, falls V(EX) >2q, andernfalls aber leer ist. Mit
V(q) V(AQ) erhâlt man daher

n

V{q) V(E) + 2Q - 2 Sav(Qv - q) [Qn+, < Q < Qn] (60)
1

und die Anwendung von (58) ergibt, wenn noch

aQ 1 (61)
gesetzt wird, das Résultat

[qh+1 < q < QJ (62)
0 n+1

Die Funktion V(q) ist also stetig und aus linearen Funktionen zusammen-
gestlickt, wobei die geradzahligen Richtungskoeffizienten fur q -> 0

monoton gegen +°° streben. Aus diesen Bemerkungen ergibt sich nun
unmittelbar

Satz 8. Ist A eine nicht endliche lineare Menge vom Jordanschen Inhalt
Null, so gehôrt ihr eindimensionales Parallelvolumen V(q) V(AQ) zur
Menge 5c der reellen Funktionen (p(ç>), fur die ein R>0 existiert, derart
du/3 (p(ç) im Intervall 0 < q < R definiert ist und hier folgenden Bedin-
gungen genûgt :

Ï.Qr<Qff] (Monotonie) (63)

q' <p(q') i
Q 9(q) < 0 [gf < q < q"] (Konvexitàt von oben) (64)

0 (65) lim —7-r- 0 (66)
çKé?)

Wir vermerken noch den aus (63) bis (65) leicht folgenden

Zusatz.

Fur <p(ç) c 3fc ist q>(ç) stetig im Intervall 0 < g < R, R>0 (67)

Bedeutsam ist nun, da6 in gewissem Sinne auch die Umkehrung gilt,
indem jede Funktion aus 5^ einer im Rx realisierten Parallelvolumen-
funktion asymptotisch gleich ist. Etwas allgemeiner formulieren wir
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Satz 9. Oehoren die Funktionen f(ç) und g(q) zu der in Satz 8 erklarten
Menge gç, und ist zudem

f(Q)<9(Q) [0<e<B; R>0] (68)

so fixistiert eine lineare Menge A, fur deren eindimensionales Parallel-
volumen V(q) V(AQ) gilt :

(69) mlË- 1> (70)

Zusatz. Es Jcann sogar die Existenz von qx>0 gefordert werden, wofilr

< V(q) < g(e) + 2q [0 < ç < Ql] (71)
gelten soll.

Die Hauptaufgabe des Beweises besteht in der Konstruktion zweier
unendlicher Folgen (av) und (qv), die (56), (57) und (61) genugen, fur die

00

Eavqv konvergiert und fur welche die nach Ansatz (62) gebildete Funk-
o

tion V(q) die Beziehungen (69), (70) und (71) erfûllt. Mit derartigen
Folgen konstruiert man nâmlich die endlichen Mengen Am9 deren Punkte
durch die Koordinaten

Am: x ZZa^ + 2pQm+1 [p 0,.. .,am+1 - 1] (72)
o

festgelegt sind, und stellt mit den Satz 8 vorangestellten Ûberlegungen
00

fest, da8 die (beschrânkte) Vereinigungsmenge A £ Am fur jedes

das Parallelvolumen V(AQ) — V(q) besitzt, womit den Forde-

rungen von Satz 9 entsprochen ist.
Wir beginnen nun mit der Lôsung der Hauptaufgabe, indem wir bei

erfullten Voraussetzungen von Satz 9 durch vollstândige Induktion die
Folgen (av), (qv) und eine Hilfsfolge (ocv) [v 0, 1,... ] definieren.

Zunâchst setzen wir a0 1 und bestimmen feste Werte a0, g0 q*0

so, daB simultan gilt

ao>O; O<Qo<B; oc0 +2Qo f(Qo) ; oco+2Q>f(Q) [0<^<^0]. (73)

Dièse Bedingungen sind erfûllbar, etwa in folgender Weise : Sei

0<jB'<.R und ao sup {/(#) — 2^} fur 0 < q < R'. Jedenfalls

ist ao>O, weil (66) ^ —> 0 fordert. Dièses Supremum wird aus

Stetigkeitsgrûnden (vgl. (67)) angenommen, etwa fur g £0, also
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gilt a0 f(g0) — 2q0. Dabei ist Q0<Rr<R und Q0>0, letzteres
weil nach (65) f(g) — 2 g 0 ^ a0 fur q=0. SchlieBlich folgt aus der
Supremumeigenschaft /(#)—2q < oc0 fur 0 < q < Er, um so mehr fur
0<q<q0.

Fiir k 0,..., n — 1 seien nun Qk, ock und ak bestimmt, derart, daB
mit den Abkûrzungen

gelte :

S1-'"

afc>0

VAQ)

k

sk Ec
0

Vk(Q) cck

0*>O (9-x

>/(«) fur

+ 2skQ

B)

0<Q<Qk •

(74)

(75)

(76)

(77)

(78)

Fur n 1 sind dièse Bedingungen offensichtlieh erfûllt. Wir bestimmen
nun Qn, ocn und an nach folgendem Verfahren : Fiir jedes a [0 < &<<xn-i\
setzen wir

g"(«)= "*~l~* [a=l,2,...]") (79)

und bestimmen damit

a (a) inf a [a e W^oi)-%{(*)] (80)

wo Wxioc) die Menge der natiirliehen Zahlen a ist, fur die

É?" («)«?»-! (81)

und SR2(a) die Menge der natûrlichen Zahlen a, fur die

[o<e<e»]. (82)
Dann setzen wir

ocn inf oc [oc e9l] (83)

wo Sft die Menge der reellen a [0 < a < aw_x] ist, wofiir

f(Q) <oc + 2q {sn^ + a(oc)} [0<q< q««Hoc)] (84)

gilt. Mit v /otfX6
an a(*n) (85)

sind die Folgenglieder auch fur k n definiert.

16) Bei Qa{<x) ist a obérer Index. Gefahr fur Verwechslung mit Potenzexponenten
besteht nicht.
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Wir untersuchen die Konstruktion schrittweise auf die Realisierungs-
môglichkeit hin und vermerken erst die Beziehungen

0<Qa(oc)<Qa'(oc) [a'<a] (87)

ta) 0 (88)

Weiter haben wir nachzuweisen, daB der Durchschnitt von $R1(a) und
$l2(oc) nicht leer ist, somit als Menge naturlicher Zahlen ein kleinstes
Elément a (oc) enthâlt. Nun ist aber 9^ (a) nicht leer, sondern enthâlt fur

aile a>N1(ot) ; 5R2(a) ist nicht leer, weil nach (65) und (76) ein e>0
existiert, derart, daB g{Q)<otn_1 < Vn_x(Q) [0 < q < s], und wegen
(88) gibt es dazu N2(oc), so daB Qa{0L)<e [a>N2(oc)]. Pur

a>sup {N^Nti*)}
gilt demnach a e $R1(a)SR2(a)- Fur das eben als existierend nachge-
wiesene und selbst zu ^(oc) und 9l2(a) gehôrende Infimum vermerken
wir die Relationen

1 < a (a) < a (<xf) [oc' < aj (89)

Q«*'W < Q«*>(P) [*'<*] (90)

die sich aus (79), (80) und (87) ablesen lassen.

Um fur (83) die Existenz des Infimums ocn nachzuweisen, zeigen wir,
daB die mit (84) gebildete, jedenfalls beschrânkte Menge nicht leer ist.
In der Tat : Aus (75) und (78) schlieBen wir auf die Ungleichung

aus ihr folgt die Existenz einer Zahl a < an_x, fur die noch

f(Q) < oc + 2Q(sn_1 +1) [0<q< Qn^]

gilt, und mit Berucksichtigung von (89) und Inanspruchnahme von (81)
fur a a(a) ist nun a e 31 zu erkennen.

Die n-ten Folgenglieder kônnen demnach wie angegeben gebildet
werden und zur vollstândigen Konstruktion der Polgen bleibt nur noch

zu zeigen, daB auch sie selbst den induktiven Voraussetzungen (76) bis

(78) geniigen.
Am leichtesten einzusehen, nâmlich unmittelbar aus (81), (85), (86)
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und (87) folgend, ist die (77) bestâtigende Ungleichheit 0<gn<gn_1.
Mit ihr und der aus (79) und (86) flieBenden Beziehung

«»-i — «» 2anQn (91)

gehen wir in die fur k n — 1 als gultig vorausgesetzte Relation (78)
und erkennen

f(Qn) < V^M Vn(Qn) (92)

Wâre nun (78) fur k n falsch, so existierte ein g', so daB f(gl) > V(q'),
und zwar infolge (65) und (92) im Intervallinnern, das heiBt

0<Qf<Qn=Qa((Xn)(ocn)

Man kônnte dann wegen (79) und (90) a' [ocn<oc' <an_1\ so finden, daB

0<g' <Qa(OCn)(oc) <Qa(OL)(oc) fur jedes a [ocn < a < oc'] erfullt ist.
Anderseits existierte oc"[(xn<(x"<an_1\ derart, daB, wie man mit (89)
schlieBt, fur jedes oc [ocn < a < a"] gâlte

f(Q')>Vn(Qf) + (oc - an) a + 2Q' K_x + a(an)} > oc+ 2Qf {«w_1+a(a)}

Fiir aile a \ocn < a < inf (ocF, oc")] wâre dann (84) nicht erfullt, das heiBt
ot $ 51, was mit (83) im Widerspruch steht. Also ist (78) auch fiir k n
richtig. Um schlieBlich noch ocn>0 zu bestâtigen, betrachten wir den
Wert g* ^a(0)(0), fiir den nach (79) 2Q*a{0) otn^ und nach (76),
(79) und (81) 0<q* < Qn__x gilt. Fur q* erhâlt man infolge der ebenauf-
gefuhrten Beziehungen und der fur k n — 1 als richtig vorausgesetz-
ten Ungleichheit (78)

/(ff*) ~ 2g*(«^ + a(0)) - /(e*) - Fn_!(^*) < 0

Wir bestimmen nun

8X sup Q(q) - 2Q {s^ + a(0)}) (93)

Wegen (66) ist ex > 0 ; dieser positive Wert wird aus Stetigkeitsgrunden
auch angenommen, etwa fur g Qf. Weil q 0 und nach der eben

ausgefûhrten Rechnung auch g @* beim Einsetzen nicht positive
Werte liefern, fâllt ^; mit keinem dieser Werte zusammen, so daB

0<gf<g* ga{0)(0). Dar&us folgt die Existenz von ea>0, derart,
daB fur *<e2 nach (79) noch g' < ga(0)(cx). Fur 0<a < inf (ely e2)

gilt dann wegen (90) 0<^ < ga(O)(oc) < ga{a)(oc) und zugleich

f(e)>* + 2gf {sn_t + a(0)} >* + 2g {sn_t + a (a)}
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also ist gemàB (94) a£5ft. Dies zeigt, daB <xn mf oc > inf (e1? e2)>0,
w. z. b. w. a€*

Wir kommen endlich zur Verifikation der Eigenschaften, die fur die
Folgen (av), (gv), bzw. fur die gemâB (62) aus ihnen gebildete Funktion
V (g) gefordert wurden, und wir beginnen mit dem Nachweis von (69).

Wir verweisen erst auf die Ungleichheit (78) und behaupten, daB sie
scharf ist, daB also g* [0 < ç* < gn] existiert, so daB Vn(g%) /(g*).
Wâre nâmlich im angegebenen Intervall stets f(g)<Vn(g), dann muBte

wegen der Stetigkeit dasselbe in einem grôBern Intervall 0 < g < gfn

[Qn<Qn\ g^lten. Man kônnte dann <xn<ocn angeben, so daB fur
«n < oc < ocn gemàB (79) und (90) ga(0ù)(oc) < Qa(<Xn\a) < qn erfûllt
ware, weiter mûBte, wieder aus Stetigkeitsgrûnden, ein otrn [ocn < oc'n < an]
existieren, derart, daB fur 0 < q < Qn sogar f(ç) <Vn(g) — (ocn -— o^),
das heiBt bei Berucksichtigung von (89)

f(Q) < olfn + 2Q(sn_1 + an) <olfn+2Q {*„_! + a (al)}

zutrifft. Der Vergleich dieser Beziehungen mit (84) ergibt a^e^l, was

wegen 0<a^<aw einen Widerspruch zu (83) darstellt. Die Zahl ^*,
fur die wie eben nachgewiesen Fn(^*) /(e*) gilt, kann nicht im
Intervall 0 < gt<Qn+i £a(aw+l)(an+i) li^g^n, sonst wâre hier wegen
(68) g(o%) > Vn(g*), im Widerspruch zu der bei der Bildung der (n+l)-
ten Folgenglieder beachteten Bedingung (82). Die bisherigen Ergebnisse
kônnen wie folgt zusammengefaBt werden : Es gilt (fur n 0, 1,...

f(Q)<Vn(Q) [Qn+l<Q<Qn]

und es existiert @* derart, daB

f(et) Vn(Q*n) Qn+1 <QÎ<Qn (95)

Weist man dazu noch die Beziehungen

Vn(e) V(q) [Qn+i < g < 6n] (96)

lim gn lim g* 0 (97)
n->oo n->oo

nach, so ist offenbar (78) erfullt. Nun ist aber

ftâ) V.tâ) an + 2Q*nsn > 2ne*n

also wegen der Monotonie auch /(#<>) >2ng%. Berûcksichtigt man
1 < ^*, so kann daraus (97) abgelesen werden. Weiter folgt auch

275



lim ocn 0, wie man mittels (65) aus /(£*) Vn(o^) ><xn>0 ent-
n->oo

nimmt. Dièse letzte Grenzbeziehung ergibt mit (91)

«n Z (av_! - av) 2 ZavQv (98)
w+1 ti+l

oo

Damit ist einerseits die Konvergenz von Z clvqv klargestellt, anderseits
o

zeigt sich nun durch Einsetzen in (75) und Vergleich mit (62) die Richtig-
keit von (96).

Um die zweite geforderte Eigenschaft, nàmlich (70), zu bestâtigen,
geniigt es offenbar zu zeigen, daB

9(Qn)<V(Qn) |>=1,2,...] (99)
und

2Q [0<e<ei] (îoo)

zutrifft, daaus (97) und (99) lïm —-f$- > 1 folgt, aus (66) und (100)
9kQ)

hingegen IÎE-^- Em~ .^f\ < 1

e->o 9(Q) q+o g(Q)+ 2q -
Nun ergibt sich aus (82) g(Q)< Vn_x(Q) [0 < Q<Qn] ; berùcksichtigt

man ncch die Stetigkeit und (96), so ist (99) offenbar erfullt. (100) ist
we[.en (97) und der in (95) an zweiter Stelle angefuhrten Relation erfullt,
wenn wir fur n — 1,2,... nur

V(q) < g(e) + 26 [qI<q< qU] (loi)

nachweisen kônnen. Nun gilt infolge (95), (96) und (68)

V(Q*n-l) V^AQt-r) /(fft-l) < 9(Q*n-l) < Ç{qU) + 2Q*n-l (102)

V(Q*J Vn(QÎ) t(Q*n) < 9(QÎ) < 9(<Ù + 2?: (103)

Zeigen wir
V(Q.)=VM<g{6n) + 2en, (104)

so ist (101) eine Folge dieser drei Ungleichungen, ist doch V(q) zwischen
^*_1 und Qn und ebenso zwischen Qn und £* linear, die Funktion g(@)

+ 2q aber gleich wie g(g) konvex von oben. Mit der gleichen SchluB-
weise, angewandt auf Vn(q) und g(g) + 2q wird (104) zurûckgefûhrt
auf (103) und auf den Nachweis der Existenz von qn (n 1,2,...), so
daB

Vn(Qn) < g(Q«) + 2Qfn ; et<Qn<Qfn (105)
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gilt. Dièse letzte Existenzaussage bleibt uns also zu verifizieren. Der
Beweis verlàuft getrennt, je nachdem bei der Konstruktion der n-ten
Foigenglieder bei (80) bis (82) an — 1 ^^(aj oder 1 <an — 1 £3ta(aJ
eintritt. Im ersten Fall wird (105) durch q'n g^^ erfullt. Fur diesen
Wert gilt nâmlich qn < q^_x < qn_1, dazu die Abschàtzung

Vn(QZ-l) < ^n-l(^n-l) + 2qZ_i (106)

die man aus der direkt aus der Définition (75) entspringenden Gleichung
Fw(^*_1) — Fw_i(^*_i) + 2anq^_1 — (aw_! — ocn) herleiten kann. Fur
an — 1 braucht dazu nur an ocn < an_! erinnert zu werden ; ist hin-
gegen 0<an — 1 ^5Rx(an), so bedeutet dies nach (81)

*»-l-^*a-l-^* V-n/ 2(an-l)
oder nach geringer Umrechnung 2anq^n_x — {(xn_x — ocn) < 2q^_x. Die
derart bestàtigte Ungleichung (106) kann jetzt mittels (102), also

Vn-i(0n~i) ^9(@n-i)> verschârft werden, so daB (105) fur den Wert
qn — g^_1 resultiert. Im zweiten Fall, wo 0<an — 1^5R2(aw) voraus-
gesetzt wird, existiert nach (82) Qn, so daB Fn_j(^) < g^'j, Qn < qrn

<Qan~\ocn). Darausfolgt

< g(e'n) + 2Qn - K-i ~ocn- 2(an - l)Qfn} ;

dabei ist der in der letzten Klammer stehende Ausdruck positiv, weil

2K - 1) Qn< 2(<*>n - 1) e"*"^**) 2K ~ 1) ^Z1 ~ ^ «a-i ~ 0Cn

Also ist auch hier die Beziehung (105) erfullt und damit der Beweis fur
(70) vervollstàndigt.

Als Korollar ergibt sich nun aus den Relationen (100) einerseits, (78)
und (96) anderseits noch die Zusatzforderung (71), womit der Beweis zu
Satz 9 abgeschlossen ist.

Bezeichnen wir mit ^% die Menge der Funktionen

(p(g) ~ a konstant |0<a<oo] (107)

mit Qf<B die Menge der Funktionen

(p(g) 2ng [n positiv ganz] (108)

und hat gG die in Satz 8 prazisierte Bedeutung, wâhrend 31, 93, (£ die
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zu Beginn des Beweises zu Hauptsatz 7 eingefiihrten Mengensysteme
seien, so kônnen wir unser Résultat zusammenfassen in

Satz 10. Zu einer fur g>0 definierten Funktion f(g) existiert dann
und nur dann eine nichtleere beschrânkte Punktmenge A des Rx, filr deren
eindimensionales Parallelvolumen

lim-^-=l (109)
Q+ + 0 J \Q)

erfullt ist, wenn es eine Funktion <p(g) e gf^ + 3$ + 3g; gibt, derart da/3

lim-f^-=l, (110)

und zwar ist A in 31, SB oder (£, je nachdem (p(g) zu 3gt> 3© °^er 3$ bzgl.
gehôrt, und umgekehrt,

Der Beweis fuhrt dièse Aussagen auf die in § 5a), b), Satz 8 und Satz 9

(wo f(g) g(g) zu wâhlen ist) dargelegten Verhâltnisse zunick. Die
Ausfuhrung der Einzelheiten bietet keinerlei Schwierigkeit und darf hier
ûbergangen werden.

Es bleibt uns jetzt noch Satz 9 in der Weise fur Potenzfunktionen
auszuwerten, daB die zum Beweis des Hauptsatzes 7, Fall c) gemachte
Voraussetzung verifiziert wird. Es sei also ein Wertequadrupel ju, M,
fi, M vorgegeben, das eine der Bedingungen y) bis i) von Satz 7 fur
k 1 erfullt. Wir setzen

/(g) F(q)çf^t g(g) O(g)g1~fJf (111)
dabei bedeute

m-tM^ [Ô<;M<oo]
log ^ | [-M;=ooJ (112)

v^^M [0<M<oo]
log g | [M =oo].

Die Beziehungen y) bis i) bewirken, daB die Voraussetzungen von Satz 9

durch f(g) und g (g) befriedigt werden. Deshalb existiert eine Menge A,
fur die (69) und (70) gelten, eine kleine Umreehnung zeigt aber die
Gleichwertigkeit dieser Limesrelationen mit (i(A) ^, M (A) M,
"Ji(A) Ji, M (A) M, w. z. b. w.

(Eingegangen den 3. September 1953.)
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