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Neue Beitriige
zur geometrischen Wertverteilungslehre

von Haxs Ki~z1, Ziirich
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Vorwort

Die vorliegende Arbeit, die der Eidg. Techn. Hochschule in Ziirich als
Habilitationsschrift vorgelegt wurde, stellt einen Beitrag zum Problem
der geometrischen Wertverteilung dar.

Der erste Abschnitt vermittelt einen Einblick in die nidhere Problem-
stellung und gibt Auskunft iiber die bereits bekannten Resultate des
Untersuchungsgebietes.

Das zweite Kapitel bringt keine wesentlich neuen Resultate, sondern
beschriankt sich auf eine neue Methode in der grundlegenden Behand-
lung Riemannscher Flichen mit einfachperiodischen Enden.

Die eigentlichen Resultate der Arbeit sind im dritten und vierten Ab-
schnitt enthalten.

Im letzten Teil wird noch auf ein Beispiel eines sogenannten Viertels-
endes hingewiesen. In einer folgendenA rbeit, die speziell solche Enden zum
Gegenstand hat, soll ndher auf diese Flidchenklasse eingegangen werden.

An dieser Stelle méchte ich Herrn Prof. Dr. Hans Wittich fiir die Anre-
gung zu diesen Untersuchungen, mit denen ich im Winter 1951 in seinem
Institut in Karlsruhe begann, meinen aufrichtigen Dank aussprechen.

Herrn Prof. Dr. Albert Pfluger danke ich fiir die wertvollen Rat-
schldge bei der weiteren Ausfiihrung meiner Arbeit.

Ebenso gebiihrt mein Dank den Herren Prof. Dr. Rolf Nevanlinna
und Prof. Dr. Walter Saxer fiir das stindige Interesse, das sie meinen
Arbeiten schenken.
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§ 1. Problemstellung und Hilfssitze

Die Aufgabe der geometrischen Wertverteilung

In der folgenden Arbeit interessieren wir uns fiir die Wertverteilung
der erzeugenden Funktionen einer bestimmten Klasse Riemannscher
Flichen, die wir durch ihre Streckenkomplexe vorgeben. Im allgemeinen
wollen wir uns an die Bezeichnungen von R. Nevanlinna [15]!) halten.
Es sei w = w({) einein | {| < oo meromorphe Funktion, fiir welche
man die folgenden GroBen einfiihrt :

N(e,a>=fe”“;“) @t N, =f9”1“t’ 9 4
m(e, w) = m(g, o) =*21—n-f10g+]w(ge”’)[d<p (1.1)
T(e) =T(o,w)= ’m(Q,OOO) + N (g, o)
el e S
5(a) = 1 —-ggsup% (1.2)
£(a) =3iriinf—l—v—lq,(%)—é7a~)— .

Dabei bezeichnet n(p,a) die Anzahl der a-Stellen von w({) im
Kreise || <g¢ und =,(p,a) diejenigen der mehrfachen a-Stellen,
wobei jede k-fache Stelle (¢ — 1)-mal gezdhlt wird. 7' (g) heillt Charak-
teristik von w({) und gibt die Ordnung der meromorphen Funktion an.
Der Defekt d(a) gibt uns ein MaB fiir die relative Dichte der a-Stellen.
Bei positivem Defekt schlieBen wir auf eine spirliche Verteilung der
betreffenden Stellen. ¢(a) wird Verzweigungsindex der Stelle a genannt
und gibt ein Maf} fiir die mehrfach angenommenen Werte.

Aus den Nevanlinnaschen Hauptsidtzen ergibt sich die Defektrelation

5 6(a,) +zq‘s(av) <2, (1,3)

v=1 v=1

wo die Summation iiber eine beliebige Anzahl ¢ von a-Stellen erstreckt
wird.

1) Die Zahlen in eckigen Klammern beziehen sich auf das Literaturverzeichnis am
SchluB der Arbeit.
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Wollten wir jetzt, ausgehend von den explizite bekannten meromor-
phen Funktionen, die Wertverteilung angeben, so stieen wir auf die Tat-
sache, daBl uns verhiltnismidBig sehr wenig interessante Beispiele zur
Verfiigung stiinden. Fiir die gebriduchlichen Funktionen, wie z. B. fiir die
Exponentialfunktion oder die doppeltperiodische g-Funktion lassen sich
diese GroBen durch einfache Uberlegungen sofort angeben.

Die neuere Forschung in dieser Richtung stellt sich das Problem, das
Oswald Teichmiiller [23] mit den folgenden Worten formulierte : ,,Gegeben
ser eine einfach zusammenhingende Riemannsche Fliche W diber der w-
Kugel. Man kann diese bekanntlich exneindeutiqg und konform auf den Ein-
heitskreis | ¢ | < 1, auf die punktierte Ebene | { | 500 oder auf die volle
¢-Kugel abbilden, so dafl w exne eindeutige Funktion von { wird: w = w({).
Von dieser eindeutigen Funktion ist die Wertverteilung zu untersuchen.

Zu diesem Hauptproblem der geometrischen Wertverteilungslehre, von
dessen Losung wir heute allerdings noch weit entfernt sind, lieferten in
den letzten Jahren neben R. Nevanlinna [13], Ahlfors [3], Elfving [7],
Pfluger [16], Teichmiiller [20, 22, 23], Ullrich [24, 25, 26] und Wittich
[29, 31], sowie die beiden jiingeren Mathematiker Le-Van [12] und
Poschl [17] interessante Beitrige.

In gewisser Beziehung mit diesen Betrachtungen steht der Fragenkreis
des Typenproblems, da zunichst festzustellen ist, ob die gegebene Rie-
mannsche Fliache dem parabolischen Typus angehore.

Dazu dienen uns in erster Linie die Kriterien von E. Nevanlinna [14]
und Wittich [27, 28]. In allen diesen Untersuchungen, wie auch in der
vorliegenden Arbeit haben wir es mit Flichen 2B zu tun, die nur dber
endlich vielen Grundpunkten w = ay,a,,...,a, der w-Kugel Verzwet-
gungs- oder Randpunkte haben, so dafl die Umkehrfunktion ¢ (w) sich auf
der wn a,,a,,...,a, punktierten Kugel unbeschrinkt analytisch fort-
setzen liBt. Fiir diese spezielleren Flidchen, denen wir uns hier zuwenden
wollen, kann man nach Ahlfors [3] und Wittich [31] die nachstehenden
einfacheren Beziehungen fiir Defekt und Index beniitzen :

. n(o,a)
6(@) =1 —lm —"_~ |
(@) 0> T (0)
. ny(0,a)
= lim 2 ,
e(@) e>o0 ""(9)
A = lim ________log n(e, a)
@> log o ’
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wo n(p) = Maxn(p,a) und
(a)

n(o) = n(p,a) + O(1) firalle a #a, .

Die Grundpunkte a,,a,,...,a, verbinden wir nun durch einen ge-
schlossenen Weg L, der die Kugel in ein positiv umlaufenes Gebiet J
(Innengebiet) und in ein negativ umlaufenes Gebiet A (AubBengebiet)
zerlegt. Stanzen wir die Kurve L durch die ganze Riemannsche Fliche,
so zerfillt diese in Halbbldtter J bzw. 4.

L erzeugt somit eine Polyederzerlegung der Flidche, wobei die Polyeder-
flichen nicht kompakt sein miissen ; einzelne oder sogar alle Ecken konnen
mit Randpunkten (iiber den a,) inzidieren. Auf den Polyederflichen
(Halbblédttern) wird nun je ein Punkt (Knoten) ausgezeichnet. Gehoren
zwei solche Punkte zu Halbblittern, die lings einer oder mehrerer
Polygonseiten zusammenhingen, so werden sie iiber jede solche Seite
miteinander durch eine Kurve (Glied) verbunden. So entsteht ein zur
Polyederzerlegung dualer Streckenkomplex, den man wegen des ein-
fachen Zusammenhangs der Fliche so in eine 3-Ebene ausbreiten kann,
daB keine Uberschneidungen der Glieder entstehen und die Knoten sich

- nicht im Endlichen hiufen.

Ein solcher Streckenkomplex besteht aus einer endlichen oder unend-
lichen Anzahl von Innenknoten (markiert durch Kreislein) und Auflen-
knoten (markiert durch Kreuzlein). Ein AuBenknoten ist durch ein
Glied, das die Nummer ¢ trégt, mit einem Innenknoten verbunden, wenn
die Halbblitter der Riemannschen Fliche, welche Knoten représentieren,
lings des Kurvenstiickes zwischen ¢, und a,,, von L zusammenhingen.
Bei einem Innenknoten ist die Nummernfolge der Glieder im positiven
Drehsinn um den Knoten zu legen, bei einem Auflenknoten hingegen im
negativen.

Einem n-fachen Windungspunkt der Flidche entspricht im Strecken-
komplex ein 2n-Eck. Ein Zweieck (n = 1) bedeutet schlichte Uber-
deckung des betreffenden Grundpunktes, und ein Unendlicheck weist
auf einen logarithmischen Windungspunkt der Fliche hin (logarithmi-
sches Elementargebiet).

Ist eine Riemannsche Flidche der obigen Art und eine Zerschneidungs-
kurve L gegeben, so ist der Streckenkomplex & eindeutig bestimmt.
Anderseits bestimmt ein Streckenkomplex & bei gegebenen Grundpunk-
ten und gegebener Zerschneidungskurve eindeutig eine einfachzusammen-
hingende Riemannsche Fliche I8 und damit eine erzeugende Funktion
{ = {(w), die bis auf ganze lineare Transformationen vollsténdig be-
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stimmt ist. Man vergleiche hiezu die einschligigen Arbeiten von Speiser
[18], Nevanlinna [13] und Elfving [7], sowie die neueren von Drape [6]
und Habsch [8].

Zur Erliduterung geben wir hier als Beispiele die Streckenkomplexe der
Flidchen an, die der Reihe nach von der Exponentialfunktion, der Sinus-
funktion und der Weierstraflschen p-Funktion erzeugt werden.

4| 1 1 1 1 1

° Oi-g —z—-o 4 X Z o 41)( 2 "el:-i
2 2 2 3 5 3 3 3

x X—9_ o 2, 4 ' 2 ; 4 2 .4
1 1 4 1 4 4 1 1

o o--i—x Z o 4 X 2 -] 4 X 2 o—
2 2 2 3 3 3 3 5

x x 5 o —2;)( 4 o E X 4 o 2 X
1 1 y 1 1 1 1 1

o o X -Z-o 4 X 2 o} 4 x——z-—o-i
2 2| |2 3l 3 3 3 3

Fig. 1

Zusammenfassend laBt sich unsere gestellte Aufgabe wie folgt formu-
lieren : Eine Riemannsche Fliche vom parabolischen Typus, die nur iber
endlich vielen Grundpunkten verzwergt ist, sex durch thren Streckenkomplex
gegeben. Gesucht ist die Wertverteilung der erzeugenden Funktion.

In der vorliegenden Arbeit gelingt es uns, dieses Problem fiir be-
stimmte Klassen, die im folgenden Abschnitt definiert werden, voll-
stdndig zu losen.

Der Streckenkompfex mit endlich vielen einfachperiodischen Enden

Gegeben sei ein endlicher Streckenkomplex s, bei dem also die Anzahl
der Innenknoten (= Anzahl der AuBlenknoten) endlich ist. Fig. 2a.

Sind die Grundpunkte und die Zerschneidungskurve in der v-Ebene
gegeben, so definiert s eine einfachzusammenhéngende geschlossene Rie-
mannsche Fliche, deren erzeugende Funktion v — R(w) rational ist.
Durch die Substitution wu = ¢ entsteht eine periodische Funktion
w = R(e°). Sie ist die erzeugende Funktion einer Riemannschen Fliche
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B, iiber der w-Ebene, deren Streckenkomplex & durch periodisches
Fortsetzen eines endlichen Komplexes entsteht.

P S

T \ //
2\ g /1 \ ° /
o \ /
| N i
* S~ 4’/
o/+\o 0/4\0 9 /+\o
4_/\*/\/\ /\+/\*/\

Dabei ist aber zu beriicksichtigen, iiber welchen Grundpunkten in der
v-Ebene die beiden logarithmischen Windungspunkte liegen. Es ist mog-
lich, daB diese durch die Funktion w = R(e’) in eine schlichte Stelle
oder in einen algebraischen Windungspunkt der v-Ebene zu liegen kom-
men. Die beiden logarithmischen Windungspunkte liegen getrennt oder
iiber demselben Grundpunkt, je nachdem R(0) = R(co) oder
R(0) £ R(o0) ist?).

Eine Hilfte eines solchen periodischen Komplexes, bezeichnet man als
einfachperiodisches Ende. Weist dieses einfachperiodische Ende keine al-
gebraischen Windungspunkte auf, liegen also in ihm nur Zweiecke, so
sprechen wir von einem logarithmischen Ende. (Fig. 3.)

b ¢ )

Fig. 3

Heften wir p derartige einfachperiodische Enden an einen endlichen
Kern, der aus endlich vielen Knoten besteht, dann entsteht ein Strecken-
komplex mit p einfachperiodischen Enden. (Vergl. Fig. 4)

?) Vergleiche Ullrich [24].
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/*\o / Fig. 4

Streckenkomplexe mit p einfachperiodischen Enden haben auch p
logarithmische Elementargebiete. Die entsprechenden logarithmischen
Windungspunkte a™® (4 =1,...,p) liegen, eventuell mehrfach, iiber
den Grundpunkten a,,...,a,.

Die Wertverteilung bei derartigen Riemannschen Flichen wurde von
Ullrich [24], Wittich [29, 31], Le-Van [12] und Pdschl [17] untersucht.

Die von Nevanlinna [13] und Ahlfors [3] frither betrachteten Strecken-
komplexe unterscheiden sich dadurch von den obigen, daB sie keine alge-
braischen Windungspunkte aufweisen. Nach dem Wittichschen Typen-
kriterium [28] gehoren diese Flichen mit endlich vielen einfachperiodi-
schen Enden stets zum parabolischen Typus. Nach dem Randstellensatz
von Denjoy-Ahlfors [1, 5] weill man, daBl die erzeugende Funktion einer
Riemannschen Fliche des parabolischen Typus mit p logarithmischen
Windungspunkten mindestens vom Mitteltypus der Ordnung p/2 ist.
Durch das periodische Einbauen unendlich vieler algebraischer Win-
dungspunkte haben Wittich [31], Le-Van [12] und Pdschl [17] gezeigt,
daf die Ordnung auch groBer als p/2 sein kann ; diese Ordnungserhohung
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ist im allgemeinen auf den asymmetrischen Aufbau in den einzelnen
periodischen Enden zuriickzufiihren.

Sémtliche uns interessierenden Wertverteilungsgroflen wie Ordnung,
Defekt und Index lassen sich explizit vollstindig berechnen.

Streckenkomplexe mit doppeltperiodischen Enden

Eine weitere Klasse von Streckenkomplexen fiihren wir mit Hilfe der
doppeltperiodischen Funktionen

w= R[g(u)] + ¢ (u) Ra[p(w)] (1.5)

ein. Neben den beiden rationalen Funktionen R, und R, kenne man noch
die Lage der vier Grundpunkte a,, ..., a, der algebraischen Windungs-
punkte von der p(u) Funktion in der w-Ebene. Solche doppeltperiodi-
sche Funktionen erzeugen bekanntlich einen Streckenkomplex mit einer
doppeltperiodischen Struktur (vgl. Fig. 5a und 5b).

I
'—O“—_L_l _—l_g_l— / % __‘//"\ /o\x -—of\
O S e W o 2 GO i
‘ l l =m0 =X =0 0=X =0 =X
_O—T—o-——w-—T——.T B - O x/ \\r.—.::o,;\o — X — o/\<\o f\ —— ()
—% '—T """—‘I"‘"“’I"‘“‘I"‘ \\o_—-_-x...o_-_-x/ \mo =>(=°/
—o—T——-O—x-—-—o-———x— —X_ /x\o=f\x__o___ /?\y o/\o—)l--
..7—])_1,___%__,:‘ —_%)_ \x-_.-o=x=a/ o=X=¢ =X
Fig. 5a Fig. 5b

Von einem derartigen Streckenkomplex interessieren wir uns im
weitern nur noch fiir die eine Hilfte, indem die andere durch gewisse
Doppelbindungen lidngs einer vertikalen Gliedfolge ersetzt wird (vgl.
Fig. 6a und 6b).

Analog zu den einfachperiodischen Enden nennen wir eine solche
Hilfte eines doppeltperiodischen Komplexes ein doppeltperiodisches
Ende (vgl. Fig. 6a und 6b). Neben unendlich vielen algebraischen Ele-
mentargebieten tritt hier nur ein logarithmisches Elementargebiet auf.
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A
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l‘:‘_(‘)-_—i_l_l_-l_ So=x=0 \\o="=0="
[
Fig. 6a Fig. 6b

Die erzeugenden Funktionen Riemannscher Flichen mit solchen
doppeltperiodischen Enden sind, wie auch aus den Komplexen hervor-
geht, einfachperiodisch und konnen aus den Funktionen

v=wou), u=2¢, w(l)=uv() (1.6)

aufgebaut werden.
Dabei zeigt Ullrich [25], daBl die duBeren Funktionen v(u) eine Fliche
' ohne logarithmischen Win-
| dungspunkt erzeugen und
gebrochene Funktionen der
Ordnung null sind. Fig. 7
gibt den zu Fig. 6a ent-
sprechenden Komplex der
Funktion v(u) wieder.
Eine endliche Anzahl von
doppeltperiodischen Enden
konnen wir wieder durch
einen Kern miteinander
verbinden und erhalten so
die Streckenkomplexe mat
endlich wvielen doppeltperio-
dischen Enden. . Ein ein-
faches Beispiel zeigt uns
x die Figur 8.

Fig. 7

231



N\ N \o\° 1/ i ay
_\SL\ \J’\o\ N /°/°/ x/o oé/_
AR N L avavav
SSISSN NG Lo
CSSSESN, Y LTI
CNNNNANN LSS S
L L L LLS N DN NN
A A A AN N YR VAN
LSS ° N i

/
7: },Z_OOZ 7 /’/‘/ N T\ NN N ™
—A/‘—o/ //’T o/ /!\ \° o\\\ AN ’\_—:\—
/ // /-r */ /O ! O\I\* x\ ‘\\\*_\
Sy Savedy I\\l N
T T/°;°/\°\°\o\ NN
! /r /"* ,%‘/O\T\\f\ ?\ N Fig. 8

Weiter betrachten wir die Klasse der Streckenkomplexe, bei denen
von einem Kern p einfachperiodische und ¢ doppeltperiodische Enden
ausgehen. Diese allgemeine Klasse von Streckenkomplexen gehort zum
Hauptgegenstand unserer Untersuchungen.

Besonders interessiert uns der EinfluB der doppeltperiodischen Enden
auf die einfachperiodischen, der, wie sich herausstellen wird, fiir die
Wertverteilungstheorie von Interesse sein kann. (Vergleiche hiezu meine
frither erschienenen Arbeiten in den Comptes Rendus [9, 10].)

Hilfsmittel

Eines der wichtigsten Hilfsmittel in unseren folgenden Untersuchun-
gen bilden die quastkonformen Abbildungen, welche besonders von Ahl-
fors [4], Teichmiiller [19, 21] und Wittich [30] fiir funktionentheoreti-
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sche Untersuchungen herangezogen wurden. Diese sind eineindeutige,
stetige und stiickweise stetig differenzierbare Abbildungen eines Gebietes
der 3 = x 4 ip-Ebene auf ein Gebiet der w = u + iv-Ebene. Bei
konformen Abbildungen ist dw/d3 von arg d3 unabhingig. Im allge-
meineren Fall einer differentialgeometrischen Abbildung wird aber
dw|d3 eine Funktion von arg d3.

Der sogenannte Dilatationsquotient wird durch

Mox| 55 |
d3
w/3 dw
win | 2
erklirt.

Eine einfache Rechnung ergibt fiir den so eingefiihrten Verzerrungs-
quotienten

D=K-+VK: -1
mit (1.8)
2K:u§+u3+v§+vf’

Im Falle D =1 ist die Abbildung konform. Ist bei einer quasikonfor-
men Abbildung der 3-Ebene auf die w-Ebene die Abweichung von der
Konformitit verhédltnismaBig klein, was sich durch die Konvergenz des
Integrals

(1.9)

ausdriicken 148t, so geht nach dem Verzerrungssatz von Teichmiiller-
Wittich ein Kreis mit groBem Radius im Bilde in eine kreisdhnliche Kurve
iiber, das heiflt es existiert eine positive Konstante «, so dafl

|w | =a-]3]-{1 +o(1)} (1.10)
ist fir | 3| —oo
Eine solche quasikonforme Abbildung nennen wir im oo kreisdhnlich.
Zur Berechnung der Wertverteilungsgro3en werden wir die Riemann-
sche Fliache in endlich viele Teilstiicke zerschneiden. Diese uniformisieren
wir fiir sich und heften die Bilder der Teilstiicke aneinander, indem wir
die richtige Riénderzuordnung mit Hilfe einer kreisihnlichen quasikon-
formen Abbildung erzwingen. Auf diese Weise erhalten wir ein quasi-
konformes, schlichtes z-Bild der Riemannschen Fliche. Dieses ist nach
bekannten Sitzen auch quasikonform und kreisihnlich zum konformen
-Bild der Riemannschen Fliche.
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Nach (1.10) entspricht in der z-Ebene fiir groBe Werte von r einem
Kreis |z|=r in der (-Ebene eine kreisihnliche Jordankurve
| ]| = {1 + o(1)}. Betrachten wir auf der w-Ebene einen bestimmten
Wert a, der in den Punkten =z,,2,... (jz;|<r) bzw. {,¢&,...
(] £;] < o) angenommen wird, so erkennt man, daf3 die Wertverteilungs-
grolen N(r,a), N,(r,a) und 7T(r) bezogen auf die z-Ebene asym-
ptotisch den entsprechenden Groflen N(p,a), N,(¢,a) und 7'(p) fiir
die {-Ebene gleich werden.

Wir schlieBen daraus, dafl sich diese Wertverteilungsgréfien statt in
der konform abgebildeten {-Ebene auch in der quasikonformen z-Ebene
berechnen lassen. Davon wird in den folgenden Rechnungen hiufig Ge-
brauch gemacht.

In den néchsten Abschnitten konnen wir stets erreichen, da nur ge-
wisse Streifengebiete quasikonform aufeinander abgebildet werden. In
diesem Falle ist die Konvergenz von (1.9) bereits gesichert, wenn der
Dilatationsquotient im Streifen iiberall endlich bleibt.

§ 2. Riemannsche Flichen mit p einfachperiodischen Enden

Le-Van [12] und Pdschl [17] haben in ihren zitierten Arbeiten die
Wertverteilung fiir Funktionen, deren zugehorige Streckenkomplexe
endlich viele einfachperiodische Enden aufweisen, ausfiihrlich darge-
stellt. Da aber die dort verwendeten Methoden der Aufschneidung Rie-
mannscher Flichen, sowie der folgenden quasikonformen Verheftung fiir
allgemeinere Flichenklassen, wie wir sie im néichsten und iibernéchsten
Abschnitt untersuchen werden, ungiinstig ist, so wollen wir hier eine
neue und wesentlich allgemeinere Darstellung fiir den Fall von aus-
schlieBlich endlich vielen einfachperiodischen Enden entwickeln. Diese
Methode 148t sich dann auch fiir Funktionen mit doppeltperiodischen
Enden verwenden, und hat gegeniiber der alten noch den Vorteil, dal
die notigen Hilfsabbildungen wesentlich einfacher werden.

Zur Uniformisierung einer derartigen Fldche mit p einfachperiodischen
Enden, die durch den Streckenkomplex, die Zerschneidungskurve, sowie
die Grundpunkte eindeutig bestimmt ist, schlagen wir den folgenden
Weg in drei Schritten ein :

Die Abbildung des Kerngebietes. Aus dem Streckenkomplex eliminieren
wir durch eine geschlossene Kurve C; den Kern, der aus endlich vielen
Innen- bzw. AuBlenknoten besteht. Ihm entspricht, wie schon friiher er-
wihnt wurde, auf der Riemannschen Fliche ein kompaktes Teilgebiet,
das von der geschlossenen Bildkurve C,, berandet wird. Da fiir die spéter
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vorzunehmende Wertverteilung ein derartiger Teil der Fliche bedeu-
tungslos ist, so brauchen wir uns dafiir nicht weiter zu interessieren.

Die logarithmischen Elementargebiete. Einem logarithmischen Ele-
mentargebiet im Streckenkomplex entspricht ein logarithmischer Win-
dungspunkt der Riemannschen Fliche iiber einem Grundpunkt a,. Zu
diesem gehort fiir geniigend kleines ¢ ein iiber |w — a, | <t gelegenes
maximal zusammenhingendes Stiick der Fliche, ein sogenanntes Win-
dungselement, das durch den Logarithmus konform auf eine Halbebene
abgebildet wird. Dadurch erhalten wir als Bilder der p Windungsele-
mente p Halbebenen.

Die Streifenumgebungen der einfachperiodischen Enden. Nachdem
wir das Kerngebiet und die logarithmischen Windungselemente aus der
Riemannschen Fliche I3 herausgeschnitten haben, eriibrigt sich noch, die
restlichen Gebiete zu uniformisieren. Diesen Gebieten entsprechen im
topologischen Bild des Streckenkomplexes p Halbstreifen, welche die
einfachperiodischen Enden umgeben. Diese restlichen Teilgebiete der
Riemannschen Fliche uniformisieren wir mit den zu w, = R, (e*») ge:
horenden Umkehrfunktionen (v =1,..., p).

Diese p Halbstreifen S¢, miissen mit den p Halbebenen z, lings ihrer
Berandungen so verheftet werden, wie dies durch die Urbilder der ent-
sprechenden Begrenzungskurven auf der Riemannschen Flidche vorge-
geben ist.

Sty

Fig. 9
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Auf diese Weise erhalten wir als Bild der Fliche I3 wiederum eine
Riemannsche Fliche mit p halben Blédttern, die wir durch eine Wurzel-
abbildung in die schlichte Ebene z s£co0 iiberfiihren.

Die Uniformisierung. Fiir die weiteren Rechnungen beschrinken wir
uns auf ein bestimmtes einfachperiodisches Ende ¢,, das an zwei loga-
rithmische Windungspunkte a*-1) und a'*) grenzt. Dabei normieren wir
die betreffende Abbildungsfunktion Z, (e‘r) so, daB der Halbstreifen
S¢, (Fig. 9) einen positiven Imaginirteil aufweist. Diese beiden loga-
rithmischen Windungspunkte uniformisieren wir durch

2y—1 = log (w — al#=) | z, = — log (w — a¥) (2.1)

in die beiden Halbebenen

Rz, 32> —logt=101>0 und 2z, <logt=—1<0. (2.1

n

Nach der obigen Normierung interessieren uns von den beiden Halb-
ebenen z, ; und 2, lediglich die beiden Viertelsebenen mit positivem
Imaginirteil. Der Einfachheit halber fiihren wir eine neue Bezeichnung
ein und schreiben fir Jz, ;>0 fortan Z, und fir Jz, >0 ent-
sprechend Z,,. Die Begrenzungsgeraden dieser Gebiete, die parallel zur
imagindren Achse verlaufen, heilen entsprechend Kz, und Kz, .

Durch die Umkehrfunktion w, = R, (e*r) wird die Umgebung des
periodischen Endes ¢, in den Halbstreifen &g, abgebildet. S, wird
begrenzt von den beiden Kurven K¢, und K¢,,, sowie dem Teilstiick der
Kernkurve G¢,, .

Zur weiteren Untersuchung halten wir nochmals fest, daB durch die
duBlere Funktion v = R, (u) tber der v-Ebene eine Riemannsche Fliche
mit endlich vielen algebraischen Windungspunkten bestimmt wird. Die
Funktion w= R, (e*w) weist zwei logarithmische Windungspunkte
a*-1 und a® auf. Dem Punkt % = 0 entspricht jetzt ein Punkt p in
a'*-1 der v-Ebene und dem Punkt # =oo ein Punkt ¢ in a'®. In der
Umgebung von % = 0 finden wir fiir die Funktion v = R, (u) die Ent-

wicklung
v —at-V =y9(c+o(l), c#0 (2.2)

und entsprechend gilt fiir die Umgebung % =oo
v — a® = yop (¢ 4 o(1)) . (2.2')

w, bzw. w,, geben hier die Vielfachheiten der Stellen p bzw. ¢ fiir die

Funktionen v = R, (u) an. Die Groflen w, und w,. miissen nach dieser
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Festlegung mit der Anzahl der Innenknoten (= Anzahl der Auflen-
knoten) der rechten bzw. der linken Berandung ?) einer Periode des
Endes e, iibereinstimmen.

Aus der Abbildungsfunktion fiir den Streifen ergibt sich, daBl dieser
durch die Translation 2z (abgesehen von einem beschrinkten Stiick)
in sich transformiert wird. An Stelle des Halbstreifens G;M betrachten
wir den vollsténdigen Streifen 6’5# . Dieser 1463t sich konform durch eine
Funktion Z, =Z,(¢,) in einen Parallelstreifen der Breite 2 iiber-
fithren, so dafB3 die drei Punkte £, =0, 27_z_i und__oo in sich iibergehen. Wie
man leicht einsieht, hat diese Funktion Z, = Z,({,) einen periodischen
Charakter in dem Sinne, daf3

Z,+ 271 =Z,(L, + 2mi)

Von diesem Parallelstrei-
fen interessiert uns wieder
nur diejenige Haélfte mit

erfiillt ist.

@’g“ positivem Imaginérteil, die
wir mit Sz, bezeichnen.

Sz, ist das Bild von 64:“

G | und wird, neben einem
( ® Kurvenstiick, das als Bild

der Kernkurve zu betrach-
ten ist, von den beiden
parallelen Geraden Kz, und
K7, begrenzt.

Die drei Gebiete Z,, &z,
und Z,, werden jetzt lings
ihrer parallelen Begrenzungsgeraden miteinander verheftet. Auf Grund
der Beziehungen (2.2) und (2.2') ist aber vor dieser Verheftung die
Ahnlichkeitstransformation

Fig. 10

Dp
wﬂ,’

* 7k 7 *
zt=2,, Z'=0,Z,, Z =

* Z, (2.3)

erforderlich. Dadurch gehe &z, iber in Sz} mit den Begrenzungs-
geraden fz} und Kz}, .

Die beiden parallelen Geraden Rz, und Rz} sind eindeutig analytisch
(abgesehen von einem endlichen Stiick) aufeinander bezogen. Explizite
kennen wir die Funktion, die Kz, in Kz} iiberfiihrt. Sie sei komplex

gegeben durch w
Zp. - 5;}. (Z y.)

3) Die rechte bzw. linke Berandung eines Endes wird vom Kern aus bestimmt.
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und reell durch % .

Y, =0.(,) . (2.4)
Da die Aufschneidungskurve &, auf der Riemannschen Fliche durch
keinen der Grundpunkte verlduft, folgt fiir den Differentialquotienten
der monotonen Funktion b, die fiir uns wichtige Eigenschaft

Yy, Y
dY

Zur Verheftung bilden wir den Halbstreifen I <RZ, <20 der
Viertelsebene Z,, quasikonform so auf sich ab, dafl die folgende Rénder-

zuordnung entsteht :
Auf

oo > ¢y > >c;>0 . (2.5)

RZ =1 —»>Z,=0,¥
und auf 5
RZ,=2l>Z, =1,

Diese Abbildung erfolgt durch
X, =X
}‘7“ Iz X _1
psz(yp)—'i_[yp——bp.(yy)]‘“—z_— (26)

Eine einfache Rechnung bestiitigt, daB3 der zur Streifenabbildung ge-
horige Dilatationsquotient Dz, im ganzen Streifen endlich bleibt.

Der Streifen Z wurde so auf smh abgeblldet daB3 man jetzt die beiden

Gebiete Sz, und RZ,> 2] mit Z lings ‘.RZ =1 und 2! zu einem
Gebiet zusammenlegen kann.

Fithrt man eine entsprechende quasikonforme Abbildung fiir einen
Streifen in Z* durch, so liBt sich auch diese Viertelsebene mit dem
obigen Geblet zu einer Halbebene Z* verheften. Dasselbe Verfahren
wiederholen wir fiir alle Z,, Z,, und 6z mit u = 1,..., p und erhalten
dadurch p Halbebenen Z*

Diese p Halbebenen smd jetzt lings der negativen und der positiven
reellen Achse miteinander zu verheften.

Wegen (2. 3) miissen wir zuerst die einzelnen Halbebenen den folgenden
Ahnlichkeitstransformationen unterwerfen :

Pay

2\
= ZF Zy = /s
1 10 2 wl
& w w
3 == 1 L Z* o 0 (2 ¢ 7)
Wyt Wat
P w w w w,, *
Z’L == 1 . 2 » 3 * s _—u_‘];- ZP .
0)11 C()z’ a)3l a)“_ll
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Jetzt lassen sich diese p Exemplare von Halbebenen abwechslungs-
weise iiber die negative und die positive reelle Achse zu einer Riemann-
schen Fliche Z = X 4 ¢Y verheften. Zuletzt miissen noch die beiden

freien Ufer 7 =X und Z— AX P

identifiziert werden, mit
(1)1 . w2 * o 0 wp

4= Wy Wyr v v Wy (2.8)
Fiir diese letzte Zuordnung bedienen wir uns der Spiralabbildung
Z=2"% =2 (0 =a -+ 1ib) (2.9)

und beachten die Identifizierungsvorschrift :

Z =X —»>2=re?

und Z = AX ' — z = i@t
woraus folgt : =X 2°.e¥ — AX eivn
. N log A
c=a -+ 1b= 3 ) on
das heif3t
a=-2L  und b:_logA.
2 27

Setzen wir diese GroBen in (2.9) ein, so heiflt die gesuchte Abbildung

P l~_,2 log A

Z=z2\ '® e/ (2.9')

Damit ist die Riemannsche Fliche quasikonform uniformisiert und nach
(1.10) existiert auch eine asymptotische Gleichung

fir |z | —oo. [ El=alz]{l +o(1)} (2.10)

Dies berechtigt uns, wie einleitend erwihnt, die Wertverteilungs-
groBen zuerst in der z-Ebene auszurechnen und dann durch (2.10) ins
konforme (¢-Bild zu iibertragen.

Die Wertverteilung ¢)

Betrachten wir in der z-Ebene einen Kreis mit dem Radius [z | =7,
so entspricht diesem in Z auf Grund der obigen Spiralabbildung ein

1) Die Wertverteilung dieser speziellen Funktionsklasse wurde von Poschl [17] ein-
gehend behandelt. Wir beschréanken uns an dieser Stelle auf eine kurze Zusammenfassung
der wichtigsten Resultate.
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Kurvenstiick einer logarithmischen Spirale zwischen

P D
$2 und APz . epn
mit
(2 log A\?
=1 — . .
N

Fir die Schnittpunkte mit den Geraden

argZ=nn (n=20,1,....,p—1)
erhalten wir
kid g2
| Z| = Adp . r 2
In den vorgenommenen Abbildungen blieben die Geraden JZ, = 0
unveridndert. Die obigen Schnittpunkte in der Z-Ebene iibertragen wir
in die Z,-Ebenen und dividieren wegen (2.7) und (2.3) diese Abszissen
jeweils durch w,.
So erhalten wir die Punkte

VA :_ZL‘_
I O
mit den Werten :
Y4
Z,=(—1F 00,025 (u=1...p) (2.12)
dabei ist
pot
V. N
H,L=AA.w und A4, = w“j{a‘;’f““z)“jl (2.13)
B Op L R A |

Fiir 4, setzen wir den Wert 1.

Nun werden mit g* die Anzahl der in einer Periode des Endes e, auf-
tretenden Innenknoten bezeichnet. Dann fixieren wir alle algebraischen
Elementarpolygone einer Periode, deren 2m Seiten von Gliedzyklen mit
den Nummern &, %k + 1 bezeichnet sind, und benennen diese Anzahl
mit j. Die entsprechenden halben Seitenzahlen seien mg, m,,..., m,.
Mit diesen bilden wir die Ausdriicke

7 ]
g¥W(a;) = Zm, und g (a) =2 (m, —1). (2.14)

y=1 v=1

Die durchgefiihrten Berechnungen erlauben uns, in den Z ,-Ebenen die
Fundamentalgebiete abzuzihlen und vermittels der Verzerrungssitze
die Wertverteilung im konformen ¢ = p e%-Bild vorzunehmen.
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n(e) =coM(l+o(l) (ZgwIT,)
it
n(g,a) =mn()+0(l); a#a,

n(e, ax) = ¢ A1 + o(1) (£ g% (ay) IT,) (2.15)
p=1

11 (0: @) = ¢ oA (1 + 0(1)) (2 9, (a) IT,)
p=1

mit

Daraus gewinnen wir die Werte fiir Ordnung, Defekte und Indizes :

Orbnung 4 = ﬁ- p + — (loﬁzgnA )

Zgw @)1,

Defefte d(ay) = 1 — £ (2.16)
Zgwil,
ool

Y4
2 g\ ay) - 11,
Sndices e(a,) = L2

Z‘ gwIl,
p=1

§ 3. Riemannsche Flichen mit doppeltperiodischen Enden °)

Als einfachstes Beispiel eines doppeltperiodischen Endes betrachten
wir in diesem Abschnitt den Streckenkomplex der Figur 6a.
O. B.d. A. konnen wir die vier Grundpunkte a; (¢ =1,...,4) der
3

Riemannschen Fliche W so normieren, dal X'a, = 0 und @, =oo ist.
i=1
a, sei der Grundpunkt, iiber dem der einzige logarithmische Windungs-
punkt liege (vgl. Fig. 11). Mit €, bezeichnen wir die Zerschneidungskurve
der Riemannschen Fliche. Um a, legen wir einen Kreis &, ,, dessen
Radius wir spiter niher festlegen.
Durch den sich unendlich oft iiberdeckenden Kreis Rw auf W, der

R, als Spur hat, wird ein logarithmisches Windungselement £, abge-

5) Vgl. zu diesem Abschnitt meine frithere Arbeit: ,,Uber ein Teichmiillersches Wert-
verteilungsproblem* [11], wo eine andere (speziellere) Methode verwendet wurde.
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trennt. ﬁw ist so gelegt, daf} sein Bild im Streckenkomplex die vertikale
Folge der Bindungen 1 —3 —1—3—1—3 —... durchliuft und
das Bildgebiet von £, zu seiner Linken hat. Nachdem das Windungs-
element £, aus W herausgeschnitten wurde, bleibt das Riemannsche

X

K,

Fig. 11

Flidchenstiick B, zuriick, dem im Streckenkomplex der doppeltperiodi-
sche Teil rechts der Bindungen 1 —3 —-1—3 —1—3 —... zuge-
ordnet ist. Die Perioden 2, und 2, des Bildes von 3,, normieren wir zu
RO, >0 und L, = 2a¢. Mit Hilfe einer Logarithmusfunktion, sowie
der Umkehrung der WeierstraBschen g-Funktion lassen sich £, und B,,
in £, und P, einer Z,- bzw. Z-Ebene abbilden.

Die partielle Uniformisierung fithren wir in einem ersten Schritt aus,
indem das logarithmische Windungselement ,, durch die Funktion

Z,=X,+tY, =log (w — a,) (3.1)

in eine Z,-Ebene auf £, abbilden wird.

Wird der Radius ¢ von ﬁw groBer als 1 gewihlt, so erhalten wir als
Z,-Bild von &, eine zur imaginiren Achse Y, parallele Gerade &, . Dem
Element &, entspricht dann die Halbebene

RZ, <logt=c>0.
Im zweiten Schritt bilden wir B,, durch die Umkehrfunktion der
Weierstraflschen g-Funktion in P, der Z-Ebene ab, mit

- dw
Z—X 'Y—_——f k. 3.9
+iY = [ (3.2)

-
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Die periodisch verlaufende Kurve &, ist das Bild von ﬁw in der Z-Ebene.
Die Konstante k wird so gewidhlt, dal &, durch die Punkte 2ani + ¢
geht (=0, +1, +2, 4...).
Durch die Abbildung von ;{w auf &, und K, werden auch &, und
K, vermittels
Zy = log [§(Z) — a,] (3.3)

umkehrbar eindeutig aufeinander abgebildet. Da die Kurve ﬁw durch
keinen der Verzweigungspunkte der Riemannschen Fliche verlduft, ist
auf K, stets

iz,
1Y, Y
| = =
Z Z s‘Z RZ
£z, c b

Fig. 12

Die beiden Gebiete £, und P, miissen noch lings ihrer Begrenzungs-
linien &, und &, punktweise auf Grund der Zuordnung auf der Rie-
mannschen Fliache verheftet werden. Dazu dienen uns wieder die quasi-
konformen Abbildungen.

Im Z-Bild betrachten wir die zwei Streifen

Sz, begrenzt durch &, und §z mit RZ <a
und _ - _
S,, begrenzt durch K, und 8, (a <RZ < b).

In einem ersten Schritt bilden wir &, durch die Funktion z = §(Z)
konform auf einen Parallelstreifen mit ¢ <RZ << a ab, so daB die drei
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Randpunkte Z =a, a + 27¢ und oo in sich iibergehen. Dabei ist
h(Z) eine periodische Funktion. Bei dieser Abbildung bleibt im ganzen
Streifen der Differentialquotient dz/dZ 5= 0 und oo, insbesondere die

aY 4y
auf dem Rande K.
Im zweiten Schritt bilden wir S, quasikonform auf den Parallel-
streifen G . ab, mit a <Rz <<b und der Rinderzuordnung :

#0 und oo . (3.5)

Auf?z sei z =12,
auf Rysei z=X und y=h(y).
Diese Abbildungsfunktion lautet
z=X
X
=BH(¥) + [¥ —H(¥)] 5

— a

— (3.6)

Gleich wie im zweiten Abschnitt folgt nach (1.8), dafl im ganzen Streifen-
gebiet der Dilatationsquotient D, beschrinkt bleibt.
In der z-Ebene lassen sich jetzt die beiden Strelfen S, und &, lings

Rz = a punktweise zu einem Parallelstreifen Gz verheften (¢ <Rz <b).

Im dritten Schritt bilden wir diesen Streifen éz quasikonform in einen
Parallelstreifen S, der Z;-Ebene ab mit ¢ <RZ, <c 4 d (d=b—c),
bei folgender Rénderzuordnung :

Auf Rz=10b sei Z, =z,
und
auf Mz =c sei Z, =¥(z).

Dabei gibt f(z) die Abbildung an, durch welche die Gerade &, in &,
mit RZ, = ¢ iibergeht. Die vorgenommenen Abbildungen ergeben
ebenfalls dZ,/dz = 0 und oo, besonders

atc +19) df(y) #0 und oo. (3.7)
dy
Diese letzte Abbildung erhalten wir durch
Ky w= T

(3.8)

Y, =¥(y) + [y — £(z)]—

sie besitzt, gleich wie die Abbildung (3.6), beschrinkte Dilatation.
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Nach diesen drei Abbildungen lassen sich die Gebiete £, , &, und
der Teil von P, mit RZ > b lings ihrer Begrenzungsgeraden zu einer
Ebene Z £ oo verheften.

Die Wertverteilung der Funktion w = w(¢{) .

Die Z-Ebene (Z # oo) ist ein quasikonformes Bild der Riemannschen
Fliache 9B iiber der w-Ebene. Mit ¢ £ oo bezeichnen wir wieder das kon-
forme Bild von W, erzeugt durch die Umkehrfunktion von w = w({).
Wie in § 2 schlieen wir, daBl die Abbildung { - w — Z quasikonformen
Charakter hat. Der Dilatationsquotient D, , verschwindet in RZ <¢
und in RZ > d und bleibt im dazwischenliegenden Streifen beschriankt.
Dadurch sind auch die Voraussetzungen fiir den Teichmiiller- Wittich-
schen Verzerrungssatz erfiillt, und die Existenz einer Konstanten garan-

tiert, so daf 1E]l=a-|Z| {1 +o0(1)} (3.9)

fir |Z| —> oo gilt.

Zur Bestimmung der Wertverteilungsgroflen zeichnen wir in der
Z-Ebene einen Kreis mit dem Radius R. Die Hilfte dieses Kreises
iiberdeckt eine Anzahl Periodenparallelogramme, die andere gewisse
Periodenstreifen. Jeder Wert @ im Periodenparallelogramm wird hier
genau zweimal angenommen und im Streifen einmal. Da der Flichen-
inhalt eines Parallelogrammes 2zR€; betrigt, so finden wir fiir die
Anzahlfunktionen, die wir im quasikonformen Bild mit »(R, a) bzw.
v,(R, a) bezeichnen, die Werte :

14 R?
'p(R) = p(R’a):2—2—27—:—z§i—Q——l—(l+0(l))
_ 4;;1 (1 + o(1)) ; (fir alle a). (3.10)

R2
R,a) = —— (1 +0(1)) ; (fir a =a,...a,).
v ( ) AR0, ( ~+ o )) (fu 1 s)
Ins konforme Bild iibertragen ergibt

1 2
o) =n(e.9) =5 ggg (L+o)
L g (3.11)
n(0, @) = = IR0, (14 0(1) .
Aus (3.10), (3.11) und (1.4) schlieBen wir fiir den Defeft
8(@) =1 —lim M2 _ o (3.12)

e>o  7(0)
und zwar fiir jedes a.
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Fiir die Berzeigungsindices folgt :

e(a,) = liml’ﬂ:f—(’—e;“"l - 1 (3.13)
k=1,...,4).
DOrdmung .
A= lim 22870 _ 5 (3.14)
log o

Als Ergebnis halten wir fest : Die erzeugende Funktion w = w({) der
zum Streckenkomplex der Figur 6a gehorigen Riemannschen Fliche liefert
uns ein Beispiel, ber dem trotz eines logarithmischen Windungspunktes in
der Fliche die Funktion feinen Defeft aufweist.

Verallgemeinerung

Neben dem einfachen Beispiel, das wir in diesem Abschnitt unter-
suchten, lassen sich in gleicher Weise die allgemeineren doppeltperiodi-
schen Enden, wie sie in § 1 eingefiihrt wurden, behandeln. Bei der par-
tiellen Uniformisierung tritt an Stelle der g-Funktion eine elliptische
Funktion der Form

f(w) = B [g(w)] + ¢’ (w)- RBy[p(u)] . (3.17)

Zur Berechnung der Wertverteilungsgré8en bezeichnen wir mit G die
Zahl der in einem Periodenparallelogramm vorhandenen Innenknoten
bzw. Auflenknoten. Betrachten wir weiter alle algebraischen Elementar-
gebiete im Parallelogramm, deren 2m Seiten von den Streckenzyklen
k,k + 1 gebildet werden und benennen diese Zahl mit ;. Die dazu-

gehorigen halben Seitenzahlen seien m,, m,, ..., m;.
Dann bilden wir die Ausdriicke
j J
G(ay) =2m, und Gi(a)=2(m, —1) (3.18)
v=1 v=1 :

und erhalten fiir ein Ende die Anzahlfunktionen
R ¢-L2 _1+oa
v(R) = m( + o(1))
(R G B0 +oeq (3.19
v(Bya,) = G(ay) - m( of )) -19)
R G.(a,) —2o (1 + o(1
v (Ryay) = G4 (ay) m( + o(1)) .
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Nach den gleichen Uberlegungen, die in (2.3) bei den einfachperiodi-
schen Enden aufgestellt wurden, miissen wir bei den allgemeinen doppelt-
periodischen Enden, vor der Verheftung der beiden Halbebenen, £, mit

1/w multiplizieren.

! | J o gibt die Anzahl der
J‘* § y 4 : v Y Innenknoten (= Anzahl der
AuBenknoten) an, die eine
SE" 4l 21 Hil? 2l1 an das logarithmische Ele-
i’,{ °‘1—1 4"‘ 3 | mentargebiet grenzende Pe-
i T 3 x riode beranden.
, 1 5 s 2<|, Fiir das obige Beispiel er-
’L 1 *1 3 4L halten wir: @ =6, o =2,
sll1 Gi(a) =2, Gyla) =2,
I ’{2 z: I 201 Gilag) = 4, Gyi(a,) = 4.
M 61 T 4 "—"‘5 R Damit sind e(a;) = 4,
31"‘ T r—_ e(a%)z%, -8(a3)=§, e(a)=%.
. Weiter gilt: G(a,) = G(a,)
e 13 = G(ay) = G(a) = G = 6

Rein kombinatorisch ist aber ersichtlich, daf fir jedes doppeltperiodische
Ende die Beziehung

Ga)=G ((k=1...p) (3.19)
besteht.

§ 4. Riemannsche Flichen mit einfach- und doppeltperiodischen Enden

In diesem Kapitel interessieren wir uns fiir Streckenkomplexe, bei
denen von einem Kern & aus p einfach- und ¢ doppeltperiodische Enden
ausgehen.

Nach der schematisch gezeichneten Figur 14 werden die Enden fort-
laufend im positiven Drehsinn numeriert. Das u-te Ende wird mit e,
wenn es einfachperiodisch, mit €, wenn es doppeltperiodisch ist, be-
zeichnet. Da sich die erforderlichen Abbildungen nicht mehr gleich for-
mal angeben lassen wie in den vorangegangenen zwei Abschnitten, denn
hier spielt die vorgegebene Aufeinanderfolge von einfach- und doppelt-
periodischen Enden eine mafBigebende Rolle, so beziehen wir uns zuerst
auf das spezielle Beispiel der Figur 14. Die Perioden seien alle auf £, > 0
und 2, = 2x¢ normiert.

Die vorkommenden w, bzw. w,, der Figur 14 haben dieselbe Bedeu-
tung wie in Kapitel 2. , gibt entsprechend die Anzahl der berandenden
Innenknoten einer Periode von €, an. Zur Uniformisierung der zuge-
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horigen Riemannschen Fliche kénnen wir jetzt die Methoden aus den
Abschnitten 2 und 3 verwenden.

Logarithmische Elementargebiete und doppeltperiodische Enden wer-
den in Halbebenen abgebildet und den einfachperiodischen Enden ent-

Js

36

3u

310

\3\_, ,/'39/ Fig. 14

8

sprechen wiederum bestimmte Halbstreifen, die mit den nétigen quasi-
konformen Abbildungen so in Parallelstreifen iiberzufithren sind, daB
die Verheftung mit den bereits uniformisierten Halbebenen in richtiger
Reihenfolge vorgenommen werden kann. Wie in § 2 fiigen wir die uni-
formisierten Gebiete zu neuen Halbebenen zusammen. Eine Halbebene
Z;'; besteht entweder aus zwei Viertelsebenen, herriihrend von je einer
Hilfte von z, und z,_,, zwischen denen der Parallelstreifen &z, liegt,
oder Z;': setzt sich zusammen aus einer Viertelsebene (der Hilfte von
einem z,), die mit einer zweiten Viertelsebene verheftet ist, welche der
Hilfte des Bildes eines doppeltperiodischen Endes entspricht. Bei einer
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Halbebene Z*, in der ein einfachperiodisches Ende liegt, brauchen wir
die gleichen Abblldungen wie in § 2. Liegt in Z* die Hilfte des Bildes
eines doppeltperiodischen Endes €,, so werden dle Abbildungen nach
§ 3 verwendet und vor der Verheftung ist die andere Viertelsebene mit
1/w, zu multiplizieren.

In Figur 14, dem topologischen Bild der Riemannschen Fliche, sind
die beschriebenen Zusammenfassungen wiederum schematisch angegeben
() <> 3)-

Allgemein nimmt ein Streckenkomplex mit p einfach und ¢ doppelt-
periodischen Enden bei der oben angegebenen Abbildungsvorschrift
p + 2¢q Halbebenen Z} in Anspruch.

Zur Verheftung dieser p + 2q Halbebenen, abwechslungsweise iiber
die negative und positive reelle Achse, miissen diese zuerst entsprechend
(2.7) abgebildet werden durch :

1 * . - *
5) | @ | & Li=g ez
e Wy Z* 2 _— 1 Z*
1 A 1l | w
E, (:-) z¢ = 2 zx
w3 w1 wz’
1 2 1 w
* — = U2 gk
& | ()| & Li=g a2
1
1 PN 1 )
* _ - 2 ¥
€, (5:) Zy 25 =0 L
1 ’
l * o 1 - 0)2 %
(gg (wa) Zﬁ 6 wl 4 602' [ ( )
A 1 w
w5’ ‘ wy; Wy
A 1 w w
ed -2 Zr Zs = == 2 : Z’:
we’ 8 Wy Wgr W5’
1 * S 1 _ wy w; wg
&7 (:“‘) ZQ 9 = —= w7 Z9
ws Wy Wy’ W5 We’
1 * 5 1 _ wy, w5 g py
@7 (‘(777) ZIO Zlo o 6)1 w7 Wy Wy’ e’ Z
1 * o 1 _ wy, w; wg
G] r— le le—- — Wy Z .
w1 w4 Wy Wy Weg!

Fig. 15
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Die Ausdriicke in Klammern der Figur 15 geben die Faktoren an, mit
denen die betreffenden Vlertelsebenen vor der Verheftung multipliziert
werden mufBten.

Jetzt lassen sich die p + 2q Halbebenen zu einer Fliche mit p 4+ 2¢
Halbblédttern zusammenheften, die noch lings der beiden freien Ufern zu
identifizieren ist. Dies erfolgt wieder durch eine passende Spiralabbil-
dung, die die Fliche in eine schlichte z-Ebene iiberfiihrt. Fiir diese
Spiralabbildung beniitzen wir nochmals den bekannten Ansatz

7 = za-Hb
und finden fiir die beiden Konstanten die Werte
= p—{;2q und b= — lozgnA (4.2)
mit
A — Wy W5 Wg
Wy Wz Wg’ ’
Legen wir in der z-Ebene den Kreis mit dem Radius |z | = r, so ent-

spricht nun diesem in der Z-Ebene eine Spirale. Die Schnittpunkte mit
den Geraden

argZ =nn m=0,1,2,...,p4+ 29— 1)

berechnen sich zu P2 n
mit
_ 2 log A\
ﬂ~1+(p+2q %t)

Ubertragen wir diese Punkte in die Z;';-Ebenen, so erhalten wir p + 2¢
Werte dafiir, von denen uns aber fiir die Wertverteilung nur diejenigen
interessieren, welche entweder in einer Viertelsebene liegen, in die die
Hilfte eines doppeltperiodischen Endes abgebildet ist, oder solche, in
einer Viertelsebene, auf die ein Bildstreifen eines einfachperiodischen
Endes folgt. Fiir unser Beispiel ergeben sich die Werte :

p2+2e g P2
Zl - BH]_ r 2 Z7 - .BH7 r 2
p?_’i‘ﬂ BP+2Q
Zy— — BI,r* 2 Z, — — BII,r*
pPtu g Pt (4.5)
Z4 _ - BII‘T 2 Zlo _ - ‘B'II],O
P+2q

Zaz "“‘BUGT 2
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mit =
A r+2
Hp, -

Ay
Fiir die Berechnung der 4, gilt die folgende Regel : 1. Befindet sich der
Punkt 3 (Bildpunkt eines Zu in der Ebene des Streckenkomplexes) in
einem Ende €,, dem die einfachperiodischen Enden e, , ¢, ..., €z, VOI-
angehen, so ist

und B=a, 4,=1.

Wzxy* Wzy . . . Wzyy _
Ay = £ ou
Wi+ Wy . . . Oz

2. Befindet sich der Punkt 3 in einem logarithmischen Elementar-
gebiet vor dem einfachperiodischen Ende ¢, , dem die Enden ¢z, , es,,. . ., €z,

vorangehen, dann ist
Wzy*Wzy . .. wx”
A,‘, - .
Wzy* Wz - . . a)a:,"'

Fiir die Anzahlfunktionen in den Z:-Ebenen erhalten wir allgemein :

B 17 gt B
_ (w) . 2K (n) B(v+2q)
0 =g TG T g EOW )
yr) = (r,a) +0() [a#a] (4.6)
B I7,\ 2% B
_ (n) i ol 2 () . pB(p+29)
I O LT o L A R
P+2q
vl(r, ak) p— 2B (Zg!‘») (ak)la]):) . rﬂT+ 4;{2 (EGI(F)(ak H) rB(@+2q9)

In diesen Formeln konnen die Glieder, die zu den einfachperiodischen
Enden gehoren gegeniiber denjenigen, die den doppeltperiodischen Enden
entsprechen, vernachléssigt werden.

Beim Ubergang nach (1.10) von der z-Ebene ins konforme Bild der
¢-Ebene diirfen wir schreiben :

n(p) =C-o*(1 + o(1)) ZGwWII,
Cu
nie,a) =mn(e)+0(1) o
n(e, ay) = C-g*(1 +0(1)EG""(ak)
ni(0, ax) = C-0 (1+0(1)2G w (ay) 11,
Die Konstante hat den Wert

C =
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Daraus gewinnen wir die WertverteilungsgroBen, ndmlich die

Oronung  A=g(p+ 29) = p + 2¢ (4.8)
und die
Z6Pe)1I,

: _ S

Sndices e(a;) = TGO, (4.9)
€

Wegen G = G®(a,) nach (3.19) verschwinden simtliche Defekte, also
Defefte d(a,) =0 . (4.10)

Zusammenfassend halten wir fest :

1. Eine erzeugende Funktion w = w(l) einer Riemannschen Fliche mit
p ewnfach- und q doppeltperiodischen Enden weist keine Defekte auf,
trotz dem Vorhandensein von p -+ q logarithmischen Windungs-
punkten.

2. Die einfachperiodischen Enden fallen nur fir die Ordnung 2 sowre fiir
die Verzweigungsindices mafgebend ins Gewicht.

§ & Riemannsche Flichen mit Viertelsenden

Als letztes Beispiel betrachten wir die Riemannsche Fliche, deren
Streckenkomplex in Fig. 16a wiedergegeben ist.

|
% o X o X O —

+

4 QX —— O— X —
3 1
b4 4’0 x (o] X o —
2111, |1
(l: 4x o] X o ¥ —
3
, 4' fo) b3 o] x ©
zr1 1 Mgl 1,0
o= x—o=tx— o=t x—
T 2 3 2 3
Fig. 16a Fig. 16b

Ein solcher Streckenkomplex erscheint als die ,,Hilfte* eines doppelt-
periodischen Endes. Aus diesem Grunde bezeichnen wir ihn als ein
Viertelsende.
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Bei unserem Beispiel beschrianken wir uns der Einfachheit halber auf
ein Rechtecksgitter mit den beiden Perioden £, = 2x¢ und 2, > 0.
Nach Weierstral normieren wir die Grundpunkte a,,...,a, durch

3
2a,=0 und a, =oc0. Der logarithmische Windungspunkt liege in a,
i=1

(vgl. Fig. 16b). Durch den sich unendlich oft iiberdeckenden Kreis f}w
auf der Riemannschen Fliche W, der &, als Spur hat, wird das Win-
dungselement 2,, das zu a, gehort herausgeschnitten. In &,, legen wir
die Bindungen 1 und 3 fest.

Schneiden wir das Wmdungselement um a, durch die Kurve R heraus,
die Rw zur Spur hat (durch Rw sind die Bindungen 2 und 4 bestimmt),
so bezeichnen wir dieses Element mit ,. W, wird durch den Logarith-
mus in eine Halbebene £, uniformisiert mit der Begrenzungsgeraden
K,

W, bilden wir ebenfalls durch den Logarithmus in ein Gebiet £, ab,
das von §zz begrenzt wird (vgl. Fig. 17).

Die Abbildungsfunktionen werden so normiert, dal sowohl K, und

§z2 durch die Punkte Z, = 0 bzw. Z, = 0 verlaufen. Diese Nullpunkte
entsprechen in der w-Ebene dem Schnittpunkt von &, und ﬁw

Die beiden Gebiete £, und £, werden jetzt von den Punkten
Z, =0 und Z, = 0 aus durch je einen geraden Schnitt lings s, bzw.
sz, in je zwei Teilgebiete getrennt. Auf der w-Ebene entspricht den beiden

g, > P,

— — — on— — — — — — co——

- —— — — —— —— — a— —— ——

"

N
()

o
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Schnitten das Geradenstiick s,, von a, aus zum Innenknoten. Von den
beiden Gebieten £, und £, betrachten wir im weitern nur noch je eine
Hilfte (vgl. Fig. 17), behalten aber die Gebietsbezeichnung £, und £,

fiir diese Viertelsebenen bei. Die Kurve &, wurde der Form nach so ge-
wihlt, daB der restliche Teil der Fliche I3, ndmlich der doppeltperiodi-
sche 9P,,, durch das Integral erster Gattung so in eine Z-Ebene abgebildet

wird, dafl das Bild von §w in eine Gerade S—iz iibergeht.

£,, und P, miissen lings ihrer freien Ufer &, und K, verheftet wer-
den, ebenfalls B, und £, lings K; und K,, (vgl. Fig. 17). Um diese
Verheftung auszufithren, konnen wir uns genau derselben quasikonfor-
men Abbildungen bedienen wie in § 3. Zusétzlich miissen wir aber £,

noch mit dem Faktor 2 multiplizieren, damit die entsprechenden

2n
Perioden von £, und B, iibereinstimmen.

z' Q Z
A Fig. 18
2

Durch die Spiralabbildung
7 = 2ot &b

bilden wir das 3/4 Blatt in eine z-Ebene (z 7% oco) ab. Dazu gehort die
folgende Identifizierungsvorschrift :

Z =X —»>2z=re?

' . t
t o -
Z = AXe"? > 4 = rei®t2m)
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Hier ist 4 = % und p bezeichnet die Anzahl der Viertelsebenen, also in

unserem Beispiel wire p = 3. Die Ausrechnung ergibt dann fiir

@ = —%’— =(3/4) und b= — lognA ‘
Damit heifit die gesuchte Abbildung
7= ot — (5 5) (5.1)
das gibt fiir unseren Fall
7 — (% ) (5.1')
Legen wir in der z-Ebene einen Kreis vom Radius |z | = r, so gehen

die Schnittpunkte mit arg Z = n=/2 und der Bildspirale iiber in

1Z] =7+

. 4 log A\?
p=1+(5 %)

Ubertragen wir diese Punkte in die Z,, Z, und Z' Viertelsebenen (Z'=:2),
so erhalten wir :

|

n , X
— Tm —
/4

CAP. "2 (5.2)

mit

3 1
1?43 27

Z,=1r* A )
2
3

3
-Iﬁ

Z = —r* . 4 (5.3)

3
’ . —B
Zl='—"&'r4 .A .

Beachten wir, da8 im Viertelskreis mit dem Radius R in der Z Ebene

21;1 Periodenrechtecke liegen, so folgt entsprechend wie in § 3, daBl die
WertverteilungsgroBen sich ausdriicken durch :
d(a) =0
e@)=1%Y, (@=1,...,4) (5.4)
A=3/2-8 .
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Zusammenfassend gilt :

1. Die Ordnung A = $-f eines Viertelsendes unterscheidet sich gegeniiber
der Ordnung eines doppeltperiodischen Endes (A = 2) und kann jeden
Wert grofer als 3/2 annehmen.

2. Dieser Streckenkomplex des Viertelsendes liefert ein Beispiel, fir den die
Ordnung der erzeugenden Funktion abhdngig tst von der Lage der Grund-
punkte, denn durch eine Grundpunktverschiebung dndert sich 2, und
damit auch die Ordnungsabhingige B.
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