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Neue Beitrâge
zur geometrischen Wertverteilungslehre

von Hans Kùnzi, Zurich
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Vorwort

Die vorliegende Arbeit, die der Eidg. Techn. Hochschule in Zurich als
Habilitationsschrift vorgelegt wurde, stellt einen Beitrag zum Problem
der geometrischen Wertverteilung dar.

Der erste Abschnitt vermittelt einen Einblick in die nâhere Problemstellung

und gibt Auskunft uber die bereits bekannten Resultate des

Untersuchungsgebietes.

Das zweite Kapitel bringt keine wesentlich neuen Resultate, sondern
beschrânkt sich auf eine neue Méthode in der grundlegenden Behand-
lung Riemannscher Flâchen mit einfachperiodischen Enden.

Die eigentlichen Resultate der Arbeit sind im dritten und vierten
Abschnitt enthalten.

Im letzten Teil wird noch auf ein Beispiel eines sogenannten Viertels-
endes hingewiesen. In einer folgendenArbeit, die speziell solche Enden zum
Gegenstand hat, soll nâher auf dièse Flâchenklasse eingegangen werden.

An dieser Stelle môchte ich Herrn Prof. Dr. Hans Wittich fur die Anre-

gung zu diesen Untersuchungen, mit denen ich im Winter 1951 in seinem
Institut in Karlsruhe begann, meinen aufrichtigen Dank aussprechen.

Herrn Prof. Dr. Albert Pfluger danke ich fur die wertvollen Rat-
schlâge bei der weiteren Ausfûhrung meiner Arbeit.

Ebenso gebuhrt mein Dank den Herren Prof. Dr. Rolf Nevanlinna
und Prof. Dr. WaUer Saxer fur das stândige Interesse, das sie meinen
Arbeiten schenken.
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§ 1. Problemstellung und Hilfssâtze

Die Aufgabe der geometrischen Wertyerteilung

In der folgenden Arbeit interessieren wir uns fur die Wertverteilung
der erzeugenden Funktionen einer bestimmten Klasse Biemannscher
Flâchen, die wir durch ihre Streckenkomplexe vorgeben. Im allgemeinen
wollen wir uns an die Bezeichnungen von R. Nevanlinna [15] *) halten.
Es sei w w(C) eine in | f | < oo meromorphe Funktion, fur welche
man die folgenden GrôBen einfuhrt :

rn(t,a) _ _ CnAt^a) 7>,a) I —-d£ iv1(£ja)= I—ii '_ dt
J l 2n J *

m(q, w) m(Q, oo) =-r— / log+ | w{qel<p) | rfç?
(1.1)

A lim sup —f—
Q+oo

^ 10g Q

(a)= 1 -limsup j^ ;

r „ N1(g, a)
(a) hm înf ^

(1.2)

Dabei bezeichnet n(g,a) die Anzahl der a-Stellen von w(Ç) im
Kreise \Ç\<q und %(^,fl) diejenigen der mehrfachen a-Stellen,
wobei jede A-fache Stelle (k — l)-mal gezàhlt wird. T(q) heiBt Charak-
teristik von w(Ç) und gibt die Ordnung der meromorphen Punktion an.
Der Defekt à {a) gibt uns ein MaB fur die relative Dichte der a-Stellen.
Bei positivem Defekt schlieBen wir auf eine spârliche Verteilung der
betreffenden Stellen. e (a) wird Verzweigungsindex der Stelle a genannt
und gibt ein MaB fur die mehrfach angenommenen Werte.

Aus den Nevanlinnaschen Hauptsàtzen ergibt sich die Defektrelation

(1,3)
v=l

wo die Summation uber eine beliebige Anzahl q von a-Stellen erstreckt
wird.

1) Die Zahlen in eckigen Klammern beziehen sicb auf das Literaturverzeichnis am
SchluB der Arbeit.
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Wollten wir jetzt, ausgehend von den explizite bekannten meromor-
phen Funktionen, die Wertverteilung angeben, so stieBen wir aufdieTat-
sache, daB uns verhàltnismâBig sehr wenig intéressante Beispiele zur
Verfïigung stunden. Fur die gebrâuchlichen Funktionen, wie z. B. fur die

Exponentialfunktion oder die doppeltperiodische y-Funktion lassen sich
dièse GrôBen durch einfache Ûberlegungen sofort angeben.

Die neuere Forschung in dieser Richtung stellt sich das Problem, das
Oswald Teichmuller [23] mit den folgenden Worten formulierte : ,,Oegeben

sei eine einfach zusammenhângende Biemannsche Flâche 2B ûber der w-
Kugel. Man kann dièse bekanntlich eineindeutig und konform auf den Ein-
heitskreis | £ | < 1, auf die punktierte Ebene | £ | ^ oo oder auf die voile

Ç-Kugel abbilden, so daji w eine eindeutigeFunktion von f wird : w w(Ç).
Von dieser eindeutigen Funktion ist die Wertverteilung zu untersuchen"

Zu diesem Hauptproblem der geometrischen Wertverteilungslehre, von
dessen Lôsung wir heute allerdings noch weit entfernt sind, lieferten in
den letzten Jahren neben R. Nevanlinna [13], Ahlfors [3], Elfving [7],
Pfluger [16], Teichmuller [20, 22, 23], Ullrich [24, 25, 26] und Wittich
[29, 31], sowie die beiden jiingeren Mathematiker Le-Van [12] und
Pôschl [17] intéressante Beitràge.

In gewisser Beziehung mit diesen Betrachtungen steht der Fragenkreis
des Typenproblems, da zunàchst festzustellen ist, ob die gegebene Rie-
mannsehe Flache dem parabolischen Typus angehôre.

Dazu dienen uns in erster Linie die Kriterien von jR. Nevanlinna [14]
und Wittich [27, 28]. In allen diesen Untersuchungen, wie auch in der
vorliegenden Arbeit haben wir es mit Flachen SB zu tun, die nur ûber
endlich vielen Grundpunkten w a±,a2,.. .,ag der w-Kugel Verzwei-

gungs- oder Bandpunkte haben, so daB die Umkehrfunktion f (w) sich auf
der in a±, a%,.. ,,aq punktierten Kugel unbeschrankt analytisch fort-
setzen lâBt. Fur dièse spezielleren Flachen, denen wir uns hier zuwenden
wollen, kann man nach Ahlfors [3] und Wittich [31] die nachstehenden
einfacheren Beziehungen fur Defekt und Index benutzen :

s(a) hm iyy

Q+oo log Q
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wo n(ç) Max n(q9 a) und
(a)

n(g) n(q,a) + 0(1) fur aile a ^ ak

Die Grundpunkte al9a29*. .9aq verbinden wir nun durch einen ge-
schlossenen Weg L, der die Kugel in ein positiv uml^ufenes Gebiet J
(Innengebiet) und in ein negativ umlaufenes Gebiet A (AuBengebiet)
zerlegt. Stanzen wir die Kurve L durch die ganze Riemannsche Plâche,
so zerfàllt dièse in Halbblàtter J bzw. A.

L erzeugt somit eine Polyederzerlegung der Flâehe, wobei die Polyeder-
flâchen nicht kompakt sein miissen ; einzelne oder sogar aile Ecken kônnen
mit Randpunkten (uber den ak) inzidieren. Auf den Polyederflâchen
(Halbblâttern) wird nun je ein Punkt (Knoten) ausgezeichnet. Gehôren
zwei solche Punkte zu Halbblâttern, die lângs einer oder mehrerer
Polygonseiten zusammenhangen, so werden sie uber jede solche Seite
miteinander durch eine Kurve (Glied) verbunden. So entsteht ein zur
Polyederzerlegung dualer Streckenkomplex, den man wegen des ein-
fachen Zusammenhangs der Flache so in eine 3-Ebene ausbreiten kann,
daB keine Ûberschneidungen der Glieder entstehen und die Knoten sich
nicht im Endlichen haufen.

Ein solcher Streckenkomplex besteht aus einer endlichen oder unend-
lichen Anzahl von Innenknoten (markiert durch Kreislein) und AuBen-
knoten (markiert durch Kreuzlein). Ein AuBenknoten ist durch ein
Ghed, das die Nummer i tràgt, mit einem Innenknoten verbunden, wenn
die Halbblàtter der Riemannschen Flache, welche Knoten reprâsentieren,
lângs des Kurvenstiickes zwischen at und ai+1 von L zusammenhangen.
Bei einem Innenknoten ist die Nummernfolge der Glieder im positiven
Drehsinn um den Knoten zu legen, bei einem AuBenknoten hingegen im
negativen.

Einem w-fachen Windungspunkt der Flache entspricht im Streckenkomplex

ein 2w-Eck. Ein Zweieck (n 1) bedeutet schlichte Ûber-
deckung des betrefifenden Grundpunktes, und ein Unendlicheck weist
auf einen logarithmischen Windungspunkt der Flache hin (logarithmi-
sches Elementargebiet).

Ist eine Riemannsche Flache der obigen Art und eine Zerschneidungs-
kurve L gegeben, so ist der Streckenkomplex S eindeutig bestimmt.
Anderseits bestimmt ein Streckenkomplex S bei gegebenen Grundpunk-
ten und gegebener Zerschneidungskurve eindeutig eine einfachzusammen-
hângende Riemannsche Flache 30B und damit eine erzeugende Funktion
£ Ç(w), die bis auf ganze lineare Transformationen vollstândig be-
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stimmt ist. Man vergleiche hiezu die einschlâgigen Arbeiten von Speiser
[18], Nevanlinna [13] und Elfving [7], sowie die neueren von Drape [6]
und Habsch [8].

Zur Erlàuterung geben wir hier als Beispiele die Streckenkomplexe der
Flâchen an, die der Reihe nach von der Exponentialfunktion, der Sinus-
funktion und der WeierstraBschen y-Funktion erzeugt werden.

tu*
X-3-O

3
2

1

> • *y n i ^

Z1| 41

3

: 2
3

4

c—— c

2 f |

3
2 ^

|2 3| 3|

Fig. 1

Zusammenfassend lâBt sich unsere gestellte Aufgabe wie folgt formu-
lieren : Eine Riemannsche Flâche vom parabolischen Typus, die nur liber
endlich vielen Grundpunkten verzweigt ist, sei durch ihren Streckenkomplex
gegeben. Gesucht ist die Wertverteilung der erzeugenden Funktion.

In der vorliegenden Arbeit gelingt es uns, dièses Problem fur be-
stimmte Klassen, die im folgenden Abschnitt definiert werden, voll-
stàndig zu lôsen.

Der Streckenkomplex mit endlich vielen einfachperiodischen Enden

Gegeben sei ein endlicher Streckenkomplex s, bei dem also die Anzahl
der Innenknoten Anzahl der AuBenknoten) endlich ist. Fig. 2 a.

Sind die Grundpunkte und die Zerschneidungskurve in der v-Ebene
gegeben, so definiert $ eine einfachzusammenhângende geschlossene
Riemannsche Flâche, deren erzeugende Funktion v R(u) rational ist.
Durch die Substitution u eç entsteht eine periodische Funktion
w R(e^). Sie ist die erzeugende Funktion einer Riemannschen Flâche
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2B, ûber der w-Ebene, deren Streckenkomplex S durch periodisches
Fortsetzen eines endlichen Komplexes entsteht.

Fig. 2a

\

Dabei ist aber zu berûcksichtigen, ûber welchen Grundpunkten in der
v-Ebene die beiden logarithmischen Windungspunkte liegen. Es ist môg-
lich, daB dièse durch die Funktion w E(e^) in eine schlichte Stelle
oder in einen algebraischen Windungspunkt der v-Ebene zu liegen kom-
men. Die beiden logarithmischen Windungspunkte liegen getrennt oder
liber demselben Grundpunkt, je nachdem B(0) B(oo) oder
J2(0) ^ R(oo) ist2).

Eine Hàlfte eines solchen periodischen Komplexes, bezeichnet man als

einfachperiodisches Ende. Weist dièses einfachperiodische Ende keine
algebraischen Windungspunkte auf, liegen also in ihm nur Zweiecke, so

sprechen wir von einem logarithmischen Ende. (Fig. 3.)

Fig. 3

Heften wir p derartige einfachperiodische Enden an einen endlichen
Kern, der aus endlich vielen Knoten besteht, dann entsteht ein Streckenkomplex

mit p einfachperiodischen Enden. (Vergl. Fig. 4)

*) Vergleiche Ullrich [24].
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Streckenkomplexe mit p einfachperiodischen Enden haben auch p
logarithmische Elémentargebiete. Die entsprechenden logarithmischen
Windungspunkte a(fl) (^ 1,..., p) liegen, eventuell mehrfach, uber
den Grundpunkten ax,..., aq.

Die Wertverteilung bei derartigen Riemannschen Flâchen wurde von
Ullrich [24], Wittich [29, 31], Le-Van [12] und Pôschl [17] untersucht.

Die von Nevanlinna [13] und Ahlfors [3] frûher betrachteten
Streckenkomplexe unterscheiden sich dadurch von den obigen, da8 sie keine alge-
braischen Windungspunkte aufweisen. Nach dem Wittichschen Typen-
kriterium [28] gehôren dièse Flâchen mit endlich vielen einfachperiodischen

Enden stets zum parabolischen Typus. Nach dem Randstellensatz
von Denjoy-Ahlfors [1, 5] weiB man, daB die erzeugende Funktion einer
Riemannschen Flâche des parabolischen Typus mit p logarithmischen
Windungspunkten mindestens vom Mitteltypus der Ordnung p/2 ist.
Durch das periodische Einbauen unendlich vieler algebraischer
Windungspunkte haben Wittich [31], Le-Van [12] und Pôschl [17] gezeigt,
daB die Ordnung auch grôBer als p/2 sein kann ; dièse Ordnungserhôhung
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ist im allgemeinen auf den asymmetrischen Aufbau in den einzelnen
periodischen Enden zurûckzufuhren.

Sâmtliche uns interessierenden WertverteilungsgrôBen wie Ordnung,
Defekt und Index lassen sich explizit vollstàndig berechnen.

Streckenkomplexe mit doppeltperiodischen Enden

Eine weitere Klasse von Streckenkomplexen fûhren wir mit Hilfe der
doppeltperiodischen Funktionen

w (1.5)

ein. Neben den beiden rationalen Funktionen Bt und B2 kenne man noch
die Lage der vier Grundpunkte ax,..., a4 der algebraischen Windungs-
punkte von der f(u) Funktion in der w-Ebene. Solche doppeltperiodi-
sche Funktionen erzeugen bekanntlich einen Streckenkomplex mit einer
doppeltperiodischen StruJctur (vgl. Fig. 5a und 5b).

— y o y o y o

I I I I I I

0 y O y O V

I I I I I

—H O V O X O

I I I I I |

—O x o x o y

M I i i i

' Xo=**\

o=* o «y

"V
V.

I I

Fig. 5a Fig. 5b

Von einem derartigen Streckenkomplex interessieren wir uns im
weitern nur noch fur die eine Hàlfte, indem die andere durch gewisse
Doppelbindungen lângs einer vertikalen Gliedfolge ersetzt wird (vgl.
Fig. 6a und 6b).

Analog zu den einfachperiodischen Enden nennen wir eine solche
Halfte eines doppeltperiodischen Komplexes ein doppeltperiodisches
Ende (vgL Fig. 6a und 6b). Neben unendlich vielen algebraischen Ele-
mentargebieten tritt hier nur ein logarithmisches Elementargebiet auf.
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Die erzeugenden Funktionen Riemannscher Flâchen mit solchen
doppeltperiodischen Enden sind, wie auch aus den Komplexen hervor-
geht, einfachperiodisch und kônnen aus den Funktionen

v v(u) u — (1.6)

aufgebaut werden.
Dabei zeigt Ullrich [25], dafi die àuBeren Funktionen v(u) eine Flàche

ohne logarithmischen Win-
| dungspunkt erzeugen und

gebrochene Funktionen der
Ordnung null sind. Fig. 7

gibt den zu Fig. 6a ent-
sprechenden Komplex der
Funktion v (u) wieder.

Eine endliche Anzahl von
doppeltperiodischen Enden
kônnen wir wieder durch
einen Kern miteinander
verbinden und erhalten so
die Streckenkomplexe mit
endlich vielen doppeltperiodischen

Enden. Ein ein-
faches Beispiel zeigt uns
die Figur 8.
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Weiter betrachten wir die Klasse der Streckenkomplexe, bei denen

von einem Kern p einfachperiodische und q doppeltperiodische Enden
ausgehen. Dièse allgemeine Klasse von Streckenkomplexen gehôrt zum
Hauptgegenstand unserer Untersuchungen.

Besonders interessiert uns der EinfluB der doppeltperiodischen Enden
auf die einfachperiodischen, der, wie sich herausstellen wird, fur die
Wertverteilungstheorie von Interesse sein kann. (Vergleiche hiezu meine
fruher erschienenen Arbeiten in den Comptes Rendus [9, 10].)

Hilfsmittel

Eines der wichtigsten Hilfsmittel in unseren folgenden Untersuchungen

bilden die qwasihonformen Abbildungen, welche besonders von Ahl-
fors [4], Teichmûller [19, 21] und Witbich [30] fiir funktionentheoreti-
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sche Untersuchungen herangezogen wurden. Dièse sind eineindeutige,
stetige und stùckweise stetig differenzierbare Abbildungen eines Gebietes
der 3 x + trj-Ebene auf ein Gebiet der m U + tt>-Ebene. Bei
konformen Abbildungen ist btt)/b3 von arg d$ unabhângig. Im allge-
meineren Fall einer differentialgeometrischen Abbildung wird aber
dw\d$ eine Funktion von arg d$.

Der sogenannte Dilatationsquotient wird durch

Max
(1.7)

Min

erklârt.
Eine einfache Rechnung ergibt fur den so eingefùhrten Verzerrungs-

quotienten
D K + VK2 - 1

mit (1.8)

Im Falle D 1 ist die Abbildung konform. Ist bei einer quasikonfor-
men Abbildung der 3-Ebene auf die to-Ebene die Abweichung von der
Konformitàt verhâltnismâBig klein, was sich durch die Konvergenz des

Intégrais

1J <A.fl - 1)-^ (1-9)

ausdrûcken làfit, so geht nach dem Verzerrungssatz von Teichrnilller-
Wittich ein Kreis mit groBem Radius im Bilde in eine kreisâhnliche Kurve
uber, das heiBt es existiert eine positive Konstante oc, so daB

(1.10)
ist fur | 3 | —>oo.

Eine solche quasikonforme Abbildung nennen wir im 00 kreisâhnlich.
Zur Berechnung der WertverteilungsgrôBen werden wir die Riemann-

sche Flâche in endlich viele Teilstucke zerschneîden. Dièse uniformisieren
wir fur sich und heften die Bilder der Teilstucke aneinander, indem wir
die richtige Rânderzuordnung mit Hilfe einer kreisàhnlichen quasikon-
formen Abbildung erzwingen. Auf dièse Weise erhalten wir ein quasi-
konformes, schlichtes z-Bild der Riemannschen Flâche. Dièses ist nach
bekannten Sâtzen auch quasikonform und kreisâhnlich zum konformen
C-Bild der Riemannschen Flâche.
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Nach (1.10) entspricht in der z-Ebene fur grofie Werte von r einem
Kreis | z | r in der £-Ebene eine kreisâhnliche Jordankurve
|C| @{l + o(l)}. Betrachten wir auf der w-Ebene einen bestimmten
Wert a, der in den Punkten zx,z2... (| zi• | < r) bzw. Çl9 f2...
(I Ci | ^ Q) angenommen wird, so erkennt man, daB die Wertverteilungs-
grôBen N(r,a), Nx(rya) und T(r) bezogen auf die z-Ebene asym-
ptotisch den entsprechenden GrôBen N(g,a), ^(^a) und T(q) fur
die t-Ebene gleich werden.

Wir schlieBen daraus, daB sich dièse WertverteilungsgrôBen statt in
der konform abgebildeten f-Ebene auch in der quasikonformen z-Ebene
berechnen lassen. Davon wird in den folgenden Reehnungen hàufig Ge-
brauch gemacht.

In den nâchsten Abschnitten kônnen wir stets erreichen, daB nur ge-
wisse Streifengebiete quasikonform aufeinander abgebildet werden. In
diesem Falle ist die Konvergenz von (1.9) bereits gesichert, wenn der
Dilatationsquotient im Streifen iiberall endKch bleibt.

§ 2. Riemannsche Flâchen mit p einfachperiodischen Enden

Le-Van [12] und Pôschl [17] haben in ihren zitierten Arbeiten die
Wertverteilung fiir Funktionen, deren zugehôrige Streckenkomplexe
endlich viele einfachperiodische Enden aufweisen, ausfûhrlich darge-
stellt. Da aber die dort verwendeten Methoden der Aufschneidung Rie-
mannseher Flâchen, sowie der folgenden quasikonformen Verheftung fur
allgemeinere Flàchenklassen, wie wir sie im nâchsten und iibernâchsten
Abschnitt untersuchen werden, ungunstig ist, so wollen wir hier eine
neue und wesentlich allgemeinere Darstellung fur den Fall von aus-
schlieBlich endlich vielen einfachperiodischen Enden entwickeln. Dièse
Méthode lâBt sich dann auch fur Funktionen mit doppeltperiodischen
Enden verwenden, und hat gegenûber der alten noch den Vorteil, daB
die nôtigen Hilfsabbildungen wesentlich einfacher werden.

Zur Uniformisierung einer derartigen Flâche mit p einfachperiodischen
Enden, die durch den Streckenkomplex, die Zerschneidungskurve, sowie
die Grundpunkte eindeutig bestimmt ist, schlagen wir den folgenden
Weg in drei Schritten ein :

Die Abbildung des Kerngebietes. Aus dem Streckenkomplex eliminieren
wir dùrch eine geschlossene Kurve (73 den Kern, der aus endlich vielen
Innen- bzw. AuBenknoten besteht. Ihm entspricht, wie schon fruher er-
wàhnt wurde, auf der Riemannschen Flâche ein kompaktes Teilgebiet,
das von der geschlossenen Bildkurve Cw berandet wird. Da fur die spâter
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vorzunehmende Wertverteilung ein derartiger Teil der Flàche bedeu-

tungslos ist, so brauchen wir uns dafûr nicht weiter zu interessieren.

Die logarithmischen ElementargeMete. Einem logarithmischen Ele-
mentargebiet im Streckenkomplex entspricht ein logarithmischer Win-
dungspunkt der Riemannschen Flâche iiber einem Grundpunkt av. Zu
diesem gehôrt fur genugend kleines t ein uber | w — av \ < t gelegenes
maximal zusammenhângendes Stuck der Flâche, ein sogenanntes Win-
dungselement, das durch den Logarithmus konform auf eine Halbebene
abgebildet wird. Dadurch erhalten wir als Bilder der p Windungsele-
mente p Halbebenen.

Die Streifenumgebungen der einfachperiodischen Enden. Naehdem
wir das Kerngebiet und die logarithmischen Windungselemente aus der
Riemannschen Flàche 2B herausgeschnitten haben, erubrigt sich noch, die
restlichen Gebiete zu uniformisieren. Diesen Gebieten entsprechen im
topologischen Bild des Streckenkomplexes p Halbstreifen, welche die

einfachperiodischen Enden umgeben. Dièse restlichen Teilgebiete der
Riemannschen Flàche uniformisieren wir mit den zu w^ jR^e^*) ge-
hôrenden Umkehrfunktionen (/u, 1,..., p).

Dièse p Halbstreifen (5ç« mussen mit den p Halbebenen z^ làngs ihrer
Berandungen so verheftet werden, wie dies durch die Urbilder der ent-
sprechenden Begrenzungskurven auf der Riemannschen Flâche vorge-
geben ist.

Fig.9
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Auf dièse Weise erhalten wir als Bild der Flâche 2B wiederum eine
Riemannsche Flàche mit p halben Blâttern, die wir durch eine Wurzel-
abbildung in die schlichte Ebene z ^oo uberfiïhren.

Die Uniformisierung. Fur die weiteren Rechnungen beschrânken wir
uns auf ein bestimmtes einfachperiodisches Ende e^, das an zwei loga-
rithmisehe Windungspunkte a(^~1) und aW grenzt. Dabei normieren wir
die betreffende Abbildungsfunktion Rfl(etH') so, daB der Halbstreifen

©^ (Fig. 9) einen positiven Imaginârteil aufweist. Dièse beiden loga-
rithmischen Windungspunkte uniformisieren wir durch

Vi log (w - a^-D) z^ - log (w - a</*>) (2.1)

in die beiden Halbebenen

5R ^_i > — log t l > 0 und z^ < log t — l < 0 (2. V)

Nach der obigen Normierung interessieren uns von den beiden
Halbebenen z^ und Zp lediglieh die beiden Viertelsebenen mit positivem
Imaginârteil. Der Einfachheit halber fiïhren wir eine neue Bezeichnung
ein und schreiben fur 3 z^-\ > ® fortan Z^ und fur %zfJL> 0 ent-
sprechend Z^,. Die Begrenzungsgeraden dieser Gebiete, die parallel zur
imaginâren Achse verlaufen, heiBen entsprechend Siz^ und Siz^,.

Durch die Umkehrfunktion w^ R^ie^H-) wird die Umgebung des

periodischen Endes e^ in den Halbstreifen Qt^ abgebildet. ©ç^ wird
begrenzt von den beiden Kurven ilç^ und Si t^,, sowie dem Teilstuck der
Kernkurve Gr^.

Zur weiteren Untersuchung halten wir nochmals fest, daB durch die
àuBere Funktion v R^ (u) ûber der t;-Ebene eine Riemannsche Flâche
mit endlich vielen algebraischen Windungspunkten bestimmt wird. Die
Funktion w R^fêi1) weist zwei logarithmische Windungspunkte
a(fi-i) und a(/x) auf. Dem Punkt u 0 entspricht jetzt ein Punkt p in
a(fi-i) der v-Ebene und dem Punkt u =oo ein Punkt q in aW. In der
Umgebung von u 0 finden wir fur die Funktion v R^ (u) die Ent-
wicklung

v _ a{fi-n u*>n(c -f o(l)) c # 0 (2.2)

und entsprechend gilt fur die Umgebung u oo

v — «</*>

Wp bzw. 0)^, geben hier die Vielfachheiten der Stellen p bzw. q fur die
Funktionen v R^iu) an. Die GrôBen œ^ und co^, mtissen nach dieser
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Festlegung mit der Anzahl der Innenknoten Anzahl der AuBen-
knoten) der rechten bzw. der linken Berandung3) einer Période des

Endes c^ ùbereinstimmen.
Aus der Abbildungsfunktion fur den Streifen ergibt sich, daB dieser

durch die Translation 2ni (abgesehen von einem beschrankten Stuck)
in sich transformiert wird. An Stelle des Halbstreifens Qz^ betrachten
wir den vollstândigen Streifen (5*^. Dieser lâBt sich konform durch eine
Funktion Z^ =Z[X(CfJL) in einen Parallelstreifen der Breite 21 iiber-
fiïhren, so dafî die drei Punkte Ç^ 0, 2niwci& oo in sich ûbergehen. Wie
man leicht einsieht, hat dièse Funktion Z^ Z^^^) einen periodischen
Charakter in dem Sinne, daB

<Sz

einem

erfullt ist. * n

Von diesem Parallel streifen

interessiert uns wieder

2 nur diejenige Hâlfte mit
positivem Imaginarteil, die
wir mit (Sz^ bezeichnen.

Si^ ist das Bild von ~
und wird, neben
Kurvenstûck, das als Bild
der Kernkurve zu betrach-
ten ist, von den beiden
parallelen Geraden ${z und
${z„, begrenzt.

Die drei Gebiete Z^, Qz^
und Zp, werden jetzt lângs

ihrer parallelen Begrenzungsgeraden miteinander verheftet. Auf Grund
der Beziehungen (2.2) und (2.2') ist aber vor dieser Verheftung die
Âhnlichkeitstransformation

i

I

Fig. 10

y* y
(Ou ¦V (2.3)

erforderlich. Dadurch gehe Qz^ uber in Sz* mit den Begrenzungsgeraden

Rz* und SKzp.
Die beiden parallelen Geraden Rz^ und Rz* sind eindeutig analytisch

(abgesehen von einem endlichen Stuck) aufeinander bezogen. ExpHzite
kennen wir die Funktion, die Stz^ in Stz* uberfûhrt. Sie sei komplex
gegeben durch ^* ^ „

3) Die rechte bzw. linke Berandung eines Endes wird vom Kern aus bestimmt.
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und reell durch ï> *„(*,>• <2-4>

Da die Aufschneidungskurve $tw auf der Riemannschen Flâche durch
keinen der Grundpunkte verlàufb, folgt fur den Dififerentialquotienten
der monotonen Funktion ï)^ die fur uns wichtige Eigenschaft

dY*
oo>c1> -=^>c2> 0 (2.5)

Zut Verheftung bilden wir den Halbstreifen Z<5RZ/Lt^2Z der
Viertelsebene Z^ quasikonform so auf sich ab, daB die folgende Rânder-
zuordnung entsteht :

Auf
»Z =1 ->Z|1 ^(F|4)

und auf

Dièse Abbildung erfolgt durch

(2<6)

Eine einfache Rechnung bestâtigt, daB der zur Streifenabbildung ge-
hôrige Dilatationsquotient Dz^z» im ganzen Streifen endlich bleibt.

Der Streifen Z^ wurde so auf sich abgebildet, daB man jetzt die beiden

Gebiete Qz^ und 31Z^ > 21 mit Z^ làngs 9iZii l und 21 zu einem
Gebiet zusammenlegen kann.

Fûhrt man eine entsprechende quasikonforme Abbildung fur einen
Streifen in -Z*, durch, so lâBt sich auch dièse Viertelsebene mit dem
obigen Gebiet zu einer Halbebene Z* verheften. Dasselbe Verfahren
wiederholen wir fur aile Z^, Z^, und Qz^ mit fi 1,..., p und erhalten
dadurch p Halbebenen Z*.

Dièse p Halbebenen sind jetzt lângs der negativen und der positiven
reellen Achse miteinander zu verheften.

Wegen (2.3) mussen wir zuerst die einzelnen Halbebenen den folgenden
Ahnlichkeitstransformationen unterwerfen :

(2.7)
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Jetzt lassen sich dièse p Exemplare von Halbebenen abweehslungs-
weise iiber die négative und die positive réelle Achse zu einer Riemann-
schen Flache Z X + iY verheften. Zuletzt miissen noch die beiden
freienUfer ^ ^
identifiziert werden, mit

A= «V"-"»» (2.8)
O)^ • C02' <*)v'

Fur dièse letzte Zuordnung bedienen wir uns der Spiralabbildung

und beachten die Identifizierungsvorschrift :

Z X ->z rei0
Und

Z AX e™* -> z

worausfolgt: ^ ^ ^.^.

dasheifit
« T und 6=-

Setzen wir dièse GrôBen in (2.9) ein, so heifit die gesuchte Abbildung

Z= Z2^ P 2n J (2.9')

Damit ist die Riemannsche Flache quasikonform uniformisiert und nach

(1.10) existiert auch eine asymptotische Gleichung

(2-10)fûr|2|->oo. m=«|z|{l+
Dies berechtigt uns, wie einleitend erwahnt, die Wertverteilungs-

grôBen zuerst in der z-Ebene auszurechnen und dann durch (2.10) ins
konforme C-Bild zu iibertragen.

Die Wertverteflung4)

Betrachten wir in der z-Ebene einen Kxeis mit dem Radius \z\ r,
so entspricht diesem in Z auf Grund der obigen Spiralabbildung ein

*) Die Wertverteilung dieser speziellen Funktionsklasse wurde von Pôschl [17] ein-
gehend behandelt. Wir beschrânken uns an dieser Stelle auf eine kurze Zusammenfassung
der wichtigsten Resultate.
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Kurvenstuck einer logarithmischen Spirale zwischen

r 2 und Ar a epnl

mit

Fur die Schnittpunkte mit den Geraden

argZ w-7r (w 0, 1,..., p —
erhalten wir

IZI AT¦

In den vorgenommenen Abbildungen blieben die Geraden %Zfl 0
unverândert. Die obigen Schnittpunkte in der Z-Ebene iibertragen wir
in die Z^-Ebenen und dividieren wegen (2.7) und (2.3) dièse Abszissen
jeweils dureh co^.

So erhalten wir die Punkte

Z' -~^~

mit den Werten :

Z'li (~ir+1 -n^-r^; (p=l...p) (2.12)l
dabei ist

und
'CO2

Fur ^i setzen wir den Wert 1.
Nun werden mit gp die Anzahl der in einer Période des Endes e^ auf-

tretenden Innenknoten bezeichnet. Dann fixieren wir aile algebraischen
Elementarpolygone einer Période, deren 2m Seiten von Gliedzyklen mit
den Nummern k, k + l bezeichnet sind, und benennen dièse Anzahl
mit j. Die entsprechenden halben Seitenzahlen seien m1, m2,..., m?-.
Mit diesen bilden wir die Ausdrûcke

gW (ah) Zmv und g^ (ak) S (mv ~ l) (2.14)
v=l v==l

Die durchgefûhrten Berechnungen erlauben uns, in den iSyEbenen die
Fundamentalgebiete abzuzàhlen und vermittels der Verzerrungssâtze
die Wertverteilung im konformen C Q etÇ-Bild vorzunehmen.
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n(Q) c gA(l +

n(Q,a) =u(q) +0(1); a ^ ak

;)/7J (2.15)

mit
1

(X

Daraus gewinnen wir die Werte fur Ordnung, Defekte und Indizes :

Defeïte «(a*) - 1 - ^~ (2.16)

/l-l

§ 3. Riemannsche Flâchen mit doppeltperiodischen Enden5)

Als einfachstes Beispiel eines doppeltperiodischen Endes betrachten
wir in diesem Abschnitt den Streckenkomplex der Figur 6 a.

O. B. d. A. kônnen wir die vier Grundpunkte a{ (i 1,..., 4) der
3

Riemannschen Flâche 2B so normieren, daB E at 0 und a4 oo ist.

a± sei der Grundpunkt, tiber dem der einzige logarithmische Windungs-
punkt liège (vgl. Fig. 11). Mit (£w bezeichnen wir die Zerschneidungskurve
der Riemannschen Flache. Um ax legen wir einen Kreis 51^, dessen

Radius wir spâter nàher festlegen.
Durch den sich unendlich oft ûberdeckenden Kreis ${w auf 2B, der

$tw als Spur hat, wird ein logarithmisches Windungselement Qw abge-

5) Vgl. zu diesem Abschnitt meine frtihere Arbeit: ,,Ûber ein Teichmiillersches Wert-
verteilungsproblem" [11], wo eine andere (speziellere) Méthode verwendet wurde.
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trennt. Rw ist so gelegt, daB sein Bild im Streckenkomplex die vertikale
Folge der Bindungen 1 — 3 — 1 — 3 — 1 — 3—... durchlâuft und
das Bildgebiet von 2W zu seiner Linken hat. Nachdem das Windungs-
élément £,w aus 2B herausgeschnitten wurde, bleibt das Biemannsche

V^
3

iv
—-^

0 u

Fig. 11

Flâchenstûck tyw zurûck, dem im Streckenkomplex der doppeltperiodi-
sche Teil rechts der Bindungen 1 — 3—1 — 3 — 1-—3—... zuge-
ordnet ist. Die Perioden Qx und Q% des Bildes von S$w normieren wir zu
3{Q1 > 0 und Q2 2ni. Mit Hilfe einer Logarithmusfunktion, sowie
der Umkehrung der WeierstraBschen y-Funktion lassen sich Q,w und S$w

in 2Zl und S$z einer Zx~ bzw. Z-Ebene abbilden.
Die partielle Uniformisierung fuhren wir in einem ersten Schritt aus,

indem das logarithmische Windungselement Qw durch die Funktion

Zt Xt + iY1 log (w — ax) (3.1)

in eine Zj-Ebene auf 2Zl abbilden wird.
Wird der Badius t von 51^ grôBer als 1 gewahlt, so erhalten wir als

Zx-Bild von S^ eine zur imaginaren Achse Yx parallèle Gerade SïZl. Dem
Elément 2W entspricht dann die Halbebene

Im zweiten Schritt bilden wir S$w durch die Umkehrfunktion der
WeierstraBschen f-Funktion in tyz der J?-Ebene ab, mit

w

f dw
k.

— g2w —
(3.2)
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Die periodisch verlaufende Kurve ${z ist das Bild von 51^ in der Z-Ebene.
Die Konstante k wird so gewâhlt, dafi Rz durch die Punkte 2jtni + c

geht (n 0, ±1, ±2, ±..0-
Durch die Abbildung von 51^ auf RZî und Stz werden auch RZi und

Rz vermittels
a1] (3.3)

umkehrbar eindeutig aufeinander abgebildet. Da die Kurve Rw durch
keinen der Verzweigungspunkte der Riemannschen Flâche verlâuft, ist
auf RZl stets

dZ
0 und oo (3.4)

Fig. 12

Die beiden Gebiete 2Zi und tyz mûssen noch lângs ihrer Begrenzungs-
linien RZi und Stz punktweise auf Grund der Zuordnung auf der
Riemannschen Flâche verheftet werden. Dazu dienen uns wieder die quasi-
konformen Abbildungen.

Im Z-Bild betrachten wir die zwei Streifen

und
Qz, begrenzt durch Rz und $tz mit 5R Z < a

<5Z, begrenzt durch $tz und Rz (a < 5R Z < b).

In einem ersten Schritt bilden wir Qz durch die Funktion z f)(Z)
konform auf einen Parallelstreifen mit c < 91Z < a ab, so da8 die drei
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Randpunkte Z a, a + 2ni und oo in sich iibergehen. Dabei ist
f) (Z) eine periodische Funktion. Bei dieser Abbildung bleibt im ganzen
Streifen der Differentialquotient dz/dZ ^ 0 und oo, insbesondere die

auf dem Rande Rz.
___

Im zweiten Schritt bilden wir Qz quasikonform auf den Parallel-
streifen Qz ab, mit a < 5R z ^ 6 und der Randerzuordnung :

Auf 5lz sei 2 Z,
auf 5lz sei z X und ?/

Dièse Abbildungsfunktion lautet

Gleich wie im zweiten Abschnitt folgt nach (1.8), da6 im ganzen Streifen-
gebiet der Dilatationsquotient Dz/Z beschrankt bleibt.

_In der 2;-Ebene lassen sich jetzt die beiden Streifen Qz und Qz lângs

9tz a punktweise zu einem Parallelstreifen Qz verheften (c^9lz^b).
Im dritten Schritt bilden wir diesen Streifen S2 quasikonform in einen

Parallelstreifen QZl der J2/rEbene ab mit c<9ÎZ1<c + ^ (d=b—c),
bei folgender Randerzuordnung :

Auf 91 z b sei Zx z

und
auf 9lz c sei Zx t(z).

Dabei gibt î(z) die Abbildung an, durch welche die Gerade Rz in $tZi
mit ${Z1 c iibergeht. Die vorgenommenen Abbildungen ergeben
ebenfalls dZjJdz ^ 0 und oo, besonders

und ^dy dy

Dièse letzte Abbildung erhalten wir durch

Xi x

^^-, (3.8)

sie besitzt, gleich wie die Abbildung (3.6), beschrànkte Dilatation.
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Nach diesen drei Abbildungen lassen sich die Gebiete £Zi, SZl und
der Teil von tyz mit 5RZ > b lângs ihrer Begrenzungsgeraden zu einer
Ebene Z ^ oo verheften.

Die Wertverteilung der Funktion w w{Ç)

Die Z-Ebene (Z ^ oo) ist ein quasikonformes Bild der Riemannschen
Flàche SB ûber der w-Ebene. Mit f ^ oo bezeichnen wir wieder das kon-
forme Bild von 2B, erzeugt durch die Umkehrfunktion von w w(Ç).
Wie in § 2 schlieBen wir, da8 die Abbildung £ -> w -» Z quasikonformen
Charakter hat. Der Dilatationsquotient D^z verschwindet in SRZ < c

und in $RJ? > d und bleibt im dazwischenliegenden Streifen beschrânkt.
Dadurch sind auch die Voraussetzungen fur den Teichmiiller-Wittich-
schen Verzerrungssatz erfullt, und die Existenz einer Konstanten garan-
tiert,soda6

| f | «.|Z| {1+o(l)} (3.9)

ftir | Z | -> oo gilt.
Zur Bestimmung der Wertverteilungsgrôfien zeichnen wir in der

Z-Ebene einen Kreis mit dem Radius B. Die Hâlfte dièses Kxeises
uberdeckt eine Anzahl Periodenparallelogramme, die andere gewisse
Periodenstreifen. Jeder Wert a im Periodenparallelogramm wird hier

genau zweimal angenommen und im Streifen einmal. Da der Flàchen-
inhalt eines Parallélogrammes 2tz<3{Q1 betrâgt, so finden wir fur die
Anzahlfunktionen, die wir im quasikonformen Bild mit v(B,a) bzw.
vx(R, a) bezeichnen, die Werte :

„(*) =„(*,«) 2

(1 + o(l)) ; (fur aile a). (3.10)

Vl{R'a) lf^7(1 +o(1)) ; (fur a

Ins konforme Bild ubertragen ergibt

n(e) ±£ (3.11)

Aus (3.10), (3.11) und (1.4) schlieBen wir fur den DefeW

ô(a) 1 - lim *te'f) o (3.12)v

e-^oo n(g)
und zwar fur jedes a.
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Fur die 33er3eigungsinbices folgt :

^=:i (3.13)

(4=1,..-, 4).

X lunl°?n{Q) 2. (3.14)
lùgQ

Als Ergebnis halten wir fest : Die erzeugende Funktion w w(Ç) der
zum Streckenkomplex der Figur 6a gehôrigen Riemannschen Floche liefert
uns ein Beispiel, bei dem trotz eines logarithmischen Windungspunktes in
der Flàche die Funktion ïetnen Defeft aufweist.

YeraHgemeinerang

Neben dem einfachen Beispiel, das wir in diesem Abschnitt unter-
suehten, lassen sich in gleicher Weise die allgemeineren doppeltperiodi-
schen Enden, wie sie in § 1 eingefûhrt \nirden, behandeln. Bei der par-
tiellen Uniformisierung tritt an Stelle der y-Funktion eine elliptische
Funktion der Form

f(u) R1[^(u)] + f(u)-R2[$(u)] (3.17)

Zur Berechnung der WertverteilungsgrôBen bezeichnen wir mit 0 die
Zahl der in einem Periodenparallelogramm vorhandenen Innenknoten
bzw. AuBenknoten. Betrachten wir weiter aile algebraischen Elementar-
gebiete im Parallelogramm, deren 2 m Seiten von den Streckenzyklen
k y k + 1 gebildet werden und benennen dièse Zahl mit j. Die dazu-
gehôrigen halben Seitenzahlen seien m1, m2,..., m,..

Dann bilden wir die Ausdracke

/ j
Q(ak) Zmv und Gx{ak) E(mv - 1) (3.18)

und erhalten fur ein Ende die Anzahliunktionen

=G(ak) ^^-(1 +0(l)) (3.19)

J^QMjjjfe- (1 + 0(1))
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Nach den gleichen Ûberlegungen, die in (2.3) bei den einfachperiodi-
schen Enden aufgestellt wurden, miissen wir bei den allgemeinen doppelt-
periodischen Enden, vor der Verheftung der beiden Halbebenen, £,Zi mit

1/ctJ multiplizieren.
i1 I —...

J c!> gibt die Anzahl der
Innenknoten Anzahl der
AuBenknoten) an, die eine

an das logarithmische Ele-
„ * * - o mentargebiet grenzende Pe-

1 3 riode beranden.
Fur das obige Beispiel er-

halten wir : G — 6, c!J 2,

5 4

4

3

2

3

S

2

S

3

3

?I

21

<l

2|

4 ^ 4] Damit sind e^) J?
k_ -J o 5 x— c(a2)=J, £(%)=§, e(a4)=l•

1
I Weiter gilt: ©(aj G(a9)

Fig'13 0(a.) G (a,) 6 6

iîein kombinatorisch ist aber ersichtlich, dafi fur jedes doppeltperiodische
Ende die Beziehung

G(ak) G (Je 1 ...p) (3.19)

§ 4. Riemannsche Flâehen mit einfach- und doppeltperiodischen Enden

In diesem Kapitel interessieren wir uns fur Streckenkomplexe, bei
denen von einem Kern 51 aus p einfach- und q doppeltperiodische Enden
ausgehen.

Nach der schematisch gezeichneten Figur 14 werden die Enden fort-
laufend im positiven Drehsinn numeriert. Das /u-te Ende wird mit eM

wenn es einfachperiodisch, mit CM wenn es doppeltperiodisch ist, be-

zeichnet. Da sich die erforderlichen Abbildungen nicht mehr gleich for-
mal angeben lassen wie in den vorangegangenen zwei Abschnitten, denn
hier spielt die vorgegebene Aufeinanderfolge von einfach- und
doppeltperiodischen Enden eine maBgebende Rolle, so beziehen wir uns zuerst
auf das spezielle Beispiel der Figur 14. Die Perioden seien aile auf Qt > 0

und Q2= 2 ni normiert.
Die vorkommenden co^ bzw. œ^, der Figur 14 haben dieselbe Bedeu

tung wie in Kapitel 2. To^ gibt entsprechend die Anzahl der berandenden
Innenknoten einer Période von G^ an. Zur Uniformisierung der zuge-
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hôrigen Riemannschen Flâche kônnen wir jetzt die Methoden aus den
Abschnitten 2 und 3 verwenden.

Logarithmische Elementargebiete und doppeltperiodische Enden wer-
den in Halbebenen abgebildet und den einfachperiodischen Enden ent-

10

Fig. 14

sprechen wiederum bestimmte Halbstreifen, die mit den nôtigen quasi-
konformen Abbildungen so in Parallelstreifen uberzufûhren sind, da8
die Verheftung mit den bereits uniformisierten Halbebenen in richtiger
Reihenfolge vorgenommen werden kann. Wie in § 2 fugen wir die
uniformisierten Gebiete zu neuen Halbebenen zusammen. Eine Halbebene
2* besteht entweder aus zwei Viertelsebenen, herruhrend von je einer
Hâlfte von z^ und z^-i, zwischen denen der Parallelstreifen Qz^ liegt,
oder iï* setzt sich zusammen aus einer Viertelsebene (der Hâlfte von
einem z^), die mit einer zweiten Viertelsebene verheftet ist, welche der
Hâlfte des Bildes eines doppeltperiodischen Endes entspricht. Bei einer
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Halbebene Z*, in der ein einfachperiodisches Ende liegt, brauchen wir
die gleichen Abbildungen wie in § 2. Liegt in Z* die Hàlfte des Bildes
eines doppeltperiodischen Endes (£M, so werden die Abbildungen nach
§ 3 verwendet und vor der Verheftung ist die andere Viertelsebene mit
1/cô^ zu multiplizieren.

In Figur 14, dem topologischen Bild der Riemannsehen Mâche, sind
die beschriebenen Zusammenfassungen wiederum schematisch angegeben

(z;^3p)-
Allgemein nimmt ein Streckenkomplex mit p einfach und q

doppeltperiodischen Enden bei der oben angegebenen Abbildungsvorschrift
p -\- 2q Halbebenen Z* in Anspruch.

Zur Verheftung dieser p + 2q Halbebenen, abwechslungsweise iiber
die négative und positive réelle Achse, mussen dièse zuerst entsprechend
(2.7) abgebildet werden durch :

1 „*

U)
e

<*3

<*3

e

Œ,

G,

Œt

(P

CO2'

(i)
ri)

/ 1 \

>

'•5

6 ~

(5)

(i)

1
« co2

_
1

1

-zr cô4

1 a

Z*

-Z*

z* (4.1)

1 o)2 ft>5 Z*

Zîo

z*

1
_ O)2 CO5

1 a>« a>5 O)6

Z11 ~jr0)1-

OJV

O)5

K

a)6'

Fig. 15
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Die Ausdrucke in Klammern der Figur 15 geben die Faktoren an, mit
denen die betreffenden Viertelsebenen vor der Verheftung multipliziert
werden muBten.

Jetzt lassen sich die p + 2q Halbebenen zu einer Flàche mit p + 2q
Halbblàttern zusammenheften, die noch lângs der beiden freien Ufern zu
identifizieren ist. Dies erfolgt wieder durch eine passende Spiralabbil-
dung, die die Flâche in eine schlichte z-Ebene uberfuhrt. Fur dièse

Spiralabbildung beniitzen wir nochmals den bekannten Ansatz

Z za+ib

und finden fur die beiden Konstanten die Werte

und 6=-^- (4.2)

mit

Legen wir in der z-Ebene den Kreis mit dem Radius | z \ r, so ent-
spricht nun diesem in der Z-Ebene eine Spirale. Die Schnittpunkte mit
den Geraden

berechnen sich zu p+2q n

\Z\=rP 2 Av+M (4.3)
mit

2 log A \2

Ûbertragen wir dièse Punkte in die Z*-Ebenen, so erhalten wir p + 2q
Werte dafûr, von denen uns aber fur die Wertverteilung nur diejenigen
interessieren, welche entweder in einer Viertelsebene liegen, in die die
Hâlfte eines doppeltperiodischen Endes abgebildet ist, oder solche, in
einer Viertelsebene, auf die ein Bildstreifen eines einfachperiodischen
Endes folgt. Fiir unser Beispiel ergeben sich die Werte :

Z1

Zs =-a (4.5)
BP+2q

V ;

Z10= — BII10 2
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mit A£=ï-
[jp — un(j B — cûx Ax 1.

Fur die Berechnung der ^4V gilt die folgende Regel : 1. Befindet sich der
Punkt 3 (Bildpunkt eines Zp in der Ebene des Streckenkomplexes) in
einem Ende (&v, dem die einfaehperiodischen Enden tXx, e^,..., tx^ vor-
angehen, so ist

(Ox2 • • (Oz»

2. Befindet sich der Punkt 3 i*1 einem logarithmischen Elementar-
gebiet vor dem einfaehperiodischen Ende e^, dem die Enden txx, e«2,..., tx^
vorangehen, dann ist

COxx • (Ox2 COxp

Fur die Anzahlfunktionen in den Z*-Ebenen erhalten wir allgemein :

(4.6)

v(r,ak) =JLi!±y ^
In diesen Formeln kônnen die Glieder, die zu den einfaehperiodischen
Enden gehôren gegeniiber denjenigen, die den doppeltperiodischen Enden
entsprechen, vernachlassigt werden.

Beim Ûbergang nach (1.10) von der z-Ebene ins konforme Bild der

f -Ebene diirfen wir schreiben :

n(Q) =Cq*\
n(Q,a) =n(g) -, v,v.,

n(Q,ak) Cqx{

ni(Q ><*>*) Cqx{

Die Konstante hat den Wert
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Daraus gewinnen wir die WertverteilungsgrôBen, nàmlich die

Orbmmg A p(p + 2q) > p + 2q
und die

Snbtces e(ak) =¦

(4.8)

(4.9)

Wegen GW 0{^(ak) nach (3.19) verschwinden sâmtliche Defekte, also

Dcfefte ô(ak) 0 (4.10)

Zusammenfassend halten wir fest :

1. Eine erzeugende Funktion w w(Ç) einer Riemannschen FiïLche mit
p einfach- und q doppeltperiodischen Enden weist Je eine Defekte auf,
trotz dem Vorhandensein von p + q logarithmischen Windungs-
punkten.

2. Die einfachperiodischen Enden fallen nur fur die Ordnung X sowie fur
die Verzweigungsindices mafigebend ins Gewicht.

§ 5 Biemannsche Flâehen mit Tiertelsenden

Als letztes Beispiel betrachten wir die Riemannsche Flâche, deren

Streckenkomplex in Fig. 16 a wiedergegeben ist.

I 4
I I i i i

-x— o x—o—

*LJi î î i

y-j-o—y—o—x—o —

y —

L
Fig. 16 a Fig. 16b

Ein solcher Streckenkomplex erscheint als die 5)Hàlfte" eines
doppeltperiodischen Endes. Aus diesem Grunde bezeichnen wir ihn als ein
VierteUende.
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Bei unserem Beispiel beschrânken wir uns der Einfachheit halber auf
ein Rechtecksgitter mit den beiden Perioden Q2= 2ni und Q1 > 0.
Nach WeierstraB normieren wir die Grundpunkte ax,..., a4 durchax,

Z ai: 0 und oo. Der logarithmische Windungspunkt liège in a2il ~
(vgl. Fig. 16b). Durch den sich unendlich oft Iiberdeckenden Kreis Siy,

auf der Riemannschen Flâche $B, der Rw als Spur hat, wird das Win-
dungselement SBi, das zu a2 gehôrt herausgeschnitten. In Stw legen wir
die Bindungen 1 und 3 fest. ^

Schneiden wir das Windungselement um a2 durch die Kurve Rw heraus,

die $tw zur Spur hat (durch $tw sind die Bindungen 2 und 4 bestimmt),
so bezeichnen wir dièses Elément mit 2B2. 2Bi wird durch den Logarith-
mus in eine Halbebene Qz uniformisiert mit der Begrenzungsgeraden

2B2 bilden wir ebenfalls durch den Logarithmus in ein Gebiet £,Zz ab,

das von 5lZa begrenzt wird (vgl. Fig. 17).

Die Abbildungsfunktionen werden so normiert, daB sowohl $tZl und

RZ2 durch die Punkte Z± 0 bzw. Z2 0 verlaufen. Dièse Nullpunkte
entsprechen in der w-Ebene dem Schnittpunkt von Rw und 51^,.

Die beiden Gebiete QZi und 2Zz werden jetzt von den Punkten
Zx 0 und Z2 0 aus durch je einen geraden Schnitt làngs sZl bzw.
%z in je zwei Teilgebiete getrennt. Auf der w-Ebene entspricht den beiden

z

Si

Fig. 17
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Schnitten das Geradenstûck %w von a2 aus zum Innenknoten. Von den
beiden Gebieten &z% und 2Z% betrachten wir im weitern nur noch je eine
Hâlfte (vgl. Fig. 17), behalten aber die Gebietsbezeichnung QZi und 2Zi
fur dièse Viertelsebenen bei. Die Kurve Rw wurde der Form nach so ge-
wâhlt, daB der restliche Teil der Flâche SB, nàmlich der doppeltperiodi-
sche *J}W, durch das Intégral erster Gattung so in eine Z-Ebene abgebildet

wird, daB das Bild von $tw in eine Gerade Rz ubergeht.
2Zl und tyz mussen lângs ihrer freien Ufer StZl und $tz verheftet wer-

den, ebenfalls S§z und Qz% langs Rz und $tZ2 (vgl. Fig. 17). Um dièse

Verheftung auszufuhren, kônnen wir uns genau derselben quasikonfor-
men Abbildungen bedienen wie in § 3. Zusâtzlich mussen wir aber 2Z2

noch mit dem Faktor 1~- multiplizieren, damit die entsprechenden

Perioden von &z und S$z ûbereinstimmen.

2n

Durch die Spiralabbildung

Z'

Fig. 18

Z za+ib

bilden wir das 3/4 Blatt in eine z-Ebene {z =£ oo) ab. Dazu gehôrt die

folgende Identifizierungsvorschrift :
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Hier ist A -~- und p bezeichnet die Anzahl der Viertelsebenen, also in

unserem Beispiel wâre p 3. Die Ausrechnung ergibt dann fur

a f (3/4) und 6=-^..
Damit heiBt die gesuchte Abbildung

(i t \
Z Za+ib Z*K P 2» J

} (5.1)

das gibt fur unseren Fall
3/4

Legen wir in der 2-Ebene einen Kreis vom Radius | z \ — r, so gehen
die Schnittpunkte mit arg Z n 7tj2 und der Bildspirale ûber in

(5.2)
mit

4 logAV

tîbertragen wir dièse Punkte in die Z[, Z'2 und Z' Viertelsebenen (Z'=iZ),
so erhalten wir :

(5.3)

Beachten wir, daB im Viertelskreis mit dem Radius Jî in der Z Ebene
if* Periodenrechtecke liegen, so folgt entsprechend wie in § 3, daB die

WertverteilungsgrôBen sich ausdrucken durch :

ô{a) 0

«(«<) Vi (< 1,...,*) (5-4)

A =3/2-/5
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Zusammenfassend gilt :

1. Die Ordnung X f -fi eines Viertelsendes unterscheidet sich gegenûber
der Ordnung eines doppeltperiodischen Endes (X 2) und kann jeden
Wert grôfier dis 3/2 annehmen.

2. Dieser Streckenkomplex des Viertelsendes liefert ein Beispiel, fur den die

Ordnung der erzeugenden Funktion abhàngig ist von der Lage derOrund-
punkte, denn durch eine Orundpunktverschiebung ândert sich Qx und
damit auch die Ordnungsabhângige (î.
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