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Ûber den Brunn-Minkowskîschen Satz
von D. Ohmann, Frankfurt a. M.

Fur die QuermaBintegrale Wp (p Q, l.. .n — 1) der Minkowski-
schen Summe zweier konvexer Kôrper K1 und K2 des euklidischen Rn

verallgemeinert sich die Aussage des Brunn-Minkowskischen Satzes be-

kanntlich zu W9{KX + K2)^ > W9{K^=i + Wv{K2f^. Es soll in
dieser Note zunâchst gezeigt werden, daB sich dièse Ungleichung nicht
nur — wie schon ofb bewiesen1) — fur p 0 (Wo fallt mit dem MaB

zusammen!), sondern auch fur p 1 auf abgeschlossene Mengen uber-
tragen lâBt. Des weiteren ist bei Einbeziehung der Minkowskischen
Diflferenz die Vollstandigkeit des sich ergebenden Ungleichungssystems
Gegenstand der Untersuchung. Die zu erzielenden Ergebnisse lassen sich
folgendermaBen zusammenfassen :

Im euklidischen Rn gelten fur beschrânkte, abgeschlossene Mengen A, B
die Ungleichungen2)

(a)

_ _._ — _..__.. (1)
(b)

die filr festes p und bei A — B^L zusammen mit

(c) W9(B)>0, Wp(A-B)>0 (I)

ein vollstândiges Ungleichungssystem bilden.
L bezeichnet dabei die leere Menge, so daB A — B^>L bedeutet, daB

A — B nicht leer ist. Der Beweis von (la) fur p 0, den wir auf einer
geeigneten Integraldarstellung fur das MaB basieren, liefert uns fur den
Fall, daB die Mengen A und B in wenigstens einer Richtung gleiches
QuermaB besitzen, zwanglos die Verschàrfung zu (la)

(0 < X < 1) (2)

die hinterher zum Beweis von (la) fur p 1 gebraucht wird.

*) Zuerst von Lusternik : Die Brunn-Minkowskische Ungleichung fur beliebige
mefibare Mengen (C. R. Acad. Se. URSS 1935 III, S. 55-58).

a) Fiir p 0 siehe H.Hadwiger: Minkowskische Addition und Subtraktion
beliebiger Punktmengen... (Math. Z. 53 (1950-51) S. 210-218).
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Es sei noch bemerkt, daB das Vollstàndigkeitsproblem durch die Ver-
allgemeinerung von konvexen Kôrpern auf abgeschlossene Mengen
wesentlich vereinfacht wird, da das System (1) — wie vom Verfasser
fur n 2 gezeigt3) — bei Beschrânkung auf konvexe Kôrper keines-
wegs vollstândig ist und daher durch ein verschàrfendes Ungleichungs-
system ersetzt werden muB.

§1 Vorbereitungen

Wir stellen die notwendigsten Definitionen und einfachsten Eigen-
schaften zusammen.

Im euklidischen Rn bezeichnen wir den Normalrifi der beschrânkten,
abgeschlossenen Menge A in der Richtung £ Orthogonalprojektion
von A auf eine (n — l)-dimensionale Ebene der Normalenrichtung £)

symboKsch mit A% und legen das Quermafi von A in der Richtung f als
dessen (n — l)-dimensionales Lebesgue-MaB M^^Aç) fest. Die Quer-
ma^integrale WP(A) (p 0, 1.. .n) sind dann durch die Definitions-
formeln

W0(A)=Mn(A), Wn(A) vn

zu erklâren, in denen vn das Volumen der w-dimensionalen Einheits-
kugel iin darstellt, und | unter dem Intégral die âuBere Normalenrichtung

des Oberflâchenelements dco von Qn angibt. Es ist dabei noch
darauf hinzuweisen, daB die benutzten Lebesgue-Integrale bei ausschlieB-
licher Betrachtung beschrânkter, abgeschlossener Mengen tatsâchHch
existieren4).

Indem wir den Punkten des Raumes die gleiche Bezeichnung geben
wie den von einem festen Ursprung aus zu ihnen hinweisenden Orts-
vektoren und unter A* die aus der Menge A durch Verschiebung um den
Vektor x hervorgegangene Menge verstehen, kônnen wir die tiblichen
Definitionen fur die Minkowskische Summe A -\- B und Differenz
A — B der Mengen A und B folgendermaBen fassen :

A + B stellt die Vereinigungsmenge aller Mengen B* fur x e A bzw.

3) D.Ohmann, Ein vollstàndiges Ungleichungssystem fur Minkowskische
Summe und Differenz (Comment. Math. Helv. 27, S. 151-156).

*) Vgl. dazu D.Ohmann, Ungleichungen zwischen den QuermaBintegralen
beschrànkter Punktmengen II (Math. Ann. 127, S. 1—7).
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aller Mengen A* fur x e B dar :

A + B ^ B* w A* (4)

A — B umfaBt aile Punkte x, fur die Bx Ç A besteht.
Auch die dilatierte Menge KA (A > 0) definieren wir wie iiblich durch

die Festsetzung, da8 XA die Gesamtheit der Punkte Xx fur x € A an-
gibt.

Aus diesen Definitionen ergeben sich unmittelbar die Formeln

(a) (A + B){ A(+B( (b) (IA)( kA( (5)

(A - B) + BÇA (6)

Des weiteren erschlieBen wir aus dem Umstand, da8 entsprechende
Verhâltnisse fur das MaB vorliegen, mit Hilfe der Defînitionsformeln (3)
folgende Beziehung fur monotone Folgen beschrânkter, abgeschlossener
Mengen AK+1^AK (k 1, 2,...) :

limTT,(^JC)=lF,(^lf) (7)
/C->OO /C l

Dies laBt sich bei Betrachtung zweier monotoner Folgen AK
und BK+1^BK (*=1,2,...) mit

~(AK+BK) (~AK) + (~BK) (8)
K=l K l K l

noch unmittelbar zu

lim W9(AK + BK) Wp[£ AK) + (Z BK)] (9)9
K-+OO

zusammensetzen. ^ ^
Zum Beweis fur (8) setzen wir A ^ AK, B ^ BK und

OO K l K — A.

C rs (AK + BK). Ist dann x € A und r) e B, so ist auch x c AK,

X) € B K fur jedes x9 und es folgt — wie der Définition (4) zu entnehmen
ist — x + X)€AKJrBK («=1,2,...) und mithin x + t) € C. Wir
haben also A + BÇ^C. Ist umgekehrt 3 e C, so ist 3 e^i^ + BK fur
jedes «, und es existiert stets ein Punktepaar xKeAKi \)K€BK, so daB

*k + 9 k 3 is^- Auf Grund der Abgeschlossenheit von A und JB gehôrt
nun aber jeder Hàufungspunkt ae* bzw. t)* der Folge s^ bzw. t)K zu A
bzw. 5. Andererseits ist wegen xK + ^K 3 auch 3e* + t)* 3, wo-
mit gezeigt ist, daB sich zu jedem Punkt 3 € (7 ein Punktepaar s* € ^4,

q* c J5 zuordnen làBt, fur das x* + r>* 3 besteht. Daraus folgt
^4 + JS9C, was sich mit ^4 + 5^(7 zu (8) zusammensetzt.
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§2 Die Ungleichung (2)

1. Der lineare Fall. Es seien A und B zwei besehrânkte, abgeschlossene
und auf der gleichen Geraden gelegene Mengen, und es bezeichne (xA, x)Ay

bzw. <%, X)By die konvexe Huile von A bzw. B. Wegen der Abgeschlos-
senheit von A und B gehôren die Punkte xA, T)A sodann zu A und xB, x)B

zu -B. Setzen wir zur Abkùrzung C (1 — X)A + XB, 3e* XxB und
9* (l - X)x)A, so ist gemàB (4) [(1 - X)Af* Ç C, (XB)** c C und
mithin auch

[(1 -2)4f w(15)^çc (10)

Wir haben nun nur noch zu beachten, daB die Mengen [(1 — X)A]X* und
(XB)** nur den einen Punkt 3e* + t)* gemeinsam haben kônnen, um
die sich daraus ergebende Beziehung

* (1 - X)M1(A)

mit (10) zu (2) zusammensetzen zu kônnen.

2. Der Fall n > 1. Wir benôtigen zu seiner Erledigung eine geeignete
Integraldarstellung fur das MaB. Ist zu deren Herleitung A (x) der Durch-
schnitt der beschrânkten, abgesehlossenen Menge A mit der Geraden der
festen Richtung |, die durch den Punkt xeAç hindurchgeht, so hat
man zunâchst

Aus der Abgeschlossenheit von A folgern wir nun, daB sieh zu jedem
nieht negativen fx < Mn_x(Aç) derart eine abgeschlossene Menge
A(fÀ) c Aç mit zugehôriger GrôBe / (A ; fi) angeben lâBt, daB fur die
Punkte X von Ag nach der GrôBe von M±[A (x)] die Einteilung

fA fur X*A(/À), M1[A(x)]<f(AUx) fur XiA{(l)

besteht. Mit dieser Einfûhrung gewinnt die Integraldarstellung die von
uns gewûnschte Gestalt

Mn(A)= J HAiridf*. (H)
0

Zum Beweis der Ungleichung (2) greifen wir auf das Ergebnis des

Paragraphen 3 vor, daB (la) fur p=0 aus (2) folgt, und fûhren die In-
duktionsvoraussetzung ein, daB (2) und damit auch (la) fur p 0 in
den Râumen geringerer als n-ter Dimension giiltig sei. Sind A und B
sodann zwei beschrankte, abgeschlossene Mengen, fur die Mn_x(A^)

Mn__x(Bç) in der festen Richtung | besteht, so haben wir nur noch
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nôtig, der Induktionsvoraussetzung unter Benutzung der Abkurzung
G (1 - X) A + XB und Beachtung von (5)

>M(M M^
zu entnchmen und die Richtigkeit von

ft) (12)

darzutun, um aus der MaBdarstellung (11)

Mn(C) >J[(1 - X)f{A ; fi) + kf{B ; fi)]df* (1 - X)Mn{A) + XMn(B)
0

folgern zu kônnen.
Um (12) zu beweisen, erschlieBen wir aus der leicht einzusehenden

Beziehung

mit Hilfe der Induktionsvoraussetzung, da6 fur x± e A

ii) + kf(B;

statthat. Aus der Ungleichung Mn_x [(1 — A) ^4(/M)+ A5(AI)] > ^, die wegen
Jfn-1(4(AI)) ^ und Mn_x(B(fi)) /^ ebenfalls aus der Induktionsvoraussetzung

folgt, ergibt sich daher, daB Mx [C(x) ] > 1 — X) f(A ;p) + Af(B; ju)

auf einer Untermenge von Cç bestehen mu6, deren MaB nicht geringer
als fji ausfâllt. Das kann aber gemâB der Définition von C{lx) und f(C;{i)
nur dann môglich sein, wenn (12) richtig ist.

§3 Die Ungleichungen (la) und (lb)
1. Ungleichung (la) fur p — 0. Besitzt wenigstens eine der wieder

als beschrânkt und abgesehlossen vorauszusetzenden Mengen A und B
verschwindendes MaB, so ist (la) fur p — 0 trivialerweise erfûllt. Wir
setzen also W0 (A > 0, Wo (B) > 0 voraus, woraus offenbar

Mn_1(Ai)>0,Mn_1(Bi)>0

gefolgert werden kann. Alsdann besitzen die Mengen A' — QAA und
_B1 qbB{Qa M^Aç)'^, qb M^Bf)"^ in der beliebig

herausgegriffenen Richtung | gleiehes QuermaB, so daB die Verschârfung
(2) gûltig wird, und wir

WO[{1 - X)QaA + XqbB] > (1 - X)qîW0(A) + Xq"bW0(B)
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notieren kônnen. Vermôge der Konkavitât der n-ten Wurzel folgt daraus

W0[(l - 1)qaA J ^ ^

Nach Multiplikation mit ®A ' ®B ergibt sich (la) schon durch die
QaQb

Spezialisierung A —~
Qa + Qb

2. Ungleichung (la) fur p 1. Um die Gewàhr zu haben, daB die
gleich zu betrachtenden richtungsabhàngigen Funktionale positiv blei-
ben und stetig mit der Kichtung variieren, môgen die Mengen A und B
zunâchst die Vereinigungsmengen von endlich vielen Kugeln positiver
Radien darstellen. Nun betrachten wir die mit A^v und Bç ^ zu bezeich-
nenden Orthogonalprojektionen von A bzw. B auf eine zu den nicht
parallelen Richtungen | und r\ orthogonale (n — 2)-dimensionale Ebene
und merken an, daB dièse nichts anderes darstellen als die Normalrisse
von Aç bzw. Bç in der zu £ senkrechten Richtung f, die zu der durch

i und rj bestimmten zweidimensionalen Ebene E (i, rj) parallel ist :

• (13)

Sodann untersuchen wir den Quotienten q(Ç;rj) n/? t Az \ r~^
L Mn-2\AiiV) J

und dessen Grenzen bei festem f und variablem rji q(£) min q(£;rj),
g(|) max q(Ç ; rj). Fur zwei nicht parallèle Richtungen £x und |2 folgt
aus q(Çx ; fa) q(Ç2 ; St) unmittelbar q^) <q(Ç±; f2) < q{£2), woraus
sich

max q(Ç) < min q(£) (14)
herleitet.

Man erkennt, daB sich jeder Richtung | auf Grund der Stetigkeit von
q(£ ; rj) wegen (13) und (14) wenigstens eine Richtung ^ 1 f zuordnen
lâBt, in der bei Benutzung der Abkûrzung q | [max q(£) + min q(Ç)]
die Beziehung q(£ ; rjç) q gûltig ist. Es folgt, daB die Normalrisse

(qA)ç und J5| in der Richtung rjg gleiches QuermaB besitzen :

womit die Ungleichung (2) zur Anwendung gebracht werden kann :

W0[(l - k)eA{ + A2^] > (1 - k)Q«-*WMi) + IWO(B()

Die Festlegung X —j-— fûhrt nach einfacher Umformung zu

W0(A{ + B() > (1 + Q)—W0(An) + (l + jf~2 W0(B{)
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Durch Intégration uber Qn gewinnt man daraus unter Beachtung der
Definitionsformel (3)

WX(A + B)>(1 + QT-*WX{A) + (l + —Y"' Wt(B)

Die Benutzung der Konkavitâtseigenschaft der (n — l)-ten Wurzel
liefert schlieBlieh die gesuchte Ungleichung (la) fur p — 1.

Sind A und B beliebige beschrànkte und abgeschlossene Mengen, so

approximieren wir sie derart durch Mengen AK^ A, BK^ B
(AK+1 £ AK, BK+1 ^ BK; x — 1,2,...), die sich jeweils als Ver-
einigungsmenge endlich vieler Kugeln positiven Inhalts darstellen, dafi

00 OO

A rs AK> B rs BK besteht. Die Giiltigkeit von (la) (p 1) fur
K=l K=l

die Mengenpaare AK, BK ubertrâgt sich dann vermittels der Formeln (7)
und (9) auch auf die Mengen A und B selbst.

3. Ungleichung (lb) Hat man (la) fur die Mengen A — B^> L und
B notiert, so folgt (lb) in bekannter Weise5) daraus durch Anwendung
der Beziehung (6).

§4 Die Yollstândigkeit des Ungleichungssystems (1)

Das System (1) ist dann vollstândig, wenn sich jedem Quadrupel zl9
den Ungleichungen

+ -Z2
z2>0 z4>0

geniigt, derart beschrànkte, abgeschlossene Mengen A, B zuordnen
lassen, daB

W9(A + B) z*-*, WP(A-B) r*-" ¦ r (°'1}

bei festem p besteht.
Um die Môglichkeit einer solchen Zuordnung zu zeigen, beziehen wir

den Raum auf das kartesische Koordinatensystem xx, x2,..., xn und

denken uns die Menge B durch den Wiirfel | xv \ < — (v 1,..., n)

repràsentiert und die Menge A durch die Vereinigungsmenge aus dem

\xv\<^\denkKohlwûvie]nAK(~<\xv\<^-\K==l, k)
2/ \2 Z I

und den Gitterpunkten mit den Koordinaten xv— — • - (jitv=O, i1,... ± m)

6) H. Hadwiger a. a. O.
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dargestellt. Dabei môgen die vorkommenden GrôBen so gewâhlt sein, daB
die Bedingungen a0>6>0, 2mb>oc>ak, 2b>aK— afK> 0, 2b>a'K —

B

Fig. 1

aK_1>0 (k 1,..., k) eingehalten werden. (Fig. 1 zeigt ein solches

Mengenpaar in der Ebene fur k 2 und m 3.)
Man erkennt nun sofort, daB A + B und A — B unter diesen Vor-

aussetzungen Wiirfel der Kantenlângen a + 6 bzw. a0 — b abgeben.

i (p o) ifern(-4)^ (p o)
Mit cP < ^_ und a t

\ 2n-i(p 1) (a^ (p= 1)

ergibt sich daher, wie man leicht bestâtigt :

WP(A + B)= (cp(* + b))n-P WP(A -B)= (cp(a0 - 6))-*
{P ==0>1)'

Die damit aus den Zuordnungen (12) folgenden Beziehungen zx cpa,
z2 cpb, z3 cp(ac + b), z4 cP(a0 — b) liefern mit den Bedingungen
(11) die Ungleichungen

Da dièse gemâB Konstruktion aber auch die einzigen Ungleichungen
sind, durch die die vier GrôBen a, a, a0, b eingeschrânkt sind, lassen sich

jedem (15) genûgenden Quadrupel zlt z2, %, 24 Paare der eben beschrie-
benen Mengen A, B angeben, fur die (16) erfûllt ist.

(Eingegangen den 6. November 1953.)
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