On some separation and mapping theorems.

Autor(en): Bourgin, D.G.
Objekttyp: Article
Zeitschrift: Commentarii Mathematici Helvetici

Band (Jahr): 29 (1955)

PDF erstellt am:
 28.04.2024

Persistenter Link: https://doi.org/10.5169/seals-23286

Nutzungsbedingungen

Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern.
Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden.
Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Haftungsausschluss

Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind.

On some separation and mapping theorems

by D. G. Bourgin, Urbana (Illinois)

Introduction

The problems treated here were discussed in some of my course lectures 1952-1953 on mapping theory. Publication of the results was originally intended for a book on Fixed Points, but it appears desirable to give them earlier circulation.

The stimulus for the first part of this paper comes from a homotopy view of perturbation theory. Thus if $h_{t}: X \rightarrow X$ where X is a compactum, and $0 \leq t \leq 1$, the fixed point set, $X(t)$, for each t is a compactum. The natural question is then whether when t changes slightly the fixed points change very little. Since $U X(t) \times t=C$ is easily verified to be a compactum, our question is essentially whether C contains a continuum joining $X \times 0$ and $X \times 1$. The remaining sections are concerned with sphere mappings. A theorem of Borsuk's, [B], asserts a real valued map of an n sphere assigns the same value to some antipodal pair $(z,-z)$. Dyson, [D], has proved a real valued map of the 2 sphere assigns the same value to the four end points of some pair of orthogonal diameters. (Livesay [Li] has shown any preassigned angle between the diameters can replace orthogonality). Dyson's proof is of set theoretic type. The present paper brings the methods of algebraic topology to bear on these seemingly metric problems. The key tool is the lemma that a closed carrier of an n dimensional mod 2 cycle, non bounding over a product of a projective space P and a segment I carries non bounding cycles of all lower dimensions. Let Z be an n sphere or more generally an n dimensional symmetric homologically sphere like set. Let f map Z into the j dimensional Euclidean space R^{j}. Our generalization of the Borsuk-Ulam theorem states the symmetric sub set of Z for which $f(z)=f(-z)$ carries an $n-j$ dimensional cycle mod 2 which maps by identification of antipodal pairs into a non bounding cycle in $P^{n} \times I$. Our generalization of the Dyson theorem states there are $n-j+1$ orthogonal lines through the origin whose end points lie in Z and are transformed by f into some $j-1$ dimensional sphere about the origin of R^{j}. Continuity of f can be weakened to upper semi continuity of $f(z)-f(-z)$ for both theorems. The sepa-
ration idea is central in such aspects of the various proofs as (1), (3.04) and (4.00).

Throughout the paper we shall use the same letter for the inclusion map of spaces for the induced chain maps and for the induced homomorphisms of the homology groups. Thus $i: X \rightarrow Y$ induces $i: C(X)$ $\rightarrow C(Y)$ and also $i: H(X, G) \rightarrow H(Y, G)$. The support of a chain on a geometrical complex is understood to be the carrier defined by the union of all the geometrical simplexes entering the chain. In dealing with the chain groups we shall often omit the i however, and write simply $C(X)$ in place of $i C(X)$. If D is a chain then $\|D\|$ is a point set attached to D which is either the support or the carrier. However, when no confusion is possible, the same symbol D will denote the associated point set. The field I_{2} is that of integers $\bmod 2 . R^{n}$ is the Euclidean n dimensional space and S_{n} is the n sphere with center at the origin. I is the unit segment $0 \leq t \leq 1$. By \underline{X} we mean the set of inner points of X.

1. Separation. The techniques involved and the arguments recur throughout the paper even for somewhat changed situations. Unless otherwise understood the cycles and carriers [W, p. 204] are Cech.

Theorem 1A. Let M be compact Hausdorff and let A_{n} be a non bounding Cech cycle in M with the coefficient group G either compact or a field. Suppose C^{0} and $C^{\mathbf{1}}$ are disjunct compact sets in $M \times I$ and suppose C^{1} does not meet $M^{0}=M \times 0$ while C^{0} does not meet $M^{1}=M \times 1$. Then there is an n cycle B_{n} on $M \times I$, whose carrier does not meet $M^{0} \cup M^{1} \cup C^{0} \cup C^{1}$ and $B_{n} \sim A_{n}(0)$ where $A_{n}(0)$ on M^{0} corresponds to A_{n} on M.

Since $M \times I$ is compact $M^{0} \cup C^{0}$ and $M^{1} \cup C^{1}$ can be covered by a finite collection of open sets in $M \times I$ whose union is N^{0} and N^{1} respectively with $N^{0} \cap N^{1}=0$. Let $X^{1}=\bar{N}^{1}$. Write $X^{0}=\overline{M \times I-X^{1}}$, and $Q=X^{0} \cap X^{1}$. Thus Q is the frontier of X^{1} and is disjunct from both $M^{0} \cup C^{0}$ and $M^{1} \cup C^{1}$. Consider

$$
\begin{aligned}
& H_{n}\left(M^{0}\right) \\
& \downarrow l \\
& \longrightarrow H_{n}(Q) \xrightarrow{i} H_{n}\left(X^{0}\right) \xrightarrow{i} H_{n}\left(X^{0}, Q\right) \xrightarrow{\partial} H_{n-1}(Q) \\
& \downarrow r \text { I } \downarrow l \\
& H_{n}(M \times I) \xrightarrow{s} H_{n}\left(M \times I, X^{1}\right)
\end{aligned}
$$

Here i, r, s, l, are induced by the obvious inclusion maps and e is induced by an excision map for $X^{1}-\underline{X}^{1}=Q, \quad M \times I-\underline{X}^{1}=X^{0}$.

Actually e is an excision isomorphism. [E. S.; Theorem 5.4, p. 266.] Since all the homomorphisms in the square I are induced by either inclusions or excisions commutativity obtains. Indicate the coset corresponding to a cycle by curly brackets. Thus $A_{n}(0)$ is a representative of $\left\{A_{n}(0)\right\} \in H_{n}\left(M^{0}\right) . \quad$ Since $\quad A_{n}(0) \sim A_{n}(1) \quad$ over $\quad M \times 1, \quad A_{n}(0) \sim 0$ $\bmod M^{1}$ and hence $A_{n}(0) \sim 0 \bmod X^{1}$. In the notation of (1) we have

$$
\begin{equation*}
\operatorname{srl}\left\{A_{n}(0)\right\}=0, \tag{1.01}
\end{equation*}
$$

whence

$$
\begin{equation*}
e^{-1} \operatorname{srl}\left\{A_{n}(0)\right\}=0 \tag{1.02}
\end{equation*}
$$

or

$$
\begin{equation*}
j l\left\{A_{n}(0)\right\}=0 . \tag{1.03}
\end{equation*}
$$

The upper horizontal sequence is either exact or partially exact depending on G. In either case the kernel of j includes the image of i. Since according to (1.03), $l\left\{A_{n}(0)\right\}$ is in the kernel of j, there must exist an element $\left\{B_{n}\right\} \in H_{n}(Q)$ such that $i\left\{B_{n}\right\}=l\left\{A_{n}(0)\right\}$ or

$$
\begin{equation*}
i B_{n} \sim l A_{n}(0) \tag{1.04}
\end{equation*}
$$

Interesting special cases arise when M is taken as a closed n dimensional orientable manifold ${ }^{2}$) or orientable pseudo manifold or orientable circuit imbedded in Euclidean space with A_{n} the fundamental integral cycle. In such cases we have a partial converse. We first state a useful lemma.

Lemma 1B. Let K^{0} and K^{1} be compact Hausdorff spaces with union K and common part Q. Suppose L is a compact subset of K^{0}. Let A_{n} be an n cycle of L with $A_{n} \sim 0$ on K. Then there is a cycle B_{n} in Q homologous to A_{n} over K^{0}.

The triad K, K^{0}, K^{1} is proper since the sets are compact [E. S., p. 257]. The Mayer Vietoris sequence is

$$
\begin{gathered}
H_{n}(L) \\
\downarrow l \\
\leftarrow H_{n-1}(Q) \stackrel{\Delta}{\leftarrow} H_{n}(K) \stackrel{\Phi}{\leftarrow} H_{n}\left(K^{0}\right)+H_{n}\left(K^{\prime}\right) \stackrel{\Psi}{\leftarrow} H_{n}(Q) \leftarrow
\end{gathered}
$$

[^0]We have $\Phi l\left\{A_{n}\right\}=0$ according to the hypothesis. Thus $l\left\{A_{n}\right\}$ is in the kernel of Φ whence by exactness some $\left\{B_{n}\right\} \in N_{n}(Q)$ satisfies $\left\{B_{n}\right\}$ $=l\left\{A_{n}\right\}$. This implies the assertion of the theorem.

Theorem 1C. Suppose M is a closed orientable n dimensional manifold with $M \times I$ in R_{n+1} and with fundamental cycle A_{n}. C is a continuum in $M \times I$ meeting both M^{0} and M^{\prime}. Suppose N is a closed n dimensional orientable manifold with base cycle E_{n}, where $E_{n} \sim A_{n}(0)$ over $M \times I$, and $\|N\|$ is a carrier of E_{n}. Then $\|N\|$ meets C.

Compactify R^{n+1} by adding the point ∞ to get S_{n+1}. The coefficient group below is that of the integers. Suppose N separates S_{n+1} into the domains $N(1)$ and $N(2), M^{j}$ separates S_{n+1} into the domains $M^{j}(1)$ and $M^{j}(2), j=0,1$. Suppose $N(1)$ contains M^{0} and M^{\prime}. By suitable labelling we can require that $M^{0}(1) \supset M^{\prime}$ and $M^{\prime}(1) \supset M^{0}$. Then

$$
\left.\overline{M^{0}(1)} \cap \overline{M^{\prime}(1)}\right) M \times 1 .
$$

Indeed if some point (m, τ) of $M \times I$ were not in $M^{0}(1)$ the line

$$
\{(m, t) \mid \tau \leq t \leq 1\}
$$

would cut M^{0}. Consider the sets

$$
K^{0}=L=X^{0}=M \times I-N(2), \quad K^{\prime}=\overline{N(2)}, \quad X^{\prime}=\overline{M^{0}(2) \cup M^{\prime}(2)}
$$

The compact sets $X^{0}, X^{1}, X=X^{0} \cup X^{1}$ constitute a proper triad. Note $E_{n}-A_{n}(0) \sim 0$ over $K=K^{0} \cup K^{\prime}$. Evidently also $E_{n}-A_{n}(1) \sim 0$ over K. Recourse to Lemma 1B establishes there are cycles $C^{\mathbf{0}}=l_{0} E_{n}$ and $C^{\prime}=l_{1} E_{n}$ on N, such that (a) $C^{0} \sim E_{n}-A_{n}(0)$ and (b) $C^{1} \sim E_{n}-$ $A_{n}(1)$, both over K^{0}. - Since neither $A_{n}(0)$ nor $A_{n}(1)$ bounds on $M \times 1$, $m_{i}=1-l_{i} \neq 0$, and $C_{n}=m_{0} A_{n}(1)-m_{1} A_{n}(0) \quad$ is a cycle on $X^{0} \cap X^{1}=M^{0} \cup M^{\prime}$ whose homology class in $H_{n}\left(X^{0} \cap X^{1}\right)$, denoted by $\left\{C_{n}\right\}$, is not 0 . On the other hand C_{n} is evidently a bounding cycle on both X^{0} and X^{1}. Thus $\left\{C_{n}\right\}$ is in the kernel of the Mayer Vietoris $\operatorname{map}(\psi)$ into $H_{n}\left(X^{0}\right)+H_{n}\left(X^{1}\right)$ and therefore is the image (under Δ) of $H_{n+1}(X)$. Since X is a proper subset of $S_{n+1}, H_{n+1}(X)=0$ and so $\left\{C_{n}\right\}=0$. In short M^{0} and M^{1} cannot both be in domain $N(1)$ (or in $N(2)$). Also M^{0} (or M^{\prime}) cannot meet both $N(1)$ and $N(2)$ for then so does $M^{0}(2)$ whence

$$
0 \neq M^{0}(2) \cap N \overline{M \times I} \cap N=0
$$

Suppose $\|N\| \cap C=0$, then since the common boundary of $N(1)$ and $N(2)$ is N it would follow that C is contained entirely in one or the
other of $N(1)$ or $N(2)$. This would stand at variance with our requirement that C meet both M^{0} and M^{1}.
2. Basic Notions. We add the following conventions: All homology and chain groups are over I_{2}. Nevertheless in the interests of naturalness we shall use both + and - . Indicate the metric norm in R^{n+1} by $|y|$. Let Y be the closed shell (in R^{n+1}), $\{y|1 \leq|y| \leq 2\}$ or any other positive bounds where necessary. $S_{m}(s), m \leq n$ is a sphere in Y of radius s about 0 . (If the radius is arbitrary we write S_{m}.) This is also the basic chain of a symmetric triangulation of the sphere. By X we shall invariably mean a symmetric set (with respect to the origin) in Y. The projective n dimensional space is indicated by P^{n}. Let $p x$ be the reflection of x in the origin. Let $T x$ denote the identification of x and $p x$, i. e. $T(x \cup p x)=x^{\prime}=(x, p x)$. The next few remarks are essentially special cases of known results for periodic transformations [S]. Use the same symbol T for the chain transformation which identifies σ and $p \sigma$, i. e. $T(1+p) \sigma=\sigma^{\prime}$. Throughout a prime on a set or chain indicates the identification under T or under the corresponding simplex identification $T(\mathbf{1}+p)$.

Let σ be given by the vertex scheme $\left[y_{0}, \ldots, y_{l}\right]$. Indicate this by $[y]$. Then $p \sigma=\left[p y_{0}, \ldots, p y_{l}\right]$ or $[p y]$ and $T(1+p)[y]=\sigma^{\prime}=\left[y^{\prime}\right]$. Observe $T^{-1} \sigma^{\prime}=(1+p) \sigma$. This is a unique correspondence though σ is not unique since $p \sigma$ serves as well. Write $[z]_{i}$ for

$$
\left[z_{0}, \ldots, z_{i-1}, z_{i+1}, \ldots, z_{l}\right]
$$

The choice $z=y, p y$ or y^{\prime} is that of interest below. Thus $\partial z=\Sigma[z]_{i}$. We make use of the relations

$$
\begin{align*}
& \partial p \sigma=p \partial \sigma \tag{2.00}\\
& \partial \sigma^{\prime}=(\partial(1+p) \sigma)^{\prime} \\
& \partial T^{-1} \sigma^{\prime}=T^{-1} \partial \sigma^{\prime}
\end{align*}
$$

For instance,

$$
\begin{aligned}
& \partial p \sigma=\partial[p y]=\Sigma_{i}[p y]_{i}=p \Sigma[y]_{i}=p \partial \sigma \\
& \partial \sigma^{\prime}=\partial\left[y^{\prime}\right]=\Sigma T(\mathbf{l}+p)[y]_{i}=T(1+p) \partial \sigma
\end{aligned}
$$

This shows incidentally that T is a chain map (on symmetric chains). A chain, C_{m} is symmetric if and only if

$$
\begin{equation*}
(1+p) C_{m}=0 \quad \text { or } \quad C_{m}=(1+p)_{1} C_{m} \tag{2.01}
\end{equation*}
$$

In applications we always assume that ${ }_{1} C_{m}$ contains no antipodal pair of m simplexes. The closed half spaces to one side or other of an n dimen-
sional hyperplane, R^{n}, containing the origin are indicated by $R^{n}(+)$ and $R^{n}(-)$ respectively. The intersections with Y are written $Y(+)$ and $Y(-) . \quad Q^{n+1}=P^{n} \times I=Y^{\prime}$.

The following lemma and its direct proof are central in the developments of this paper. X and Y are here considered simplicial complexes.

Lemma 2A. Let k denote the inclusion map $X \rightarrow Y$ where X is a simplicial subcomplex of Y. If A_{m} is a symmetric simplicial m cycle on $X, m \leq n$, and $k A_{m}^{\prime}$ is non bounding (on Y^{\prime}) then $\left\|A_{m}\right\|$ carries a symmetric cycle A_{m-j} where A_{m-j}^{\prime} is non bounding (on Y^{\prime}) for all $j \leq m$.

It is sufficient to establish the lemma for $j=1$. A trivial application of the Künneth relations shows the m dimensional homology groups over Q^{n+1} and over P^{n} are isomorphic for $m \leq n$ and are therefore isomorphic to I_{2}. Plainly the chain $S_{m}^{\prime}=P^{n}$ is non bounding. The hypotheses imply

$$
\begin{equation*}
A_{m}^{\prime}-S_{m}^{\prime}=\partial\left(C_{n+1}^{\prime}\right) \tag{2.02}
\end{equation*}
$$

The symmetric chain $C_{m+1}=T^{-1}\left(C_{n+1}^{\prime}\right)$ may be represented as $(1+p)_{1} C_{m+1}$. Thus $\partial\left(C_{m+1}^{\prime}\right)=\left(\partial C_{m+1}\right)^{\prime}=\left((1+p)\left(\partial_{1} C_{m+1}\right)\right)^{\prime}$ by virtue of (2.00). Then applying T^{-1} to (2.02) there results

$$
\begin{equation*}
(1+p)\left({ }_{1} A_{m}-{ }_{1} S_{m}-\partial_{1} C_{m+1}\right)=0 \tag{2.03}
\end{equation*}
$$

where ${ }_{1} A_{m}$ may be chosen in a variety of ways conditioned merely by the requirement that $(1+p)_{1} A_{m}=T^{-1}\left(A_{m}\right)^{\prime}$ and that ${ }_{1} A_{n}$ and $p_{1} A_{m}$ have no m simplexes in common. Similar statements apply to ${ }_{1} S_{n}$. Accordingly

$$
\begin{equation*}
{ }_{1} A_{m}-{ }_{1} S_{m}-\partial_{1} C_{m+1}=D_{n} \tag{2.04}
\end{equation*}
$$

where $(1+p) D_{n}=0$. Then

$$
\begin{equation*}
\partial_{1} A_{n}-\partial_{1} S_{n}=\partial D_{m} \tag{2.05}
\end{equation*}
$$

All chains in (2.05) are symmetric. Indeed since A_{n} is a symmetric cycle,

$$
0=\partial A_{n}=\partial(1+p)_{1} A_{m}=(1+p) \partial_{1} A_{m},
$$

and so (2.01) establishes our assertion here. Similarly $\partial_{1} S_{m}$ is symmetric. Since D_{m} is symmetric so is ∂D_{m}. We therefore derive from (2.05),

$$
\begin{equation*}
\left(\partial_{1} A_{m}\right)^{\prime}-\left(\partial_{1} S_{n}\right)^{\prime}=\left(\partial D_{m}\right)^{\prime}=\partial\left(D_{m}\right) . \tag{2.06}
\end{equation*}
$$

Write B_{m-1} for $\partial_{1} A_{m}$. Then B_{m-1} is evidently an $m-1$ symmetric cycle. After suitable subdivision of the simplexes of the triangulation
of Y, if necessary, we can choose ${ }_{1} S_{m}$ as the upper cap of the section of S_{m} by a suitable hyperplane. Then $\partial_{1} S_{n}$ is the equatorial $m-1$ sphere and so $\left(\partial_{1} S_{m}\right)^{\prime}$ is a non bounding $m-1$ cycle in Y^{\prime}. Thus (2.06) guarantees B_{m-1} is a non bounding cycle in Y^{\prime}.

Suppose the l cycle ${ }_{1} D_{l}, l<1$, contains no pair $\sigma_{l}, p \sigma_{l}$. Since the mod 2 Betti numbers of Y vanish if the dimension is inferior to n, we must have ${ }_{1} D_{l}=\partial C_{l+1}$.

Then $\left((1+p) D_{\imath}\right)^{\prime}=\partial\left((1+p) C_{l+1}\right)^{\prime}$ or $\left((1+p)_{1} D_{l}\right)^{\prime} \sim 0$. Hence A_{m} and B_{n-1} can be replaced by subcycles E_{m} and E_{m-1} on components for $m>1$ [L, p. 91] and

$$
\begin{equation*}
E_{l}^{\prime} \sim S_{l}^{\prime}, \quad l=m-1, m \tag{2.07}
\end{equation*}
$$

Theorem 2B. Let X be a closed symmetric carrier of a symmetric Cech cycle A_{m} with $A_{m}^{\prime} \sim 0$ on Y^{\prime}. Suppose $X=Z \cup p Z$ where Z is compact. Denote frontiers in X of subsets of X by $B d()$. Suppose $Z \cap p Z=$ $B d Z=W$. Then W carries a symmetric Cech cycle E_{m-1} with $E_{m-1}^{\prime} \sim S_{m-1}^{\prime}$ in Y^{\prime}.

For a symmetric cover $\mathfrak{U}, U \in \mathfrak{U}$ implies $p U \in \mathfrak{U}$. We may assume below $U \cap p U=0$. Then $\mathfrak{U}^{\prime}=\left\{U_{i}^{\prime} \mid U_{i}^{\prime}=T(1+p) U_{i},, \quad U_{i} \in \mathfrak{U}\right\}$. We remark there is a cofinal sequence of finite symmetric open covers $\{\mathfrak{U}(r) \mid r=1,2, \ldots\}$ with the following properties: (a) $\mathfrak{U}(s)$ is the star of a symmetric triangulation of $Y, \Delta(s)$, and refines $\mathfrak{U}(r)$ for $r<s$.
(b) if $Y(r)$ is the nerve of $U(r)$ and $Y^{\prime}(r)$ that of $\mathfrak{U}^{\prime}(r)$ then

$$
H_{i}\left(Y(r) \approx H_{i}(Y)\right\} \text { and } H_{i}\left\{Y^{\prime}(r)\right) \approx H_{i}\left(Y^{\prime}\right)
$$

for all i and (c) if a kernel [L, p. 245] meets both Z and $p Z$ then it meets W.
The only assertion not immediately obvious is (c). Appeal may be made to the proof of an analogous assertion when no symmetry restriction is imposed on the sets or covers [W, p. 202] and the result required here may be established by similar arguments. An alternative derivation (indeed the original one of the writer's) starts with a symmetric triangulation, δ, of Y. A prescription can be given for the introduction of new vertices to give δ^{\prime} whose zero and one dimensional kernels satisfy (c). Next new vertices are introduced to give δ^{2} such that the kernels of dimension 2 or less satisfy (c). This inductive construction yields $\Delta=\delta^{n+1}$ satisfying (c).

If Q is closed in Y then $Q(r)$ is the subcomplex of $Y(r)$ consisting of simplexes whose kernels meet Q. We write $\|Q(r)\|$, here for the point
set closure of the union of the kernels of simplexes in $Q(r)$. Evidently $Q(r)$ may also be viewed as the closure of the Euclidean subcomplex of $\Delta(r)$ consisting of simplexes (of $\Delta(r)$) meeting Q with $\|Q(r)\|$ the associated point set. The m dimensional skeleton of $Q(r)$ is written $Q_{m}(r)$.

We show first that $W \neq 0$. Assume the contrary. Thus for $r, r_{0}<r$, $X(r)=Z(r) \cup p Z(r)$ where $Z(r)$ and $p Z(r)$ are disjunct. We proceed as in a similar situation occuring in the proof of Theorem 2A. The symmetric Cech cycle A_{m} has the representation $\left\{A_{m}(s)\right\}$, where $A_{m}(s)$ is a symmetric simplicial cycle and the hypotheses of Theorem 2B require that for $r_{1}<r, A_{m}^{\prime}(r) \sim 0$ on $Y^{\prime}(r)$. Choose r larger than either r_{0} or r_{1}.' Let ${ }_{1} A_{m}(r)$ consist of those simplexes of $A_{m}(r)$ which are in $Z(r)$. Then no pair $\sigma_{m}(r), p \sigma_{m}(r)$ occurs in ${ }_{1} A_{m}(r)$ and, since

$$
\left\|{ }_{1} A_{m}(r)\right\| \cap\left\|p_{1} A_{m}(r)\right\|=0, \quad \partial_{1} A_{m}(r)=0 .
$$

Hence, recalling property (b) of $U(r),{ }_{1} A_{m}(r)=\partial C_{m+1}(r)$ where $C_{m+1}(r)$ is a chain on $Y(r)$ and then

$$
\mathrm{A}_{m}^{\prime}(r)=\left((1+p)_{1} A_{n}(r)\right)^{\prime}=\partial\left((1+p) C_{m+1}^{\prime}(r)\right)^{\prime} \quad \text { or } \quad A_{m}^{\prime}(r) \sim 0
$$

in violation of our requirement.
The complexes $Z_{m}(r),(p Z)_{m}(r)$ share a symmetric complex

$$
\dot{M}_{m}(r) \cup(p M)_{m}(r) .
$$

$M_{m}(r) \operatorname{and}(p M)_{m}(r)$ are closed complexes with no common m simplexes. Let

$$
K_{m}(r)=M_{n}(r) \cup^{\prime} Z_{m}(r)
$$

where ${ }^{\prime} Z_{m}(r)$ is the maximal closed subcomplex of $Z_{m}(r)$ which contains no m simplexes occurring in $M_{m}(r)$ or $(p M)_{m}(r)$.

The hypotheses of the theorem require that the symmetric Cech cycle $A_{m}=\left\{A_{m}(r)\right\}$ satisfies $A_{m}^{\prime}(r) \sim S_{m}^{\prime}(r)$. Write $A_{m}(r)=(1+p)_{1} A_{m}(r)$ where ${ }_{1} A_{m}(r)$ consists of the m simplexes of $A_{m}(r)$ occurring in $K_{n}(r)$. Evidently $B d K_{m}(r)$ is the symmetric complex consisting of all $m-1$ dimensional simplexes common to $K_{m}(r)$ and $p K_{m}(r)$ and is shown to be non vacuous by the same type of argument used to establish $W \neq 0$. Moreover

$$
\begin{equation*}
B d K_{m}(r) \subset W_{m-1}(r) \tag{2.08}
\end{equation*}
$$

In fact if $\sigma_{m-1}(r)$ is a face of a simplex of $K_{m}(r)$ as well as of one of $p K_{m}(r)$ then the kernel of $\sigma_{m-1}(r)$ meets both Z and $p Z$ and hence meets W. Write $B_{m-1}(r)=\partial_{1} A_{m}(r)$. We assert

$$
\begin{equation*}
B_{m-1}(r) \subset W_{m-1}(r) \tag{2.09}
\end{equation*}
$$

Indeed ${ }_{1} A_{m}(r)$ is on $K_{m}(r)$ and therefore so is $B_{m-1}(r)$. This last chain is symmetric and therefore is on $p K_{m}(r)$ also. Accordingly $B_{m-1}(r)$ is on $B d K_{m}(r)$ and so appeal to (2.08) establishes (2.09).

Since $W(r)$ may be considered a symmetric Euclidean complex, $H_{m-1}\left(W^{\prime}(r)\right) \approx H_{m-1}\left(\left\|W^{\prime}(r)\right\|\right)$. Let $p^{r} s$ be the projection homomorphism induced by the inclusion map of $\left\|W^{\prime}(r)\right\|$ into $\left\|W^{\prime}(s)\right\|$ while $i(r)$ is induced by the inclusion map $\left\|W^{\prime}(r)\right\| \rightarrow Y^{\prime}$. We have commutativity in the squares below for $s<r$

$$
\begin{align*}
& H_{m-1}\left(\left\|W^{\prime}(r)\right\|\right) \xrightarrow{i(r)} H_{m-1}\left(Y^{\prime}\right) \rightarrow 0 \\
& p^{r} s \downarrow \tag{2.10}\\
& H_{m-1}\left(\left\|W^{\prime}(s)\right\|\right) \xrightarrow{i(s)} \downarrow \\
& H_{m-1}\left(Y^{\prime}\right) \rightarrow 0 .
\end{align*}
$$

The justification for asserting $i(r)$ is onto in (2.10) is that $i(r) B_{m-1}^{\prime}(r) \sim 0$ in $Y^{\prime}(r)$. We note $W^{\prime}=\cap\left\|W^{\prime}(r)\right\|$. Since the groups occuring in (2.10) are compact and $\|W(r)\| \subset\|W(s)\|, s<r$ we may take the inverse limits and invoke the continuity property of the Cech groups to get the exact sequence [E.S., p. 226],

$$
H_{m-1}\left(W^{\prime}\right)=\underset{\leftarrow}{L H_{m-1}\left(\left\|W^{\prime}(r)\right\|\right) \xrightarrow{i} H_{m-1}\left(Y^{\prime}\right) \rightarrow 0 ~ . ~}
$$

Since i is onto, $i H_{m-1}\left(W^{\prime}\right)$ is not trivial. Accordingly some cycle B_{m-1}^{\prime}, non bounding in Y^{\prime}, is carried by W^{\prime}.
3. Sets Circumscribing a Frame of Orthogonal Diameters. The main result here, Theorem 3 A , is half of the Generalized Dyson theorem.

Theorem 3A. If X carries a symmetric m cycle A_{n} of Y and A_{m}^{\prime} does not bound in Y^{\prime} there exist $m+1$ mutually orthogonal diameters of some n dimensional sphere about $0, m \leq n$, whose termini lie in X.

Clearly a standard compactness argument serves to establish the assertion once it is verified for neighborhoods (symmetric) of X. We may therefore assume that X is a finite complex with symmetric triangulation. We tacitly assume throughout that the triangulations are always so chosen that the simplexes or faces are in the required sub spaces. By (2.07) X can be supposed a component for $m>0$.

The proof is by induction. The assertion of the theorem is patently valid for $m=0$ and arbitrary $n, n \geq m$. Suppose then that for fixed n and all $\mathrm{j} \leq m-1$ the assertion of the theorem is valid.

Let $a \cup b \in X$ where a is a nearest point to 0 and b a furthest point from 0 . Let $L: L(t \mid 0 \leq t \leq 1)$ be a polygonal line in X joining a and b. Denote by $r(t)$ the length of the line $l(t)$ from 0 to the point $L(t)$. Let $\left\{e_{i} \mid \mathbf{1} \leq i \leq n+1\right\}$ be a fixed orthonormal frame in R^{n+1}. We require that e_{n+1} lie along $l(0)$. Designate the orthogonal complement of $l(t)$ by $R^{n}(t)$. Then the linear extension of $\left\{e_{i} \mid i \leq n\right\}$ is $R^{n}(0)$ which we write R_{n}. The rotation of e_{n+1} as $l(t)$ describes L determines a linear isometry of R_{n} onto $R^{n}(t)$. Denote this map by $f: y \times t=y(t)$ where $y \epsilon R_{n}$ and $y(t) \in R^{n}(t)$. Thus f is on $R_{n} \times I$ onto $U_{I} R^{n}(t) \subset R^{n+1}$. Introduce $Y_{n}=Y^{n}(0)$ where $Y^{n}(0)=R^{n}(0) \cap Y$. Similarly $Y^{n}(t)=R^{n}(t) \cap Y$. Then f induces a map of $Y_{n} \times I$ onto $U_{I} Y^{n}(t) \subset Y$. We introduce also the homeomorphic map, g^{-1} of Y_{n} into a "funnel" in $Y_{n} \times I$. Specifically let $t=|y|-1$ for $y \in Y_{n}$. Then $S_{n-1}(1+t)$ is the linear map of $S_{n-1}(r(t)) \times t$ determined by a dilatation in $Y_{n} \times t$ followed by a projection onto Y_{n}. Thus $g^{-1}:\left(y \mid Y_{n}\right) \rightarrow z \times(|y|-1) \epsilon Y_{n} \times I$ where $|z|=r(|y|-1) \epsilon Y$. The construction and maps introduced in this paragraph are suggested by the work of Yamabe and Yujobo [YY] on the Kakutani problem.

Let the parameter range for a typical line segment of L be $t_{0} \leq t \leq t_{1}$. Denote this interval by J. Remark that $Y_{n} \times J$ is deformable to a homeomorph of $U_{J} Y^{n}(t)$ as follows easily from the fact that $Y_{n} \times J-(E \times J)$ is the homeomorph of $U_{J} Y^{n}(t)-E$ where $E=Y^{n}\left(t_{0}\right) \cap Y^{n}\left(t_{1}\right)$. Let $X(t)=Y^{n}(t) \cap X$. Write $X(J)$ for $U_{J}(X(t))$. Write $(X(J), J)$ for $U_{J} X(t) \times t$ and $E \cap(X(J), J)$ for $U_{J}(E \cap X(t) \times t)$. As usual, primes will indicate identification under T.

We require the following lemmas.
Lemma 3(B). $\quad H_{i}\left(X^{\prime}(J)\right) \approx H_{i}\left(X^{\prime}(J), J\right)$.
Observe f yields a homeomorphism of $X(J)-E \cap X(J)$ and $(X(J), J)-E \cap(X(J), J)$ and hence of $\quad X^{\prime}(J)-E^{\prime} \cap X^{\prime}(J)$ and $\left(X^{\prime}(J), J\right)-E^{\prime} \cap\left(X^{\prime}(J), J\right)$. If $y \in X\left(t_{0}\right) \cap E$ for some $t_{0} \in J$ then y may be considered in $X(t) \cap E$ for each $t \in J$ and

$$
f^{-1}(y)=y \times J \subset E \cap(X(J), J)
$$

Furthermore this relation is valid for the corresponding primed sets. Thus $f^{-1}\left(y^{\prime} \mid X^{\prime}\left(t_{0}\right) \cap E^{\prime}\right)=y^{\prime} \times J \subset E^{\prime} \cap\left(X^{\prime}(J), J\right)$. Since the augmented homology groups of $y^{\prime} \times J$ are certainly trivial the assertion of the lemma is then a consequence of the generalized Vietoris theorem, [Be], [Bo].

Lemma 3C. $\quad H_{i}\left(Y_{n}^{\prime} \times J\right) \approx H_{i}\left(U_{J}\left(Y_{n}^{\prime}(t)\right)\right)$.
The demonstration is clear from that for Lemma 3B.
We proceed with the argument for the theorem. Let $Y\left(t_{0},+\right)$ be the half section of Y containing $l\left(t_{0}\right)$. Recall the notation of Lemma 2A. Let ${ }_{1} A_{m}$ and ${ }_{1} S_{m}$ be chosen in $Y\left(t_{0},+\right)$. Thus if $Y^{n}\left(t_{0}\right)$ is transverse then $A_{m}\left(t_{0},+\right)={ }_{1} A_{m}=A_{m} \cap Y\left(t_{0},+\right)$. Accordingly B_{m-1} and S_{m-1} have their supports in $Y^{n}\left(t_{0}\right)$ and are therefore written $B_{m-1}\left(t_{0}\right), S_{m-1}\left(t_{0}\right)$ and hence also $B_{m-1}^{\prime}\left(t_{0}\right)$ and $S_{m-1}^{\prime}\left(t_{0}\right)$. Let J be the interval $\left(0=t_{0}, t_{1}\right)$. We impose a consistency requirement on $A_{m}\left(t_{1},+\right)$. Let $C_{m} \mid Z$ be the section of the chain C_{m} consisting of simplexes in Z. Observe $X\left(t_{1},+\right)$ $=\left(X\left(t_{0},+\right) \cap X\left(t_{1},+\right)\right) \cup\left(p X\left(t_{0},+\right) \cap X\left(t_{1},+\right)\right)$. We may therefore define $A_{m}\left(t_{1},+\right)$ as
$A_{m}\left(t_{1},+\right)=A_{m}\left(t_{0},+\right)\left|X\left(t_{1},+\right)+p A_{m}\left(t_{0},+\right)\right| X\left(t_{1},+\right)$.
Starting with $A_{m}(0,+)$ we use (3.0) to give the determination of $A_{m}(t ;+)$ at the end points of each sub interval...

We have then for any interval $J:\left(t_{0}, t_{1}\right)$,

$$
\begin{equation*}
B_{m-1}\left(t_{0}\right)-B_{m-1}\left(t_{1}\right)=\partial K \tag{3.01}
\end{equation*}
$$

where $K=A_{m}\left(t_{0},+\right)-A_{m}\left(t_{1},+\right)$ and is symmetric in view of the consistency condition imposed in (3.0). Hence

$$
\begin{equation*}
B_{m-1}^{\prime}\left(t_{0}\right)-B_{m-1}^{\prime}\left(t_{1}\right)=(\partial K)^{\prime}=\partial\left(K^{\prime}\right) . \tag{3.02}
\end{equation*}
$$

Thus $B_{m-1}^{\prime}\left(t_{0}\right)$ and $B_{m-1}^{\prime}\left(t_{1}\right)$, considered in $X^{\prime}(J)$, are homologous over $X^{\prime}(J)$.

Let $D(x, t)=|x|-r(t), \quad x \in X(t)$. We transfer attention to the space $Y_{n} \times I$. Under the map f^{-1} restricted to $X\left(t_{i}\right)$ we can consider $B_{m-1}\left(t_{i}\right)$ as on $X\left(t_{i}\right) \times t_{i}$ and then on $X^{\prime \prime}=U_{J}(X(J), J)=U_{I} X(t) \times t$ under an inclusion map. Similarly $B_{m-1}^{\prime}\left(t_{i}\right)$ on $X^{\prime}\left(t_{i}\right) \times t_{i}$ can be supposed mapped by inclusion on $X^{\prime \prime \prime}=U_{I} X^{\prime}(t) \times t$. Application of Lemma 3B to (3.02) shows that

$$
\begin{equation*}
B_{m-1}^{\prime}(0) \sim B_{m-1}^{\prime}(1) \tag{3.03}
\end{equation*}
$$

over $X^{\prime \prime \prime}$. We can assume $D(x, t)$ defined on $X^{\prime \prime}$ to R^{1}. Denote by F (in $X^{\prime \prime}$) the point set for which $D(x, t)$ vanishes, i. e.
$F=U_{I}\left(S_{n-1}(r(t)) \cap X(t) \times t\right.$. Define a set $H \subset X^{\prime \prime}$ as line symmetric if $x(t) \times t \in H$ implies $p x(t) \times t \in H . F$ is line symmetric. We assert F contains a line symmetric cycle homologous to $B_{m-1}(0)$ over $X^{\prime \prime}$. Let

$$
\begin{aligned}
& U=\left\{(x, t) \mid(x, t) \in X^{\prime \prime}, D(x, t) \leq 0\right\} \\
& V=\left\{(x, t) \mid(x, t) \in X^{\prime \prime}, D(x, t) \geq 0\right\}
\end{aligned}
$$

Thus $F=U \cap V=U-\underline{U}$. Observe $\left\|B_{m-1}(0)\right\| \subset X(0) \times 0 \subset U$ and $\left\|B_{m-1}(1)\right\| \subset X(1) \times 1 \subset V$. Accordingly $\left\|B_{m-1}^{\prime}(1)\right\| \subset X^{\prime}(1) \times 1$ and $F^{\prime}=U^{\prime} \cap V^{\prime}=U^{\prime}-\underline{U}^{\prime} . U^{\prime}$ is the open part of $T U$ where T is defined on line symmetric sets by $\overline{T(x}(t) \times t \cup p x(t) \times t)=x^{\prime}(t) \times t, x^{\prime}(t) \in X^{\prime}(t)$.

We use an argument akin to that involved in (1.0). Consider

$$
\begin{align*}
& H_{m-1}\left(X^{\prime}(1) \times 1\right) \\
& \downarrow \\
& \longrightarrow H_{m-1}\left(F^{\prime}\right) \xrightarrow{i} H_{m-1}\left(V^{\prime}\right) \xrightarrow{j} H_{m-\mathbf{1}}\left(V^{\prime}, W^{\prime}\right) \xrightarrow{\partial} H_{m-\mathbf{2}}\left(F^{\prime}\right) \tag{3.04}\\
& \downarrow r \text { II } \downarrow e \\
& H_{m-1}\left(X^{\prime \prime \prime}\right) \xrightarrow{s} H_{m-1}\left(X^{\prime \prime \prime}, U^{\prime}\right)
\end{align*}
$$

where i, r, s, l are inclusions. Again, [E. S., p. 266], e is an excision isomorphism, with $X^{\prime \prime \prime}-\underline{U}^{\prime}, U^{\prime}-\underline{U}^{\prime}=V^{\prime}, F^{\prime}$.

We derive from $B_{m-1}^{\prime} \overline{(0)} \sim B_{m-1}^{\prime} \overline{1}(1)$ on $X^{\prime \prime \prime}$ that

$$
B_{m-1}^{\prime}(1) \sim 0 \bmod X^{\prime}(0) \times 0
$$

and therefore $B_{m}^{\prime}(1) \sim 0 \bmod U^{\prime}$. We make these remarks more precise by writing

$$
\operatorname{srl}\left\{B_{m-1}^{\prime}(1)\right\}=0
$$

whence

$$
e^{-1} \operatorname{srl}\left\{B_{m-1}^{\prime}(1)\right\}=0
$$

Since all our homomorphisms in the square II are either inclusions or excisions, commutativity holds and we have
$l\left\{B_{m-1}(1)\right\}$ is in kernel j .
Since I_{2} is a field, the upper horizontal sequence in (3.04) is exact and so $l\left\{B_{m-1}^{\prime}(1)\right\}$ is in image i. Thus there is a cycle D_{m-1}^{\prime} in F^{\prime} with $i\left\{D_{m-1}^{\prime}\right\}=l\left\{B_{m-1}^{\prime}(1)\right\}$.

If we wish we can carry out the arguments in terms of simplicial complexes. Thus $D(x, t)$ can be replaced by simplicial approximations and $U_{I}(X(t) \times t)$ by a sequence of simplicial neighborhoods. Appeal to compactness gains the final conclusions required (say those arising from the existence of D_{m-1}^{\prime}). It is more convenient now, however, to interpret all the groups as Cech groups.

We again indicate by the context the inclusion space in which D_{m-1} and its transforms are considered. Thus $D_{m-1}^{\prime} \sim B_{m-1}^{\prime}(1)$ over $X^{\prime \prime \prime}$.

Recalling the interpretation of T and T^{-1} for line symmetric chains we have $T^{-1} D_{m-1}^{\prime}=D_{m-1} \subset F$. Consider, in $Y_{n}, A_{m-1}=g D_{m-1}$. We assert A_{m-1}^{\prime} is non bounding on Y_{n}^{\prime}. Suppose this were untrue. Then since g^{-1} is a homeomorphism on Y_{n} onto $U_{I} S_{n-1}(r(t)) \times t$ we should infer $D_{m-1}^{\prime} \sim 0$ on $U_{I} S_{n-1}(r(t)) \times t$ and hence on $Y_{n}^{\prime} \times I$. In view of Lemma 3C, $S_{m-1}^{\prime}(1)$ is non bounding not only on $Y^{n \prime}(1)$ and Y^{\prime} but also on $Y_{n}^{\prime} \times I$. Since $D_{m-1}^{\prime} \sim B_{m-1}^{\prime}(1) \sim S_{m-1}^{\prime}(1), D_{m-1}^{\prime}$ cannot be homologous to 0 on $Y_{n}^{\prime} \times I$. This contradiction establishes our assertion about A_{m-1}^{\prime}. By replacing A_{m-1} or some sub cycle by its homologue S_{m-1} in Y_{n} we immediately establish A_{m-1}^{\prime} is non bounding when considered on Y^{\prime}.

The induction hypothesis guarantees the existence of m orthogonal diameters of some sphere whose termini $\left\{a_{i}, p a_{i} \mid i=1, \ldots, m\right\}$ lie in $\left\|A_{m-1}\right\|$. We define t_{0} by $\left|p a_{i}\right|=\left|a_{i}\right|=\mathbf{l}+t_{0}$. Moreover $f g^{-1}\left\|A_{m-1}\right\| \subset X$. Thus $\left\{x_{i} \mid f g^{-1}\left(a_{i}\right)=x_{i}\right\}$ satisfy $\left|x_{i}\right|=\left|p x_{i}\right|=r\left(t_{0}\right)$. Let $x_{m+1}=L\left(t_{0}\right)$. Then $\left|x_{m+1}\right|=\left|p x_{m+1}\right|=r\left(t_{0}\right)$ also and the assertion of the theorem is established.

By a diameter of the symmetric set X we shall mean a segment bisected by the origin with end points $x, p x \in X$.

Corollary 3D. Suppose X is a compact symmetric set exterior to 0 in R^{n+1} with X^{\prime} a carrier of an m cycle on Y^{\prime}. Let F be a continuous map of Y to the reals, satisfying $F(x)=F(p x)$. Then there are $m+1$ orthogonal diameters to X, whose end points lie in X and map into a common point under F.
The non trivial case is that when $F(x) \not \equiv 0$. One proof consists in the observation that any non negative function can replace the distance function from the origin in the proof of Theorem 3 A and so with $s(x)$ $=2 \sup |F(x)|+F(x)$ we have the preceeding argument valid in all details. An alternative proof for the case $X=S^{n}$ proceeds by replacing $F(x)$ by $w(x)=F(x) / 2$ sup $|F(x)|$. Consider the points $x \in X$ as vectors from 0 . Replace $x \in X$ by the vector $x(1+w(x))$. This gives a new symmetric set X_{1} homeomorphic to $X, x=h\left(x_{1}\right)$, whence $k h H_{m}\left(X^{\prime}\right)=k H_{m}\left(X^{\prime}\right) \neq 0$. Thus Theorem 3A applied to the set X_{1} yields the existence of $m+1$ orthogonal diameters with end points $x_{i}\left(1+w\left(x_{i}\right)\right), p x_{i}\left(1+w\left(p x_{i}\right)\right)$ on a common sphere, i. e. $w\left(x_{i}\right)=$ $w\left(x_{m+1}\right)$ and this implies the assertion of the corollary.
4. Generalizations of a Borsuk Theorem. The following theorem for the special case $Z=S_{n}, \mathrm{j}=n$ reduces to a classic result of Borsuk's [B].

Theorem 4A. Let Z be a compact symmetric set which separates 0 and ∞. Let $\left\{f_{i} \mid i=1, \ldots, j\right\}$ be j continuous real valued functions on Z and suppose $\quad X=\left\{x \mid f_{i}(x)=f_{i}(p x), \quad 1 \leq i \leq j \leq n, \quad x \in Z\right\}$. Then X^{\prime} carries a non bounding $n-\mathrm{j}$ dimensional cycle over Y^{\prime}.

The case $Z=S_{n}, \mathrm{j}=n-1$ is already new. Let $F_{i}(z)=f_{i}(z)-f_{i}(p z)$.
Suppose, continuing the terminology of Section 2, that $Z \subset Y$. Assume f_{i} and hence F_{i} extended to Y by Tietze's theorem. Let K_{2} be the component of $Y-Z$ containing $S_{n}(2)$, and K_{1} the component of $Y-Z$ containing $S_{n}(1)$. Then $F_{1}=Y-K_{2}, \quad F_{2}=Y-K_{1}$, are closed symmetric sets with $F_{1} \cap F_{2}=Z, F_{1} \cup F_{2}=Y$. We proceed with the analogue of (1.0) and (3.04), viz

$$
\begin{align*}
& \xrightarrow[\longrightarrow]{H_{m}\left(Z^{\prime}\right) \xrightarrow{i} \begin{array}{c}
H_{n}\left(S_{n}^{\prime}(1)\right) \\
\downarrow l
\end{array} H_{m}\left(F_{1}^{\prime}\right) \xrightarrow{j} H_{m}\left(F_{1}^{\prime}, Z^{\prime}\right) \xrightarrow{\partial}} \tag{4.00}\\
& \begin{array}{cc}
\begin{array}{ll}
\downarrow & \text { III } \\
\downarrow & \downarrow \\
H_{m}\left(Y^{\prime}\right)
\end{array} \xrightarrow{s} H_{m}\left(Y^{\prime}, F_{2}^{\prime}\right)
\end{array}
\end{align*}
$$

By the argument we have used earlier it follows that some element of $H_{m}\left(Z^{\prime}\right)$ maps by i into the non neutral element of $H_{m}\left(F_{1}^{\prime}\right)$. Thus some cycle, A_{m}^{\prime}, of Z^{\prime} is homologous to $S_{m}^{\prime}(1)$. Let $W^{\prime}=\left\|A_{m}^{\prime}\right\|$ and as usual let $W=T^{-1} W^{\prime}$. Let $W_{1}=\left\{z \mid F_{1}(z) \geq 0\right\} \cap W$. Then $B d W_{1}$ $=W_{1} \cap p W_{1}=\left\{z \mid F_{1}(z)=0\right\} \cap W$. (That $B d W_{1} \neq 0$ is established incidentally in the course of the proof of Theorem 2 B). We use Theorem 2B to guarantee the existence of a symmetric $n-1$ cycle A_{n-1} carried by $B d W_{1}$ with $A_{n-1}^{\prime} \sim S_{n-1}^{\prime}$ over Y^{\prime}. If $j>1$ let $W_{2}=$ $\left\{z \mid F_{2}(z) \geq 0\right\} \cap B d W_{1}$. We need only take points in $\left\|A_{n-1}\right\|$ really. Again $B d W_{2}=\left\{z \mid F_{1}(z)=0, F_{2}(z)=0\right\} \cap W \neq 0$ and from Theorem 2 B follows the existence of a symmetric $n-2$ cycle A_{n-2} carried by $B d W_{2}$ with $A_{n-2}^{\prime} \sim S_{n-2}^{\prime}$ over Y^{\prime}. On continuing the process if necessary we gain the conclusion: $X=\left\{z \mid F_{i}(z)=0, i=1, \ldots, j\right\}$ carries a symmetric $n-j$ cycle A_{n-j} where $A_{n-j}^{\prime} \sim S_{n-j}^{\prime}$ on Y^{\prime}. This is the assertion of the theorem.

Theorem 4B. Let Z be a compact symmetric set in Y such that Z^{\prime} carries an m cycle non bounding in Y^{\prime}. Let $\left\{f_{i} \mid i=1, \ldots, j\right\}$ be continuous real valued functions. Let $X=\left\{z\left|f_{i}(z)=f_{i}(p z), 1 \leq\right| \leq j, z \in Z\right\}$. Then X^{\prime} is the carrier of an $m-j$ dimensional cycle A_{m-j}^{\prime} which does not bound in Y^{\prime}.

Replace Z by a compact symmetric subset if necessary which carries A_{m} a connected symmetric m cycle with $A_{m}^{\prime} \sim S_{m}^{\prime}$ in Y^{\prime}. The latter half of the proof of Theorem 4 A applies verbatim.

The proofs of theorems 4 A and 4 B require merely that the sets $\left\{F_{i}(z) \mid z \geq 0\right\}$ be closed. Thus these theorems remain in force if the requirements of continuity on $f_{i}(x)$ are weakened to, say, upper semi-continuity on $f_{i}(x)-f_{i}(p x)$. This strengthens even the classical Borsuk theorem.
5. The Generalized Dyson Theorem. We gather together some of our earlier results to give an extension of Dyson's result.

Theorem 5A. Suppose Z separates 0 from ∞ in R^{n+1}.

$$
\left\{f_{i}, \mid i=i, \ldots, j \leq n\right\}
$$

with $f_{i}(z)-f_{i}(p z)$ upper semicontinuous, are j real valued functions on Z. Let $f(z)$ be the point of R^{j} whose coordinates are $f_{1}(z) f_{2}(z), \ldots, f_{j}(z)$. Then there exist $n-j+1$ orthogonal diameters to Z whose termini map into a single point under

$$
|f(z)|=\left(\sum_{i=1}^{j}\left|f_{i}(z)\right|^{2}\right)^{1 / 2} .
$$

We invoke Theorem 4A to obtain a subset of the set of common zeros off(z)-f(pz) which satisfies the hypothesis of Theorem 3A and Corollary 3D with $|f z|=F(z)$. Similarly using Theorem 4B we get

Theorem 5B. Suppose Z is a compact symmetric set in Y such that \boldsymbol{Z}^{\prime} carries an m cycle non bounding in $Y^{\prime}, m \leq n$. Let $\left\{f_{i} \mid \leq i \leq j \leq m\right\}$, with $f(z)-f(p z)$ upper semicontinuous, be j real valued functions on Z and let $f(z)$ be the point of R^{j} whose coordinates are $f_{1}(z) \ldots f_{i}(z)$. Then there exist $m-j+1$ orthogonal diameters for Z whose termini map into a single point under $|f|$.

Remarks. The arguments require merely that p be a fixed point free continuous involution such that the identification space is homologically a projective space. Accordingly the results and demonstrations in Sections 3,4 , and 5 are formally valid in detail if p is interpreted as the reflection in an l dimensional hyperplane. Then $Y=p Y$ and $X=p X$ are sets symmetric with respect to this hyperplane. The identification space is now $Y^{\prime}=p^{n-l} \times I^{l+1}$ (so the dimension bound on X is now $n-l$ rather than n).

BIBLIOGRAPHY

[K] S. Kakutani, A Proof that there exists a circumscribing cube around a bounded closed convex set in R^{3}, Ann. Math. (2) 43 (1946) pp. 739-741.
[D] F.J. Dyson, Continuous Functions Defined on Spheres, Ann. Math. 54 (1951) pp. 534-536.
[Li] G. R. Livesay, An extension of the Notion of Unicoherence with an application to the Mapping of Spheres. Illinois Thesis 1952.
[E.S.] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology. Princeton Mathematical Series 1952.
[Y.Y] H. Yamabe and Z. Yujobo, On the Continuous Defined on a Sphere, Osaka Math. J. 2 (1950) pp. 19-22.
[L] S. Lefschetz, Algebraic Topology, Amer. Math. Soc., Colloquium Publications 27 (1942).
[S] P.A.Smith, Appendix B of reference [L].
[W] R. Wilder, Topology of Manifolds, Amer. Math. Soc., Colloquium Publications 32 (1949).
[Be] E. Begle, Vietoris Mapping Theorem for Bicompact Spaces, Ann. Math. (2) 51 (1950) pp. 534-543.
[Bo] A. Borel, Remarques sur l'homologie filtrée, J. Math. Pures Appl. 115 (1950) pp. 314-322.
[B] K. Borsuk, Drei Sätze über die n-dimensionale Euklidische Sphäre, Fund. Math. 20 (1933) pp. 177-190.
(Received July 28, 1953.)

[^0]: Square brackets indicate the Bibliography.
 ${ }^{1}$) C.T. Yang attended some of my lectures and independently obtained results like those in sections 3-5. His methods though different in appearance are basically like mine. In the long interval since submission of this manuscript he has obtained interesting variants.
 ${ }^{2}$) A theorem for this case somewhat like Theorem IA was independently found by Livesay.

