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On some separation and mapping theorems
by D. G. Bourein, Urbana (Illinois)

Introduection

The problems treated here were discussed in some of my course lec-
tures 1952—1953 on mapping theory. Publication of the results was
originally intended for a book on Fixed Points, but it appears desirable
to give them earlier circulation.

The stimulus for the first part of this paper comes from a homotopy
view of perturbation theory. Thus if »,: X — X where X is a compac-
tum, and 0 <¢ <1, the fixed point set, X (t), for each ¢ is a compac-
tum. The natural question is then whether when ¢ changes slightly the
fixed points change very little. Since U X () x¢ = C is easily verified
to be a compactum, our question is essentially whether C' contains a
continuum joining X X0 and X x1. The remaining sections are con-
cerned with sphere mappings. A theorem of Borsuk’s, [B], asserts a real
valued map of an n sphere assigns the same value to some antipodal pair
(2, —2). Dyson, [D], has proved a real valued map of the 2 sphere assigns
the same value to the four end points of some pair of orthogonal diameters.
(Livesay [Li] has shown any preassigned angle between the diameters
can replace orthogonality). Dyson’s proof is of set theoretic type. The
present paper brings the methods of algebraic topology to bear on these
seemingly metric problems. The key tool is the lemma that a closed car-
rier of an n dimensional mod 2 cycle, non bounding over a product of a pro-
jective space P and a segment I carries non bounding cycles of all lower
dimensions. Let Z be an n sphere or more generally an 7 dimensional
symmetric homologically sphere like set. Let f map Z into the j dimen-
sional Euclidean space R/. Our generalization of the Borsuk-Ulam theo-
rem states the symmetric sub set of Z for which f(z) = f(— z) carries an
n —  dimensional cycle mod 2 which maps by identification of antipodal
pairs into a non bounding cycle in P"xI. Our generalization of the
Dyson theorem states there are n — j + 1 orthogonal lines through the
origin whose end points lie in Z and are transformed by f into some j — 1
dimensional sphere about the origin of Ri. Continuity of f can be weakened
to upper semi continuity of f(z) — f(— z) for both theorems. The sepa-
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ration idea is central in such aspects of the various proofs as (1), (3.04)
and (4.00).

Throughout the paper we shall use the same letter for the inclusion
map of spaces for the induced chain maps and for the induced homo-
morphisms of the homology groups. Thus ¢: X — Y induces <¢:C(X)
— C(Y) and also i: H(X, G)> H(Y,@#). The support of a chain on a
geometrical complex is understood to be the carrier defined by the union
of all the geometrical simplexes entering the chain. In dealing with the
chain groups we shall often omit the ¢ however, and write simply C(X)
in place of +C(X). If D is a chain then ||.D|| is a point set attached to
D which is either the support or the carrier. However, when no confusion
is possible, the same symbol D will denote the associated point set. The
field I, is that of integers mod 2. R" is the Euclidean » dimensional space
and S, is the n sphere with center at the origin. I is the unit segment
0 <t <1. By X we mean the set of inner points of X.

1. Separation. The techniques involved and the arguments recur
throughout the paper even for somewhat changed situations. Unless
otherwise understood the cycles and carriers [W, p. 204] are Cech.

Theorem 1A. Let M be compact Hausdorff and let A, be a non bounding
Cech cycle in M with the coefficient group G either compact or a field. Sup-
pose C° and C* are disjunct compact sets in M xI and suppose C* does not
meet M° = M x0 while C° does not meet M* = M x 1. Then there is an
n cycle B, on M xXI, whose carrier does not meet M°v Mo C°v (1
and B, ~ A,(0) where A,(0) on M° corresponds to A, on M.

Since M xI is compact M°v C° and M?! v C' can be covered by a
finite collection of open sets in M xI whose union is N° and N respec-
tively with N°~ N'= 0. Let X!= N!. Write X°= M xI — X},
and @ = X°~ X'. Thus @ is the frontier of X! and is disjunct from
both M°v C° and M?'o C'. Consider

H, (M)
lz
> H,(Q) = H,(X)— H,(X°,Q) > H,_, (@)
l r I l l
H,(MxI)—» H,(MxI, X

Here 7, r, s, 1, are induced by the obvious inclusion maps and e is
induced by an excision map for X' — X'=¢@, MxI— X'= X"
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Actually e is an excision isomorphism. [E. S.; Theorem 5.4, p. 266.]
Since all the homomorphisms in the square I are induced by either in-
clusions or excisions commutativity obtains. Indicate the coset corres-
ponding to a cycle by curly brackets. Thus A4,(0) is a representative of
{4,(0)} e H,(M®°. Since A4,(0) ~A,(1) over Mx1l, A,0)~0
mod M! and hence A4,(0) ~ 0 mod X!. In the notation of (1) we have

srl{d,(0)} =0, (1.01)
whence
elsrl{4,(0)} =0, (1.02)
or
11 {4,(0)} =0 . (1.03)

The upper horizontal sequence is either exact or partially exact depend-
ing on (. In either case the kernel of j includes the image of ¢. Since
according to (1.03), 1{4,(0)} is in the kernel of j, there must exist an
element {B,} ¢ H,(Q) such that ¢ {B,} =1{4,(0)} or

i B, ~1A4,(0) . (1.04)

Interesting special cases arise when M is taken as a closed » dimen-
sional orientable manifold 2) or orientable pseudo manifold or orientable
circuit imbedded in Euclidean space with 4, the fundamental integral
cycle. In such cases we have a partial converse. We first state a useful
lemma.

Lemma 1B. Let K°and K* be compact Hausdorff spaces with union K
and common part Q. Suppose L 1s a compact subset of K°. Let A, be an n
cycle of L with A, ~ 0 on K. Then there is a cycle B, in @ homologous to
A, over K°.

The triad K, K° K!is proper since the sets are compact [E. S., p. 257].
The Mayer Vietoris sequence is

H,(L)

J l
« H, ,(Q) < H,(K)< H,(K% + H,(K') < H,(Q) <«

Square brackets indicate the Bibliography.

1) C.T. Yang attended some of my lectures and independently obtained results like
those in sections 3—5. His methods though different in appearance are basically like mine.
In the long interval since submission of this manuscript he has obtained interesting
variants.

2) A theorem for this case somewhat like Theorem I A was independently found by

Livesay.
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We have @ 1{A,} = 0 according to the hypothesis. Thus 1{4,} is in
the kernel of @ whence by exactness some {B,} e N,(¢)) satisfies {B,}
= 1{A4,}. This implies the assertion of the theorem.

Theorem 1C. Suppose M is a closed orientable n dimensional manifold
with M xI in R,., and with fundamental cycle 4,,. C is a continuum in
M x1I meeting both M° and M'. Suppose N 1is a closed n dimensional
orientable manifold with base cycle E,, where E, ~ A,(0) over M X1,
and || N || s a carrier of E,,. Then || N || meets C.

Compactify RB"+! by adding the point co to get §,,,. The coefficient
group below is that of the integers. Suppose N separates S, , into the
domains N (1) and N (2), M7 separates §,,, into the domains M7(1) and
Mi(2), 4 = 0,1. Suppose N (1) contains M° and M'. By suitable labell-
ing we can require that M°(1) > M’ and M'(1)> M°. Then

Mo(1)~ M'(1)> M x1 .
Indeed if some point (m, ) of M X1 were not in M°(1) the line
{m,?) | v <t <1}

would cut M°. Consider the sets

K'=L=X'=MxI—N@), K'=N(2), X' =M (2) M (2) .

The compact sets X° X! X = X°o X! constitute a proper triad. Note
E,— A,(00~0 over K= K°v K'. Evidently also £, — A4,(1) ~0
over K. Recourse to Lemma 1B establishes there are cycles C° = [ &,
and C'=I[,E, on N, such that (a) C°~E,— A4,(0) and (b) C*~E,—
A, (1), both over K°. — Since neither 4, (0) nor 4, (1) bounds on M x1,
m;=1-—1,#%0, and C,=myd,(1) —m4,(0) is a cycle on
X~ X' = M°v M’ whose homology class in H,(X°~ X'), denoted
by {C,}, is not 0. On the other hand C, is evidently a bounding cycle
on both X° and X!. Thus {C,} is in the kernel of the Mayer Vietoris
map (y) into H,(X°) + H,(X') and therefore is the image (under 4) of
H,. ,(X). Since X is a proper subset of §,,,, H,,;(X)= 0 and so
{C,} = 0. In short M° and M* cannot both be in domain N (1) (or in
N (2)). Also M° (or M’) cannot meet both & (1) and N (2) for then so does
M°(2) whence -
0#£AM(2)~ANcCMXI~N=0.

Suppose || N || ~ C = 0, then since the common boundary of N (1)
and N (2) is N it would follow that C is contained entirely in one or the
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other of N (1) or N (2). This would stand at variance with our require-
ment; that C meet both M° and M*.

2. Basic Notions. We add the following conventions: All homology
and chain groups are over /,. Nevertheless in the interests of naturalness
we shall use both 4 and —. Indicate the metric norm in R"+' by |y |.
Let Y be the closed shell (in R"+!), {y|1 <|y| <2} or any other
positive bounds where necessary. 8,,(s), m <n is a sphere in Y of
radius s about 0. (If the radius is arbitrary we write S,,.) This is also
the basic chain of a symmetric triangulation of the sphere. By X we
shall invariably mean a symmetric set (with respect to the origin) in Y.
The projective n dimensional space is indicated by P". Let px be the
reflection of  in the origin. Let 7'z denote the identification of « and p =,
i.e. T(xvpx)=2a = (z, px). The next few remarks are essentially
special cases of known results for periodic transformations [S]. Use the
same symbol 7' for the chain transformation which identifies o and po,
i.e. T(1 + p) o = o'. Throughout a prime on a set or chain indicates the
tdentification under T or under the corresponding simplex identification
T(1 + p).

Let o be given by the vertex scheme [y,,..., ¥,]. Indicate this by
[y]. Then po = [py,,...,py;] or [pyland T(1 + p)[y] =o' = [¥'].
Observe 7-'¢’ = (1 + p)o. This is a unique correspondence though ¢
is not unique since po serves as well. Write [2], for

[Zge e v vy Bin Bipis s + 03 2l
The choice z = y, py or y' is that of interest below. Thus dz = X [z];.
We make use of the relations
opo = poo (2.00)
o' = (0(1 + p) o)
0T 1o' = T-19¢’
For instance,
opo = d[py]l = Z;[pyli=p 2 [y]; = poo ,
00’ =0[y']=2T(1 + p)lyli=T(1 + p)oo .
This shows incidentally that 7' is a chain map (on symmetric chains).
A chain, C,, is symmetric if and only if
1+p)C,=0 or C,=(1+p)C, . (2.01)

In applications we always assume that ,C,, contains no antipodal pair
of m simplexes. The closed half spaces to one side or other of an » dimen-
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sional hyperplane, R", containing the origin are indicated by R"(+4)
and R"(—) respectively. The intersections with Y are written Y (+)
and Y(—). Q"M =Prx =Y,

The following lemma and its direct proof are central in the develop-
ments of this paper. X and Y are here considered simplicial complexes.

Lemma 2A. Let k denote the inclusion map X — Y where X is a
simplictal subcomplex of Y. If A,, is a symmetric simplicial m cycle on
X, m<n, and kA], is non bounding (on Y') then || A,,|| carries @ sym-
metric cycle A,,_; where A,,_. is non bounding (on Y') for all j < m.

It is sufficient to establish the lemma for 5 = 1. A trivial application
of the Kiinneth relations shows the m dimensional homology groups
over Q"+ and over P* are isomorphic for m <% and are therefore iso-
morphic to I,. Plainly the chain S, = P" is non bounding. The hypo-
theses imply

Aa’n — S;n = a(C;z+1) . (2.02)

The symmetric chain C,, ., = T-1(C,.,) may be represented as

(1 + p) ,0,41- Thus a(o;n-u) = (0C,41) = ((1 + p) (0,00 11)) by vir-
tue of (2.00). Then applying 7' to (2.02) there results

(1 + p)(lAm —— ISm - alcjm+1) =0 (203)

where ,A4,, may be chosen in a variety of ways conditioned merely by
the requirement that (1 4 p),4,, = T-1(4,,) and that 4, and p,4,,
have no m simplexes in common. Similar statements apply to ,S,. Accor-
dingly

lAm_ ISm—“aICm+1=-Dn ’ (204)

where (1 4 p) D, = 0. Then
0,4, — 9,8, = oD, . (2.05)
All chains in (2.05) are symmetric. Indeed since 4, is a symmetric cycle,

and so (2.01) establishes our assertion here. Similarly 9,8, is symmetric.
Since D,, is symmetric so is dD,,. We therefore derive from (2.05),

(alAm)' - (al‘sn)l = (aDm), = a(Dm) . (206)

Write B,,_, for d,4,,. Then B,,_, is evidently an m — 1 symmetric
cycle. After suitable subdivision of the simplexes of the triangulation
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of Y, if necessary, we can choose ,S,, as the upper cap of the section
of 8, by a suitable hyperplane. Then 9,S, is the equatorial m — 1
sphere and so (0,9,,)' is a non bounding m — 1 cycle in Y’'. Thus
(2.06) guarantees B,,_; is a non bounding cycle in Y’.

Suppose the I cycle ,D,, I<1, contains no pair ¢,, po,. Since the
mod 2 Betti numbers of Y vanish if the dimension is inferior to n, we
must have D, = dC,,,.

Then ((1 + p)D,) =2o((1 + p) C,;,) or ((1 4 p),D,) ~ 0. Hence
4,, and B,_, can be replaced by subcycles £, and E,,_, on components
for m>1 [L, p.91]and

E,~8,l=m—1,m. (2.07)

Theorem 2B. Let X be a closed symmetric carrier of a symmetric Cech
cycle A,, with A, ~ 0 on Y'. Suppose X = Z v pZ where Z is compact.
Denote frontiers in X of subsets of X by Bd( ). Suppose Z ~ pZ =
BdZ=W. Then W carries a symmetric Cech cycle E,,_, with E,_, ~ 8;,_,
m Y.

For a symmetric cover U, U el implies pU eU. We may assume
below U~pU =0. Then U = {U;|U;=TQA+p)U,,, U, eU}.
We remark there is a cofinal sequence of finite symmetric open covers
{U(r)|r=1,2,...} with the following properties : (a) [ (s) is the star
of a symmetric triangulation of Y, 4(s), and refines U (r) for r<s.

(b) if Y (r) is the nerve of U (r) and Y’ (r) that of U’ (r) then
H,(Y(r) ~ H,(Y)} and H{Y'(r)) ~ H(Y')

for all 7 and (c) if a kernel [L, p. 245] meets both Z and pZ then it meets
w.

The only assertion not immediately obvious is (c). Appeal may be
made to the proof of an analogous assertion when no symmetry restric-
tion is imposed on the sets or covers [W, p. 202] and the result required
here may be established by similar arguments. An alternative derivation
(indeed the original one of the writer’s) starts with a symmetric triangu-
lation, &, of Y. A prescription can be given for the introduction of new
vertices to give &' whose zero and one dimensional kernels satisfy (c).
Next new vertices are introduced to give 62 such that the kernels of
dimension 2 or less satisfy (c). This inductive construction yields 4=g"+1
satisfying (c).

If Q is closed in Y then @ (r) is the subcomplex of Y (r) consisting of
simplexes whose kernels meet . We write || @(r) ||, here for the point
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set closure of the union of the kernels of simplexes in @ (r). Evidently
@ (r) may also be viewed as the closure of the Euclidean subcomplex of
A (r) consisting of simplexes (of 4 (r)) meeting @ with || Q(r) || the asso-
ciated point set. The m dimensional skeleton of @ (r) is written @, (r).

We show first that W £ 0. Assume the contrary. Thus for r, ry<r,
X(r) =Z(r) v pZ(r) where Z(r) and pZ(r) are disjunct. We proceed as
in a similar situation occuring in the proof of Theorem 2A. The sym-
metric Cech cycle 4,, has the representation {4,,(s)}, where 4,,(s) is a
symmetric simplicial cycle and the hypotheses of Theorem 2B require
that for r,<r, A} (r) ~ 0 on Y’ (r). Choose r larger than either r, or r,.'
Let ,4,,(r) consist of those simplexes of 4,,(r) which are in Z(r). Then no
pair o,,(r), po,,(r) occurs in 4, (r) and, since

1A |~ 21 4n() || =0,  9,4,(0)=0.

Hence, recalling property (b) of U(r), ,4,,(r) = oC,,,,(r) where C,,.,(7)
is a chain on Y (r) and then

An(r) = (1 + 9),4,()) =0((1 + p)Cpia(r)) or A,(r)~0

in violation of our requirement.
The complexes Z,,(r), (pZ),, (r) share a symmetric complex

M, (r) v (p M), (r) -
M, (r) and(p M),,(r) are closed complexes with no common m simplexes.
et Ko (r) = M, () < "2 (1)

where 'Z,,(r) is the maximal closed subcomplex of Z,, (r) which contains
no m simplexes occurring in M,,(r) or (p M),, (7).

The hypotheses of the theorem require that the symmetric Cech cycle
A, = {4, (r)} satisfies A, (r) ~ S, (r). Write A,,(r) = (1 + p),;4,.(r)
where ,A, (r) consists of the m simplexes of 4,,(r) occurring in K, (r).
Evidently BdK,,(r) is the symmetric complex consisting of all m — 1
dimensional simplexes common to K,,(r) and pK,,(r) and is shown to be
non vacuous by the same type of argument used to establish W £ 0.

Moreover
BdK, (r)c W, _,(r) . (2.08)

In fact if ¢,,_, (r) is a face of a simplex of K,,(r) as well as of one of p K, (r)
then the kernel of o,,_,(r) meets both Z and pZ and hence meets W.
Write B,, ,(r) = d,4,,(r). We assert

B, r)ycW,_ (). (2.09)
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Indeed ,4,,(r) is on K, (r) and therefore so is B,,_,(r). This last chain is
symmetric and therefore is on p K, (r) also. Accordingly B,, ,(r) is on
BdK,,(r) and so appeal to (2.08) establishes (2.09).

Since W (r) may be considered a symmetric Euclidean complex,
H, (W)~ H,_,(|W(r)]||]). Let prs be the projection homomor-
phism induced by the inclusion map of || W'(r) || into || W/(s)|| while
i(r) is induced by the inclusion map || W'(r) || — Y'. We have commu-
tativity in the squares below for s<r

; wWr
H, (| W @)D H,yy (Y)—> 0

prs‘b » \L J{ (2.10)
H, (] W (s)|]) > Hpa(Y)—0 .

The justification for asserting 7 () is onto in (2. 10) is that () B,,_,(r) ~ 0
in Y'(r). We note W' =n|| W'(r)||. Since the groups occuring in
(2.10) are compact and || W(r) || c || W(3) ||, s<r we may take the in-
verse limits and invoke the continuity property of the Cech groups to get
the exact sequence [E. S., p. 226],

Ho (W) = LH, 1| W' ()] S H, ,(Y)—>0 .

Since ¢ is onto, 1 H,,_,(W’) is not trivial. Accordingly some cycle B;,_,,
non bounding in Y, is carried by W’.

3. Sets Circumseribing a Frame of Orthogonal Diameters. The main
result here, Theorem 3 A, is half of the Generalized Dyson theorem.

Theorem 3A. If X carries a symmetric m cycle A, of Y and A, does not
bound in Y' there exist m + 1 mutually orthogonal diameters of some n
dimenstonal sphere about 0, m < n, whose termini lie in X.

Clearly a standard compactness argument serves to establish the
assertion once it is verified for neighborhoods (symmetric) of X . We may
therefore assume that X is a finite complex with symmetric triangula-
tion. We tacitly assume throughout that the triangulations are always
80 chosen that the simplexes or faces are in the required sub spaces. By (2.07)
X can be supposed a component for m > 0.

The proof is by induction. The assertion of the theorem is patently
valid for m = 0 and arbitrary n, n > m. Suppose then that for fixed
n and all j <m — 1 the assertion of the theorem is valid.
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Let a v beX where a is a nearest point to 0 and b a furthest point
from 0. Let L:L(t|0 <t < 1) be apolygonal line in X joining @ and b.
Denote by r(t) the length of the line I(f) from 0 to the point L(t). Let
{e;|1 <i <mn-+ 1} be a fixed orthonormal frame in R"+'. We require
that e, , lie along [(0). Designate the orthogonal complement of I(¢) by
R"(t). Then the linear extension of {e;|+ <=} is R"(0) which we write
R,,. The rotation of e, , as [(t) describes L determines a linear isometry
of R, onto R"(t). Denote this map by f:y xt = y(¢) where y ¢ B, and
y(t) e R*(t). Thus f is on R,xI onto U;R"(¢)c R**. Introduce
Y,= Y"(0) where Y"(0) = R"(0) ~ Y. Similarly Y*({) = R"(t)~ Y.
Then f induces a map of Y, xI onto U,Y"(t) c Y. We introduce also
the homeomorphic map, g~ of ¥, into a “funnel” in Y, xXI. Specifically
let t=|y|—1 for yeY,. Then S, ,(1 +¢) is the linear map of
S,_1(r(t)) x¢ determined by a dilatation in Y, x¢ followed by a pro-
jection onto Y,. Thus g¢gl:(y|Y,) »2x(y| —1)eY,xI where
|z| =7(y| — 1) e Y. The construction and maps introduced in this
paragraph are suggested by the work of Yamabe and Yujobo [YY] on
the Kakutani problem.

Let the parameter range for a typical line segment of L be ¢, <t <{¢,.
Denote this interval by J. Remark that Y, xJ is deformable to a homeo-
morph of U,Y"(t) as follows easily from the fact that Y, xJ — (&£ xJ)
is the homeomorph of U,Y"(¢) — £ where E = Y"(t,) ~ Y"(¢;). Let
X(t)=Y"({t)~X. Write X(J) for U,(X(t)). Write (X(J),J) for
U,X(¢)xt and E ~ (X(J),J) for U,(E ~ X (¢)xt). As usual, primes
will indicate identification under 7'.

We require the following lemmas.

Lemma 3(B). | H,(X'(J)) ~ H, (X' (J), J).

Observe f yields a homeomorphism of X(J) — E ~ X(J) and
(X(J),J)—E~ (X(J),J) and hence of X'(J)— E'~ X'(J) and
(X'(J),J)—E ~(X'(J),J). If yeX(t)) ~ E for some tyeJ then y
may be considered in X (t) ~ £ for each ¢eJ and

f(y) = yxJ cE~(X(J),J) .

Furthermore this relation is valid for the corresponding primed sets.
Thus f1(y' | X'(¢) ~ BE')=y' xJ ¢ B' ~ (X'(J),J). Since the aug-
mented homology groups of y’ xJ are certainly trivial the assertion of
the lemma is then a consequence of the generalized Vietoris theorem,
[Be], [Bo].
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Lemma 3C. H, (Y, xJ)~ H,(U,(¥,())).

The demonstration is clear from that for Lemma 3 B.

We proceed with the argument for the theorem. Let Y (t,, +) be the
half section of Y containing 7(¢,). Recall the notation of Lemma 2A.
Let ;4,, and ,8,, be chosen in Y (¢,, +). Thus if Y"(f,) is transverse
then A4,,(,, +)=.4, =4, ~ Y (t,, +). Accordingly B,,_, and S,,_,
have their supports in Y"(,) and are therefore written B,,_;(¢,), S,—1 (to)
and hence also B!, ,(t,) and S, _,(t,). Let J be the interval (0=t,,t,).
We impose a consistency requirement on 4,,(t,, +). Let C,, | Z be the
section of the chain C,, consisting of simplexes in Z. Observe X (¢,, +)
- (X(to’ _|_) ~ X(tla +))U (pX(th _") ~ X(tb +)) We may there-
fore define A4,,(t,, +) as

Am(tl) +) = ‘Am(th +) I X(tl: +) + pAm(tos "l'_) l X(tl’ +) . (300)

Starting with 4,,(0, +) we use (3.0) to give the determination of
A,.(; +) at the end points of each sub interval. ..
We have then for any interval J: (¢, t,),

B,_1(t) — Bp1(ty) = 0K , (3.01)

where K = A4,,(,, +) — 4,,(,, +) and is symmetric in view of the
consistency condition imposed in (3.0). Hence

Bl,_y(ts) — Bj_y(t,) = (0K) = a(K') . (3.02)

Thus B!, _,(¢) and B,_,(¢,), considered in X'(J), are homologous over
X' (J).

Let D(x,t)=|z| —r(), xeX(t). We transfer attention to the
space Y, xI. Under the map f~! restricted to X (¢;) we can consider
B, _,(t;) as on X(t;) xt, and then on X"=U,(X(J),J) = U, X (¢) xt
under an inclusion map. Similarly B], ,(t,) on X'(¢;) xt; can be sup-
posed mapped by inclusion on X" = U,X'(t)xt. Application of
Lemma 3B to (3.02) shows that

B,,_1(0) ~ B,,_,(1) (3.03)

over X”. We can assume D(z,t) defined on X” to R!. Denote by
F (in X") the point set for which D(x,t) vanishes, i. e.
F = U,(S,_1(r(¢)) ~ X (t) xt. Define a set H ¢ X" as line symmetric
if xz(t)xteH implies px(t)xteH. F is line symmetric. We assert F
contains a line symmetric cycle homologous to B,,_,(0) over X”. Let
U= {(z,t)|(z,t) e X", D(x,t) <0},
V= {(x,t)] (x,t) e X", D(x,t) >0} .
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Thus F=U~V =U —U. Observe || B, _,(0)]| ¢ X(0)x0cU and

|| Bpa(1) || ¢ X(1)x1 ¢ V. Accordingly || B, _,(1)||<X'(1)x1 and

F'=U ~ V' =1U" —U'. U'isthe open part of TU where T is defined

on line symmetric sets by TTx(t) Xt v pr(t)xt)=a'(t)xt, z'(t) e X'(t).
We use an argument akin to that involved in (1.0). Consider

Hm—1(X,(1)X 1)

|1 a

s H, (B~ H, (V') L H, (V' W) 2 H, (F)  (3.04)

l,, II le

H, (X")—> H,_, (X", U’)

where i, 7, s, [ are inclusions. Again, [E. S., p. 266], e is an excision iso-
morphism, with X” —U',U' —U' =V, F',
We derive from B;, ,(0) ~ B, _,(1) on X” that

B/, _.(1) ~0mod X' (0)x0

and therefore B, (1) ~O0mod U’'. We make these remarks more pre-
cise by writing
sr1{Bj,_,(1)} =0
whence
elsrl{B, (1)} =0 .

Since all our homomorphisms in the square II are either inclusions or
excisions, commutativity holds and we have

1{B,,_;(1)} isin kernel j.

Since I, is a field, the upper horizontal sequence in (3.04) is exact and
so I{B]_,(1)} is in image ¢. Thus there is a cycle D, _, in F' with
t {D, —1} = l{Brln——l(l)}'

If we wish we can carry out the arguments in terms of simplicial com-
plexes. Thus D(z,t) can be replaced by simplicial approximations and
U,(X(t)xt) by a sequence of simplicial neighborhoods. Appeal to
compactness gains the final conclusions required (say those arising from
the existence of Dj,_,). It is more convenient now, however, to interpret
all the groups as Cech groups.

We again indicate by the context the inclusion space in which D,,_,
and its transforms are considered. Thus D) _,~ B, _,(1) over X"
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Recalling the interpretation of 7' and 7! for line symmetric chains we
have 7T-D, ,= D, ,cF. Consider, in Y,, A, ,=g¢D,_,. We
assert A/ . is non bounding on Y. Suppose this were untrue. Then since
g~! is a homeomorphism on ¥, onto U,;S,_,(r(¢))xt we should infer
D, ,~0 on U8, (r())xt and hence on Y,xI. In view of
Lemma 3C, S, _,(1) is non bounding not only on Y*'(1) and Y’ but
also on Y/ xI. Since D, ,~ B, ,(1)~&8, _,(1),D, , cannot be
homologous to 0 on Y/, xI. This contradiction establishes our assertion
about A4, .. By replacing 4,,_, or some sub cycle by its homologue S,,_,
in Y, we immediately establish 4/ . is non bounding when considered
on Y’

The induction hypothesis guarantees the existence of m orthogonal
diameters of some sphere whose termini {a,, pa;|¢=1,...,m} liein
|| 4,—1|| - We define ¢, by | pa;| =|a;| =1-+t,. Moreover fg—*|| 4,,_,|| ¢ X.
Thus {z;|fg~"(a;) ==} satisfy |x;|=|pz;|=r(). Let z,,,=L(ty).
Then | %,.,|=|P%n1| =r() also and the assertion of the theorem
is established.

By a diameter of the symmetric set X we shall mean a segment
bisected by the origin with end points =, pxr e X.

Corollary 3D. Suppose X is a compact symmetric set exterior to 0 in
R with X' a carrier of an m cycle on Y'. Let F be a continuous map of ¥
to the reals, satisfying F(x) = F (px). Then there are m + 1 orthogonal
diameters to X , whose end povnts lie in X and map into a common point
under F'.

The non trivial case is that when F (x) =£ 0. One proof consists in the
observation that any non negative function can replace the distance
function from the origin in the proof of Theorem 3 A and so with s(z)
= 2sup | F'(z) | + F(x) we have the preceeding argument valid in all
details. An alternative proof for the case X = S™ proceeds by replacing
F(x) by w(x)=F(x)/2sup|F(x)|. Consider the points xeX as
vectors from 0. Replace ze¢X by the vector z(1 4 w(z)). This
gives a new symmetric set X, homeomorphic to X, x = h(x,), whence
khH,(X') = kH,(X') # 0. Thus Theorem 3 A applied to the set X,
yields the existence of m -+ 1 orthogonal diameters with end points
x, (1 +w(x)), pz;(1 + w(pz;)) on a common sphere, i.e. w(zx;) =
w(,,,,) and this implies the assertion of the corollary.

4. Generalizations of a Borsuk Theorem. The following theorem for
the special case Z = 8,, j = n reduces to a classic result of Borsuk’s
[B].
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Theorem 4A. Let Z be a compact symmetric set which separates 0 and
co. Let {f;|i=1,...,5} bej continuous real valued functions on Z and
suppose X = {x|f,(x) = f,(px), 1<t << n, xeZ}. Then X'
carries a non bounding n — j dimensional cycle over Y'.

The case Z=28,, j=n—1 is already new. Let F,(2) =f,(2) —f;(p?).

Suppose, continuing the terminology of Section 2, that Z ¢ Y. Assume
f; and hence F'; extended to Y by Tietze’s theorem. Let K, be the com-
ponent of ¥ — Z containing S,(2), and K, the component of ¥ — Z
containing S,(1). Then F, =Y — K,, F,=Y — K,, are closed
symmetric sets with F,~F, =272, F,vF, =Y. We proceed with the
analogue of (1.0) and (3.04), viz

H,(8,(1))
l l
s H,(Z) — H (F) - H (F], 7) > (4.00)

CERLENP

H,(Y')—H,(Y', Fl)

By the argument we have used earlier it follows that some element of
H,_(Z') maps by ¢ into the non neutral element of H,,(F;). Thus some
cycle, A, of Z' is homologous to S, (1). Let W' = || 4,,|| and as
usual let W= T-1W’'. Let W,= {z|F,(z) >0}~ W. Then BdW,
= W,~npW,= {z|F,(z) =0} ~ W. (That BdW, #* 0 is established
incidentally in the course of the proof of Theorem 2B). We use Theo-
rem 2B to guarantee the existence of a symmetric n — 1 cycle
A, , carried by BdW, with A, , ~ &, , over Y. If j>1 let W,=
{z| Fy(z) > 0} ~ BdW,. We need only take points in || 4,_, || really.
Again BdW,= {z | F,(z) = 0,F,(z) =0}~ W 20 and from Theo-
rem 2B follows the existence of a symmetric n — 2 cycle 4, _, carried
by BdW, with A, ,~ S, , over Y'. On continuing the process if
necessary we gain the conclusion: X = {z|F;(2) =0,1=1,...,9}
carries a symmetric n — j cycle A,_; where A, _; ~ 8, _; on Y'. This is
the assertion of the theorem.

Theorem 4B. Let Z be a compact symmetric set 1n Y such that Z' carries
an m cycle non bounding in Y'. Let {f,|tv=1,...,5} be continuous
real valued functions. Let X = {2z | f;(z2) = f;(p2),1 < | <j,zeZ}. Then
X' is the carrier of an m — j dimensional cycle A,,_; which does not bound
wm Y.
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Replace Z by a compact symmetric subset if necessary which carries
A, a connected symmetric m cycle with 4/ ~ 8/ in Y'. The latter
half of the proof of Theorem 4 A applies verbatim.

The proofs of theorems 4A and 4B require merely that the sets
{F,(z) | 2z > 0} be closed. Thus these theorems remain in force if the requi-
rements of continuity on f,(x) are weakened to, say, upper semi-continuity
on f,(x) — f,(pz). This strengthens even the classical Borsuk theorem.

5. The Generalized Dyson Theorem. We gather together some of our
earlier results to give an extension of Dyson’s result.

Theorem bA. Suppose Z separates 0 from oo in R"+!.
foslt=1,...,7 <mn},

with f,(z) — f,(pz) upper semicontinuous, are j real valued functions on Z .
Let f(z) be the point of R7 whose coordinates are f,(z) f2(z), ..., f;(z). Then
there exist m — j ++ 1 orthogonal diameters to Z whose termini map into
a stngle point under

1@ = (Tl | ) 12 .

We invoke Theorem 4 A to obtain a subset of the set of common zeros
off(z) — f(pz) which satisfies the hypothesis of Theorem 3A and
Corollary 3D with | fz | = F(z). Similarly using Theorem 4B we get

Theorem 6B. Suppose Z s a compact symmetric set in Y such that Z'
carries an m cycle non bounding in Y', m <n. Let {f,| <i <j <m},
with f(z) — f(pz) upper semicontinuous, be § real valued functions on Z
and let f(z) be the point of R whose coordinates are f,(z)...f;(z). Then
there exist m — 7 + 1 orthogonal diameters for Z whose termini map into
a single point under | f|.

Remarks. The arguments require merely that p be a fixed point free
continuous involution such that the identification space is homologically
a projective space. Accordingly the results and demonstrations in Sec-
tions 3, 4, and 5 are formally valid in detail if p is interpreted as the
reflection in an I dimensional hyperplane. Then ¥ = pY and X = pX
are sets symmetric with respect to this hyperplane. The identification
space is now Y' = p"ix I'+! (so the dimension bound on X is now
n — | rather than =).
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