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Die Grundgleichungen der Flichentheorie I

von W. SCHERRER, Bern

§1. Einleitung

Die Bewegung eines starren Korpers bildet den anschaulichen Kern der
Euklidischen Geometrie. In der analytischen Methodik steht daher die
Bewegung eines orthonormierten Dreibeins im Zentrum.

Die konsequente Verwertung dieses kinematischen Gesichtspunktes
gibt dem Darbouxschen Standardwerk iiber Flichentheorie das Geprige.

Die neuere Entwicklung der elementaren Flichentheorie zeigt, daf die
Darstellung an Geschlossenheit gewinnt, wenn man nicht nur in Vektoren
denkt — wie dies Darboux schon getan hat — sondern auch liickenlos
mit Vektoren rechnet.

Eine elementare Illustration dazu liefert die heute im Unterricht ein-
gebiirgerte vektorielle Theorie der Raumkurven. Einen weiteren ein-
drucksvollen Beleg fiir die Vorteile dieser Methodik bildet die Darstellung
einer Flidche durch das auf ihre Kriimmungslinien bezogene orthonor-
mierte Dreibein, wie man sie in dem Lehrbuch von Blaschke findet. Da-
selbst findet man auch einen Hinweis darauf, da8 es fiir die Behandlung
von Kurven auf der Fliche oft niitzlich ist, normierte Dreibeine mit
einem schiefen Winkel zu verwenden.

Der Zweck der vorliegenden Abhandlung ist es nun, zu zeigen, daB es
auch vorteilhaft ist, die ganze Darstellung einer Fliche auf ein normiertes
Dreibein mit einem schiefen Winkel zu griinden. Man erhélt dann eine
jedem Parameternetz anpaflbare Darstellung, bei welcher jede auf-
tretende GrundgroBe eine unmittelbare geometrische Bedeutung besitzt.

Man gewinnt so miihelos viele Ergebnisse und Relationen, zu deren
Herleitung in den traditionellen Lehrgéingen meist besondere Zuriistungen
erforderlich sind ; auBBerdem ergibt sich dabei, wie ich hoffe, einiges Neue.

Hinweise auf Einzelprobleme findet der Leser in der SchluBbetrach-
tung § 9.

§2. Flichenstreifen
Ist auf der Flache
¥ = x(u, v) (1)
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mit der Normalen
m —_— [xu’ x?}] (2)
| (%4, %,] ]

eine Kurve

x(t) = x[u(t), v(t)] (3)
gegeben, so erhalten wir ihre Bogenlidnge s aus der Differentialgleichung
s2 = E?y? 4+ 2EG cos O uv + G202 . (4)

Dabei wurde gesetzt

E2 =42

u ?

EGcosb=x,x,, F=4%, (5)

und der Punkt bedeutet die Ableitung nach dem Kurvenparameter ¢.
Die rechte Seite von (4) stellt bekanntlich die sogenannte erste Hauptform
der Fliche dar und 0 ist offenbar der Zwischenwinkel der Parameter-
linien.

Fiihren wir nun die Bogenlinge s als Kurvenparameter ein und sym-
bolisieren wir die Ableitung nach ihr durch einen Strich, so wird der von
der Kurve (3) getragene Flidchenstreifen iiblicherweise analytisch dar-
gestellt durch das orthonormierte Dreibein aus Tangentenvektor t,
Normalenvektor 9t und ,,Seitenvektor” s :

t=x, RN=NGs), s=[t,N]. (6)

Die Ableitungsgleichungen dieses Dreibeins haben notwendigerweise
die Gestalt :

s = 2, t — 17, N
t = —ua,5 + z, N (7
N= 1,5—=z,t

Die hier auftretenden skalaren Kombinationszahlen z,, z, und =,
sind durch das System (7) als orthogonale Invarianten definiert und
heilen bekanntlich geoditische Kriimmung, Normalschnittkriimmung
und geodétische Torsion.

Nebenbei bemerkt ist hier zu beachten, dal man im System (7) von
der Bezugnahme auf die Fliche absehen und statt dessen z,, x, und 7,
als Funktionen von s vorgeben kann. Dann definiert dasselbe einen freien
Flachenstreifen.

Der Nutzen des Systems (7) liegt vor allem in dem Umstande, daB
sdmtliche in ihm auftretende GroBen eine unmittelbare geometrische
Bedeutung haben. Der Gedanke liegt also nahe, das System gerade auf
die Parameterlinien anzuwenden, indem man zum Beispiel etwa t mit
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*v_ jdentifiziert. Dann aber erweist sich das System insofern als dem

G
Parameternetz schlecht angepalit, als fir 6 = —g— der Seitenvektor s
nicht mit ;}‘ zusammenfillt.

Um hier nun den erforderlichen Spielraum zu gewinnen, empfiehlt es
sich, den Seitenvektor s in (6) durch den schiefen Vektor

r=cosft+sinbs (8)

zu ersetzen, wobei nun 6 denjenigen Winkel bedeutet, um den man r in
der Ebene (s, t) in positivem Sinne drehen muB8, bis er mit t zusammen-
fallt.

Vereinfachen wir noch unsere Bezeichnungen gemi@3

X, >y, X,—>T, T,—>T (9)
und fithren wir iiberdies die Hilfsgroe
I'=y—0 (10)
ein, so ergibt die Umrechnung vom System (6) auf das System
_[r, 1]
Y (11)
an Stelle der Gleichungen (7) folgende Gleichungen :
, r .
Y = ——Fcotgﬂr-{—mt—l- (x cos  — Tsin 6) N
R 4
' = sinor—l—ycotget—l—x% (12)

r T ___
N -_siner (x + tcoth)t.

Das Dreibein (11) ist nach Definition rechtsgeschraubt. Es kann aber
unter Umstinden zweckdienlich sein, dasselbe linksgeschraubt anzu-
setzen, und zwar unter Beibehaltung der Normalen Nt. Zu diesem Zwecke
miissen offenbar im Vektorprodukt (11) die Faktoren r und t vertauscht
werden, wihrend gleichzeitig der Winkel 6 in — 6 umzuschlagen hat.

Also : Die den Gleichungen (12) entsprechenden Gleichungen fiir ein
linksgeschraubtes System

e, t, =0t (13)

sin 0

ergeben sich aus (12), indem man die Substitution

06— —20 (14)
ausfiihrt.
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§3. Die Ableitungsgleichungen einer Fliche

Das System (12) wenden wir jetzt an auf die Parameterlinien eines
beliebigen Netzes. Fiir die Kriimmungsgréflen der u-Linien (v = konst)
setzen wir in Analogie zu (9), § 2

.

xgl = Y1 xnl = ;1 701 = T1 (1)
und fiir die Kriimmungsgroflen der »-Linien entsprechend

gy =Va s Ry =Ty, Ty =Tp - (2)

Fiir die invarianten Ableitungen nach den Bogenlingen der u- respek-
tive v-Linien haben wir also nach (5), § 2 einzufiihren die Operatoren

1 0 1 0

Di=g5r: Do=go- (3)

Als ein dem Parameternetz angepaBtes Dreibein erhalten wir nun schlie3-
lich die Vektoren

r=D,x, t.EDvI, m__:_[r,t]

sinf

(4)

Das System (12) von § 2 liefert nun bei Anwendung auf die v-Lanien
gemidfl (2) § 2 den richtigen Umlaufsinn und fiithrt so auf das nach-
gestellte System (7). Bei Anwendung auf die u-Linien aber vertauschen
die Vektoren tr und t ihre Rollen und mit ihnen auch alle Indizes 1 und 2.
Dadurch schligt aber auch der Umlaufsinn des Systems um, und nach
der SchluBbemerkung von § 2 haben wir also iiberdies 6 in — 0 iiberzu-
filhren, um aus dem nachgestellten System (7) das vorausgestellte
System (6) zu erhalten.

Speziell fiir die der Definition (10) von § 2 entsprechenden Hilfsgrofien
I'; und I, gelten daher die Definitionen

r=w+D0,0, Iy=y,—D,0. (5)

Als Ableitungsgleichungen ergeben sich also folgende Systeme :

_ V1
D,x = — y,cotgbr+ b t+ 2, M
D,t =— si]1:16 v+ Iycotg6t+ (x,co80+ 7,80 0)N (6)
i
DN = — (x; — 7, cotg 0) v — sinlﬂ t
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D, =

cos  — 7,s8in 0) N

D,t = — Siff(, t + 5 cotg 0t 4 2, N (7)
DR = 31:1 gt (g + Tocotg 6) t

Da diese beiden Systeme explizite den Winkel 6 und nach der Defini-
tion (3) der Operatoren D, und D, iiberdies die GroBen Z und G ent-
halten, muBl fiir ihre rechnerische Handhabung mindestens die erste
Hauptform vorgegeben sein.

Mit dieser Vorgabe wollen wir uns aber auch begniigen und nun priifen,
welchen EinfluBl diese Vorgabe auf die in den rechten Seiten enthaltenen
KriimmungsgroBen y,, y,, ;, 5, 71, T, hat.

Berechnet man die Skalarprodukte rD,t und tD,r einmal gestiitzt
auf (4) in Verbindung mit (5) § 2, ein andermal aber gestiitzt auf die
rechten Seiten von (6) und (7), so ergibt der Vergleich die Beziehungen

D,¢_ 1 D,E . _ 1 DG D,E -
G snb E ° “* " sn6 @ €Yg

In Verbindung mit (5) kennen wir daher die geodétischen Krimmungen
v, und y, der Parameterlinien.

Dasselbe Verfahren auf die Skalarprodukte tD,r und tD,t liefert
direkt die y, und y,, also nichts Neues.

Zu (8) notieren wir noch die gelegentlich benotigte Auflosung

DG _ D,E_ I
g = —Tieotgl+ 0’ T = “sno

I', = cotg 0

+ I’y cotg 0 . (9)

Die Skalarprodukte ND,r und ND,t lassen wir auf der Seite, da
ihre doppelte Auswertung die Vorgabe der zweiten Hauptform erfordern
wiirde.

Dagegen benotigen wir die leicht ersichtliche Symmetrierelation
ND,t = ND,r, welche mit den rechten Seiten von (6) und (7) die Rela-
tion

2,080 + 7,8n6 = xyco80 — T,8n0 (10)
ergibt.

Zusammenfassend ergibt sich das Resultat : Nach Vorgabe der ersten
Hauptform sind die geoditischen Kriimmungen y, und y, gemif (5) und
(8) bestimmt, wihrend zwischen den Normalschnittkriimmungen «, und
z, und den geodétischen Torsionen 7; und 7, nur noch die Relation (10)
besteht.
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Nachtriglich ziehen wir nun noch fiir Identifikationszwecke die zweite

Hauptform heran :
N: =Lu?+ 2Mau v+ No? (11)
respektive )
L=RNxy, M=Nzx,, N=RNg, (12)

Gestiitzt auf (4), (6) und (7) erhilt man

L - szl
M = EG(x, cos 0 4+ 7,sin ) = EG(x, cos § — 7,sin ) (13)
N — szz

In Verbindung mit (5) § 2 ergeben sich aus den klassischen Formeln

LN — M2
K= E2Q2sin2 0 (14
und g BN —2EGcos 0 M + G°L (15)
- 2FE2@32% sin2 0

fiir die Gaullsche Kriimmung K und die mittlere Kriimmung H die Werte
K=ux2, + 1,73 + (2,75, — %,7,) cotg 0 (16)
und
H = }(z; + %) — (7 — 7,) cotg 0 . (17)
§ 4. Die Integrabilitiitshedingungen

Aus den Definitionen (3) von § 3 folgt
1 02 D, G

DD, = EG ouov = @ D, (1)
1 02 D, E
D,D, = GE ovou K D, (2)

Also haben wir den Kommutator
D, G
G

D,E

Dp,D, —D,D, = D,—=3=D, . (3)

Nach (9), § 3 konnen wir dafiir schreiben

rl F2
e i I, cotg 6) D,+ (S—in—e— — I, cotg 0) D,. (4)

sin

D,D, — DD, E(
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- Jetzt sind wir in der Lage, die Integrabilitdtsbedingungen fiir die Ab-
leitungsgleichungen (6) und (7) des vorausgehenden Paragraphen aufzu-
stellen. Wir haben einfach fiir jeden Vektor v des Dreibeins (r, t, N)
die Relation '

(DvDu_DuD'v)Dz-Da;(Dun)—Du(D'vn) (5)

auszuwerten. Dabei gelangen rechts zweimal die Ableitungsgleichungen
zur Anwendung, links aber zuerst der Kommutator (4) und hierauf ein-
mal die Ableitungsgleichungen.

Damit ist der Gang der Rechnung vorgezeichnet. Es geniigt, den gan-
zen ProzeB am Vektor r durchzufiihren. Das Resultat des analogen Pro-
zesses fiir den Vektor t erhilt man auf Grund der in den Ableitungs-
gleichungen liegenden Symmetrie : Man vertauscht die Vektoren r und t,
sowie die Indizes 1 und 2 und fiihrt 6 in — 6 iiber. Der ProzeB fiir den
Vektor N schlieBlich liefert keine neuen Relationen mehr.

Wir notieren die Resultate in der Reihenfolge, wie sie sich ergeben,
wenn man nacheinander die Komponenten in t, t und 9% vergleicht : Wir
erhalten so die Integrabilititsbedingungen in einer ersten Gestalt :

-

(T i
D,T',— D, ys — _(sinle _ T, cotg 0) r,+ (5;%6 — I, cotg 6) n|_
sin 0 -
. - e
D,y, — D, I — _(sinze — I, cotg 6) Ty + (si.nle _ I, cotg o) n_
sin 0 -
und
D, z,—cos0D, x,+sinbD,7,= (siII:I g —I'ycotg 0) (y—25) + I'a(T—73)
(7)
.Du xg—COS 6D2 xl - Sin 0 .Dv Tl - (é—i{’]_:?a—-lwl OOtg 6) (xl_ xz) + I’].(TZ“TI)

Das System (6) stellt die Gaupsche Gleichung in zwei verschiedenen
Gestalten dar, denn die Differenz der linken Seiten verschwindet iden-
tisch mit Riicksicht auf die Gleichungen (5) von § 3 und die Kommu-
tatorgleichung (4) dieses Paragraphen.

Das System (7) stellt die Codazzischen Gleichungen dar.

Fiihrt man jetzt in diesen Gleichungen die Relationen (9) aus § 3 ein,
so gelangt man durch elementare, zum Teil partielle Umformungen zu
folgenden vereinfachten Gleichungen :

(Er )v _" (Gy )u . ('E‘Yl)v _ (GP )u .
.;fl'GsinBS =K, EQ@sin 6 =K (8)
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und (B z,), — [G(xycos 8 — 1,s8In 0)]1.

(Gxy), — [H (2, cos86 4+ 7,8n06)],
= EG{I'\7, — y;(— 2y 8in 6 + 7, cos 0)}

(9)

Um die Integrabilititsbedingungen jederzeit gebrauchsfertig zur Ver-
fiigung zu haben, notiere ich an dieser Stelle noch einmal die zu ihrer
Handhabung unerldfllichen aber schon frither aufgestellten Definitionen

und Relationen : I eotes DG 1 D,E
1= Y TET Tsing K 10
1 D“G—-ctBD”E (10)
T sn0 @ MR
ylzrl_Due 7’2=F2+D06 (11)
2,c08 0 4+ 7,8n0 =2x,c080 — 7,80 . (12)
K=z, + 1,715 + (2,7, — 2,7;) cOtg 0 . (13)
H=3§(x + ) — (1, — 75) cotg 0 . (14)

§ 5. Kurven auf der Fliche

Wir betrachten jetzt beliebige Kurven auf der Fliche bezogen auf ihre
Bogenlinge s als Parameter :

x(s) = x[u(s), v(9)] . (1)

Ihr Tangentenvektor sei bezeichnet mit I, so daB nach frither getroffenen

Festsetzungen gilt
I=x=FEu'r+Gvt. (2)

Bezeichnen wir mit o denjenigen Winkel, um den man den Vektor r in
positivem Sinne drehen muB}, bis er mit T zusammenfillt, so gilt nach
der Geometrie des schiefwinkligen Dreiecks

sin (60 — «) sin o« ; (3)

1= sin 0 r“'_s»,ino )

Der Vergleich mit (2) ergibt daher

sin (0 — «) , _ sina
ginf ’ Go' = gin§ ° )

Ev =
Wie in § 2 bezeichne ich geodétische Kriimmung, Normalschnittkriim-
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mung und geodétische Torsion unserer Kurve (1) mit , 2 und 7. Der
Unterschied gegeniiber der Situation in § 2 besteht nur darin, da3 an
Stelle von t und 6 daselbst jetzt I und « zu treten haben. Statt der Defi-
nitionen (10) in § 2 erscheint daher die Definition

=y —d (5)
und das System (12) von § 2 mul} ersetzt werden durch
v = (x cos o — Tsinx) N
1 Sm“r—I—ycotgoc‘I—{—xiﬁ (6)
' T .
N = . (x + Tcotg )X

Ist nun v = v (u, v) ein beliebiges Vektorfeld auf der Fliche, so gilt

auf unserer Kurve (1) (s) = o[u(s), v(s)] (7)

und aus (4) folgt unmittelbar-nach den fritheren Festsetzungen

, _ sin (6 — «) sin o
~ sinf Dyv + sin 0

(8)

Diese Relation wenden wir nun an auf die Vektoren ' und N’ in der
ersten und dritten Gleichung von (6). Hierauf eliminieren wir in den ge-
nannten Gleichungen ¥ mit Hilfe von (3), und die invarianten Ableitun-
gen D,vr, DR, D,r, D,N mit Hilfe der Ableitungsgleichungen (6)
und (7) von § 3, worauf der Komponentenvergleich folgende Relationen
liefert :

__sin (0 — &) sin %
= smf 7' s 0
. sin (0 — « n o .
ZCosx — TSN = sfin 7 ) x, + (x2 cos 0 — 7, sin 0) (9)
zsinx + 7 cos x = sms(ii; id, Ty + (:z:2 sin 0 4+ 7, cos 0)

Gleichwertig mit (9) sind die Relationen

__ sinw sin (0 —«)
Sk =m0’ T “sng !
zcos (60 —«)+ Tsin (0-«)= SE‘; xy + w (r,cos80+1,8in0) ((10)
—zs8in (0 -«)+ zcos (0—-x)= :z: Ty + SI—nS-lgg—éi) (- 2y8in 0+ 7, cos 0)

188



Man erhilt dieselben, wenn man in der ganzen Konstruktion nicht den
Vektor v, sondern den Vektor t als Richtungsbasis wihlt. Doch kann
man (10) auch ohne Rechnung erhalten, indem man — gestiitzt auf die
vorhandenen Symmetrien — in (9) r und t, sowie die Indizes 1 und 2
vertauscht und gleichzeitig 6 in — 0, sowie « in — (6§ — «) iiberfiihrt.

Mit Riicksicht auf eine spéitere Anwendung ist es zweckmaéBig, aus (9)
und (10) je die beiden ersten Gleichungen auszuwéihlen und in einer be-
sonderen Tafel zusammenzustellen. Eliminiert man dabei noch I' mit
Hilfe von (5), so ergibt sich folgendes Resultat :

_ o, sin(0-«) sin o
YT T T4n0 T gno ®
B ,+6,___sin(0—-oc) sin o
yoo ~ gin6 17T 5ing e (1)
. sin(f-«) sine o
ZCOSx—TSINX = i x, + D (24 cos 0 — 7481n 0)
. _8in (0 - ) . sino
zcos (0—«x) + tsin(0—n) = i (2, cos 0+ 7, 81n 6) +smin0 Xy

Aus den beiden letzten Gleichungen von (11) berechnen wir schliefllich
noch die expliziten Werte der Normalschnittkriimmung x und der geodi-
tischen Torsion 7 zu

v — sin (0—-«) cos &« x; 4 cos (0—«) sin x 2, . sin (§—«) sinx

Sin 0 + Sin 6 (TI_TZ) ] (12)
sin (0—«) ¢ cos (0—«) sin sin (0 —x) sin '
_ (0—«) cos T;;;g (0—«)sinx 7, sin ( s'inoc‘)g “(xl—xz) . (13)

Wegen (12) § 4 kann (13) auch ersetzt werden durch

_sin(f —2«) 7, — 1T, cos(f—2x) x — 2 (14)
sin 0 2 sin 0 2 )

§ 6. Integralsiitze

Verbindet man die Integrabilitdtsbedingungen (8) und (9) von § 4 mit
den Formeln (11) von § 5, so erhélt man miihelos die Integralformel von
Bonnet und zwei weitere Integralformeln.

Wir betrachten ein beliebiges stetig differenzierbares Vektorfeld auf
der Fliche. Seine Komponenten bezogen auf das Parameternetz seien
X(u,v) und Y (u,v), so daB also

d® = X (u, v)du + Y (u, v)dv (1)

eine lineare Differentialform darstellt.
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Der Integralsatz von Gaufl hat dann die Gestalt
t¢xm+yw=“ug—&me 2)

Aus den Relationen (11) und (4) von § 5 entnehmen wir nun ohne
weiteres folgende drei Differentialformeln :

yds = Ey,du + QIydv 4 do
= ETdu + Gy,dv + dx — do

(3)

(x cos « — 7sin x)ds = Ex,du+G(z, cos 0—1, sin 0)dv , (4)
[ cos (0—«)+Tsin (0—«)] = E(x, cos 8+ 7, sin 0)du+Gax,dv . (5)

Umlduft also unsere Kurve ein einfach zusammenhingendes Flichen-
stiick in positivem Sinne, so erfihrt der Winkel « die Variation 2,
wihrend die Variation des Winkels 6 Null ist.

Wir kénnen weiter annehmen, daf in jedem einzelnen Falle der Winkel
6 positiv bewertet sei und dementsprechend das positive Flichenelement

do = EG sin 0 dudv (6)
einfiihren.
Unter diesen Voraussetzungen ergibt nun die Anwendung der Formeln
(1) bis (5) auf die Integrabilitdtsbedingungen (8) und (9) von § 4 unmittel-
bar folgende Integralformeln :

‘¢}%=2n—§K@ m

55(3: cos x — T sina)ds =J V1 (@, 806 + 7, 005 6) — Fﬂldo (8)

sin 0

; 0.
sin 0

ﬁ[mcos (0-x) + Tsin (0-«x)]ds -——~f (9)

Die Integralformel (7) von Bonnet ist absolut invariant gegeniiber be-
liebigen Transformationen des Parameternetzes. Die Integralformeln (8)
und (9) aber sind halbinvariant in folgendem Sinne : Die Formel (8) ist
unabhingig von der Wahl der »-Linien, die Formel (9) ist unabhéngig
von der Wahl der u-Linien, da das Entsprechende fiir die Differential-
formen (4) und (5) gilt.

Zur geometrischen Interpretation der Differentialformen (4) und (5)
mag folgender Hinweis dienlich sein : Ist

IES 16)) (10)

ein beliebiger lings unserer Kurve erklirter stetig differenzierbarer Ein-
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heitsvektor und & derjenige Winkel, um den man p in positivem Sinne
drehen mul}, bis er mit dem Tangentenvektor ¥ unserer Kurve zu-
sammenfillt, so gilt p—=sinds L cosdT (11)
s = [T, N] (12)

der Seitenvektor unserer Kurve ist.
Andererseits gilt nach unseren Festsetzungen iiber den Flichenstreifen
in§2 N =1,5— x, T oder, in der vereinfachten Bezeichnung

WO

N=15—2T. (13)
Also folgt M'v = vsin 6 — x cos § oder, wegen v = 0
Nov' =xcosd — 7sind . (14)

Je nachdem man also p mit r oder t identifiziert, erhilt man
Nt =xcosa — Tsinx (15)
Nt =xcos(§ —a) + tsin (0 — &) . (16)

Die Beziehung (15) bestédtigt man direkt an Hand von (6) in § 5 und (16)
ist das Seitenstiick zu (15) im Sinne der schon verschiedentlich erorterten
Symmetrie im ganzen System.

Die Differentialformen (4) und (5) liefern also das infinitesimale Maf
fiir die senkrechte Abweichung der Koordinatenvektoren r und t von der
Tangentialebene bei Verschiebung des Dreibeins (r, 1, i) lings unserer
Kurve.

Es ist instruktiv, daneben die Spezialisation p = T zu betrachten.

Nach (6) § 2 folgt NY — 2 . (17)

Aus (12) § 5 ersieht man, dal xds keine lineare Differentialform ist.
Dagegen ergibt die Berechnung unter sténdiger Beachtung von (4) § 5,
daBl xds®* eine quadratische Differentialform ist:
xds? =  E?z,du® + Q?x,dv?
+ EG(x, cos 8 + 7, sin 6)dudv (18)
+ EG (3 cos 0 — 7, 8in 0)dudv

oder

Damit sind wir auf einem Umwege wieder zur Darstellung der zweiten
Hauptform geméB den Formeln (11) bis (13) von § 5 gelangt. In der Tat
haben wir ja nach (11) § 3 fiir die Bogenlinge als Parameter

NReE=N" =N == . (19)
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§ 7. Unabhiingige Kriimmungsgrofen

Die vier Linienkriimmungen z,, z,, 7, und 7, sind durch die Relation
(10) von § 2 gebunden. Fiir gewisse Rechnungen empfiehlt es sich, diese
Abhéngigkeit zu beseitigen. Wir schreiben sie zu diesem Zwecke in der

Gestalt 7, + 1, = — (%, — ;) cotg 0 (1)

und fiihren folgende unabhingige Krimmungsgrofen ein :

A= (2, + @)
p=4% (2, — x,) (2)
v =% (11 — 7))

Aus (1) und (2) erhalten wir nun

Ty = A+ p

Xy = A — W

T, = v — ucotgl (3)
Ty = — v — pcotg 6

und die Relation (1) ist identisch erfiillt.

Fir die Normalschnittkrimmung x und die geoditische Torsion t
einer beliebigen Kurve auf der Fliche erhalten wir nun aus den Formeln
(12) und (14) von § 5

sin (0 — 2« cos (0 — 2«
z=4—vootgh + (sinH ),u (sinﬁ )'v
4
. — __cos (0 — 24) sin (0 — 2x) )
o sin 0 © sin 0 g

Fiir die mittlere Krimmung H und die GauB3sche Krimmung K erhalten
wir weiter aus (16) und (17) von § 3
H = 1 — v cotg
_ - . _ WA (5)
K = (A — v cotg0) ey

Das System (5) gibt AnlaB, die Kriimmungsgrofen 4, x# und » soweit als
moglich durch die absoluten Invarianten H und K auszudriicken. Dabei
empfiehlt es sich, zur Vereinfachung der Schreibweise eine Hilfsinvariante
J einzufiihren gemil JE=H?—_K . (6)

Jetzt kann (5) geschrieben werden in der Gestalt
H = 1 — vcotgl

2 2 7)
,  MEAEw (
I = sin2@ °
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und (4) geht iiber in

. sin (0 — 2«) cos (6 — 2«)
r=Ht—ggrt ——me .
cos (0 — 2«) sin (0 — 2x) ®)
T = — : - v
sin 0 sin 0

Die zweite Gleichung von (7) schliefllich gibt Anlaf}, einen Hilfswinkel w
einzufiithren derart, dafl (7) iibergeht in

A=H + J cos 0 cos w
o == J sin 0 sin @ (9)
P == J sin 0 cos w

An Stelle von (3) erhalten wir damit das System

2, =H + Jcos(w—0) x3=H -+ J cos(w -+ 0)

7, = — J sin (v — 0) T, = — J sin (o + 0) (10)
Das System (8) aber geht iiber in
x=H + J cos (w — 0 + 2x) an

T= —Jsin (o — 0 + 2«)

Damit sind die nicht absolut invarianten Elemente in den Linienkriim-
mungen auf die Winkel o, 6 und « reduziert.
Aus (11) folgt die absolut invariante Relation

(x — H? 2= J?%, (12)
die wegen (6) auch geschrieben werden kann in der Gestalt
2?2+ 12— 2Hx+ K =0 . (13)

§ 8. Die dritte Hauptform

Als ,,dritte Hauptform® einer Fldche x = x(u,v) bezeichnet man
bekanntlich die erste Hauptform ihres Normalenbildes

I = 922 . (1)

Wir kénnen jetzt die bekannte Tatsache, dal die drei Hauptformen
einer Fliche

I=gx — E2u? + 2EG cos Quv + G2v?
M= —9Nr=Lu*+ 2Muv + No? (2)
III = N2 — e?y? + 2eg cos Suv -+ 927.;2

linear abhingig sind ohne jede Spezialisierung direkt berechnen.
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Aus (10) § 7 und (13) § 3 erhalten wir

L = E*[H + J cos (v — 0)]
M = EG[H cos § + J cos w]
N = G?[H + J cos (w + 0)]

(3)

Weiter erhalten wir fiir (1) im Sinne von (2) wegen R, = ED,9 und
N, =GD, N gestiitzt auf (6) und (7) von § 3, sowie auf (10) § 7

e? = E?[H? + J2 + 2HJ cos (w — 0)]
egcos® = EG[(H? + J?*) cos 0 + 2HJ cos w]
g? = G*[H2 + J? 4+ 2HJ cos (0 + 6)] .

Aus (2) und (3) aber folgt
II = HI+ J[E? cos (w—0) w2+ 2 EG cos wuv-+G2 cos(w-+0)v]. (5)

(4)

Analog folgt aus (2) und (4)

IIl = (H® 4+ J?) I + 2HJ [E? cos (w — O)u® + 2EQ cos ouv
+ G2 cos (w + 0)v?] . (6)

Aus (5) und (6) aber folgt

III — 2HIl = (J2 — H¥) 1,
also wegen (6) § 7
IIl=—KI+2HII . (7)

Die Frage stellt sich jetzt, ob man durch lineare Kombination aus I
und I ein reines Quadrat erzeugen konne, dessen Basis dann offenbar
eine invariante Linearform sein muB.

Die Rechnung ergibt nach (5):

I”“ﬁ‘gif‘z“ﬂzjﬂpg’ (8)
I-———E-I_i—{—j—z —I—I—z——_;—{-’]——![”, (9)
mit ~
@EEcos(wge)d—{»Gcos(w—;e);}, (10)
und
WzEsin(“’;(’)a-{—Gsin(“’;e)@, (11)

wobei nun @ und ¥ die gesuchten invarianten Linearformen sind.
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Fiihrt man durch
(12)

die beiden Hauptkrimmungen k; und k, der Flidche ein, so erhilt man
aus (8), (9), (10), (11) und (7) folgende Darstellung fiir die drei Haupt-
formen :
I =9+ VP2
I =k &%+ k, P? (13)
I =2 D2 + k2 P2

Um eine geometrische Deutung der Linearformen @ und ¥ zu erhalten,
ziehen wir die Formeln (4) von § 5 heran. Dieselben lauten, wenn man sie
auf einen beliebigen Parameter ¢ bezieht

Ba="m0—% yp . g, S0 yT (14)
sin 0 sin 0
Fiihrt man (14) in (10) und (11) ein, so folgt

(D—_—_cos(w_a—l—oc)l/f : 'If::sin(w_e—}—(x)l/f. (15)

Setzt man diese Werte in (13) ein, so ergibt sich
II = kl_;—kz—{—kl;kzcos(w—ﬂ—{-Za)]I, (186)

und
2 — ]2

TIT — ’“+k+ kzcos(w-0+2oc)]1. (17)

Wegen (12) ergeben sich daraus mit Riicksicht auf (11) § 7 die Formeln
II ==1 ; IT = (22 4+ ¥ I . (18)

Die erste dieser Formeln ist wohlbekannt und wird gewohnlich im
Anschluf an die Definition der zweiten Hauptform hergeleitet.

Die beiden Linearformen geben offenbar wieder Anlafl zu zwei Inte-
gralsitzen, die wir schreiben wollen in der Gestalt

‘QST @di = [f 8,EG sin 0dudy (19)
und
55 Wit — [f 8, EG sin 0dudy . (20)
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wobei

q w40 . w—0
b,
un
Gsin(w+9 — | K sin e
bR e,

zwei absolute Invarianten der Fliche sind.
Um ihren Zusammenhang mit den bekannten Invarianten zu ermit-
teln, fiihren wir (12) in die Formeln (10) von § 7 ein und erhalten :

w—a _—_ xl_kg . 0)-]—0 ____ 5132-—]02
COS( B ) = m 3 COS( B) ) = m , (23)

. (o—0\ 1/k— 2z | . (o+0\ 1/k — 2z,
sm( 5 ) = V% =% ° sm( 5 )— T — &, (24)
Wihlt man die Kriimmungslinien als Parameternetz, so gilt 0=w=i2t

und mit Riicksicht auf (9) und (5) von § 3 folgt
Si=7v1, Sy =19p; . (25)

Zum Schlufl moége noch eine rationale Formel Platz finden, die den
Zusammenhang zwischen dem Netzwinkel 6 und seinem sphérischen Ab-
bild & liefert. Aus (4) findet man ohne Schwierigkeit

egsind = EG(H? — J?)sin 0 . (26)

Unter Beachtung von (12) ergibt sich daher weiter in Verbindung mit (4)

1 [k |k, 1/(k, ky\ cosw

§9. SchluBbetrachtung

In einem zweiten Teil beabsichtige ich, einige ausgedehntere Anwen-
dungen der hier entwickelten Grundgleichungen zu behandeln. An dieser
Stelle begniige ich mich, an zwei wohlbekannten Sitzen die Anwendung
des nun geometrisch interpretierbaren Formalismus zu illustrieren.

Satz 1 (Liouville). Trdgt eine Fliche zwei einparametrige Scharen von
geoddtischen Linien, die sich unter konstantem Winkel schneiden, so ist die
Gaufsche Krimmung Null.

196



Beweis. Wir wihlen die beiden Scharen als Koordinatennetz und
finden alle erforderlichen Hilfsmittel in § 4. Nach Voraussetzung gilt

yp=9s=0, 6= konst .
Aus Gleichung (11) folgt daher auch
IN=ly=0
und die Gleichung (6) ergibt unmittelbar K = 0, w.z.b. w.
Satz 2. Auf einer Fliche K = — 1 bilden die Asymptotenlinien ein
T'schebyschew-Netz.

Bewets. Wir wihlen die Asymptotenlinien als Koordinaten-Netz und
finden wiederum die notigen Hilfsmittel in § 4. Nach Konstruktion gilt
Ty == 2y = 0
und nach Voraussetzung ist K = — 1. Aus den Gleichungen (12) und

(13) folgt daher leicht
T,=—Ta=2¢; ¢&=1,
und aus den Codazzischen Gleichungen (7) ergibt sich unmittelbar
Ne=lh=0.
Aus (10) folgt daher weiter
E = E(u) , G =G ()
und die Skalentransformationen
w= [ Eu)du , v = [G(v)dv

liefern E = G = 1, w.z.b.w.

Abschliefend will ich zur besseren Orientierung des Lesers auf eine
Reihe von bestimmten klassischen Problemen hinweisen, an denen man
die Niitzlichkeit der im Vorausgehenden entwickelten Methodik erproben

kann.

1. Die Bestimmung einer Fliche auf Grund ihrer ersten Hauptform (4)
§ 2 nach Vorgabe einer Raumkurve. Alle Hilfsmittel finden sich in § 4.
Man wihle das Parameternetz so, dal in ihm die vorgegebene Raum-
kurve auf die u-Linie » = 0 bezogen ist. Hierauf stelle man z, und 7,
mit Hilfe der Relationen (12) und (13) explizite durch die GroBen z,, 7,, 0
und K dar. Fiihrt man nun die gefundenen Ausdriicke in die Codazzi-
schen Gleichungen (7) ein, so verwandeln sich dieselben in ein System
von zwei partiellen Differentialgleichungen 1. Ordnung fiir die Funk-
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tionen z; und 7, und die eindeutige Bestimmung der letzteren folgt aus
klassischen Sitzen iiber partielle Differentialgleichungen.

2. Verbiegung einer Fliche unter Erhaltung ihrer Krimmungslinien.

Wir haben 7, =1,=0, 0 = —g— Gleichung (12) ist erfiillt und (13)

liefert z, = —f— Die Codazzischen Gleichungen ergeben ein totales

1
System 1. Ordnung fiir z,. Seine Integrabilitdtsbedingungen liefern die-
jenigen speziellen Fliachen, fiir welche die verlangte Verbiegung moglich
ist (Gesimsflichen).

3. Die Verbiegung von Minimalflichen. Man wihle ein isothermes

Netz. Wegen 6 = "’721 liefert (12) 7,= — v; und wegen H = 0 liefert
(14) 23 = — z,. Die Gleichung (13) wird daher befriedigt durch den
Ansatz By = V' — K cos @ ; 7,=V —Ksing

und die Codazzischen Gleichungen liefern ein totales System fiir ¢. Aus
" demselben kann man direkt ersehen, daB eine einparametrige Schar von
Biegungen moglich ist.

4. Die Bestimmung derjenigen Flichen, welche zwei Geradenscharen
enthalten. Die Durchfithrung der Aufgabe gestaltet sich umfangreich, ist
aber sehr instruktiv, weil der ganze Apparat in Bewegung gesetzt werden
muB. Dank der durchgehenden Invarianz bringt die explizite Losung die
bekannte Beweglichkeit des Stangenmodells direkt zum Ausdruck.

Eine letzte Bemerkung. Die beiden invarianten linearen Differential-
formen (10) und (11) in § 8 sind hier vermutlich zum erstenmal allgemein
und explizite durch die Groen £, G, 6 und o dargestellt. Sie nehmen
eine zentrale Stellung ein und eroffnen einen neuen Zugang zu den
Kriimmungsgré8en. Ganz allgemein habe ich festgestellt, dafl man durch
n invariante lineare Differentialformen in einer n-dimensionalen Koordi-
natenmannigfaltigkeit eine absolut invariante Differentialgeometrie er-
hilt, die eine Mittelstellung zwischen der Euklidischen und der Riemann-
schen Geometrie einnimmt. Dieselbe liefert in ganz natiirlicher Weise
eine einheitliche Feldtheorie, welche besonders giinstige Verhiltnisse
schafft fiir die Bediirfnisse der Feldphysik. Dariiber werde ich an anderer
Stelle berichten.*

(Eingegangen den 9. Juni 1953.)

*) Vgl. dazu: Grundlagen zu einer linearen Feldtheorie. Z. Physik 138, 16 (1954).
Zur linearen Feldtheorie I. Z. Physik 189, 44 (1954).
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