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Die Grundgleichimgen der Flâchentheorie I
von W. Scherrer, Bern

§1. Einleitung

Die Bewegung eines starren Kôrpers bildet den anschaulichen Kern der
Euklidischen Géométrie. In der analytischen Methodik steht daher die
Bewegung eines orthonormierten Dreibeins im Zentrum.

Die konsequente Verwertung dièses kinematischen Gesichtspunktes
gibt dem Darbouxschen Standardwerk ûber Flâchentheorie das Gepràge.

Die neuere Entwicklung der elementaren Flâchentheorie zeigt, daB die
Darstellung an Geschlossenheit gewinnt, wenn man nicht nur in Vektoren
denkt — wie dies Darboux schon getan hat — sondern auch lùckenlos
mit Vektoren rechnet.

Eine elementare Illustration dazu liefert die heute im Unterricht ein-
geburgerte vektorielle Théorie der Raumkurven. Einen weiteren ein-
drucksvollen Beleg fur die Vorteile dieser Methodik bildet die Darstellung
einer Flâche durch das auf ihre Krûmmungslinien bezogene orthonor-
mierte Dreibein, wie man sie in dem Lehrbuch von Blaschke findet. Da-
selbst findet man auch einen Hinweis darauf, daB es fur die Behandlung
von Kurven auf der Flâche oft nûtzlich ist, normierte Dreibeine mit
einem schiefen Winkel zu verwenden.

Der Zweck der vorliegenden Abhandlung ist es nun, zu zeigen, daB es

auch vorteilhaft ist, die ganze Darstellung einer Flâche auf ein normiertes
Dreibein mit einem schiefen Winkel zu griinden. Man erhâlt dann eine
jedem Parameternetz anpaBbare Darstellung, bei welcher jede auf-
tretende GrundgrôBe eine unmittelbare geometrische Bedeutung besitzt.

Man gewinnt so muhelos viele Ergebnisse und Relationen, zu deren
Herleitung in den traditionellen Lehrgângen meist besondere Zuriistungen
erforderlich sind ; auBerdem ergibt sich dabei, wie ich hofïe, einiges Neue.

Hinweise auf Einzelprobleme findet der Léser in der SchluBbetrach-
tung § 9.

§2. Flâchenstreiîen
Ist auf der Flâche

x x(u,v) (1)
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mit der Normalen

I ïx x 1\ * '
eine Kurve

x(t) x[u(t),v(t)] (3)

gegeben, so erhalten wir ihre Bogenlânge s aus der Difïerentialgleichung

h2 E2Ù2 + 2EG cos 6 ùv + 6?2v2 (4)

Dabei wurde gesetzt

E* xl EG cos 6 xu xv <?" *;, (5)

und der Punkt bedeutet die Ableitung nach dem Kurvenparameter t.
Die rechte Seite von (4) stellt bekanntlich die sogenannte erste Hauptform
der Plâche dar und 6 ist offenbar der Zwischenwinkel der Parameter-
linien.

Fiihren wir nun die Bogenlânge s als Kurvenparameter ein und sym-
bolisieren wir die Ableitung nach ihr durch einen Strich, so wird der von
der Kurve (3) getragene Flâchenstreifen ublicherweise analytiscb. dar-
gestellt durch das orthonormierte Dreibein aus Tangentenvektor t,
Normalenvektor îl und ,,Seitenvektora $ :

t xr » «(«) s [t,9t] (6)

Die Ableitungsgleichungen dièses Dreibeins haben notwendigerweise
die Gestait :

s' xg t - rg 5R

t' =-xgs +xniï (7)

Die hier auftretenden skalaren Kombinationszahlen xg, xn und rg
sind durch das System (7) als orthogonale Invarianten definiert und
heiBen bekanntlich geodâtische Krûmmung, Normalschnittkriimmung
und geodâtische Torsion.

Nebenbei bemerkt ist hier zu beachten, daB man im System (7) von
der Bezugnahme auf die Flâche absehen und statt dessen xg, xn und rg
als Funktionen von s vorgeben kann. Dann definiert dasselbe einen freien
Flâchenstreifen.

Der Nutzen des Systems (7) liegt vor allem in dem Umstande, daB
sàmtliche in ihm aufbretende GrôBen eine unmittelbare geometrische
Bedeutung haben. Der Gedanke liegt also nahe, das System gerade auf
die Parameterlinien anzuwenden, indem man zum Beispiel etwa t mit
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~- identifiziert. Dann aber erweist sich das System insofern als dem

Parameternetz schlecht angepaBt, als fur Q zfc— der Seitenvektor s
x

2

nicht mit -~- zusammenfàllt.
Mi

Um hier nun den erforderlichen Spielraum zu gewinnen, empfiehlt es

sich, den Seitenvektor g in (6) durch den schiefen Vektor

X cos 6 t + sin 0 s (8)

zu ersetzen, wobei nun 6 denjenigen Winkel bedeutet, um den man r in
der Ebene (s, t) in positivem Sinne drehen mufi, bis er mit t zusammen-
fâllt.

Vereinfachen wir noch unsere Bezeichnungen gemâB

xg-*Y > xn ~> x rg -> r (9)

und fûhren wir ûberdies die HilfsgrôBe

r y - 6f (10)

ein, so ergibt die Umrechnung vom System (6) auf das System

an Stelle der Gleichungen (7) folgende Gleichungen :

r' — Tcotg 6 x + -^—k t + (x cos 6 - r sin 6) 31
sin tj

t' X-ëX + Y cotg 0 t + x 91 (12)
sin xi

Das Dreibein (11) ist nach Définition rechtsgeschraubt. Es kann aber
unter Umstanden zweckdienlich sein, dasselbe linksgeschraubt anzu-
setzen, und zwar unter Beibehaltung der Normalen 31. Zu diesem Zwecke
mûssen offenbar im Vektorprodukt (11) die Faktoren r und t vertauscht
werden, wahrend gleichzeitig der Winkel 6 in — 6 umzuschlagen hat.

Also : Die den Gleichungen (12) entsprechenden Gleichungen fur ein
linksgeschraubtes System

ergeben sich aus (12), indem man die Substitution

6->-0 (14)
ausfûhrt.
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§3. Die Âbleitungsgleichungen einer Flâche

Das System (12) wenden wir jetzt an auf die Parameterlinien eines

beliebigen Netzes. Fur die KriïmmungsgrôBen der w-Linien (v konst)
setzen wir in Analogie zu (9), § 2

xffl ïi > xnt %i rgi r± (1)

und fur die KrummungsgrôBen der v-Linien entsprechend

xu 7* > xv2 x* r9% r2 (2)

Fiir die invarianten Ableitungen nach den Bogenlàngen der u- respek-
tive v-Linien haben wir also nach (5), § 2 einzufuhren die Operatoren

D
1 -?- D ~ 1 d

(S)

Als ein dem Parameternetz angepaBtes Dreibein erhalten wir nun schlieB-
lich die Vektoren

Das System (12) von § 2 liefert nun bei Anwendung auf die v-Linien
gemàB (2) § 2 den riehtigen Umlaufsinn und fuhrt so auf das nach-
gestellte System (7). Bei Anwendung auf die u-Linien aber vertauschen
die Vektoren r und t ihre Bollen und mit ihnen auch aile Indizes 1 und 2.

Dadureh schlâgt aber auch der Umlaufsinn des Systems um, und nach
der SchluBbemerkung von § 2 haben wir also ûberdies 6 in —d uberzu-
fuhren, um aus dem nachgestellten System (7) das vorausgestellte
System (6) zu erhalten.

Speziell fur die der Définition (10) von § 2 entsprechenden HilfsgrôBen

/\ und F2 gelten daher die Definitionen

Asn + D.J, r2 y2-Dv6. (5)

Als Ableitungsgleichungen ergeben sich also folgende Système :

Duï Qjr- r + A cotg 0 t + 0»i cos 6 + xx sin 6) S« (6)
sin c/

DuM =-(*!- rx cotg 6) x - -£j t
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Dvx — A cotg 0 x + -r~ t + (x2 cos 6 — r2 sin (9) $R
sm 1/

l -f J02ji yé)

Da dièse beiden Système explizite den Winkel 6 und nach der Définition

(3) der Operatoren Du und Dv tiberdies die GrôBen E und G ent-
halten, muB fur ihre rechnerische Handhabung mindestens die erste
Hauptform vorgegeben sein.

Mit dieser Vorgabe wollen wir uns aber auch begnûgen und nun prufen,
welchen EinfluB dièse Vorgabe auf die in den rechten Seiten enthaltenen
KrûmmungsgrôBen yl9 y2, xl9 x2, rl9 r2 hat.

Berechnet man die Skalarprodukte xDut und \Dvx einmal gestûtzt
auf (4) in Verbindung mit (5) § 2, ein andermal aber gestiitzt auf die
rechten Seiten von (6) und (7), so ergibt der Vergleich die Beziehungen

In Verbindung mit (5) kennen wir daher die geodàtischen Krûmmungen
yx und y2 der Parameterlinien.

Dasselbe Verfahren auf die Skalarprodukte tDux und tDvt liefert
direkt die yx und y2i also nichts Neues.

Zu (8) notieren wir noch die gelegentlich benôtigte Auflôsung

%?^ ¥^. (9)

Die Skalarprodukte 9lDux und $lDvt lassen wir auf der Seite, da
ihre doppelte Auswertung die Vorgabe der zweiten Hauptform erfordern
wûrde.

Dagegen benôtigen wir die leicht ersichtliche Symmetrierelation
yiDut yiDvx, welche mit den rechten Seiten von (6) und (7) die Relation

xx cos 0 + xx sin 0 x2 cos 6 — t2 sin 6 (10)
ergibt.

Zusammenfassend ergibt sich das Résultat : Nach Vorgabe der ersten
Hauptform sind die geodàtischen Krûmmungen yx und y2 gemâB (5) und
(8) bestimmt, wâhrend zwischen den Normalschnittkrummungen xx und
x2 und den geodàtischen Torsionen xx und r2 nur noch die Relation (10)
besteht.
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Nachtràglich ziehen wir nun noch fur Identifikationszwecke die zweite
Hauptform heran :

5RÏ ~Lù2 + 2Mûv + Nv2 (11)
respektive

£ »*„„, Jf »ï., N 9lxvv (12)

Gestutzt auf (4), (6) und (7) erhâlt man

L E2x1

M EO(xx cos 6 + rx sin 6) EG(x2 cos 6 — r2 sin

N G2x2

(13)

In Verbindung mit (5) § 2 ergeben sich aus den klassischen Formeln

m (14)

und
„ E*N - 2EG
H==

in2 0

fur die GauBsche Krûmmung if und die mittlere Kriimmung H die Werte

^T2 ~ ^gTj) COtg 9 (16)
und

H i(xx + x2) - i(Tl - r2) cotg 0 (17)

§4. Die Integrabilitâtsbedingungen

Aus den Definitionen (3) von § 3 folgt

DD =-i- -?L_^^-2> (2)uvvu_QE dvdu E uu w

Also haben wir den Kommutator

DvDu-DaDv=^-Dv-^-Du (3)

Nach (9), § 3 kônnen wir dafiïr schreiben

^ (4)
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Jetzt sind wir in der Lage, die Integrabilitâtsbedingungen fur die Ab-
leitungsgleichungen (6) und (7) des vorausgehenden Paragraphen aufzu-
stellen. Wir haben einfach fur jeden Vektor t) des Dreibeins (r, t, SR)

die Relation

(DVDU - DUDV) t> Dv{Duv) - DU(DV t>) (5)

auszuwerten. Dabei gelangen rechts zweimal die Ableitungsgleichungen
zur Anwendung, links aber zuerst der Kommutator (4) und hierauf ein-
mal die Ableitungsgleichungen.

Damit ist der Gang der Rechnung vorgezeichnet. Es genûgt, den gan-
zen ProzeB am Vektor r durchzufûhren. Das Résultat des analogen Pro-
zesses fur den Vektor t erhâlt man auf Grund der in den
Ableitungsgleichungen liegenden Symmetrie : Man vertauscht die Vektoren r und t,
sowie die Indizes 1 und 2 und fiïhrt 6 in — 6 iiber. Der ProzeB fur den
Vektor SU schlieBlich liefert keine neuen Relationen mehr.

Wir notieren die Resultate in der Reihenfolge, wie sie sich ergeben,
wenn man nacheinander die Komponenten in r, t und 5R vergleicht : Wir
erhalten so die Integrabilitâtsbedingungen in einer ersten Gestalt :

6)

sin d
K

sin d

und

(6)

(p
\

-r^Z-Fx COtg d 1 (Xt-
sin u j

(7)

Das System (6) stellt die Gauftache Gleichung in zwei verschiedenen
Gestalten dar, denn die Differenz der linken Seiten verschwindet iden-
tisch mit Rucksicht auf die Gleichungen (5) von § 3 und die Kommu-
tatorgleichung (4) dièses Paragraphen.

Das System (7) stellt die Codazzischen Gleichungen dar.
Fiihrt man jetzt in diesen Gleichungen die Relationen (9) aus § 3 ein,

so gelangt man durch elementare, zum Teil partielle Umformungen zu
folgenden vereinfachten Gleichungen :

~ ' EOsinÔ ~EO sinO ~ ' EOsinÔ
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und
(E xx)v — [G(x2 cos 6 — r2 sin 6)]u
EG {r2 rt — y1(x2 sin 0 + r2 cos 0)}

(£z2)w - [E(x1 cos 6 + Tl sin 0)],
z — y2( — a?i sin 6 + rx cos 0)}

(9)

Um die Integrabilitatsbedingungen jederzeit gebrauchsfertig zur Ver-
fïïgung zu haben, notiere ich an dieser Stelle noch einmal die zu ihrer
Handhabung unerlâBlichen aber schon frûher aufgestellten Definitionen
und Relationen :

r± cotgô-
DmE

r _

G

DM
E

(10)

A - DJ
cos 6 + rx sin 6 v

z=z XXX% T" ^1^2 T" (•

1 (x + « - 1

y 2 — -^ 2 ~T~ -^*' ii V

c2 cos 0 — t2 sin 0

EiT2 — x»ri) c°tg ^ •

>j — T2) COtg 0

(H)

(12)

(13)

(14)

§ 5. Kurven auf der Flâche

Wir betrachten jetzt beliebige Kujrven auf der Flâche bezogen auf ihre
Bogenlânge s als Parameter :

x(«) *[«(«), t>(«)] (1)

Ihr Tangentenvektor sei bezeichnet mit %, so da8 nach frtiher getroffenen
Festsetzungen gilt

% x' E u' t + Gv' t (2)

Bezeichnen wir mit <x denjenigen Winkel, um den man den Vektor r in
positivem Sinne drehen mufi, bis er mit % zusammenfâllt, so gilt nach
der Géométrie des schiefwinkligen Dreiecks

~~~ sin 0

Der Vergleich mit (2) ergibt daher

sin 6

Gv' sinoc

(3)

(4)sin 0 ' sin 6

Wie in § 2 bezeichne ich geodâtische Krûmmung, Normalschrnttkrtim-
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mung und geodâtisehe Torsion unserer Kurve (1) mit y, x und t. Der
Unterschied gegentiber der Situation in § 2 besteht nur darin, da6 an
Stelle von t und 0 daselbst jetzt X und oc zu treten haben. Statt der Deiî-
nitionen (10) in § 2 erscheint daher die Définition

(5)

und das System (12) von § 2 mu6 ersetzt werden durch

rx' — F cotg a x H : X + (x cos oc — r sin oc) 5R

X' X
sin oc

sin

x + y cotg oc X +

X - (x

(6)

Ist nun v t) (u, v) ein beliebiges Vektorfeld auf der Flâche, so gilt
auf unserer Kurve (1)

(8)

und aus (4) folgt unmittelbarnach den fruheren Festsetzungen

t)
sin (6 — a)

V—g—-
sin 0 +

sin <

sin

1 ~~ ; a ri

Dièse Relation wenden wir nun an auf die Vektoren r' und 5t' in der
ersten und dritten Gleichung von (6). Hierauf eliminieren wir in den ge-
nannten Gleichungen X mit Hilfe von (3), und die invarianten Ableitun-
gen Dux, Du$l, DVX, Dvyi mit Hilfe der Ableitungsgleichungen (6)
und (7) von § 3, worauf der Komponentenvergleich folgende Relationen
liefert : citi in /v i sin oc

^mT7"2

smoc
sin 0

sin oc

sm0 A " sin0

Gleichwertig mit (9) sind die Relationen

x cos oc — x sin oc

xsinoc -{- r cos oc

sm

sin

sin

(0

sin

sin
(0

-«)
6

-a)
0

-«)
(x2 cos 0 — r2 sin 0)

(o;2 sm 0 + r2 cos 0)

(9)

—7;sm 1/

7:
sm v

r2

sin(0—oc) n nxH ^—zr~^ (o;1cos0+î'1sm0)
sin u

sin(0—oc)
sin

(10)
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Man erhàlt dieselben, wenn man in der ganzen Konstruktion nicht den
Vektor r, sondern den Vektor t als Richtungsbasis wâhlt. Doch kann
man (10) auch ohne Rechnung erhalten, indem man — gestutzt auf die
vorhandenen Symmetrien — in (9) r und t, sowie die Indizes 1 und 2

vertauscht und gleichzeitig 6 in — 6, sowie oc in — (6 — oc) uberfuhrt.
Mit Riicksicht auf eine spàtere Anwendung ist es zweekmâBig, aus (9)

und (10) je die beiden ersten Gleichungen auszuwâhlen und in einer be-
sonderen Tafel zusammenzustellen. Eliminiert man dabei noch F mit
Hilfe von (5), so ergibt sich folgendes Résultat :

sin (0 - oc) sinoc _,

4^sin 0
(11)

sin(0-<%) sinoc n mx cos oc - r sm oc — î—^— xA A—:—j. (x2 cos 0 - r2 sm 0)
smd sm6

#cos (6-oc) + r sin(0-oc) —(XCosô+rsin^)^rt;(XiCosô+risin^)^;j.xsin u sm u

Aus den beiden letzten Gleichungen von (11) berechnen wir schlieBlich
noch die expliziten Werte der Normalschnittkrummung x und der geodâ-
tischen Torsion r zu

_ sin (d-oc) cos^x xx + cos (0-oc) sinoca;2 sin(0-a) sin oc

x __ + ^_ -(Tl-T2), (12)

_ sin (d-oc) cos oc xx + cos (d-oc) sin^x t2 sin(0-<%) sin^.
•j- [X-l — Xn) XO)sm0 sinfl v i 2/ \ y

Wegen (12) § 4 kann (13) auch ersetzt werden durch

_ sin (6 — 2oc) r1 — r2 cos (6 — 2oc) xx — x2
T slnë 2 sîîTë 2 ' '

§6. Integralsâtze

Verbindet man die Integrabilitâtsbedingungen (8) und (9) von § 4 mit
den Formeln (11) von § 5, so erhâlt man mûhelos die Integralformel von
Bonnet und zwei weitere Integralformeln.

Wir betrachten ein beliebiges stetig dififerenzierbares Vektorfeld auf
der Plâche. Seine Komponenten bezogen auf das Parameternetz seien

X(u, v) und Y(u, v), so daB also

d0 X(u, v)du + Y(u, v)dv (1)

eine lineare Differentialform darstellt.
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Der Integralsatz von GauB hat dann die Gestalt

'x du + Y dv $$ (F. - X,) dudv (2)

Aus den Relationen (11) und (4) von § 5 entnehmen wir nun ohne
weiteres folgende drei Differentialformeln :

yds Eyxdu + GT2dv + doc j
(3)

ETxdu + Gy2dv + dot - d6 j

(x eos oc — r sin oc) ds Exxdu-\-G{x2 eos 0—r2 sin 0)di;, (4)

[a? cos (0—oc) + r sin (0—•«)] JSr (a?x cos 6+^ sin O)du+Gx2dv (5)

Umlauft also unsere Kurve ein einfach zusammenhângendes Flàchen-
stuck in positivem Sinne, so erfâhrt der Winkel oc die Variation 2n,
wâhrend die Variation des Winkels 6 Null ist.

Wir kônnen weiter annehmen, dafi in jedem einzelnen Falle der Winkel
0 positiv bewertet sei und dementspreehend das positive Flâchenelement

do EG sin 0 dudv (6)
einfuhren.

Unter diesen Voraussetzungen ergibt nun die Anwendung der Formeln
(1) bis (5) auf die Integrabilitâtsbedingungen (8) und (9) von § 4 unmittel-
bar folgende Integralformeln :

(£ yds 2tz — j Kdo (7)

(7) (a: cos a — x sin <x) d« ^ ^ 2 =-i do (8)
«a J sin c/

^C*r /fi N ttx X1, /•^(^sinO-TiCosOJ + r'!^® [x cos (0 ~(%) + Tsm(0-«)]d«= ^^— ~-2—LJ——-do. (9)
t>^ ^z sin (/

Die Integralformel (7) von Bonnet ist absolut invariant gegeniiber be-

liebigen Transformationen des Parameternetzes. Die Integralformeln (8)
und (9) aber sind halbinvariant in folgendem Sinne : Die Formel (8) ist
unabhàngig von der Wahl der v-Linien, die Formel (9) ist unabhângig
von der Wahl der ^-Linien, da das Entsprechende fur die Differential-
formen (4) und (5) gilt.

Zur geometrischen Interprétation der Differentialformen (4) und (5)

mag folgender Hinweis dienlich sein : Ist

* *(«) (10)

ein beliebiger lângs unserer Kurve erklârter stetig differenzierbarer Ein-
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heitsvektor und ô derjenige Winkel, um den man t) in positivem Sinne
drehen muB, bis er mit dem Tangentenvektor X unserer Kurve zu-
sammenfâllt, so gilt& t) sm <5 s + cos ô X (11)
W°

s [X, 91] (12)

der Seitenvektor unserer Kurve ist.
Andererseits gilt nach unseren Festsetzungen ùber den Flâehenstreifen

in § 2 9V rg s — xn X oder, in der vereinfachten Bezeichnung

SR' rs -xX (13)

Also folgt 9tr t) r sin ô — x cos ô oder, wegen 511> 0

yiv' x cos ô — x sin <5 (14)

Je nachdem man also t) mit r oder t identifiziert, erhalt man

<Jlx' x cos oc — t sin oc (15)
°der

STl t' a: cos (0 - «) + r sin (0 - «) (16)

Die Beziehung (15) bestâtigt man direkt an Hand von (6) in § 5 und (16)
ist das Seitenstuck zu (15) im Sinne der schon verschiedentlich erôrterten
Symmetrie im ganzen System.

Die Differentialformen (4) und (5) liefern also das infinitésimale MaB
fur die senkrechte Abweichung der Koordinatenvektoren r und t von der
Tangentialebene bei Verschiebung des Dreibeins (r, t, 5R) langs unserer
Kurve.

Es ist instruktiv, daneben die Spezialisation v X zu betrachten.
Nach (6) §2 folgt »*< *. (17)

Aus (12) § 5 ersieht man, daB xds keine lineare Differentialform ist.
Dagegen ergibt die Berechnung unter stândiger Beachtung von (4) § 5,

daB xds2 eine quadratische Differentialform ist :

E*xxdu* + G2x2dv*

+ EO(x1 cos 0 + xx sin 0)dudv

+ EG(x2 cos 0 — r2 sin 6)dudv

(18)

Damit sind wir auf einem Umwege wieder zur Darstellung der zweiten
Hauptform gemâB den Formeki (11) bis (13) von § 5 gelangt. In der Tat
haben wir ja nach (11) § 3 fur die Bogenlânge als Parameter

£ gt2' x (19)
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§ 7. Unabhângige Erummungsgrofien

Die vier Linienkrùmmungen xx, x2, r± und r2 sind durch die Relation
(10) von § 2 gebunden. Fur gewisse Rechnungen empfiehlt es sich, dièse

Abhângigkeit zu beseitigen. Wir schreiben sie zu diesem Zwecke in der
Gestalt

rt + r2 - fo - *,) cotg 6 (1)

und fûhren folgende unabhângige KrummungsgrôBen ein :

fi l (x\ - x2) \ (2)

v l (Ti - Ta)

Aus (1) und (2) erhalten wir nun

Xt X + fJL

Xn —— A jbt

ri=z v — ju cotg 6 I (3)

T2 — V — fX COtg 0

und die Relation (1) ist identisch erfïïllt.
Fur die Normalschnittkrummung x und die geodâtische Torsion r

einer beliebigen Kurve auf der Flâche erhalten wir nun aus den Formeln
(12) und (14) von § 5

sin (0 — 2oc) cos (0 - 2a)
x X — v cotg 0 H z^Tâ— A* "^ ^""^ r

X

sin 0

cos (0 — 2a)

sin 0

sin (0 — 2oc)
(4)

sin0 ^ ' sin0

Fur die mittlere Krummung H und die GauBsche Krûmmung K erhalten
wir weiter aus (16) und (17) von § 3

H X — v cotg 0

K (X - m sin20

Das System (5) gibt AnlaB, die KrummungsgrôBen A, /* und v soweit als

môglich durch die absoluten Invarianten H und K auszudrûcken. Dabei
empfiehlt es sich, zur Vereinfachung der Schreibweise eine Hilfsinvariante
J einzufûhren gemâB J2 H2 — K (6)

Jetzt kann (5) geschrieben werden in der Gestalt

H X - v cotg 0

±
sin20

(7)

192



und (4) geht tiber in

T —

sin 6

cos (0 — 2 oc)

sin 6

sin 6

sin (6 — 2

(8)

Die zweite Gleichung von (7) schlieBlich gibt AnlaB, einen Hilfswinkel co

einzufiihren derart, daB (7) ubergeht in
À H + J cos 6 cos co

J sin 0 sin co

J sin 0 cos co

(9)

(10)

(H)

An Stelle von (3) erhalten wir damit das System

xx H + J cos (co — 0) x2 H + J cos (co + 0)

rx — J sin (co — 0) r2 — «/ sin (co + 0)

Das System (8) aber geht tiber in

x £T + J cos (m — 6 + 2oc)

x — J sin (co — 0 + 2a)

Damit sind die nicht absolut invarianten Elemente in den Linienkrum-
mungen auf die Winkel co, 0 und oc reduziert.

Aus (11) folgt die absolut invariante Relation

(x - Hf + r2 J2 (12)

die wegen (6) auch geschrieben werden kann in der Gestalt

x2 + r2 - 27?x + K 0 (13)

§ 8. Die dritte Hauptform

Als ,,dritte Hauptform" einer Flâehe x x(u,v) bezeichnet man
bekanntlich die erste Hauptform ihres Normalenbildes

III (1)

Wir kônnen jetzt die bekannte Tatsache, daB die drei Hauptformen
einer Flâehe

I i2 E2ù2 + 2EO cos duv + O2v2

(2)II - 91* Lu2 + 2Muv + Nv2

III k2 e2u2 + 2eg cos êùv + g2v2

Hnear abhângig sind ohne jede Spezialisierung direkt berechnen.
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Aus (10) § 7 und (13) § 3 erhalten wir

L E2[H + J cos (co - 6)]
M EG[H cos 0 + J cos co] (3)
N G2[H + J cos (co + 0)]

Weiter erhalten wir fur (1) im Sinne von (2) wegen 9lM EDJSt und
9lv GZ^SR gestiitzt auf (6) und (7) von § 35 sowie auf (10) § 7

e2 E2[H2 + J2+ 2HJ cos (co - 0)]
eg cos & EG [(H2 + J2) cos 0 + 2HJ cos co] (4)

g2 G2[H2 + J2+ 2HJ cos (co + 0)]

Aus (2) und (3) aber folgt

II HI+ J[E2 cos (co—0) ù2+ 2EG cos coùv+G2 cos(co+0)t>2]. (5)

Analog folgt aus (2) und (4)

III (H2 + J2) I + 2HJ [E2 cos (co -6)ù2 + 2EG cos couv
+ G2 cos (co + 6)v2] (6)

Aus (5) und (6) aber folgt

m rr tt — / to TJ2\ T— Zilll r= (t/ — JlL*) ±

also wegen (6) § 7

111= - (7)

Die Frage stellt sich jetzt, ob man durch lineare Kombination aus /
und // ein reines Quadrat erzeugen kônne, dessen Basis dann offenbar
eine invariante Linearform sein muB.

Die Rechnung ergibt nach (5) :

n _ 2ji H-J

H + J

H-J

H + J

'

(9)

mit

und

0 ^cos( " „ e^+gcos(-^f-^-)i), (10)

V Esi i + Gsin (11)

wobei nun 0 und ï7 die gesuchten invarianten Linearformen sind.
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Fûhrt man durch
h I htj Kl ~t~ ^2 '¦^ <12>

die beiden Hauptkrummungen hx und A2 der Flâche ein, so erhàlt man
aus (8), (9), (10), (11) und (7) folgende Darstellung fur die drei Haupt-
formen :

III k\&* + k\
(13)

Um eine geometrische Deutung der Linearformen 0 und W zu erhalten,
ziehen wir die Pormeln (4) von § 5 heran. Dieselben lauten, wenn man sie

auf einen beliebigen Parameter t bezieht

™±. (14)EÙ=Vï ; Qb=
sin 0 sin 0

Fuhrt man (14) in (10) und (11) ein, so folgt

V mn(^± + «JVÏ. (15)

Setzt man dièse Werte in (13) ein, so ergibt sich

+A + ^_zA cos («, - e

und

^^±A ^A J. (17)+ co8(«»fl + 2

Wegen (12) ergeben sich daraus mit Rucksicht auf (11) § 7 die Formeln

II xl ; III (x* + t2) J (18)

Die erste dieser Formeln ist wohlbekannt und wird gewôhnlich im
AnschluB an die Définition der zweiten Hauptform hergeleitet.

Die beiden Linearformen geben offenbar wieder Anlaô zu zwei Inte-
gralsatzen, die wir schreiben wollen in der Gestalt

(fi 0dt J/ 8xEG sin Odudv (19)

und
n

Wdt j§ S2EO sin Odudv (20)(fi
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wobei

und

i/"^ *
(22)

zwei absolute Invarianten der Flâche sind.
Um ihren Zusammenhang mit den bekannten Invarianten zu ermit-

teln, fuhren wir (12) in die Formeln (10) von § 7 ein und erhalten :

cos

sin

Wâhlt man die Krummungslinien als Parameternetz, so gilt 0=a>= —

und mit Rucksicht auf (9) und (5) von § 3 folgt

S1==y1 S2 y2. (25)

Zum SchluB môge noch eine rationale Formel Platz finden, die den

Zusammenhang zwischen dem Netzwinkel 6 und seinem sphârischen Ab-
bild â liefert. Aus (4) findet man ohne Schwierigkeit

eg sin â EG(H2 - J2) sin 0 (26)

Unter Beachtung von (12) ergibt sich daher weiter in Verbindung mit (4)

Q
1 (kt k2\ a

1 (kx kA eos co
cotêê Y\i +1)cotg d + T[Tt -Tj 1CT • (27)

§9. Schlufibetrachtung

In einem zweiten Teil beabsichtige ich, einige ausgedehntere Anwen-
dungen der hier entwickelten Grundgleichungen zu behandebi. An dieser
Stelle begniige ich mich, an zwei wohlbekannten Sâtzen die Anwendung
des nun geometrisch interpretierbaren Formalismus zu illustrieren.

Satz 1 (Liouville). Trâgt eine Flache zwei einparametrige Scharen von
geodâtischen Linien, die sich unter konstantem Winkel schneiden, so ist die
Gau/ische Krlimmung Null.
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Beweis. Wir wàhlen die beiden Scharen als Koordinatennetz und
finden aile erforderlichen Hilfsmittel in § 4. Nach Voraussetzung gilt

yx y2 0 0 konst

Aub Gleichung (11) folgt daher auch

A r2 o

und die Gleichung (6) ergibt unmittelbar K 0, w.z.b.w.

Satz 2. Auf einer Flàche K — 1 bilden die Asymptotenlinien ein
Tschebyschew-Netz.

Beweis. Wir wâhlen die Asymptotenlinien als Koordinaten-Netz und
finden wiederum die nôtigen Hilfsmittel in § 4. Nach Konstruktion gilt

xx x2 0

und naeh Voraussetzung ist K — 1. Aus den Gleichungen (12) und
(13) folgt daher leicht

r1 — t2 € ; e2 1

und aus den Codazzischen Gleichungen (7) ergibt sich unmittelbar

rx r2 o.
Aus (10) folgt daher weiter

E E(u) G G(v)

und die Skalentransformationen

û= $E(u)du v= $G(v)dv

liefern E G 1, w. z. b. w.
AbschlieBend will ich zur besseren Orientierung des Lesers auf eine

Reihe von bestimmten klassischen Problemen hinweisen, an denen man
die Niitzlichkeit der im Vorausgehenden entwickelten Methodik erproben
kann.

1. Die Bestimmung einer Floche auf Grund ihrer ersten Hauptform (4)
§ 2 nach Vorgabe einer Raumkurve. Aile Hilfsmittel finden sich in § 4.

Man wâhle das Parameternetz so, dafi in ihm die vorgegebene Raumkurve

auf die w-Linie v 0 bezogen ist. Hierauf stelle man x2 und t2
mit Hilfe der Relationen (12) und (13) explizite durch die GrôBen x1,r1,6
und K dar. Fuhrt man nun die gefundenen Ausdrûcke in die Codazzischen

Gleichungen (7) ein, so verwandeln sich dieselben in ein System
von zwei partiellen Differentialgleichungen 1. Ordnung fur die Funk-
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tionen xx und rt und die eindeutige Bestimmung der letzteren folgt aus
klassischen Sâtzen ûber partielle Difïerentialgleichungen.

2. Verbiegung einer Floche unter Erhaltung ihrer Krûmmungslinien.

Wir haben xx t2 0, 6 =4r- Gleichung (12) ist erfullt und (13)
Kliefert x2 — —. Die Codazzischen Gleichungen ergeben ein totales
xi

System 1. Ordnung fur xx. Seine Integrabilitâtsbedingungen liefern die-
jenigen speziellen Flàchen, fur welche die verlangte Verbiegung môglich
ist (Gesimsflâchen).

3. Die Verbiegung von Minimalflàchen. Man wàhle ein isothermes

Netz. Wegen 6 — — liefert (12) r2 — tx und wegen H 0 liefert

(14) x2 — xt. Die Gleichung (13) wird daher befriedigt durch den
Ansatz ./ ,/xx y — K cos cp ; xx V — K sm (p

und die Codazzischen Gleichungen liefern ein totales System fur <p. Aus
demselben kann man direkt ersehen, daB eine einparametrige Schar von
Biegungen môglich ist.

4. Die Bestimmung derjenigen Flâchen, welche zwei Oeradenscharen
enthalten. Die Durchfûhrung der Aufgabe gestaltet sich umfangreich, ist
aber sehr instruktiv, weil der ganze Apparat in Bewegung gesetzt werden
muB. Dank der durchgehenden Invarianz bringt die explizite Lôsung die
bekannte Beweglichkeit des Stangenmodells direkt zum Ausdruck.

Eine letzte Bemerkung. Die beiden invarianten linearen Differential-
formen (10) und (11) in § 8 sind hier vermutlich zum erstenmal allgemein
und explizite durch die Grôfien E, G, 6 und eu dargestellt. Sie nehmen
eine zentrale Stellung ein und erôffnen einen neuen Zugang zu den

KrûmmungsgrôBen. Ganz allgemein habe ich festgestellt, daB man durch
n invariante lineare Differentialformen in einer n-dimensionalen Koordi-
natenmannigfaltigkeit eine absolut invariante Differentialgeometrie er-
hàlt, die eine Mittelstellung zwischen der Euklidischen und der Riemann-
schen Géométrie einnimmt. Dieselbe liefert in ganz naturlicher Weise
eine einheitliche Feldtheorie, welche besonders gûnstige Verhâltnisse
schaflFt fur die Bedûrfnisse der Feldphysik. Darûber werde ich an anderer
Stelle berichten.*

(Eingegangen den 9. Juni 1953.)

Vgl. dazu: Grundlagen zu einer linearen Feldtheorie. Z. Physik 138, 16 (1954).
Zur linearen Feldtheorie I. Z. Physik 139, 44 (1954).
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