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Relaxationsmethoden bester Strategie
zur Losung linearer Gleichungssysteme

von E. STIEFEL, Ziirich

Herrn Prof. Dr. M. Plancherel zum 70. Geburtstag in Dankbarkeit gewidmet

I. Die Auflosung eines gegebenen Gleichungssystems
Az =k (1)

mit symmetrischer und positiv definiter Matrix 4 ist dquivalent mit der
Aufgabe, das Minimum der quadratischen Funktion

F(x) =3 (x, Ad2) — (k, 2) (2)

zu suchen. Hierin bedeutet das Komma die Bildung des skalaren Pro-
dukts der beiden in der Klammer stehenden Vektoren. Im euklidischen
Raum R der Vektoren z sind die Niveauflichen dieser Funktion dhnliche
und &dhnlich gelegene Ellipsoide, deren gemeinsames Zentrum der Lo-
sungspunkt A-'k des Gleichungssystems (1) ist.

Zur Losung der gestellten Aufgabe wird das Verfahren des stirksten Ab-
stiegs (Gradientenmethode) empfohlen. Man konstruiert ausgehend von
einem Nédherungspunkt x, die von x, auslaufende orthogonale Trajektorie
der Niveauflichen ; diese Kurve endigt im gesuchten Lésungspunkt. Die
Durchfithrung dieses Ansatzes fiithrt auf folgende Formeln. Der Gradient
von F(z) ist gegeben durch

grad F = Ax — Lk (3)
also hat man das System von linearen Differentialgleichungen zu losen :
dx

wobei ¢ ein Parameter auf der Trajektorie ist. Die rechte Seite von (4)
hat eine einfache Bedeutung. Sie gibt das Residuum an, das iibrigbleibt,
wenn man x als Versuchspunkt in die Gleichungen (1) einsetzt. Wir

nennen daher
r=k — Ax (5)
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den zu z gehorigen Residuenvektor und haben

dx

-—C-l?zr. (6)

Dieses System von Differentialgleichungen kann nach einer der klassi-
schen numerischen Methoden gelést werden. Die einfachste Moglichkeit
liefert das Eulersche Polygonzugverfahren. Man wihlt eine Einteilung
t, der t-Achse und rechnet nach der Vorschrift

Az, = r; At (6=0,1,2,-.-), (7)
wobei
a4, =t,., — ¢, Az, = 2,4y — ;

gesetzt wurde. Es ist fiir das folgende bequemer, den reziproken Wert ¢,
von At, einzufiithren :

Adx, = —r, , ¢,>0 . (8)

q;

Die verschiedenen Gradientenverfahren unterscheiden sich nun durch
die Wahl der ¢,, und diese Wahl ist von ausschlaggebender Bedeutung.
Teilt man ndmlich fein ein, so erhdlt man zwar einen Polygonzug, der
nahe der gewiinschten Trajektorie verldauft, aber erst nach sehr vielen
Schritten in die Ndhe des Losungspunktes fithrt ; bei allzu grober Ein-
teilung kann der Polygonzug divergieren. Am bekanntesten sind folgende
beiden speziellen Gradientenverfahren.

1. Wihlt man eine gleichmiBige Einteilung der ¢-Achse, das heifit,
nimmt man in (8) fiir ¢, eine feste von 7 unabhingige Zahl ¢, so erhilt
man einen Algorithmus, der in der deutschen Literatur als Gesamtschritt-
verfahren bezeichnet wird.

2. Zur Erklirung des sogenannten optimalen Gradientenverfahrens
brauchen wir den Fehlervektor

y=A1% — x , (9)

der zu einem Naherungspunkt x gehort, und benostigen ein Maf fiir die
GrofBle dieses Fehlers. Als solches werden wir wahlweise benutzen
a) Das euklidische Maf3

o(y) = (¥.¥) - (10)
b) Das durch die quadratische Form in (2) gegebene ,,A-Maf*
¢ (y) = (y, 4y) . (11)
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Wegen r = Ay gilt noch

@' (y) = (y,r)=(r, A7r) . (12)
c) Das Residuenmafl
¢'(y) = (r,r) = (4y, 4y) . (13)

Nur dieses letzte Maf3 kann bei gegebenem Néaherungspunkt z numerisch
berechnet werden. Alle MaBe sind positiv definit, das hei3t aus ¢(y) = 0
folgt y = 0.

Das optimale Gradientenverfahren beruht nun auf folgender Grund-
idee der Relaxationsrechnung. Wir betrachten in (8) den i-ten Schritt,
also

Ty = & +—7;,
was geometrisch ein geradliniges Fortschreiten von x; aus in der Rich-
tung r, bedeutet. Man wihle nun ¢, und damit z, ; auf diesem gerad-

linigen Weg so, dafl der zugehorige Fehler y, , moglichst klein wird. Bei
Zugrundelegung des A-MaBes ergibt dies :

1
Yierp = Y: — ”q°i“7'z'

2 1
‘P,(?/i+1) = @' (y;) —— (rs, 7)) + “%— (r;, Ar,)

q9; q
und somit
(ry, A7)
N ok Ll 4
it (rs, 75) (14)

¢; muB also gleich dem Rayleighschen Quotient des Residuenvektors ge-
wihlt werden. Verwendet man jedoch das Residuenmal, so ergibt sich

_(Ar;, Ar)

", dr) -

was ein Schwarzscher Quotient ist. Die analoge Formel fiir das euklidi-
sche Maf3

q; = “(;t‘(’zjtr%);:)“ (16)

ist nicht brauchbar, da A-! unbekannt ist. Bezeichnet man die drei
Werte (14) (15) (16) beziehlich mit ¢}, ¢}, ¢;, so gilt wegen der bekannten
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Ungleichungen zwischen Schwarzschen Quotienten

9 <q; <q; . (17)

. . e s " 4 / .
Die drei zugehorigen Ndherungspunkte x;.,, z;.,, *,,, liegen also von

z; aus in der Richtung r; gesehen in dieser Reihenfolge. Da ;. , der Ful3-
punkt des Lotes ist, das vom Losungspunkt A-'%4 auf unseren gerad-
linigen Weg gefillt werden kann, ergibt sich, daB z} , und 27, im Sinne
der euklidischen Metrik nidher am Losungspunkt liegen als xz,. Bei
beiden Varianten (14) und (15) des optimalen Gradientenverfahrens
ndhert man sich also dem Losungspunkt in monotoner Weise. Trotzdem
beschreibt man einen Zickzack-Kurs, was daraus hervorgeht, dafl zum
Beispiel bei Verwendung von (14) der Eulersche Polygonzug lauter
rechte Winkel hat.

Von M. Hestenes [1] (vgl. das Literaturverzeichnis am Schluf}) ist da-
her vorgeschlagen worden, durch Hinzufiigen eines willkiirlichen Koeffi-
zienten B, mit 0<f,<1 in der Formel (8) den Polygonzug zu glitten.
Man rechnet dann also etwa nach der Vorschrift

1
Ax; = B, m i,
wobei ¢, durch (14) gegeben ist. Numerische Beispiele wurden von
M. L. Stein [2] gerechnet.

Im Sinn der Theorie der Spiele liefern die optimalen Gradientenmetho-
den eine Taktik zur Auflosung der gegebenen linearen Gleichungen, in-
dem bei jedem einzelnen Schritt (ohne Riicksicht auf Vorgeschichte und
Weiterentwicklung des Iterationsprozesses) das Beste getan wird. Im
folgenden soll die zugehorige Strategie entwickelt werden, die also den
ProzeB3 auf lingere Sicht hin moglichst giinstig steuert. Wir betrachten
alle Gradientenprozesse (8), die eine vorgegebene Anzahl n von Schritten
aufweisen. Jeder von ihnen ist charakterisiert durch eine Folge von posi-
tiven Koeffizienten

Qo> 915+ +> 9n— (18)

und fiihrt zu einem Endpunkt z, mit zugehorigem Fehlervektor y,. Es
soll nun die Koeffizientenfolge (18) so bestimmt werden, daf} y, mog-
lichst klein wird im Sinne eines unserer Fehlermafle. Den Endpunkt z,
nennen wir einen Punkt bester Strategie.

IT. Um unser Strategieproblem zu lésen, wollen wir zunéchst die itera-
tive Rechenvorschrift (8) in einen geschlossenen Ausdruck fiir den End-
punkt z, verwandeln. Ohne Beeintrichtigung der Allgemeinheit konnen
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wir annehmen, daf} der Anfangspunkt z, der Nullpunkt ist. Nehmen wir
dann noch das Polynom n-ten Grades in einer Unbestimmten 1

- I B

zu Hilfe, so ergibt sich leicht durch vollstindige Induktion

x, = L= j”(A) k (20)
mit dem zugehorigen Residuum
r, = R,(A)k . (21)

Das Polynom R,(A) ist durch folgende beiden Eigenschaften charakteri-
siert. Erstens nimmt es fiir 4 = 0 den Wert Eins an

R,(0) =1, (22)

und zweitens besitzt es die Zahlen unserer Folge (18) als Nullstellen. Um-
gekehrt ist durch die Wahl eines Polynoms R, (1) mit lauter positiven
Nullstellen eine Folge (18) und damit ein Gradientenprozel3 gegeben.

Uberdies aber gibt das Polynom R,(A) Auskunft iiber die bei z, er-
reichte Genauigkeit der Gleichungsauflosung. Rechnen wir ndmlich im
Koordinatensystem der Hauptachsen von 4 und bezeichnen mit 4, die
Eigenwerte von 4 sowie beziehlich mit r,;, k; die j-ten Komponenten
von r,, k, so folgt aus (21)

oy = By (4;)k; . (23)
Rn (L)
1
Rn (2j)
// -y \f(
/ SN
/
zL —0 o - O- l
0 £ 2 Ao 4; 1
Fig. 1
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Wir zeichnen nun iiber einer A-Achse eine graphische Darstellung des
Polynoms R,(A) und markieren auf der A-Achse die Eigenwerte. Dann
geben die zugehorigen Ordinaten an, um wieviel Prozent die betreffende
Komponente des anfinglichen Residuenvektors ¢ beim Gradientenpro-
ze3 reduziert wurde. Wegen (22) werden dabei Eigenwerte, die nahe am
Nullpunkt liegen, Schwierigkeiten machen. Dies ist zu erwarten, da in
einem solchen Fall das gegebene Gleichungssystem schlecht konditioniert
ist.

Bereits diese mehr qualitativen Uberlegungen geben einen Hinweis,
wie die Koeffizienten ¢, fiir einen Gradientenprozefl guter Strategie zu
wihlen sind. Sie miissen ordentlich verteilt in dasjenige Intervall der
A-Achse gelegt werden, in welchem man Eigenwerte von A erwartet, da-
mit R,(A) in diesem Intervall kleine Werte annimmt. Fiir gut konditio-
nierte Systeme (1) wird diese Regel oft geniigen, da bei solchen leicht
Schranken fiir die Eigenwerte a priori angegeben werden konnen. Beim
Gesamtschrittverfahren von Nr.I hat das Polynom R, (1) eine einzige
n-fache Nullstelle fir A = ¢; in ihrer Umgebung werden die Residuen
rasch eliminiert, wiahrend an anderen Stellen der A-Achse das Verfahren
nicht sehr wirkungsvoll ist.

Wegen (21) und (23) bezeichnen wir R,(4) hinfort als Residuenpoly-
nom.

III. Die exakte Losung des Strategieproblems wird sehr erleichtert,
wenn wir die drei Fehlermafle von Nr. I als Spezialfille eines allgemeine-
ren MaBles ¢ darstellen. Um ein solches zu definieren, brauchen wir eine
obere Schranke fiir die Eigenwerte von A4, die nicht sehr genau zu sein
braucht und die wir unbeschadet der Allgemeinheit zu Eins normieren.
Ferner wihlen wir im Intervall 0 <A<1 eine beliebige positive Dichte-
funktion o(1) so, daBl das Integral

j2 g

existiert. Dann definieren wir

v =22 o yan . (2

Unser altes MaB ¢’ zum Beispiel entspricht der Wahl
o(A) =Zk6(A — 4;) , (25)
6))
wobei § die Diracsche J-Funktion bedeutet.
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In der Tat ist dann

1 2
yo= 2k T2t
@ ¢ A

2
S(A — AydA = X iy LA
) A;

B== Zrm' L = (rn’ A_lrn) = ‘p’(yn) s
W A

?

wobei noch (23) und (12) benutzt wurden. Analog entsprechen die Ma@e
@, ¢" den Dichten
1
A
In allen drei Fillen macht die Dichtefunktion an den Eigenwerten
d-Spriinge ; wir werden im folgenden aber durchaus auch stetige Dichte-
funktionen zulassen. In einem solchen Fall sprechen wir von einem kont:-
nuterlichen Fehlermafl, wihrend die ¢-Mafle von Nr. I als diskontinuier-
lich bezeichnet werden sollen. Das am Ende von Nr. I gestellte Strategie-
problem nimmt nun folgende einfache Form an :

Unter allen Polynomen n-ten Grades R,(4) mit positiven Nullstellen,
welche der Nebenbedingung R,(0) = 1 geniigen, ist dasjenige zu fin-
den, welches das Integral (24) bei gegebener Dichtefunktion g (4) minimal
macht. Zur Losung dieser Extremalaufgabe konstruieren wir die Folge
P, (1) von Orthogonalpolynomen zur Dichtefunktion ¢(2) :

Zk6(A—2) und AZKI6(A— A . (26)

1
JP.,(A)P,(Me(M)di=0 fir u#v. (27)
0
P, habe den Grad » und werde durch die Bedingung
P,(0) = 1 (28)

eindeutig festgelegt. (Diese Normierungsbedingung ist also verschieden
von der iiblichen, bei welcher verlangt wird, daBl das Normierungsintegral
eins sei.) Dann liefert R, (A1) = P,(4) die Losung des Extremalproblems.

Bewets. Zunichst erfiillt P, (1) unsere Konkurrenzbedingungen, denn
die Nullstellen =y, 7,,...,n,_; dieses Polynoms sind nach bekannten
Sdtzen iiber Orthogonalpolynome alle reell und liegen im Intervall
0<A<1. AuBlerdem ist wegen (28) die Nebenbedingung erfiillt. Weiter
verwenden wir das Hilfsmittel der allgemeinen GauBschen Quadratur
(vgl. Szegod [3], S.46). Es existieren positive Integrationsgewichte

Pos> P1s-++» Pn_y, 80 daBl fiir jedes Polynom P (1) vom Hochstgrad
(2n — 1) gilt

n—1

f‘: p; P () -

7=0

_fP(l)g(l)dl =
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Ist nun R,(A) ein den Konkurrenzbedingungen geniigendes Polynom,'
so wenden wir diese Formel auf

R, (4)® —
A

an, was in der Tat ein Polynom vom Grad (2n — 1) ist. Es folgt

zp_lRW 0(A)dA = le(’l di + "51 Ryfw) =1

n

P(3) =

i
Die rechte Seite wird minimal, wenn R,(7;) = 0 ist, das heit, wenn
R,(A) = P,(4) ist. Fiir den Wert des Minimums ergibt sich noch

1 n—1
e(4) P
= | ——dl — X = 29
6‘ A i=0 4; (29)
falls wir wie frither die Nullstellen von R, wieder mit ¢,,qy,..., ¢,

bezeichnen. Damit ist der Beweis beendigt. Ubrigens ist die rechte Seite
von (29) einfach der Fehler, den man begeht, wenn man das Integral der
Funktion 1/A4 mit Hilfe der GauBschen Quadratur angenihert berechnet.
Wir formulieren als vorldufiges Resultat

Satz 1. Zu jeder Dichtefunktion o(A) gehort ein Gradientenverfahren
bester Strategie, welches eine gegebene Anzahl n von Schritten aufweist. Es
wird gefunden, indem man die zur Dichtefunktion (1) gehdrige Schar
orthogonaler Polynome bis zu einem Polynom n-ten Grades aufbaut und fiir
die Koeffizienten q, in der Rechenvorschrift (8) die Nullstellen dieses Poly-
noms in beliebiger Rethenfolge nimmd.

Ein Beispiel moge dies erliutern. Wir wihlen als Dichte

=Vi1—1) .
Fiihrt man die Hilfsvariable ¢ durch
cosp =1— 24
ein und bildet die Funktionen
1 sin (n + 1) ¢
n-+1 sin @

s0 bestétigt man leicht, daB sie orthogonal sind in bezug auf die gegebene
Dichte und daBB R,(4) ein Polynom vom Grad = ist, welches fiir 2 = 0
den Wert Eins annimmt. Die Nullstellen von R,(1) koénnen konstruiert
werden, indem man einen Kreis iiber der Strecke von 0 bis 1 der A-Achse
als Durchmesser zeichnet und ihm ein regulidres 2(n -+ 1)-Eck einbe-

Rn (2') == s (30)
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schreibt, das eine Ecke im Nullpunkt hat. Die Nullstellen — (und damit
die g-Werte in (8)) — sind dann die Abszissen der Eckpunkte (mit Aus-
nahme von 0 und 1). Die Polynome (30) sind Tschebyscheffsche Sinus-
polynome ; sie sind tabelliert bei Lanzcos [4]. In der dortigen Bezeich-
nung ist

1
n + 1

Fiir unser Fehlermafl (29) ergibt sich noch

1 1 — 4 1 T
— 2 — == —
'/’n*(.!Rn(l) l/ 7 di w12

Wie ersichtlich beriicksichtigt dieses Mal} die zu kleinen Eigenwerten
gehorigen Residuen mit einem grofen Gewicht, wihrend die zu hoheren
Eigenwerten gehorigen kaum etwas beitragen. Diese Art der Fehler-
messung ist vorteilhaft, wenn man Randwertaufgaben der mathemati-
schen Physik lost, indem man ein Punktgitter iiber das Grundgebiet
legt und Differenzenrechnung anwendet. Es entsteht dann ein schlecht
konditioniertes Gleichungssystem, das also Eigenwerte in der Ndhe des
Nullpunkts hat. Uberdies aber sind meistens die zu diesen kleinen Eigen-
werten gehorigen Residuenkomponenten groB3, so dafl sie eben beim
RelaxationsprozeB mit grofem Gewicht zu beriicksichtigen sind. Diese
Erscheinung wurde in einer fritheren Arbeit [5] als ,, Kifig“ bezeichnet
und ausfiihrlich diskutiert.

Ahnliche Polynome wie (30) beniitzt C. Lanczos [6] bei einer anderen
Methode zur Gleichungsauflésung.

Bei gut konditionierten Systemen wird eine untere Schranke ¢>0 fiir
die Eigenwerte zum voraus bekannt sein; man wird dann p(1) = 0
wiahlen im Intervall 0 <A<e, weil dort keine Residuen liquidiert wer-
den miissen. Das obige Beispiel wire also dann so zu modifizieren, dafl
man den Kreis iiber der Strecke von ¢ bis 1 konstruiert und das regulére
Polygon einbeschreibt. Man erhilt so ein Relaxationsverfahren, das im
wesentlichen mit einer von D. Young [7] entwickelten Methode iiberein-
stimmt, die auf Untersuchungen von Shortley und Flanders beruht. Die
Youngsche Methode versagt jedoch fiir ¢ = 0 und ist daher nicht sehr
wirksam fiir kleine ¢.

R,(1) = 8 (2 —42) .

IV. Das in Satz 1 niedergelegte Resultat ist noch in mehrfacher Hin-
sicht unvollstindig. Erstens ist der im Punkt z, bester Strategie endi-
gende Polygonzug nicht eindeutig bestimmt, sondern abhingig von der
gewdhlten Reihenfolge der Nullstellen des Residuenpolynoms R, (4).
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Die Zwischenpunkte x, des Polygonzugs sind durchaus keine Punkte
bester Strategie und daher als Niherungslosung des Gleichungssystems
meistens unbrauchbar. Mit anderen Worten, man darf den Gradienten-
prozef3 nicht abbrechen, bevor der n-te Schritt wirklich ausgefiihrt ist.

Zweitens ergibt Satz 1 nichts im Fall der Dichten (25) (26), die zu den
diskontinuierlichen Fehlermaflen ¢, ¢', ¢” gehoren und uns eigentlich
am meisten interessieren. In der Tat sind ja diese Dichten mit Hilfe der
Eigenwerte der Gleichungsmatrix gebildet und diese Eigenwerte konnen
nicht als bekannt angesehen werden.

Alle diese Nachteile werden behoben, wenn wir den Gradientenproze8
etwas modifizieren, indem wir statt der Nullstellen der Orthogonalpoly-
nome die Rekursionsformel benutzen, welche zwischen ihnen besteht. Es

seien Ro(3), By(2), ..., B,(4),..., R,(3) (31)

die Orthogonalpolynome zur vorgegebenen Dichte g (1), welche die Nor-
mierungsbedingung
R,(0) =1 (32)

erfiilllen. Zwischen je dreien besteht eine Rekursionsformel (vgl. [3],
S. 41), die man erhélt, indem man AR;(1) nach den Orthogonalpoly-
nomen entwickelt :

AR(A) = — q; B, (A) + ¢, R,(A) — p; B, (2) . (33)

;> t;, p, sind die Entwicklungskoeffizienten und haben nichts zu tun mit
GroBen, die frither mit denselben Buchstaben bezeichnet wurden. Wegen
(32) folgt
bi=p:i+ 4 »
also
AR,(A) = — q; By 1 (2) + (p; + q)) Ri(A) — p; B, 4(2) (34)
wobei noch
By=1, po=0 (35)
zu setzen ist.
Wir konstruieren nun eine neue Folge von Néherungspunkten z; nach
der Vorschrift

1
=0, =2+ dz;, Az, = A (rs + p: Az, ) (36)
wobei r; wieder der zu x,; gehorige Residuenvektor ist. Wir behaupten,

daB dieser Polygonzug in demselben Punkt z, endigt, wie der nach Satz 1
mit Hilfe des Polynoms R,(A) konstruierte GradientenprozeB.
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Beweis. Wir zeigen durch vollstéindige Induktion

ri = B (A)k . (37)
Zunichst folgt aus
rm=k— A4z, ,
r, =k—Ax, |,
durch Subtraktion
ria — 1= — Adx,; . (38)
Somit
1 D;
ria=1r,—Adx, =r, ——Ar, — ?AAx,-_l .
3 £

1

Indem man (38) noch einmal benutzt
1 .
Tiga =71; ——Ar; + '&(7'5 — 7).
z i

Nach Induktionsvoraussetzung

. 1 ,
roa= (12— 4) ) - B Rk

q; i

Setzt man hierin fir 4R,(A4) die aus (34) folgende Formel
AR;(4) = — q;R; 1, (4) + (p; + ¢,) B,(4) — p; B,_,(4)
ein, so folgt in der Tat (37). Speziell ergibt sich
r, = R,(A)k .

Die Konfrontation mit (21) zeigt, dafl beim alten Prozef3 (8) und beim
neuen ProzeBl (36) die End-Residuen iibereinstimmen, und somit fallen
auch die Endpunkte zusammen. Damit ist unsere Behauptung bewiesen.
Die Vorschrift (36) unterscheidet sich iibrigens von einem Gradienten-
prozeB nur in dem zusitzlichen Term in Az, ,, der also die Vorge-
schichte des Verfahrens beriicksichtigt.

Unser neu definiertes Relaxationsverfahren vermeidet nun die ge-
nannten Nachteile. Erstens ist der Polygonzug durchaus eindeutig defi-
niert. Von ausschlaggebender Bedeutung ist ferner die Tatsache, dal nun
wegen (37) nicht nur der Endpunkt ein Punkt bester Strategie ist, sondern
auch jeder Zwischenpunkt x, des Polygonzugs. Ein Iterationsverfahren
mit dieser Eigenschaft wollen wir ein anfangskonvergentes Verfahren
nennen.

Satz 2. Zu jeder Dichtefunktion o(A) gehort ein anfangskonvergentes
Relaxationsverfahren. Es wird gefunden, indem man die zur Dichtefunktion
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o(A) gehdorige Schar orthogonaler Polynome konstruiert und mit Hilfe der
zwischen thnen bestehenden Rekursionsformeln (34) nach der Vorschrift (36)
rechnet.

Im Falle des Beispiels von Nr. IIT lautet diese Relaxationsvorschrift

1
A% =775
Zweitens funktioniert (36) auch fiir die diskontinuierlichen Fehlermasse.

Um dies zu zeigen, berechnen wir die Koeffizienten in der Entwicklung
(34):

[4(¢ + V)r, + Az, ] . (39)

1 2 1 ¢
9= — JAR(A) R 11(A)o(A)dA, p;= — [AR(2) B, () o(4)d4,
Ni+1 0 Ni-1 0

1 1

Dabei ist N, eine Abkiirzung fiir die Norm

1
N, = [ R;(2)*e(A)dA . (40)
0
Diesen Formeln geben wir die etwas einfachere Gestalt
— L aRr,0)enydr — S (41)
7 =g [AR () e(2) Pi» Pi=§ e

Fiir das Fehlermall ¢’ von Formel (11) ergibt die zugehorige Dichte (25)
unter Beachtung von (37) und (23)

1 1
fAR(M)%0(A)di =2k §f AR, (A)26(A — A;)dA
0 G o
=Xk MR, (4) = X lyrs; = (ry, Ary)
(7 6))]
und analog
N,=(r,,r) ,

also

1 N,
L= — (7. Y —m. =t . .. 42
qz Ni (Tz’ Arz) pz H pz Nz’—l Qz—l ( )

Der erste Teil von ¢, ist der Rayleighsche Quotient des Residuums r;.
Der Algorithmus (36) (42) stimmt iiberein mit dem Verfahren, das in
fritheren Arbeiten als n-Schritt- Verfahren (Stiefel [5]), oder Methode der
konjugierten Gradienten (Hestenes, Stiefel [8] speziell S. 423 Formeln
(9: 6)) bezeichnet wurde. Da dieses Verfahren an den zitierten Stellen
ausfiithrlich geschildert wurde und auBlerdem seither in verschiedenen
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Richtungen verallgemeinert wurde (vgl. Hestenes [9], Householder [10]),
formulieren wir nur das aus unseren Strategie-Uberlegungen folgende
Resultat.

Satz 3. Die Methode der konjugierten Gradienten gibt einen kleineren
Fehlervektor (im Sinne des A-Mafes von Nr.1I) als jedes Gradientenverfah-
ren, das aus hochstens gleichviel Schritten besteht.

Benutzt man aber das Fehlerma8 ¢” von (13), also die Quadratsumme
der Residuen, so erhilt man einen Algorithmus, der durch das folgende
Formelsystem vollstindig beschrieben wird.

ro==F%, Tipy = 7, -+ Ar; Ar; = i (p;Ar,y — Ar)) . (43)

?

(Diese Formeln folgen aus (38) und (36).) Dabei ist

1 W,
Po = 0 s iy == N. (Ari’ Arz) — P;i > 2 ::WT—IQz‘—l s (44)

wobei
N;=(r;, 4r,) .

Der erste Teil von ¢, ist Schwarzscher Quotient des Residuenvektors,
Parallel damit oder nachtréglich berechnet man die Naherungspunkte

g =0, w3 =2 + Az, , Az, :El_“ (r; + p; Az, ) . (45)

Satz 4. Der soeben beschriebene Algorithmus liefert eine kleinere Quadrat-
summe der Residuen als jedes Gradientenverfahren, das aus hochstens
gleichviel Schritten besteht.

Die Verwendung des FehlermaBles ¢ von Formel (10) ist jedoch auch
hier nicht moglich, da in den Formeln die inverse Matrix 4-! auftaucht.

Das Verfahren (43) bis (45) kann als Weiterentwicklung einer Methode
von Lanczos [11] angesehen werden.

V. Wir haben in Satz 2 unsere Iterationen als ,,anfangskonvergent*
bezeichnet. Der Ordnung halber soll jetzt noch die Konvergenz im streng
mathematischen Sinn untersucht werden. Dazu brauchen wir eine Infor-
mation iiber den Abbau des Fehlermafies. Wir verwenden zunéchst, daf

R, — R,
A

wegen (32) ein Polynom vom Grad ¢ ist. Da R, , auf allen Polynomen
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.niedrigeren Grades orthogonal steht, folgt

2
f.&.’f_l_i._%_lzzﬂgd}. —0, fR Bint ban _fRa“ 0dA . (46)

Sodann schreiben wir die Rekursionsformel (34) in der Gestalt

. Rz-l—l Ri - Ri-—l
Ri - + s 2. + pz l *

Multiplikation mit R; und Integration ergibt

2
fR%le = *qff}%l—lfiedl—l- qg-f—%-edl

und wegen (46)

fR“gdl = — fR;_+1 odi + Qif—l%- odi .

Aus der Definition (24) des FehlermaBes und aus (40) folgt

Yigoa — Y = — ’q"N (47)

Diese Formel kann zum Beispiel dazu dienen, beim Algorithmus das
Fehlermaf} leicht mitzuberechnen. Wir benutzen sie aber jetzt zur Her-
leitung einiger Ungleichungen. Da y bei jedem Schritt sicher verringert
"wird, folgt zunéichst ¢,>0. Aus der zweiten Gleichung (41) schliet man
P;,>0 und aus der ersten

1
jodd =1 .

95 Nio

Endgiiltig 0<g,<1 . (48)
Die Zahlen y; bilden eine monoton abnehmende Folge positiver Zahlen,
es existiert also lim p; und somit liefert (47)

.1 .
hm—q——N,,z- — lim (p;y; —9,) =0 .

t

Wegen (48) folgt auch lim N, = 0 .

Satz b. Das Relaxationsverfahren von Satz 2 konvergiert im Mittel, das
hesf3t 1
§f Ri(A)20(A)dAd — 0 .
0
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Das Verfahren der konjugierten Gradienten und seine Variante (43) bis
(45) nehmen hinsichtlich der Konvergenz eine Sonderstellung ein. Aus
der Orthogonalitit der Residuenpolynome

1
{ R;(A)R;(A)p(A)dA =0 fir <¢#k
0
folgt ndmlich beziehlich beim Einsetzen der Dichten (25) (26)
(r;y 7)) = 0, ‘(ri,Ark) =0 fir <¢#k.

Die Residuenvektoren bilden also ein Orthogonalsystem im gewdhnlichen
Sinn bzw. im Sinn der A-Metrik. Da es nur endlich viele von Null ver-
schiedene Orthogonalvektoren geben kann, mufl unser Relaxationspro-
zeB nach endlich vielen Schritten zu einem Null-Residuum, das heiBit
zum Losungspunkt des Gleichungssystems, fithren. Die Anzahl der
Schritte ist hochstens gleich der Anzahl der gegebenen Gleichungen (1).

Fiir die Praxis ist dieses Resultat ohne groBe Bedeutung, da die An-
zahl der Schritte, fiir welche diese beiden immerhin komplizierten Relaxa-
tionsverfahren durchzurechnen sind, meistens viel zu grof} ist und sich
oft numerische Instabilititen zeigen. Wir benutzen vielmehr folgende
Tatsache. Wenn der Vektor k£ in (1) in einem gegeniiber 4 invarianten
Teilraum R’ des totalen Raumes R liegt, so fithren beide Verfahren nach
hochstens soviel Schritten zur exakten Losung, wie die Dimension von
R’ angibt.

Sei nun ein schlecht konditioniertes Gleichungssystem gegeben, dann
kann man nach einem Vorschlag von H. Rutishauser, der auf der Idee
des ,,purified vector” von Lanczos [11] beruht, folgendermafien vor-
gehen. Man wihle eine Zahl ¢>0, die zwar nicht untere Grenze der
Eigenwerte zu sein braucht, aber doch nur wenige Eigenwerte links von
sich 14B8t. Zunidchst werden nun nach einem einfachen Relaxationsver-
fahren (etwa nach dem am Ende von Nr. ITI beschriebenen) die Residuen
beseitigt, die zu den Eigenwerten im Intervall von ¢ bis 1 gehoren. Der
verbleibende Residuenvektor liegt in demjenigen A-invarianten Teil-
raum, der aufgespannt wird von den Eigenvektoren, die zu den Eigen-
werten links von ¢ gehoéren. Fahrt man nun nach der feineren Methode
der konjugierten Gradienten oder nach dem Algorithmus (43) bis (45)
fort, so wird der exakte Loésungspunkt nach hoéchstens sovielen Schritten
erreicht, wie die Anzahl der links von ¢ gelassenen Eigenwerte angibt.
Ist diese nicht zu groB, so werden auch die genannten Algorithmen stabil
bleiben. '

Mitunter ist es sogar angezeigt, die links von ¢ liegenden Eigenwerte
zu berechnen. Dafiir wird mit Vorteil der Quotienten-Differenzen-Algo-
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rithmus von Rutishauser [12] verwendet, fiir den sowohl die Relaxation
nach konjugierten Gradienten als auch die Vorschrift (43) bis (45) die
notigen Grundlagen liefern. Man relaxiert dann weiter nach dem Gra-
dientenverfahren, (8), indem man fiir die ¢, diese Eigenwerte nimmt.

Zum AbschluB} sei noch bemerkt, dal unsere ganze Theorie bis und mit
Satz 5 auch dann gilt, wenn 4 ein symmetrischer und vollstetiger Operator
im Hilbert-Raum ist, dessen Spektrum im Intervall von 0 bis 1 der
A-Achse liegt, ohne sich im Nullpunkt zu hdufen. Auch die eben geschil-
derte kombinierte Relaxationsmethode bleibt durchfiihrbar, falls links
von der gewidhlten Zahl ¢ nur endlich viele Eigenwerte liegen.

VI. Wir kehren zuriick zu stetigen Dichtefunktionen o(4). Hat man
keine andere Information iiber die Eigenwerte von 4 als daB sie im Inter-
vall 0 bis 1 liegen, so mufl man wihlen

o()>0 fir 0<i<l,

damit alle Residuen angegriffen werden. Andererseits mull p(0) = 0
sein, damit das Integral

1

e(4)

6“ 7 d
existieren kann, wie in Nr. IIT vorausgesetzt wurde. Ferner kann g (1) =0
gewihlt werden, weil oberhalb 1 keine Residuen liquidiert werden miissen.
Aus diesen Griinden werden wir g (1) in der Form schreiben

o(A) = A*(1 — Bf(1) , >0, f=—1%. (49)

Dabei sei etwa f(4) eine im Intervall 0 < 4 << 1 zweimal stetig differen-
zierbare Funktion und

f()>0 fir 0<A<<1. (50)

Satz 6. Unter diesen Voraussetzungen fir die Dichtefunktion konver-
giert die Relaxation von Satz 2, das heft, die nach (36) konstruierte Folge
von Ndherungspunkten x; strebt gegen den Lésungspunkt des gegebenen
Qleichungssystems.

Beweis. Nach Szegd [3], Seite 291, Formel (12.1.12) gilt fir die
Orthogonalpolynome R,(4) zur gegebenen Dichte die asymptotische
Formel fiir grofle Werte von ¢

a 1 B
2N, 2 2 4(1—32) 2
n Vi)

1
4

R;(2) ~ cos(tp+y), 0<i<l, (51)
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wobei N, wieder die Norm und y eine hier nicht weiter interessierende
Phase bedeutet und wieder cos @ =1 — 21 gesetzt wurde. Wegen
Satz 5 strebt die Norm gegen Null, und daher folgt

R, (A) —0 fir 0<i<l. (52)
Aus (23)
ry; = R;(A)k; -0 fiir 2 —>ocoundallej .

Damit ist der Satz bewiesen.
Wegen R(0) = 1 ist natiirlich die Konvergenz (52) ungleichmi8ig in

bezug auf 1; Eigenwerte, die nahe bei 4 = 0 liegen, machen also auch

hier Schwierigkeiten. Die Aussage (51) bedeutet noch, dal R,(2) eine

Schwingung ist mit der Amplitudenfunktion

o 1 B 1

Q‘j\f; A “?“T(l _A)“?_T

a;(A) ~ - Vf(—ﬂ

(53)

Durch Wahl von «, 8; f(4) kann man diese Amplitude beliebig formen,
um so der anfinglichen Residuenverteilung Rechnung zu tragen.
Wir diskutieren weiter die einfachste mogliche Wahl

f(A)=1 also (i) =221 — A)F . (54)

Die Polynome R,(A) werden dann hypergeometrische (Jacobische)
Polynome, die wir bezeichnen mit

R (a,B; ) )=F(—n,n+a+p+1,a+1;2), (55)
wobei F' die Gauflsche hypergeometrische Funktion bedeutet. Die Neben-

bedingung (22) ist erfiillt. Die zwischen ihnen bestehende Rekursions-
formel (Szego [3], Seite 71) liefert nach (36) folgende einfache Relaxa-
tionsvorschrift, die wir hypergeometrische Relaxation nennen.

xo_:'o, xz_*_l:xz"‘}“dxz, 7’2——21{,‘—-—ALU

T 2

Axi:_ql—_(r'i-'_pidxi—l) »
wobei
_ (a =B+ 1(ax+ B+ 1) (@ — B)(a+ B)
q%’“i[H” 20 + o+ B+ 1 “2i+a+ﬁ+2}’ (59)
_ (@ — B+ 1)(a+ B+ 1) (« — B)(x + p)
pi“%{l“ 2+ ot B+ 1 T % ¥ ot B }
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Der Relaxationsproze3 hingt noch von den beiden Parametern «, 8 ab,
deren Bedeutung jetzt abgeklirt werden soll. Setzt man in (53) eine ge-
eignete asymptotische Anndherung fiir die Norm der hypergeometrischen
Polynome ein, so erhilt man zunéchst die Amplitudenfunktion

_B_1
2

! X
al 5

Vanott

die nur fir 0<A<1 giiltig ist. Diese Amplitude nimmt ab bis zum
Punkt

a,(A) ~ A

. 20+ 1
QY PRy gy (58)
und dann wieder zu. Fiir 8 = — } befindet sich dieser Punkt am rechten

Ende des Intervalls von 0 bis 1, fiir <<« rechts von der Mitte und fiir
f>a links von der Mitte.

Bedeutung von o. Um diese abzukldren, brauchen wir feinere asym-
ptotische Formeln. Da wir insbesondere die Anwendung der hypergeo-
metrischen Relaxation auf schlecht konditionierte Systeme im Auge
haben, begniigen wir uns damit, das Verhalten von R, («,f;4) fiir
kleine 4 und grofle » anzugeben. Setzen wir:

x=2nVi, (59)
so gilt fiir festes x und » —oco nach Szegd [3], Seite 186, Formel (8.1.1)
R,(x, ;2) ~ Ay(2) . (60)

Dabei ist A, (x) die in Jahnke-Emde [13] tabellierte und dort in Fig. 96
graphisch dargestellte Funktion

2%y |

xa

Aa(x) = Ja(x) ’

wobei J,(z) Besselsche Funktion erster Art ist.

Die Formel (60) zeigt zunéichst, dafl der Parameter g fiir kleine 1 ohne
Einfluf} auf die Konvergenzverhéltnisse ist. Die Funktion A, («) beginnt
mit 4,(0) = 1, was der Bedingung (22) entspricht. Fiir wachsendes z
hat sie die Gestalt einer gedimpften Schwingung; in der folgenden
Tabelle ist die Lage und Hohe des ersten Minimums fiir einige Werte von
o angegeben.
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o x A, ()

0,5 4,49 — 0,217

1 5,14 — 0,132

1,6 5,76 — 0,086 (61)
2 6,38 — 0,059

3 7,59 — 0,029

4 8,77 — 0,016

5 9,94 — 0,009

Relaxiert man also zum Beispiel mit o = 5, so. liegt das Minimum
von R,(A) nach (59) bei
2
41— ( 4,97 )
n

\

und hat fiir alle n den Wert — 0,009. (Diese Aussagen gelten nur fir
grofle n.) Es wandert also mit wachsendem % in der Richtung der kleine-
ren Eigenwerte unter Beibehaltung seiner Hohe. Man wird nur so lange
relaxieren, bis dieses Wellental iiber den kleinsten Eigenwert hinweg-
lauft, was man daran erkennt, daf} alle Residuen auf 0,9 Prozent ihrer
anfianglichen Werte gesunken sind. Sollen die Residuen nur auf 10 Pro-
zent abgebaut werden, so verwendet man etwa o« = 1,56. Die kleinen
Eigenwerte werden dann friiher erreicht. '

Bedeutung von . Die Wahl von § duflert sich in erster Linie im Ver-
halten der Relaxation im rechten Teil des Intervalls 0<<iA<1. Wiahlt
man g = — %, so nimmt nach (57) die Amplitude monoton mit 4 ab,
die zu hoheren Eigenwerten gehorigen Residuen werden also am stédrksten
angegriffen. Lost man ein Randwertproblem der mathematischen Physik
mit Differenzenrechnung in einem Punktgitter, so bedeutet dies, daf die
Residuenverteilung geglittet wird. Dies bleibt richtig solange g <« ist,
wobei die Residuen an der Stelle (58) am stidrksten angegriffen werden.
Fir B>« jedoch gibt es eine Stelle im Intervall, fiir welche die Ampli-
tude (57) den Wert 1 hat. Rechts davon ist sie gréfer als 1; in dieser
Gegend werden also die Residuen aufgeschaukelt, das heiflt die Resi-
duenverteilung wird aufgerauht. Diese Rauhigkeit verschwindet wegen
Satz 6 wieder mit wachsendem 7, indem die kritische Stelle immer
weiter nach rechts riickt. Eine dhnliche Aufrauhung tritt ein, wenn man
bei elementareren Relaxationsmethoden die sogenannte Uberrelaxation
anwendet. Wir nennen daher g den Parameter der Uberrelazation.
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Um die Wirkung einer Uberrelaxation in der Gegend von A = 0 ab-
zukldren, geniigen asymptotische Betrachtungen nicht mehr. In der
folgenden Tabelle ist die Lage des ersten Minimums von R, («, f; A) in
den beiden typischen Fillen « = 0,5, f# = 0,5 und « = 0,5, 8 = 10,5

angegeben.
ﬁ == 0,5 ﬂ = 10>5
2 0,500 | — 0,333 0,167 | — 0,555
4 0,194 | — 0,250 0,075 | — 0,330
6 0,101 | — 0,233 0,046 | — 0,278 (62
8 0,062 | — 0,227 0,029 | — 0,258 )
10 0,041 | — 0,223 0,022 | — 0,243
12 0,030 | — 0,222 0,018 | — 0,230
12 (as) | 0,035 | — 0,217 0,035 | — 0,217

Die letzte Zeile enthilt die nach Tabelle (61) berechnete asymptoti-
sche Lage des Minimums fiir #» = 12. Man erkennt, daB fiir méBige
Werte von n die Uberrelaxation besser in das Gebiet der kleinen Eigen-
werte eindringt. Die mit ihr verbundene Aufrauhung der Residuen kann
bei Randwertaufgaben oft in Kauf genommen werden. In vielen Fillen
ist dann ndmlich die anfingliche Residuenverteilung glatt, so daf am
Anfang die zu den hoheren Eigenwerten gehorigen Residuenkomponenten
klein sind und ihre Aufschauklung nichts schadet. Falls man also die
Uberrelaxation anwenden kann, bewirkt sie eine Beschleunigung der An-
fangskonvergenz.

VII. Die verschiedenen hier angeregten Methoden wurden experimen-
tell nachgepriift am Beispiel der Torsion eines quadratischen Quer-
schnitts G durch Losung der partiellen Differentialgleichung

Af = —1, = 0 am Rande. (63)

Dabei ist 4 der Laplacesche Differentialoperator. Es wurde ein Gitter
von 10X 10 Teilquadraten in G gelegt, so dafl f in 81 inneren Gitter-
punkten bestimmt werden muBte. Als Annéherung des A-Operators in
(63) wurde die Summe der zweiten partiellen Differenzen in den beiden
Koordinatenrichtungen genommen. Die Relaxation geschah ohne Be-
nutzung der Symmetrien des Quadrats, so dafl die folgenden Ergeb-
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nisse auch informativ sind fiir ein allgemeiner gestaltetes Gebiet mit
etwa 80 Gitterpunkten. Ausgangsfunktion fiir die Relaxation ist in allen
Fillen die in @ identisch verschwindende Funktion.

100%?
50
20
Max /r/
10
% Max /af/
5 5 Max f
2
1 ] | n
] 15
05 +
] Fig.2
02 . Vorzeichen der Residuen:
@m0
Om«<o
Omto
@ Schachbretiverteilung’
Max /7a/
100%§‘
50 -
20
] a=- 15 Max /af/
10 p-155 Maxf
5
2 ]
1
Ll L T l v L] L] L ] 1 T n
5 10
Fig.3

Die Figuren 2 und 3 zeigen hypergeometrische Relaxationen. Es sind
jeweilen als Funktion der Schrittzahl n aufgetragen :

1. Das maximale Residuum 7, in G in Prozenten des Ausgangsresi-
duums, welches in allen Gitterpunkten — 1 ist.
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2. Der maximale Fehler der betreffenden Niherungslésung gegeniiber
der exakten Losung in Prozenten des maximalen exakten Wertes von
f, der natiirlich in der Mitte des Quadrats angenommen wird. Zur Beur-
teilung der Rauhigkeit der Residuen ist auBerdem angegeben, ob die
Residuen iiberall in G dasselbe Vorzeichen haben oder nicht, und es
wurde speziell hervorgehoben, wenn die sogenannte Schachbrettvertei-
lung eintritt, das heiflt, wenn jede Gitterstrecke an ihren Endpunkten
Residuen verschiedenen Vorzeichens trégt.

Figur 2 zeigt eine normale Relaxation mit o« = 1,5, 8 = 1,5. Die
Residuen werden abgebaut bis zum 14. Schritt unter Beibehaltung des
negativen Vorzeichens in allen Residuen. Beim 14. Schritt schlagen die
Vorzeichen um. Dies ist also der in Nr. VI erwihnte Moment, wo das
Wellental von R, (1) iiber den kleinsten Eigenwert streicht. Bei diesem
Schritt sollte man aufhoren.

Figur 3 veranschaulicht demgegeniiber eine typische Uberrelaxation
mit « = 1,5, f = 15,56. Die Residuen erhalten schon nach dem ersten
Schritt verschiedene Vorzeichen in @ und beim 9. Schritt tritt die Schach-
brettverteilung ein. Das maximale Residuum nimmt iiberhaupt nicht
ab. Trotzdem erhilt man mit 9 Schritten ein genaueres Resultat als in
Figur 2, indem der maximale Fehler im Funktionswert auf etwa 3 Pro-
zent abgesunken ist. Man kann also den Eintritt der Schachbrettvertei-
lung als Signal dafiir werten, daB die Uberrelaxation abzubrechen ist.

Dasselbe Beispiel wurde auch nach der am Ende von Nr. V geschilder-
ten kombinierten Methode durchgerechnet. Nach Wahl der unteren
Grenze ¢ = 0,25 wurden zunichst im Intervall

025 <A<1 (64)

die Residuen geniigend liquidiert, indem 11 Schritte des rohen Gradien-
tenprozesses (8) ausgefithrt wurden. Dabei wihlte man fiir die Faktoren
q; Zahlen im Intervall (64) mit einer gewissen Verdichtung an den Enden
des Intervalls. AnschlieBend folgten 2 Schritte des Prozesses (43) (44).
Die folgende Tabelle gibt den Stand von Residuen und Fehlern vor und
wihrend dieses zweiten Teils der Rechnung

Max | Af |
Ma il Bt A |
n x|r,| Max 7
0 88% 70%
1 23%, 5,1%
2 0,2 % 0,014 %
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was geniigend fiir die Wirksamkeit des kombinierten Verfahrens spricht.
An Stelle des Gradientenverfahrens (8) konnte man die anfingliche Glat-
tung auch mit hypergeometrischer Relaxation ausfiihren.
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