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Relaxationsmethoden bester Stratégie
zur Losung lînearer Gleichungssysteme

von E. Stiefel, Zurich

Herrn Prof. Dr. M. Plancherel zum 70. Geburtstag in Dankbarkeit gewidmet

I. Die Auflosung eines gegebenen Gleichungssystems

Ax k (1)

mit symmetrischer und positiv definiter Matrix A ist âquivalent mit der
Aufgabe, das Minimum der quadratischen Funktion

$(x,Ax)-(k,x) (2)

zu suchen. Hierin bedeutet das Komma die Bildung des skalaren Pro-
dukts der beiden in der Klammer stehenden Vektoren. Im euklidischen
Raum R der Vektoren x sind die Niveauflàchen dieser Funktion âhnliche
und âhnlich gelegene Ellipsoide, deren gemeinsames Zentrum der Lô-
sungspunkt A~xk des Gleichungssystems (1) ist.

Zur Losung der gestellten Aufgabe wird das Verfahren des stârksten Ab-
stiegs (Gradientenmethode) empfohlen. Man konstruiert ausgehend von
einem Nàherungspunkt x0 die von x0 auslaufende orthogonale Trajektorie
der Niveauflàchen ; dièse Kurve endigt im gesuchten Lôsungspunkt. Die
Durchfûhrung dièses Ansatzes fïihrt auf folgende Formeln. Der Gradient
von F(x) ist gegeben durch

grad F A x — k (3)

also hat man das System von linearen Differentialgleichungen zu lôsen :

%-=i-Ax, (4)

wobei t ein Parameter auf der Trajektorie ist. Die rechte Seite von (4)
hat eine einfache Bedeutung. Sie gibt das Residuum an, das ubrigbleibt,
wenn man x als Versuchspunkt in die Gleichungen (1) einsetzt. Wir
nennen daher

r k ~ A x (5)
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den zu x gehôrigen Residuenvektor und haben

dx

Dièses System von Differentialgleichungen kann nach einer der klassi-
schen numerischen Methoden gelôst werden. Die einfachste Môglichkeit
liefert das Eulersche Polygonzugverfahren. Man wàhlt eine Einteilung
t% der £-Achse und rechnet nach der Vorschrift

Axt rtAtt (i 0,1,2, (7)
wobei

Att - tt+1 - tt Axt xt+1 - xt

gesetzt wurde. Es ist fur das folgende bequemer, den reziproken Wert q%

von Att einzufiïhren :

Axt=j-rt, qz>0 (8)

Die verschiedenen Gradientenverfahren unterscheiden sich nun durch
die Wahl der qt, und dièse Wahl ist von ausschlaggebender Bedeutung.
Teilt man nâmlich fein ein, so erhâlt man zwar einen Polygonzug, der
nahe der gewtinschten Trajektorie verlàuft, aber erst nach sehr vielen
Schritten in die Nàhe des Lôsungspunktes fuhrt ; bei allzu grober
Einteilung kann der Polygonzug divergieren. Am bekanntesten sind folgende
beiden speziellen Gradientenverfahren.

1. Wahlt man eine gleichmàBige Einteilung der £~Achse, das heiBt,
nimmt man in (8) fur qt eine feste von i unabhàngige Zahl q, so erhâlt
man einen Algorithmes, der in der deutschen Literatur als Gesamtschritt-

verfahren bezeichnet wird.

2. Zur Erklârung des sogenannten optimalen Gradientenverfahrens
brauchen wir den Fehlervektor

y A~*k - x (9)

der zu einem Nàherungspunkt x gehôrt, und benôtigen ein MaB fur die
GrôBe dièses Fehlers. Als solches werden wir wahlweise benutzen

a) Das euklidische MaB

b) Das durch die quadratische Form in (2) gegebene ,,A-Mafi"

<pf{y)^{y,Ay) (11)
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Wegen r A y gilt noch

Vf(y) (y,r) {r9A-*r) (12)

c) Das ResiduenmaB

(13)

Nur dièses letzte Ma6 kann bei gegebenem Naherungspunkt x numerisch
berechnet werden. Aile Ma8e sind positiv définit, das heiBt aus <p (y) 0

folgt y 0.
Das optimale Gradientenverfahren beruht nun auf folgender Grund-

idee der Relaxationsrechnung. Wir betrachten in (8) den a-ten Schritt,
also

xi+i ~ xi + ~ ri >

was geometrisch ein geradliniges Fortschreiten von xt aus m der Rieh-

tung rt bedeutet. Man wahle nun qt und damit xt+1 auf diesem gerad-
linigen Weg so, daB der zugehôrige Fehler yt+1 moglichst klein wird. Bei
Zugrundelegung des Ji-MaBes ergibt dies :

1

und somit

1

~ï (rt, Art)

Ht (rt,rt) ¦

qt muB also gleich dem Rayleighschen Quotient des Residuenvektors ge-
wàhlt werden. Verwendet man jedoch das ResiduenmaB, so ergibt sich

was ein Schwarzscher Quotient ist. Die analoge Formel fur das euklidi-
sehe MaB

ist nicht brauchbar, da A~* unbekannt ist. Bezeichnet man die drei
Werte (14) (15) (16) beziehlich mit q[, (fi, qt, so gilt wegen der bekannten
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Ungleichungen zwischen Schwarzschen Quotienten

Die drei zugehôrigen Nâherungspunkte x"%+1, x'l+1, xl+1 liegen also von
xt aus in der Richtung rt gesehen in dieser Reihenfolge. Da xl+1 der FuB-
punkt des Lotes ist, das vom Lôsungspunkt A~xk auf unseren gerad-
linigen Weg gefâllt werden kann, ergibt sich, daB x[+1 und x"+1 im Sinne
der euklidisehen Metrik nâher am Lôsungspunkt liegen als xt. Bei
beiden Varianten (14) und (15) des optimalen Gradientenverfahrens
nâhert man sich also dem Lôsungspunkt in monotoner Weise. Trotzdem
beschreibt man einen Zickzack-Kurs, was daraus hervorgeht, daB zum
Beispiel bei Verwendung von (14) der Eulersche Polygonzug lauter
rechte Winkel hat.

Von M. Hestenes [1] (vgl. das Literaturverzeichnis am SchluB) ist da-
her vorgeschlagen worden, durch Hinzufugen eines willkurlichen Koeffi-
zienten j3t mit 0<j8t<l in der Formel (8) den Polygonzug zu glàtten.
Man rechnet dann also etwa nach der Vorschrift

àxt pt — rt,

wobei qt dureh (14) gegeben ist. Numerische Beispiele wurden von
M. L. Stein [2] gerechnet.

Im Sinn der Théorie der Spiele liefern die optimalen Gradientenmetho-
den eine Taktik zur Auflôsung der gegebenen linearen Gleichungen, in-
dem bei jedem einzelnen Schritt (ohne Rueksicht auf Vorgesehichte und
Weiterentwicklung des Iterationsprozesses) das Beste getan wird. Im
folgenden soll die zugehôrige Stratégie entwickelt werden, die also den
ProzeB auf làngere Sicht hin môglichst gxinstig steuert. Wir betrachten
aile Gradientenprozesse (8), die eine vorgegebene Anzahl n von Sehritten
aufweisen. Jeder von ihnen ist eharakterisiert durch eine Folge von posi-
tiven Koeffizienten

und fuhrt zu einem Endpunkt xn mit zugehôrigem Fehlervektor yn. Es
soll nun die Koeffizientenfolge (18) so bestimmt werden, daB yn
môglichst klein wird im Sinne eines unserer FehlermaBe. Den Endpunkt xn

nennen wir einen Punkt bester Stratégie.

II. Um unser Strategieproblem zu lôsen, wollen wir zunâchst die itérative

Rechenvorschrift (8) in einen geschlossenen Ausdruck fur den
Endpunkt xn verwandeln. Ohne Beeintrâchtigung der AUgemeinheit kônnen
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wir annehmen, daB der Anfangspunkt x0 der Nullpunkt ist. Nehmen wir
dann noch das Polynom 7&-ten Grades in einer Unbestimmten A

(19)

zu Hilfe, so ergibt sich leicht durch vollstândige Induktion

mit dem zugehôrigen Residuum

rn

(20)

(21)

Das Polynom Rn{h) ist durch folgende beiden Eigenschaften charakteri-
siert. Erstens nimmt es fur A 0 den Wert Eins an

Rn(0) (22)

und zweitens besitzt es die Zahlen unserer Folge (18) als Nullstellen. Um-
gekehrt ist durch die Wahl eines Polynoms Rn{X) mit lauter positiven
Nullstellen eine Folge (18) und damit ein GradientenprozeB gegeben.

Ùberdies aber gibt das Polynom Bn{%) Auskunft uber die bei xn er-
reichte Genauigkeit der Gleichungsauflôsung. Rechnen wir nâmlich im
Koordinatensystem der Hauptachsen von A und bezeichnen mit kj die

Eigenwerte von A sowie beziehlich mit rnj, k^ die ;-ten Komponenten
von rn, Je, so folgt aus (21)

XJk, (23)rni
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Wir zeichnen mm ûber einer A-Achse eine graphische Darsteilung des

Polynoms Rn(X) und markieren auf der A-Achse die Eigenwerte. Dann
geben die zugehôrigen Ordinaten an, um wieviel Prozent die betreffende
Komponente des anfânglichen Residuenvektors k beim Gradientenpro-
zeB reduziert wurde. Wegen (22) werden dabei Eigenwerte, die nahe am
Nullpunkt liegen, Schwierigkeiten machen. Dies ist zu erwarten, da in
einem solchen Fall das gegebene Gleichungssystem schlecht konditioniert
ist.

Bereits dièse mehr qualitativen tîberlegungen geben einen Hinweis,
wie die Koeffizienten q{ fur einen GradientenprozeB guter Stratégie zu
wâhlen sind. Sie miissen ordentlich verteilt in dasjenige Intervall der
A-Achse gelegt werden, in welchem man Eigenwerte von A erwartet, da-
mit Rn(X) in diesem Intervall kleine Werte annimmt. Fur gut konditio-
nierte Système (1) wird dièse Regel oft genùgen, da bei solchen leieht
Schranken fur die Eigenwerte a priori angegeben werden kônnen. Beim
Gesamtschrittverfahren von Nr. I hat das Polynom Rn(X) eine einzige
w-fache Nullstelle fur X — q ; in ihrer Umgebung werden die Residuen
rasch eliminiert, wâhrend an anderen Stellen der A-Aehse das Verfahren
nicht sehr wirkungsvoll ist.

Wegen (21) und (23) bezeichnen wir Rn(X) hinfort als Residuenpoly-
nom.

III. Die exakte Lôsung des Strategieproblems wird sehr erleichtert,
wenn wir die drei FehlermaBe von Nr. I als Spezialfâlle eines allgemeine-
ren MaBes y) darstellen. Um ein solches zu definieren, brauchen wir eine
obère Schranke fur die Eigenwerte von A, die nicht sehr genau zu sein
braucht und die wir unbeschadet der Allgemeinheit zu Eins normieren.
Ferner wâhlen wir im Intervall 0 < X < 1 eine beliebige positive Dichte-

funktion q (A) so, daB das Intégral

0 A

existiert. Dann definieren wir

y)n J—n q{X)dX (24)
0 A

Unser altes MaB <pf zum Beispiel entspricht der Wahl

q(X) =Zk)ô{X - XJ (25)

wobei ô die Diracsche d-Funktion bedeutet.
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In der Tat ist dann

Wn Ek) \
0) o

wobei noch (23) und (12) benutzt wurden. Analog entsprechen die MaBe

ç>, ç?" den Dichten

\zk]ô{X- X$) und XEk)à{X- X,) (26)

In allen drei Fâllen macht die Dichtefunktion an den Eigenwerten
<$-Sprunge ; wir werden im folgenden aber durchaus auch stetige Dichte-
funktionen zulassen. In einem solchen Fall sprechen wir von einem konti-
nuierlichen FehlermaB, wâhrend die ç?-MaBe von Nr. I als diskontinuier-
lich bezeichnet werden sollen. Dçis am Ende von Nr. I gestellte Strategie-
problem nimmt nun folgende einfache Form an :

Unter allen Polynomen n-ten Grades Bn(X) mit positiven Nullstellen,
welche der Nebenbedingung Bn(0) — 1 geniigen, ist dasjenige zu fin-
den, welches das Intégral (24) bei gegebener Dichtefunktion q (X) minimal
macht. Zur Lôsung dieser Extremalaufgabe konstruieren wir die Folge
Pv (X) von Orthogonalpolynomen zur Dichtefunktion g (X) :

J P {X)Pv(X)q{X)ûX =0 fur tu ^ v (27)
o

Pv habe den Grad v und werde durch die Bedingung

Pv(0) 1 (28)

eindeutig festgelegt. (Dièse Normierungsbedingung ist also verschieden

von der ûblichen, bei welcher verlangt wird, daB das Normierungsintegral
eins sei.) Dann liefert Bn(X) Pn(X) die Lôsung des Extremalproblems.

Beweis. Zunachst erfûllt Pn(X) unsere Konkurrenzbedingungen, denn
die Nullstellen nQ, nx,..., nn_t dièses Polynoms sind nach bekannten
Sàtzen uber Orthogonalpolynome aile reell und liegen im Intervall
O<A<1. AuBerdem ist wegen (28) die Nebenbedingung erfullt. Weiter
verwenden wir das Hilfsmittel der allgemeinen GauBschen Quadratur
(vgl. Szegô [3], S. 46). Es existieren positive Integrationsgewichte
Po> Vi, • - •> Pn-n so daB fur jedes Polynom P(X) vom Hôchstgrad
(2n - 1) gilt
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Ist nun jRw(A) ein den Konkurrenzbedingungen genûgendes Polynom,
so wenden wir dièse Formel auf

an, was in der Tat ein Polynom vom Grad (2n — 1) ist. Es folgt

Die rechte Seite wird minimal, wenn Rn{n3) 0 ist, das heiBt, wenn
Rn(X) Pn(A) ist. Fur den Wert des Minimums ergibt sich noch

f^-^f (29)

falls wir wie fruher die Nullstellen von Rn wieder mit q0, qx,..., #„_!
bezeichnen. Damit ist der Beweis beendigt. Ûbrigens ist die rechte Seite

von (29) einfach der Fehler, den man begeht, wenn man das Intégral der
Funktion 1/A mit Hilfe der GauBschen Quadratur angenàhert berechnet.
Wir formulieren als vorlâufiges Résultat

Satz 1. Zu jeder Dichtefunktion q(X) géhôrt ein Gradientenverfahren
bester Stratégie, welches eine gegebene Anzahl n von Schritten aufweist. Es
wird gefunden, indem man die zur Dichtefunktion q(û) gehôrige Schar
orthogonaler Polynôme bis zu einem Polynom n-ten Grades aufbaut und fur
die Koeffizienten q% in der Rechenvorschrift (8) die Nullstellen dièses Poly-
noms in beliebiger Reïhenfolge nimmt.

Ein Beispiel môge dies erlâutern. Wir wâhlen als Dichte

Fiihrt man die Hilfsvariable <p durch

cos <p 1 — 2 A

ein und bildet die Funktionen

n + 1 sm
(30)

so bestàtigt man leicht, dafi sie orthogonal sind in bezug auf die gegebene
Dichte und daB Rn{X) ein ïolynom vom Grad n ist, welches fur X 0

den Wert Eins annimmt. Die Nullstellen von Rn{X) kônnen konstruiert
werden, indem man einen Kreis iiber der Strecke von 0 bis 1 der A-Achse
als Durchmesser zeichnet und ihm ein regulàres 2(n + 1)-Eck einbe-
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schreibt, das eine Ecke im Nullpunkt hat. Die Nullstellen — (und damit
die g-Werte in (8)) — sind dann die Abszissen der Eckpunkte (mit Aus-
nahme von 0 und 1). Die Polynôme (30) sind Tschebyscheffsche Sinus-
polynôme ; sie sind tabelliert bei Lanzcos [4]. In der dortigen Bezeich-

nung ist

Fur unser FehlermaB (29) ergibt sich noch

n + 1 2 '

Wie ersichtlich beriicksichtigt dièses MaB die zu kleinen Eigenwerten
gehôrigen Residuen mit einem groBen Gewicht, wahrend die zu hôheren
Eigenwerten gehôrigen kaum etwas beitragen. Dièse Art der Fehler-
messung ist vorteilhaft, wenn man Randwertaufgaben der mathemati-
schen Physik lôst, indem man ein Punktgitter liber das Grundgebiet
legt und Difïerenzenrechnung anwendet. Es entsteht dann ein schlecht
konditioniertes Gleiehungssystem, das also Eigenwerte in der Nàhe des

Nullpunkts hat. Ùberdies aber sind meistens die zu diesen kleinen
Eigenwerten gehôrigen Residuenkomponenten groB, so daB sie eben beim
RelaxationsprozeB mit groBem Gewicht zu berucksichtigen sind. Dièse

Erscheinung wurde in einer fruheren Arbeit [5] als ,,Kâfîg" bezeichnet
und ausfuhrlich diskutiert.

Âhnliche Polynôme wie (30) benûtzt C. Lanczos [6] bei einer anderen
Méthode zur Gleichungsauflôsung.

Bei gut Iconditionierten Systemen wird eine untere Schranke s > 0 fur
die Eigenwerte zum voraus bekannt sein ; man wird dann g (X) 0

wâhlen im Intervall 0 < X < e, weil dort keine Residuen liquidiert wer-
den miissen. Das obige Beispiel ware also dann so zu modifizieren, daB

man den Kreis uber der Strecke von e bis 1 konstruiert und das regulâre
Polygon einbeschreibt. Man erhâlt so ein Relaxationsverfahren, das im
wesentlichen mit einer von D. Young [7] entwickelten Méthode uberein-
stimmt, die auf Untersuchungen von Shortley und Flanders beruht. Die
Youngsche Méthode versagt jedoch fur e 0 und ist daher nicht sehr
wirksam fur kleine e.

IV. Das in Satz 1 niedergelegte Résultat ist noch in mehrfacher Hin-
sicht unvollstàndig. Erstens ist der im Punkt xn bester Stratégie endi-
gende Polygonzug nicht eindeutig bestimmt, sondern abhângig von der
gewàhlten Reihenfolge der Nullstellen des Residuenpolynoms Bn(X).
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Die Zwischenpunkte xt des Polygonzugs sind durchaus keine Punkte
bester Stratégie und daher als Nàherungslôsung des Gleichungssystems
meistens unbrauchbar. Mit anderen Worten, man darf den Gradienten-
prozeB nicht abbrechen, bevor der n-te Schritt wirklich ausgefuhrt ist.

Zweitens ergibt Satz 1 nichts im FaU der Dichten (25) (26), die zu den
diskontinuierlichen FehlermaBen <p, <p'9 q>" gehôren und uns eigentlich
am meisten interessieren. In der Tat sind ja dièse Dichten mit Hilfe der
Eigenwerte der Gleichungsmatrix gebildet und dièse Eigenwerte kônnen
nicht als bekannt angesehen werden.

Aile dièse Nachteile werden behoben, wenn wir den GradientenprozeB
etwas modifizieren, indem wir statt der Nullstellen der Orthogonalpoly-
nome die Rekursionsformel benutzen, welche zwischen ihnen besteht. Es
Seien

B{X), Bt(X),..., i?,(A),..., Bn(X) (31)

die Orthogonalpolynome zur vorgegebenen Dichte q (X), welche die Nor-
mierungsbedingung

#<(0) 1 (32)

erfûllen. Zwischen je dreien besteht eine Rekursionsformel (vgl. [3],
S. 41), die man erhàlt, indem man Ai?t(A) nach den Orthogonalpoly-
nomen entwickelt :

XRAX) - qiBi+1(X) + UBAX) - PiBM(X) (33)

Qi > U y Pi sin(i die Entwicklungskoeffizienten und haben nichts zu tun mit
GrôBen, die fruher mit denselben Buchstaben bezeichnet wurden. Wegen
(32) folgt

h P^ + 9i
also

XB,(X) - qiRi+1(X) + (Vi + qùBiW - Pi^i-iW (34)
wobei noch

B. 1 Po 0 (35)
zu setzen ist.

Wir konstruieren nun eine neue Folge von Nàherungspunkten xt nach
der Vorschrift

x0 0 xt+1 xi + ÂXi Ax{ — {r4 + PiAx^) (36)

wobei rf wieder der zu xt gehôrige Residuenvektor ist. Wir behaupten,
daB dieser Polygonzug in demselben Punkt xn endigt, wie der nach Satz 1

mit Hilfe des Polynoms Rn(X) konstruierte GradientenprozeB.
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Beweis. Wir zeigen durch vollstàndige Induktion

(37)
Zunàchst folgt aus

rt+i — fc A #«+i

r% k — Axt
durch Subtraktion

'.+!-*¦.= -il4*. (38)
Somit

1 v
rt+i r> - AAx% r, --~Art ~^Aâx%_x.

9.1 9.i

Indem man (38) noch einmal benutzt

1 p
'«4-1 — '* „ Ar% v „ \rt rt—l) •

9.% 9i

Nach Induktionsvoraussetzung

Setzt man hierin fur __4JRt(_4) die aus (34) folgende Formel

ABt(A) - î*-B,+iW + (P. + q.)R*(A) ™ P.B.-

ein, so folgt in der Tat (37). Speziell ergibt sich

rn Rn(A)k

Die Konfrontation mit (21) zeigt, daB beim alten ProzeB (8) und beim
neuen ProzeB (36) die End-Residuen ùbereinstimmen, und somit fallen
auch die Endpunkte zusammen. Damit ist unsere Behauptung bewiesen.
Die Vorschrifb (36) unterscheidet sich ûbrigens von einem Gradienten-
prozeB nur in dem zusâtzHchen Term in Axt_x, der also die Vorge-
schichte des Verfahrens berûcksichtigt.

Unser neu definiertes Relaxationsverfahren vermeidet nun die ge-
nannten Nachteile. Erstens ist der Polygonzug durchaus eindeutig defi-
niert. Von ausschlaggebender Bedeutung ist ferner die Tatsache, daB nun
wegen (37) nicht nur der Endpunkt ein Punkt bester Stratégie ist, sondern
auch jeder Zivischenpunkt xt des Polygonzugs. Ein Iterationsverfahren
mit dieser Eigenschaft wollen wir ein anfangskonvergentes Verfahren
nennen.

Satz 2. Zu jeder Dichtefunktion q(X) gehôrt ein anfangskonvergentes
Relaxationsverfahren. Es wird gefunden, indem man die zur Dichtefunktion
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q(X) gehorige Schar orthogonaler Polynôme Jconstruiert und mit Hilfe der
zwischen ihnen bestehenden Rekursionsformeln (34) nach der Vorschrift (36)
rechnet.

Im Falle des Beispiels von Nr. III lautet dièse Relaxationsvorschrift

[4( + l) +iA^ ¦ (39)

Zweitens funktioniert (36) auch fur die diskontinuierlichen Fehlermasse.
Dm dies zu zeigen, berechnen wir die Koeffizienten in der Entwicklung
(34):

•"t+l 0 -",-1 0

Dabei ist Nt eine Abkiirzung fiir die Norm

(40)
o

Diesen Formeln geben wir die etwas einfachere Gestalt

j^ p, p, =-igt_1 (41)

Pur das Fehlermafi tp' von Formel (11) ergibt die zugehorige Dichte (25)
unter Beachtung von (37) und (23)

j XRt(X)*Q{X)dX Zk*$ XRt(X)*ô(À - X,)dX
o o

(7)
und analog

,y _ (r r \

also
1 Nq=(rAr) p p=JK ]l. (42)

XV
%

XV j_x

Der erste Teil von qt ist der Rayleighsehe Quotient des Residuums rt.
Der Algorithmus (36) (42) stimmt ûberein mit dem Verfahren, das in
frùheren Arbeiten als n-Schritt-Verfahren (Stiefel [5]), oder Méthode der

konjugierten Gradienten (Hestenes, Stiefel [8] speziell S. 423 Formeln
(9: 6)) bezeichnet wurde. Da dièses Verfahren an den zitierten Stellen
ausfuhrlich geschildert wurde und auBerdem seither in verschiedenen
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Richtungen verallgemeinert wurde (vgl. Hestenes [9], Householder [10]),
formulieren wir nur das aus unseren Strategie-Ùberlegungen folgende
Résultat.

Satz 3. Die Méthode der konjugierten Gradienten gibt einen kleineren
Fehlervektor (im Sinne des A-Ma/îes von Nr.I) alsjedesGradientenverfah-
ren, das aus hôchstens gleichviel Schritten besteht.

Benutzt man aber das FehlermaB <p" von (13), also die Quadratsumme
der Residuen, so erhâlt man einen Algorithmus, der durch das folgende
Formelsystem vollstàndig beschrieben wird.

r0 k rl+1 r% -f- Art Arl — (PtArt_1 — Art) (43)

(Dièse Formeln folgen aus (38) und (36).) Dabei ist

1 N
— f) n —t- (À /f* A T \ /D Ti — Î-— H f 4-4-^

wobei

Der erste Teil von qt ist Schwarzscher Quotient des Residuenvektors.
Parallel damit oder nachtrâglich berechnet man die Naherungspunkte

x0 0 xt+1 xt + Âxx Axt — (rt + pîAxt_1) (45)

Satz 4. Der soeben beschriebene Algorithmus liefert eine kleinere Quadratsumme

der Residuen als jedes Gradientenverfahren, das aus hôchstens

gleichviel Schritten besteht.

Die Verwendung des FehlermaBes <p von Formel (10) ist jedoch auch
hier nicht môglich, da in den Formeln die inverse Matrix A~x auftaucht.

Das Verfahren (43) bis (45) kann als Weiterentwicklung einer Méthode
von Lanczos [11] angesehen werden.

V. Wir haben in Satz 2 unsere Iterationen als ,,anfangskonvergent"
bezeichnet. Der Ordnung halber soll jetzt noch die Konvergenz im streng
mathematischen Sinn untersucht werden. Dazu brauchen wir eine
Information ûber den Abbau des FehlermaBes. Wir verwenden zunaehst, daB

wegen (32) ein Polynom vom Grad i ist. Da R{+1 auf allen Polynomen
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niedrigeren Grades orthogonal steht, folgt

^ Mi+iQd* ", / ^ QdA= I—j—QdÀ. (46)

Sodann schreiben wir die Rekursionsformel (34) in der Gestalt

Multiplikation mit Rt und Intégration ergibt

und wegen (46)

Aus der Définition (24) des FehlermaBes und aus (40) folgt

Dièse Formel kann zum Beispiel dazu dienen, beim Algorithmes das
FehlermaB leicht mitzuberechnen. Wir benutzen sie aber jetzt zur Her-
leitung einiger Ungleichungen. Da y> bei jedem Schritt sicher verringert
wird, folgt zunâchst q% >0. Aus der zweiten Gleichung (41) schlieôt man
p% > 0 und aus der ersten

Endgûltig Q<q<l (4g)

Die Zahlen ip% bilden eine monoton abnehmende Folge positiver Zahlen,
es existiert also lim ipt und somit liefert (47)

Km — Nt - Hm (y>i+1 - tpt) 0

Wegen (48) folgt auch
Km i^ 0

Satz 6. Das Relaxationsverfahren von Satz 2 konvergiert im Mittel, das

heifit x
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Das Verfahren der konjugierten Gradienten und seine Variante (43) bis
(45) nehmen hinsichtlich der Konvergenz eine Sonderstellung ein. Aus
der Orthogonalitât der Residuenpolynome

J* ^(A)J?fc(A)^(A)^=: 0 fur i^k
o

folgt nàmlich beziehlich beim Einsetzen der Dichten (25) (26)

(ri9 rk) 0 (r,5 Ark) 0 fur i j± k

Die Residuenvektoren bilden also ein Orthogonalsystem im gewôhnlichen
Sinn bzw. im Sinn der ^4-Metrik. Da es nur endlich viele von Null ver-
schiedene Orthogonalvektoren geben kann, mufi unser Relaxationspro-
zeB nach endlich vielen Schritten zu einem Null-Residuum, das heiBt
zum Lôsungspunkt des Gleichungssystems, fuhren. Die Anzahl der
Schritte ist hôchstens gleich der Anzahl der gegebenen Gleichungen (1).

Fur die Praxis ist dièses Résultat ohne groBe Bedeutung, da die
Anzahl der Schritte, fur welche dièse beiden immerhin komplizierten Relaxa-
tionsverfahren durchzurechnen sind, meistens viel zu groB ist und sich
oft numerische Instabilitàten zeigen. Wir benutzen vielmehr folgende
Tatsache. Wenn der Vektor & in (1) in einem gegenuber A invarianten
Teilraum R' des totalen Raumes R liegt, so fuhren beide Verfahren nach
hôchstens soviel Schritten zur exakten Lôsung, wie die Dimension von
R' angibt.

Sei nun ein schlecht konditioniertes Gleichungssystem gegeben, dann
kann man nach einem Vorschlag von H. Rutishatcser, der auf der Idée
des ,,purified vector" von Lanczos [11] beruht, folgendermaBen vor-
gehen. Man wâhle eine Zahl e>0, die zwar nicht untere Grenze der
Eigenwerte zu sein braucht, aber doch nur wenige Eigenwerte links von
sich lâBt. Zunâchst werden nun nach einem einfachen Relaxationsver-
fahren (etwa nach dem am Ende von Nr. III beschriebenen) die Residuen
beseitigt, die zu den Eigenwerten im Intervall von e bis 1 gehôren. Der
verbleibende Residuenvektor liegt in demjenigen A -invarianten
Teilraum, der aufgespannt wird von den Eigenvektoren, die zu den
Eigenwerten links von s gehôren. Fàhrt man nun nach der feineren Méthode
der konjugierten Gradienten oder nach dem Algorithmus (43) bis (45)

fort, so wird der exakte Lôsungspunkt nach hôchstens sovielen Schritten
erreicht, wie die Anzahl der links von e gelassenen Eigenwerte angibt.
Ist dièse nicht zu groB, so werden auch die genannten Algorithmen stabil
bleiben.

Mitunter ist es sogar angezeigt, die links von e liegenden Eigenwerte
zu berechnen. Dafûr wird mit Vorteil der Quotienten-Differenzen-Algo-
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rithmus von Eutishauser [12] verwendet, fur den sowohl die Relaxation
nach konjugierten Gradienten als auch die Vorschrift (43) bis (45) die
nôtigen Grundlagen liefern. Man relaxiert dann weiter nach dem
Gradientenverfahren, (8), indem man fur die qt dièse Eigenwerte nimmt.

Zum AbschluB sei noch bemerkt, daB unsere ganze Théorie bis und mit
Satz 5 auch dann gilt, wenn A ein symmetrischer und vollstetiger Operator
im Hilbert-Raum ist, dessen Spektrum im Intervall von 0 bis 1 der
A-Achse liegt, ohne sich im Nullpunkt zu hâufen. Auch die eben geschil-
derte kombinierte Relaxationsmethode bleibt durchfuhrbar, falls links
von der gewâhlten Zahl s nur endlich viele Eigenwerte liegen.

VI. Wir kehren zurûck zu stetigen Dichtefunktionen g (A). Hat man
keine andere Information ûber die Eigenwerte von A als daB sie im Intervall

0 bis 1 liegen, so muB man wâhlen

g(Â)>0 fur O<A<1

damit aile Residuen angegrifïen werden. Andererseits muB g(0) 0

sein, damit das Intégral

existieren kann, wie in Nr. III vorausgesetzt wurde. Ferner kann q (1) 0

gewâhlt werden, weil oberhalb 1 keine Residuen liquidiert werden mûssen.
Aus diesen Griinden werden wir q (A) in der Form schreiben

e(i) ^(l-A)?/(i), c*>0 /?>-|-. (49)

Dabei sei etwa /(A) eine im Intervall 0 ^ A < 1 zweimal stetig differen-
zierbare Funktion und

/(A)>0 fur 0 < A < 1 (50)

Satz 6. Tinter diesen Voraussetzungen fur die Dichtefunktion konver-

giert die Relaxation von Satz 2, das heifit, die nach (36) konstruierte Folge
von Nâherungspunkten x{ strebt gegen den Losungspunkt des gegebenen

Oleichungssystems.
Beweis. Nach Szegô [3], Seite 291, Formel (12.1.12) gilt fur die

Orthogonalpolynome i^-(A) zur gegebenen Dichte die asymptotische
Formel fur groBe Werte von i

<X_ 1 £ 1

2 ~M1 — X\~~î~"*L^>5 (51)
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wobei Nt wieder die Norm und y eine hier nicht weiter interessierende
Phase bedeutet und wieder cos 99 1 — 2X gesetzt wurde. Wegen
Satz 5 strebt die Norm gegen Null, und daher folgt

RX{X) ->0 fur O<A<1 (52)
Aus (23)

rtJ — Rt{X3)k0 —> 0 fur i ->oo und aile j
Damit ist der Satz bewiesen.

Wegen R(0) 1 ist natùrlich die Konvergenz (52) ungleichmâBig in
bezug auf X ; Eigenwerte, die nahe bei À 0 liegen, machen also auch
hier Schwierigkeiten. Die Aussage (51) bedeutet noch, da8 R^X) eine

Schwingung ist mit der A?nplitudenfunktion

w-
Durch Wahl von oc, f$ ; f(X) kann man dièse Amplitude beliebig formen,
um so der anfanglichen Residuenverteilung Rechnung zu tragen.

Wir diskutieren weiter die einfachste môgliche Wahl

f{X) 1 also Q(X) Aa(l - Xf (54)

Die Polynôme Rn(X) werden dann hypergeometrische (Jacobische)
Polynôme, die wir bezeichnen mit

Rn(x, p ; X) F(- n,n + <x + (3+l,oc+l;X) (55)

wobei F die GauBsche hypergeometrische Funktion bedeutet. Die Neben-
bedingung (22) ist erfullt. Die zwischen ihnen bestehende Rekursions-
formel (Szegô [3], Seite 71) liefert nach (36) folgende einfache Relaxa-
tionsvorschrift, die wir hypergeometrische Relaxation nennen.

xo 0 xl+1 xt + Axz r% k — Axt

—

wobei

^=4( + 2i + a + /S+l 2i + a + ^ + 2J' (56)

ï| 2i
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Der RelaxationsprozeB hângt noch von den beiden Parametern a, fi ab?
deren Bedeutung jetzt abgeklârt werden soll. Setzt man in (53) eine ge-
eignete asymptotische Annâherung fur die Norm der hypergeometrischen
Polynôme ein, so erhâlt man zunâchst die Amplitudenfunktion

««(A) _,-*' A~^~T(1-A)^~T, (57)

die nur fur O<A<1 gultig ist. Dièse Amplitude nimmt ab bis zum
Punkt

X

und dann wieder zu. Fur /? — | befindet sich dieser Punkt am rechten
Ende des Intervalls von 0 bis 1, fur /5 < a rechts von der Mitte und fur
p>a links von der Mitte.

Bedeviung von a. Um dièse abzuklâren, brauchen wir feinere
asymptotische Formeln. Da wir insbesondere die Anwendung der
hypergeometrischen Relaxation auf schlecht konditionierte Système im Auge
haben, begnûgen wir uns damit, das Verhalten von Rn(oc,fi;À.) fur
kleine A und groBe n anzugeben. Setzen wir*

x 2nVÏ (59)

so gilt fur festes x und n ->oo nach Szegô [3], Seite 186, Formel (8.1.1)

Rn(*,P;X)~Aa(z) (60)

Dabei ist Aa(x) die in Jahnke-Emde [13] tabellierte und dort in Fig. 96

graphisch dargestellte Funktion

wobei Ja(x) Besselsche Funktion erster Art ist.
Die Formel (60) zeigt zunâchst, da6 der Parameter j5 fur kleine X ohne

Einflufi auf die Konvergenzverhâltnisse ist. Die Funktion A^x) beginnt
mit ^la(0) 1, was der Bedingung (22) entspricht. Fur wachsendes x
hat sie die Gestalt einer gedâmpften Schwingung ; in der folgenden
Tabelle ist die Lage und Hôhe des ersten Minimums fur einige Werte von
a angegeben.
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Où

0,5
1

1,5
2

3

4
5

X

4,49
5,14
5,76
6,38
7,59
8,77
9,94

AJx)

- 0,217

- 0,132
— 0,086
— 0,059
— 0,029

- 0,016

- 0,009

(61)

Relaxiert man also zum Beispiel mit a 5, so liegt das Minimum
von Rn{K) nach (59) bei

und hat fur aile n den Wert — 0,009. (Dièse Aussagen gelten nur fur
groBe n.) Es wandert also mit wachsendem n in der Richtung der kleine-
ren Eigenwerte unter Beibehaltung seiner Hôhe. Man wird nur so lange
relaxieren, bis dièses Wellental iiber den kleinsten Eigenwert hinweg-
lauft, was man daran erkennt, daB aile Residuen auf 0,9 Prozent ihrer
anfânglichen Werte gesunken sind. Sollen die Residuen nur auf 10 Prozent

abgebaut werden, so verwendet man etwa a 1,5. Die kleinen
Eigenwerte werden dann friiher erreicht.

Bedeutung von /?. Die Wahl von fi âufiert sich in erster Linie im Ver-
halten der Relaxation im rechten Teil des Intervalls 0 < A < 1. Wâhlt
man fi — |, so nimmt nach (57) die Amplitude monoton mit A ab,
die zu hôheren Eigenwerten gehôrigen Residuen werden also am stàrksten
angegriffen. Lôst man ein Randwertproblem der mathematischen Physik
mit Differenzenrechnung in einem Punktgitter, so bedeutet dies, daB die
Residuenverteilung geglattet wird. Dies bleibt richtig solange fi<a ist,
wobei die Residuen an der Stelle (58) am stàrksten angegriffen werden.
Fur fi > a. jedoch gibt es eine Stelle im Intervall, fur welche die Amplitude

(57) den Wert 1 hat. Rechts davon ist sie grôBer als 1 ; in dieser

Gegend werden also die Residuen aufgeschaukelt, das heiBt die
Residuenverteilung wird aufgerauht. Dièse Rauhigkeit verschwindet wegen
Satz 6 wieder mit wachsendem n, indem die kritische Stelle immer
weiter nach rechts rûckt. Eine âhnliche Aufrauhung tritt ein, wenn man
bei elementareren Relaxationsmethoden die sogenannte tîberrelaxation
anwendet. Wir nennen daher fi den Parameter der tîberrelaxation.
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Um die Wirkung einer Ûberrelaxation in der Gegend von A 0 ab-
zuklâren, genugen asymptotische Betrachtungen nicht mehr. In der
folgenden Tabelle ist die Lage des ersten Minimums von Rn(oc, fi ; A) in
den beiden typischen Fâllen a 0,5, /S 0,5 und a 0,5, p 10,5

angegeben.
/S 0,5 /? 10,5

n

2

4
6

8

10

12

12 (as)

X

0,500
0,194
0,101
0,062
0,041
0,030

0,035

RnW

- 0,333

- 0,250

- 0,233
— 0,227

- 0,223
— 0,222

- 0,217

A

0,167
0,075
0,046
0,029
0,022
0,018

0,035

— 0,555

- 0,330

- 0,278

- 0,258
— 0,243
— 0,230

— 0,217

(62)

Die letzte Zeile enthâlt die nach Tabelle (61) berechnete asymptotische

Lage des Minimums fur n 12. Man erkennt, daB fur mâBige
Werte von n die Ûberrelaxation besser in das Gebiet der kleinen Eigen-
werte eindringt. Die mit ihr verbundene Aufrauhung der Residuen kann
bei Randwertaufgaben oft in Kauf genommen werden. In vielen Fâllen
ist dann nâmlich die anfângliche Residuenverteilung glatt, so daB am
Anfang die zu den hôheren Eigenwerten gehôrigen Residuenkomponenten
klein sind und ihre Aufschauklung nichts schadet. Falls man also die
tîberrelaxation anwenden kann, bewirkt sie eine Beschleunigung der An-
fangskonvergenz *

VII. Die verschiedenen hier angeregten Methoden wurden experimen-
tell nachgepriift am Beispiel der Torsion eines quadratischen Quer-
schnitts G durch Lôsung der partiellen Dififerentialgleichung

Af — 1 / 0 am Rande (63)

Dabei ist A der Laplacesche Differentialoperator. Es wurde ein Gitter
von 10x10 Teilquadraten in O gelegt, so daB / in 81 inneren Gitter-
punkten bestimmt werden muiîte. Als Annâherung des A-Opérâtors in
(63) wurde die Summe der zweiten partiellen Differenzen in den beiden

Koordinatenrichtungen genommen. Die Relaxation geschah ohne Be-

nutzung der Symmetrien des Quadrats, so daB die folgenden Ergeb-
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nisse auch informativ sind fur ein allgemeiner gestaltetes Gebiet mit
etwa 80 Gitterpunkten. Ausgangsfunktion fur die Relaxation ist in allen
Fâllen die in G identisch verschwindende Funktion.

Max Irnl

Max M/7
Max/

Vorzeichen der Reslduen:

0 rn> o

Q rn < o

O rn \ o

•.Schachbreîfverteilung"

Max lrnl

10

Fig.3

Die Figuren 2 und 3 zeigen hypergeometrische Relaxationen. Es sind
jeweilen als Funktion der Schrittzahl n aufgetragen :

1. Das maximale Residuum rn in O in Prozenten des Ausgangsresi-
duums, welches in allen Gitterpunkten —- 1 ist.
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2. Der maximale Fehler der betreffenden Nàherungslôsung gegenùber
der exakten Lôsung in Prozenten des maximalen exakten Wertes von
/, der naturlich in der Mitte des Quadrats angenommen wird. Zur Beur-
teilung der Rauhigkeit der Residuen ist auBerdem angegeben, ob die
Residuen ûberall in G dasselbe Vorzeichen haben oder nicht, und es
wurde speziell hervorgehoben, wenn die sogenannte Sehachbrettvertei-
lung eintritt, das heiBt, wenn jede Gitterstrecke an ihren Endpunkten
Residuen versehiedenen Vorzeiehens trâgt.

Figur 2 zeigt eine normale Relaxation mit «=1,5, /? 1,5. Die
Residuen werden abgebaut bis zum 14. Schritt unter Beibehaltung des

negativen Vorzeiehens in allen Residuen. Beim 14. Schritt schlagen die
Vorzeichen um. Dies ist also der in Nr. VI erwâhnte Moment, wo das
Wellental von Rn (X) tiber den kleinsten Eigenwert streicht. Bei diesem
Schritt sollte man aufhôren.

Figur 3 veranschaulicht demgegenûber eine typische Ûberrelaxation
mit oc 1,5, /? 15,5. Die Residuen erhalten schon nach dem ersten
Schritt verschiedene Vorzeichen in G und beim 9. Schritt tritt die Schach-

brettverteilung ein. Das maximale Residuum nimmt iiberhaupt nicht
ab. Trotzdem erhàlt man mit 9 Schritten ein genaueres Résultat als in
Figur 2, indem der maximale Fehler im Funktionswert auf etwa 3 Pro-
zent abgesunken ist. Man kann also den Eintritt der Schachbrettvertei-
lung als Signal dafur werten, daB die Ûberrelaxation abzubrechen ist.

Dasselbe Beispiel wurde auch nach der am Ende von Nr. V geschilder-
ten kombinierten Méthode durchgerechnet. Nach Wahl der unteren
Grenze e 0,25 wurden zunachst im Intervall

0,25 (64)

die Residuen geniigend liquidiert, indem 11 Schritte des rohen Gradien-
tenprozesses (8) ausgefûhrt wurden. Dabei wâhlte man fur die Faktoren
q< Zahlen im Intervall (64) mit einer gewissen Verdichtung an den Enden
des IntervaUs. AnschlieBend folgten 2 Schritte des Prozesses (43) (44).
Die folgende Tabelle gibt den Stand von Residuen und Fehlern vor und
wâhrend dièses zweiten Teils der Rechnung

n

0
1

2

Max | rn |

88%
23%
0,2%

Max | Af |

Max /
70%
5,1%
0,014%
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was geniigend fur die Wirksamkeit des kombinierten Verfahrens spricht.
An Stelle des Gradientenverfahrens (8) kônnte man die anfàngliche Glât-
tung auch mit hypergeometrischer Relaxation ausfûhren.
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