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Schlichte Abbildungen
und lokale Modifikationen 4-dimensionaler

komplexer Mannîgfaltigkeiten
von Hetnz Hopf, Zurich

Meinem verehrten Kollegen und Freund M. Plancherel
zum siebzigsten Geburtstag gewidmet

§1. Einleitung

1. Dièse Arbeit betrifft eine der zahlreichen Erscheinungen in der
Théorie der analytischen Funktionen von zwei oder mehr komplexen
Variablen, welche in der Théorie fur eine einzige Variable kein Analogon
haben : fur m > 2 gibt es analytische Abbildungen durch m Funktionen
von m Variablen, bei welchen zwar fur fast aile Bildpunkte die Urbilder
nur aus endlich vielen Punkten bestehen, auf einige Ausnahmebildpunkte
aber ganze analytische Flâchen — die Ausnahmemengen — abgebildet
werden. Das einfachste Beispiel ist die Abbildung des komplexen (xx, x2)-
Zahlenraumes X in den (yx, t/2)-Zahlenraum Y, die durch

Vi #i > V% ^1^2

gegeben ist : die Ebene x1==0 ist Ausnahmemenge, der Punkt y1= y2= 0

der zugehôrige Ausnahmebildpunkt, im ubrigen ist die Abbildung einein-
deutig. Âhnliche Fàlle liegen in der komplexen algebraischen Géométrie

vor, wenn Flâchen X durch rationale Transformationen so auf Flâchen Y
abgebildet sind, daB einzelne Kurven C von X in Punkte iibergehen;
dabei haben wir X und Y als komplexe Mannigfaltigkeiten von 4 reellen
Dimensionen, die C als analytische Flâchen von 2 reellen Dimensionen
aufzufassen1).

Unsere nachstehende Untersuchung wird sich nur auf den folgenden,

x) Unsere ,,Abbildungen" sollen immer eindeutig sein. Bei der Heranziehung von Bei-
spielen aus der algebraischen Géométrie ist Vorsicht am Platze, da man dort das Wort
,,Abbildung" auch fur Korrespondenzen gebraucht, die in keiner der beiden Richtungen
eindeutig sind.
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besonders einfachen Fall beziehen: erstens wird die Abbildung ,,schlicM" —

in einem sogleich noch zu prazisierenden Sinne — und zweitens wird
m 2 sein2), Ferner werden wir uns weniger fur die mogliche Ver-
teilung der Ausnahmebildpunkte interessieren als fur das Verhalten der
Abbildung / in einem einzelnen solchen Punkt a und seiner Umgebung ;

daher durfen wir (wenigstens vorlaufig) annehmen, dafi der Bildraum
die Umgebung eines Punktes a im (yl9 ^/2)-Zahlenraum ist. Dagegen
wollen wir die Ausnahmemenge A /~1(^) und ihre Umgebung nicht
nur lokal, sondern im Grofîen studieren, und daher werden wir fur die
Raume X, die abgebildet werden, von vornherein beliebige komplexe
Mannigfaltigkeiten zulassen, nicht nur Teilgebiete des Zahlenraumes3).
Die Situation, die wir betrachten, ist also die folgende :

Die 4-dimensionale komplexe Mannigfaltigkeit X ist durch die analy-
tische Abbildung / in den komplexen (y1, ^/2)-Zahlenraum abgebildet;
/ ist nicht konstant, das heiBt, die Bildmenge f(X) besteht nicht nur aus
einem einzigen Punkt. a ist em fester Punkt aus f(X) und A /~1(a)
sein Urbild in X ; die Menge X — A wird durch / eineindeutig
abgebildet.

Dann sagen wir : / ist schlicht — oder auch, um deutlicher zu sein :

/ ist ,,schlicht bis auf a". Wenn A nur aus einem Punkt besteht, so ist /
,,ausnahmslos schlicht" ; wenn A wenigstens zwei Punkte enthalt, so ist
A ,,Ausnahmemenge", und a ist ,,Ausnahmebildpunkt" von /.

2. Wir werden spater die Ausnahmemengen A eingehend unter-
suchen ; die einfachsten Eigenschaften wollen wir aber schon jetzt, zur
vorlâufigen Orientierung, feststellen.

DaB A abgeschlossen ist, folgt bereits aus der Stetigkeit von /. Die
Menge A ist durch die beiden analytischen Gleichungen yx(x) a1?

2) Die Voraussetzung m — 2 wird erst im § 3 wesenthch gebraucht werden
3) Wie ubhch verstehen wir miter emer n dimensionalen (topologischen) Manmgfaltig

keit Mn emen zusammenhangenden Hausdorffschen Raum mit abzahlbarer Uragebungs
basis, in dem die Punkte Umgebungen besitzen, welche mit dem Innengebiet der n-dimen
sionalen eukhdischen Vollkugel homoomorph sind M2m heifit ,,komplex" — genauer:
,,ist mit emer komplex analytischen Straktur versehen" —, wenn m den eukhdischen
Umgebungen der Punkte komplexe Parametersysteme (z1,.. zm), (w1,. wm),
so emgefuhrt smd, dafi die beim Tîbereinandergreifen solcher Système entstehenden
Parametertransformationen analytisch smd Der Begnff der Analj^tizitat von Abbildungen
einer komplexen M2m in eme andere — also auch der Begriff der analytischen Funktion
auf einer M2m — ist m bezug auf spezielle lokale komplexe Parametersysteme erklart,
aber mfolge der Analytizitat der Parametertransformationen von den speziell benutzten
Systemen unabhângig. — Jedes Teilgebiet einer komplexen M2m ist selbst eme komplexe
M2m. — Die komplexen M2 smd die Riemannschen Flachen. — Literatur zur Emfuhrung :

z. B. [1]
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y2(x) a2 definiert, wobei al9 a2 die Koordinaten von a im (y1, y2)-
Raum sind und x den variablen Punkt in X bezeichnet ; folglich ist A
eine ,,analytische Menge"4, das heiBt : A besteht aus endlich oder abzàhl-
bar unendlich vielen analytischen irreduziblen Flàehen, die sich nirgends
hâufen (in X), und vielleicht noch aus isolierten Punkten. Wir zeigen
aber sogleich : isolierte Punkte treten nieht auf ; mit anderen Worten :

Wenn A einen isolierten Punkt p enthàlt, so ist A p, die Abbildung
/ also ausnahmslos schlicht.

Beweis. Der Punkt p besitzt eine Umgebung U, in welcher er dei
einzige Urbildpunkt von a und in welcher / daher eineindeutig und folglich

gebietstreu ist ; mithin enthàlt das Bild / U) eine voile Umgebung
von a, und folglich besitzt jeder Punkt p' € A eine Umgebung V mit
f(U')czf(U) ; folglich gibt es zu jedem Punkt x'eV einen Punkt
xe U mit f(x) f(x') ; da / nicht konstant ist, dûrfen wir x' e X — A
und damit auch x c X ~ A annehmen ; aus der Eineindeutigkeit von /
in X — A folgt x' x. Da dies fur beliebig kleine Umgebungen U, U'
von p, p' gilt, ist xr x unvertràglich mit p' ^ p ; es ist also p' p,
das heiBt A p.

Damit ist gezeigt : Dit Menge A f~x (a) besteht entweder aus einem

einzigen Punkt, oder sie ist eine 2-dimensionale analytische Menge ohne

isolierte Punkte.

3. Unsere Abbildungen / lassen sich in zwei Klassen einteilen : wir
nennen / 9ivollstândig" oder ^unvollstândig", je nachdem a innerer Punkt
oder Randpunkt der Bildmenge f(X) ist. Wâhrend nâmlich jeder von a
verschiedene Bildpunkt y — f(x) innerer Punkt von f(X) ist, weil / in
der Umgebung von x eineindeutig, also gebietstreu ist, sind fur a selbst
beide Fâlle môglich : die durch (1) gegebene Abbildung ist unvollstàndig,
da der Punkt y1 y2 0 auf der Ebene yx 0 der einzige Punkt ist,
der zu f(X) gehôrt ; dagegen wird in § 2, Nr. 1, ein Beispiel einer voll-
standigen Abbildung angegeben werden (auch die erwâhnten Transfor-
mationen in der algebraischen Géométrie sind vollstândig). Ûbrigens ist
naturlich jede ausnahmslos schlichte Abbildung vollstândig, da sie auch
in der Umgebung des Punktes f~x (a) eineindeutig, also gebietstreu ist ;

dièse Tatsache ist ein Spezialfall eines allgemeineren Satzes, dessen(rein
topologischer) Beweis so einfach ist, daB wir ihn sogleich hier angeben
wollen : Wenn A kompakt ist, so ist f vollstândig.

Beweis. Die kompakte Menge A in der Mannigfaltigkeit X besitzt
eine offene Umgebung U, deren abgeschlossene Huile U ebenfalls kom-
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pakt ist ; dann ist auch die Begrenzung ZT =~U — U kompakt und
folglich die Bildmenge f(U') abgeschlossen ; da der Punkt a nicht zu
dieser Menge gehôrt, besitzt er eine Umgebung F, die fremd zu f(lT)
ist; dann ist der Durchschnitt V^f(U) gleieh dem Durchschnitt
Vr> f(U) und ebenso

{V -a)r,f(U) (V -a)~f(U -A)
Dièse Menge, die wir W nennen, ist, da f(U) infolge der Kompaktheit
von U abgeschlossen ist, abgeschlossen in F — a ; da U — A ofîen
und /in U — A eineindeutig ist, ist f(U — A) offen, also auch W
ofïen (in F — a und sogar im ganzen z/-Raum). Da wir F — a als zu-
sammenhângend annehmen dûrfen und da W offenbar nicht leer ist,
folgt aus der Abgeschlossenheit und Ofïenheit von W in F — a, dafi
W V — a ist. Es ist also F — acf(U — A)czf(X) und mithin a
innerer Punkt von f(X).

4. Wir werden uns besonders fur die vollstândigen schlichten Abbil-
dungen interessieren. Ein wesentlicher Grund hierfûr ist der, daB dièse

Abbildungen eng mit Modifikationen komplexer Mannigfaltigkeiten im
Sinne von H. Behnke und K. Stein zusammenhângen [2]. Der Ûbergang
von einer komplexen Mannigfaltigkeit Y zu einer komplexen Mannig-
faltigkeit X durch eine ,,Modifikation" bedeutet, zunàchst grob gespro-
chen, folgenden ProzeB : Man nimmt aus Y eine Teilmenge B heraus und
setzt in das dadurch entstandene Loch eine Punktmenge A so ein, daB,

ohneÂnderung der analytischen Struktur von Y — B, die Mannigfaltigkeit

X entsteht ; genau : X und Y sind komplexe Mannigfaltigkeiten, A
und B sind abgeschlossene Teilmengen von X bzw. Y ; es existiert eine

eineindeutige analytische Abbildung / von X — A auf Y — B, derart,
daB folgende Bedingung erfûllt ist : wenn ein Punkt x e X — A gegen
A strebt, so strebt f{x) gegen B (dièse Bedingung besagt, daB man A
wirklich in dasjenige Loch eingesetzt hat, welches durch Tilgung von B
aus Y entstanden ist).

Wir werden es nur mit dem einfachsten Spezialfall zu tun haben, nâm-
lich mit den ,,lokalen" Modifikationen : das sind diejenigen, bei denen B
nur aus einem einzigen Punkt a besteht. Dann bedeutet die soeben for-
mulierte Annaherungsbedingung einfach folgendes : Wenn wir fur die
Punkte xeA die Abbildung / durch f(x) a definieren, dann ist die
nunmehr in ganz X erklàrte, in X — A analytische und eineindeutige
Abbildung / uberall in X stetig.
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ISfun gilt aber folgender Satz von Radô-Behnke-Stein-Cartan*) : ,,Ist
y eine in der komplexen Mannigfaltigkeit X (beliebiger Dimension)
stetige Funktion, welche uberall dort, wo sie nicht verschwindet, analy-
tisch ist, dann ist y uberall in X analytisch." Wenden wir diesen Satz
auf die beiden Funktionen yx, y2 an, welche fur jeden Punkt x e X die
Koordinaten des Bildpunktes f(x) angeben (wobei a die Koordinaten
0, 0 habe), so ergibt sich : unsere Abbildung / von X auf Y ist uberall
in X analytisch. DaB / schlieht (bis aufa) und vollstandig ist, ist unmittel-
bar aus der Définition von / zu ersehen. — Umgekehrt ist von vornherein
folgendes klar : wenn eine vollstandige, bis auf a schlichte Abbildung
von X in Y vorliegt, so ist X eine Mannigfaltigkeit, welche durch eine
lokale Modifikation von Y im Punkte a entsteht, nâmlich durch die-
jenige, welche a durch die Menge A /~1(a) ersetzt. Wir durfen also

sagen :

Die lokalen Modifikationen von Y im Punkte a sind identisch mit den

Umkehrungen der vollstandigen, bis auf a schlichten Abbildungen von
Mannigfaltigkeiten X in die Mannigfaltigkeit Y. In diesem Sinne ist jede
Untersuchung der vollstandigen schlichten Abbildungen gleichbedeutend mit
einer Untersuchung der lokalen Modifikationen.

Eine solche Untersuchung — immer fur den Fall von 4 Dimensionen —

bildet den Gegenstand der vorliegenden Arbeit.

5. Unser Hauptergebnis besteht in der Feststellung, daB eine gewisse
spezielle lokale Modifikation, die wir den ,,o-Proze(5" nennen, in folgendem
Sinne die einzige lokale Modifikation (4-dimensionaler Mannigfaltigkeiten)

ist : Es gibt aufier dem a-Prozeji keine anderen lokalen Modifikationen

mit kompakten Mengen A f~x (a) als diejenigen, welche durch mehr-

malige Wiederholung des a-Prozesses entstehen ; und auch bei nichtkompak-
ten A werden die Modifikationen weitgehend durch die Iterationen des a-
Prozesses beherrscht. Gleichzeitig werden wir auch fur unvollstandige
schlichte Abbildungen zu einigen Aussagen gelangen, die nicht trivial sind.

Der cr-ProzeB spielt ubrigens in der algebraischen Géométrie eine wich-
tige Rolle ; er liegt vor, wenn eine Flâche birational so transformiert
wird, daB ein Punkt a in eine Kurve A ubergeht, die Transformation
aber sonst in der Umgebung von a eineindeutig ist. Auch in der Funk-
tionentheorie mit zwei komplexen Variablen ist er neuerdings mit Erfolg
verwendet worden [5], Wir werden ihn im § 2 ausfiihrlich darstellen. Im

4) Der Satz ist (in anderer Formuherung) von T. Rado [3] fur eine Variable, also fur
2 Dunensionen, aufgestellt und dann von H. Behnke und K. Stem [2] auf Mannigfaltigkeiten

behebiger Dimension ubertragen worden. Die oben benutzte élégante Formuherung
stammt von H. Gartan, der auch emen ganz neuen Beweis angegeben hat [4].
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§ 3 werden wir dann mit Hilfe lokaler funktionentheoretischer Betraeh-
tungen leicht zu unseren Resultaten gelangen.

Ich habe den obigen Satz von der Einzigkeit des <7-Prozesses, also

unseren Hauptsatz, schon friiher ohne Beweis verôiïentlicht [1], und
F. Hirzebruch hat den Satz bereits gelegentlich benutzt [5]. DaB der
c-ProzeB in der algebraischen Géométrie eine alte und bewâhrte Opération

ist, war uns von vornherein bekannt ; aber erst spâter hat mich
Herr Zarislci darauf aufmerksam gemacht, daÔ auch der Einzigkeitssatz
nicht neu ist : er deckt sich mit dem ,,Lemma" im Abschnitt 24 der be-
ruhmten Arbeit [6] ; dort handelt es sich zwar um algebraische Mannig-
faltigkeiten und birationale Transformationen, aber da die Betrachtun-
gen gerade in dem betreffenden Abschnitt lokalen Charakter haben, be-
halten sie ihre Gultigkeit auch fur die funktionentheoretische Situation,
die wir hier vor uns haben. Ein Teil des nachstehenden Textes kann also
als eine funktionentheoretische Darstellung und Beleuchtung des Zariski-
schen Lemmas aufgefaBt werden.

Gerade in diesen Tagen (Juli 1954) habe ich die groBe Abhandlung
,,tîber meromorphe Modifikationen" von W. Stoll erhalten [7], die, wie
Herr Stoll darin schreibt, durch mundliche Mitteilungen von mir, welche
den Inhalt meiner vorliegenden Arbeit betrafen, angeregt worden ist ;

sie enthâlt sehr starke Verallgemeinerungen unserer Resultate und
unserer Méthode (ebenfalls bei Beschrânkung auf 4 Dimensionen). Es
freut mich, daB meine hier vorliegende Arbeit bereits vor ihrem Er-
scheinen auf so intéressante Weise fortgesetzt worden ist und daB ihre
Lektûre als Einfûhrung in das Studium der viel schwierigeren Unter-
suchungen von Stoll dienen kann.

§ 2. Der cr-ProzeB und seine Iterationen

1. V sei ein Gebiet des komplexen (yl9 î/2)-Zahlenraumes, welches
den Punkt a (0, 0) enthâlt. 8 sei eine komplexe projektive Gerade
(also âquivalent der Riemannschen Zahlkugel) mit Koordinaten s1: s2.
Das cartesische Produkt P V xS besitzt eine komplexe Struktur,
die in natûrlicher Weise durch die Strukturen von V und von S induziert
ist ; P ist Summe der durch sx =£ 0 bzw. s2 =£ 0 bestimmten Teil-
gebiete Px bzw. P2, in denen

analytische Parameter sind.
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Das Gebilde F*, das in P durch die Gleichung

yi «2 - y* h o (2)

bestimmt ist, ist eine 4-dimensionale komplexe Mannigfaltigkeit : in
dem Teil V* F*^ Px sind yl98, in dem Teil F* — F*^ P2 sind
y2, s' analytische Parameter ; in F* ist y2 yxs, in F* ist y1 — y2si\
in F*- F* ist s' s-1.

Die natûrliche, durch (y1} y2, s1: s2) -> (yl5 t/2) gegebene Projektion
von P auf F bewirkt eine analytische Abbildung cp von F* auf F ; bei
ihr ist, wie aus (2) ersichtlich, das Urbild eines von a (0,0) ver-
schiedenen Punktes y (yl9 y2) der Punkt (yl7 y2, yx: y2) von F*,
das Urbild des Punktes a (0, 0) aber die aus den Punkten (0,0,
st : s2) mit beliebigen (sx : s2) € S bestehende Sphâre komplexe Zahl-
kugel) a.

<p ist also — in der Terminologie aus § 1 — eine vollstândige, bis auf
den Punkt a schlichte Abbildung von X F* auf Y V mit der
Ausnahmemenge A a y1 (a). Die Umkehrung <p~x ist eine lokale
Modification von F, welche den Punkt a durch die Sphàre a ersetzt ;

dièse Modifikation nennen wir den (T-ProzeB.

2. Wir wollen die Beziehungen zwisehen F und F* nàher betrachten.
Zunàchst bemerken wir noch : in jedem der Teile Ff, i 1 oder i 2,
ist die Flàche yt 0 die Sphàre a ohne den Punkt st 0.

Es sei C eine analytische Flàche ,,komplexe Kurve") in F, die den
Punkt a enthàlt und dort ,,regulàr" ist ; das heifit : C ist durch / (y1, y2) 0

gegeben, wobei / regulàr analytisch, /(0, 0) 0 und l^~ ^- ^ (0, 0)

in a ist. Sei etwa -~ ^ 0 ; dann wird C durch eine Gleichung

ya «i »i + «2 »î H (3)

dargestellt ; die in F* durch

s a1 + a2y1-] (3*)

dargestellte Flàche C* wird, da y^s i/2 ist, durch 9? auf (7 abgebildet ; es

ist naturlich, C* als ,,Urbild" ^(C) zu bezeichnen — indem wir dies tun,
ergânzen wir das von vornherein wohldefmierte Urbild (p~x(C — a)
durch Hinzunahme des auf a gelegenen Punktes mit s at.

Aus der Darstellung (3*) von C* und daraus, daB a durch y1== 0

dargestellt wird, ist ersichtlich : Ist C eine regulàre, a enthaltende Flàche
in F, so wird a durch ç?""1(G) geschnitten, nicht beruhrt.
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Daraus, daB die Koordinate s des Schnittpunktes gleich dem Werte ax
des Differentialquotienten dy2 : dy1 von C in a ist, ist weiter ersichtlich :

Wenn sich die regulâren Flâchen Cx, C2 in a schneiden, aber nicht be-

ruhren, so schneiden ihre Urbilder ç?~1(Cr1) und (p~1(C2) die Sphâre a
in verschiedenen Punkten und treffen sich daher gegenseitig nicht. Durch
den cr-ProzeB werden also die Schnittpunkte in a beseitigt.

Wenn sich dagegen Ct und C2 in a berlihren, so haben sie in ihren
Entwicklungen (3) denselben Anfangskoeffizienten ax, und ihre Urbilder
schneiden daher a im gleichen Punkt. Indem wir jedem analytischen
Flàchenelement in a den Schnittpunkt von g mit den Urbildern der-
jenigen C zuordnen, an welche dièses Flàchenelement tangential ist,
entsteht, wie aus dem Vorstehenden ersichtlich ist, eine eineindeutige
Abbildung des Buschels der analytischen Flàchenelemente in a auf die
Sphâre a. (Indem man unsere analytischen Flâchen als ,,komplexe
Kurven" auffaBt, sagt man ubrigens statt ,,analytisches Flàchenelement"
hâufig auch ,,komplexes Linienelement".)

Dieser Zusammenhang mit den Flâchenelementen legt es nahe, das
Produkt P V X S, das wir in Nr. 1 herangezogen haben, als den
Raum aller analytischen Flàchenelemente in F zu deuten: man identi-
fîziere den Punkt (yl9 y2, s1 : s2) von P mit dem Flàchenelement, das
im Punkte (yly y2) von F durch dy1:dy2 ^i^ bestimmt ist. Statt
(2) hat man dann als defînierende Gleichung von F* :

Vity* — y*dy1 0; (2r)

hieraus liest man ab: F* besteht aus den Tangentialelementen der
Flâchen, deren Gleichungen c± yx — c2 y2 — 0 lauten (ct, c2 konstant,
nicht beide 0) ; in der Sprache der affinen Géométrie der komplexen
(yx, ?/2)-Ebene sind dièse Flâchen die Geraden des Buschels mit dem
Zentrum a; in jedem von a verschiedenen Punkt gehôrt genau ein
Flàchenelement, in a selbst gehôren aile (analytischen) Flàchenelemente
zu F* ; das Buschel dieser Flàchenelemente in a stellt jetzt die Sphâre
cr dar.

3. Da es fur Anwendungen wichtig ist, die yx, y2 nicht nur als Koor-
dinaten in einem festen Zahlenraum, sondern als lokale Parameter
auf einer 4-dimensionalen komplexen Mannigfaltigkeit aufzufassen,
ist es gut, sich davon zu ùberzeugen, daB der or-ProzeB invariant gegen-
iiber einer regularen Parametertransformation ist. Es sei also durch
zx zt(yl9 y2), z2 z2(yl9 y2) ©ine solche Transformation in der Um-
gebung von a gegeben ; wir durfen annehmen, daB in a auch zx z2 0

139



ist. Der Raum P der Flachenelemente ândert sich nicht ; aber in P hat
man statt der durch (2') gegebenen Mannigfaltigkeit F* jetzt die durch

zx dz2 — z2 dzx 0 (2")

gegebene Mannigfaltigkeit TF* zu betrachten. Sie enthâlt, ebenso wie
F*, das Buschel a der analytischen Flâchenelemente in a. Nun existiert
aber eine kanonische eineindeutige Abbildung h von F* auf IF* : auf g
ist h die Identitât, und fur ein Elément y* von F* in einem von a ver-
schiedenen Punkt ist h(y*) z* das Elément von IF* in demselben
Punkt. Man zeigt leicht — ich tibergehe den Beweis —, daB h analytisch
ist. F* und TF* haben also die gleiche analytische Struktur ; und noch
mehr : bezeichnen wir die bis auf a schlichte Abbildung von IF* auf F,
die der alten Abbildung <p von F* auf F analog ist, mit ip9 so ist, wie
unmittelbar aus der Définition folgt, (p tp h.

In diesem Sinne sind also die Mannigfaltigkeit F*, die Abbildung 9?

und damit auch die Modification cp~x — also der a-ProzeB — invariant
gegenuber Parametertransformationen. Zugleich sieht man, daB die fol-
gende Aussage einen invarianten, vom Parametersystem unabhângigen
Sinn hat : Der a-Prozeji besteht darin, daji man den Punkt a durch das
Bûschel seiner analytischen Flâchenelemente ersetzt.

4. Wir wollen jetzt die topologische und die analytische Struktur
von F* untersuchen ; dabei sei F durch

0<c<oo (4)

gegeben ; wie in Nr. 1 beschreiben wir F* durch die Parameter yt, y2,
$! : s2, zwischen denen die Relation (2) besteht.

Wir ziehen eine komplexe projektive Ebene T mit Koordinaten
tv : t2 : t3 heran und bilden F* durch

t1:t2:tz s1:s2: y1s1 + y2s2 (5)

in T ab ; da sx : s2 ^= 0 : 0 ist, ist dies in der Tat eine Abbildung ; wir
nennen sie Q. Die Gleichungen (5) lassen sich mit Hilfe von (2) nach

Vi, y%>sx\s2 auflôsen:

y1 t1t3(t1t1 + t2t2)~\ ya Ma(Mi + M2)-1, s1i82 t1:tt; (57)

folglich ist Q eineindeutig. Man liest aus (5) oder (5') ab : der durch

yx y2 0 charakterisierten Sphàre a entspricht im Raum T die
durch £3 0 gegebene Gerade r ; ferner, auf Grand von (4) : das Bild-
gebiet Q(F*) T1 in T ist durch
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gegeben. Somit sieht man : F* ist topologisch homôomorph einer Um-
gebung T1 einer Geraden r in der komplexen projektiven Ebene T, wobei

r der Sphâre a entspricht.
Jede komplexe Mannigfaltigkeit besitzt eine natûrliche, durch die

komplexe Struktur ausgezeichnete Orientierung (cf. [1]). Wir behaup-
ten : die Orientierung von F* ist der Orientierung von T entgegenge-
setzt ; mit anderen Worten : bei Benutzung der ausgezeichneten Orien-
tierungen von F* und von T hat die Abbildung Q den Grad — 1. Wir
betrachten, um dies zu zeigen, nur die Abbildung Q von F* — a auf
T' —- t ; in F* — a kônnen wir yx, y2 als Parameter benutzen, und in
T1 — r ist £3 7^ 0, so daB wir t3 1 setzen kônnen ; dann wird Q~x

durch die beiden ersten Gleichungen in (5') mit t3 1 beschrieben,
und das sind die Formeln fur eine Inversion (Abbildung durch reziproke
Radien), welche bekanntlich die Orientierung umkehrt (man kann auch
die réelle Funktionaldeterminante ausrechnen und findet, daB sie negativ
ist).

Die Gerade t in T besitzt die Selbstschnittzahl + 1 ; da Q die Orientierung

umkehrt und o in r uberfuhrt, folgt : die Sphâre a besitzt in F* die
Selbstschnittzahl — 1.5)

Der Unterschied zwischen den analytischen Strukturen der
Mannigfaltigkeit F* und des mit F* homôomorphen Teilgebietes Q(V*) T'
der projektiven Ebene T âuBert sich aber nicht nur in der Verschieden-
heit der Orientierungen, sondern noch deutlicher : in T' gibt es unend-
lich viele 2-dimensionale geschlossene analytische Flachen — ,,analy-
tisch" im Sinne der komplex-analytischen Struktur von T' —, nâmlich
die in T' gelegenen projektiven Geraden ; in F* aber ist g die einzige
geschlossene analytische Flâche. Beweis : sei f eine geschlossene analytische

Flache in F* ; da yx und y2 regulâre analytische Funktionen sind
und da f geschlossen ist, sind yt und y2 auf f konstant (nach dem Maxi-
mumprinzip). Folglich wird £ durch <p auf einen Punkt ye V abgebildet.
Da <p in F* — a eineindeutig ist, muB £ daher auf a liegen und folglich
mit a identisch sein.

Es sei noch bemerkt : Den von r verschiedenen komplexen projektiven
Geraden in T1 entsprechen in F* geschlossene, mit Kugeln homôomorphe
Flachen, welche zwar reell-analytisch sind, aber nicht analytisch im
Sinne der komplexen Struktur von F*, das heiBt, nicht lokal durch

5) Die Selbstschnittzahl eines (m-dimensionalen) Zyklus f in einer (2m-dimensionalen)
Mannigfaltigkeit ist die Schnittzahl zweier Zyklen J15 J2, die mit f homolog (also z. B.
dureh kleine Deformationen aus J entstanden) und zueinander in allgemeiner Lage sind.
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Gleicfiungen u2 /(%) darstellbar, wobei %, u2 komplex-analytische
lokale Parameter in F* sind.

5. Nachdem der or-ProzeB in einem Punkt eines Gebietes F des

(yl9 ?/2)-Zahlenraumes definiert ist, macht die Définition des cr-Prozesses

in einem Punkt a einer beliebigen komplexen Mannigfaltigkeit F keine
Schwierigkeit : man nimmt eine Umgebung F von a, in der Parameter
Vi > V2, gûltig sind, interpretiert sie als Teilgebiet des (yl9 ?/2)-Zahlen-
raumes und geht wie frliher durch den <r-ProzeB in a zu der
Mannigfaltigkeit F* iiber, die wie friiher durch <p analytisch so auf F abgebildet
ist, daB F* — a und F — a sich eineindeutig entsprechen und die

Sphare g das Urbild des Punktes a ist ; dann entfernt man a aus F und
identifiziert jeden Punkt y* von F* — a mit seinem Bild (p(y*) ; so
entsteht eine komplexe Mannigfaltigkeit F* — von ihr sagen wir, daB
sie durch den cr-ProzeB in a aus Y entstanden ist.

Es ist oft zweckmâBig, ein zweites Exemplar Yo von Y heranzuziehen
— also eine komplexe Mannigfaltigkeit, auf welche Y durch einen fest
gegebenen analytischen Homôomorphismus h abgebildet ist ; dann liegt
die folgende analytische Abbildung cp± von F* auf Yo vor : in F* — g
ist cp1 mit h identisch, und es ist cpx (g) h {a) a0.

Die Abbildung ç?"1, welche somit Yo — a0 eineindeutig auf F* — g

abbildet, lâBt sich, analog wie in Nr. 2, fur regulare Flàchen C in Yo,
die den Punkt a0 enthalten, auch im Punkte a0 selbst erklâren. Das
Urbild (p^iC) einer regulàren Flache C, gleichgiiltig, ob sie a0 enthâlt
oder nicht, ist dann eine ebenfalls regulare und mit C homôomorphe
Flache in F*. Wenn a0 auf C liegt, so schneidet ç>^"1(C) die Sphare g
(ohne Berûhrung). Wenn Cx und C2 sich in a0 schneiden (nicht berûhren),
so treffen sich ^1(Cr1) und q>ï1(C2) in der Nahe von g nicht.6)

6. Wir werden jetzt neue lokale Modifikationen von Fo in a0 vor-
nehmen, indem wir den <7-ProzeB iterieren. Wir àndern die soeben be-

nutzte Bezeichnung, indem wir Y1 statt F* und g± statt g sagen ; tpx ist
also eine Abbildung von Yx auf Fo. Es sei ax ein Punkt von gx ; indem
wir in ihm den cr-ProzeB ausûben, gehen wir von Yx zu einer
Mannigfaltigkeit F2 ûber. In F2 ist <r2 die Sphare, welche at ersetzt ; cp2 ist die

Abbildung von F2 auf Yl9 welche F2 — g2 eineindeutig auf Yx — ax

und g2 auf ax abbildet. Da gx eine regulare Flache in Y1 ist und ax
enthâlt, ist ç'2~1(o'i) g\ eine regulare Sphare in F2, welche die Sphare g2

in einem Punkte schneidet (nicht beruhrt) und mit ihr nur diesen einen

6) Définition der ,,regulâren" Flache: § 2, Nr. 2.

142



Punkt gemeinsam hat. Die Veremigung von al und a%=a\ nennen wir Z2,
sie ist bei der Abbildung &% (px(f)2 von Y2 auf Yo das Urbild des
Punktes a0, wahrend Y2 ~ Z2 eineindeutig auf Yo — a0 abgebildet wird.
Es liegt also eine lokale Modifikation von Yo vor, welche a0 durch Z2 ersetzt.

Jetzt sei a2 ein Punkt von Z2 ; wir uben in ihm den <7~ProzeB aus und
erhalten eine Mannigfaltigkeit Y3, in welcher eine Sphare az den Punkt a2
ersetzt. Die zugehorige Abbildung von F3 auf Y2 heiBe <p3 ; um die Wir-
kung von ç?"1 auf Z2 zu erkennen, haben wir zwei Falle zu unterscheiden,
je nachdem a2 nur auf einer der beiden Spharen oj und al liegt oder der
Schnittpunkt der beiden Spharen ist: im ersten Fall wird Z2 durch <p~x

homoomorph abgebildet, und a3 wird von einer der beiden Spharen
al <p^1(al) und al (p3x{(y\) m einem Punkt geschnitten und ist zu
der anderen fremd ; im zweiten Fall sind die beiden Spharen al und al
zueinander fremd, aber jede von ihnen schneidet a3 in genau einem
Punkt ; in jedem Fall sind al, al, a3 al drei regulare Spharen, deren
Vereinigung wir Zz nennen. &3 — (p^^z ist eine Abbildung von Y3 auf
Fo, welche bis auf a0 schlicht ist ; die Ausnahmemenge ist 273, die
Mannigfaltigkeit Y3 ist durch Modifikation von Yo in a0 entstanden.

So fahren wir fort : Yn_1, Zn_1, 0n^ seien schon konstruiert ; dabei
ist Un_1 die Vereinigung der Spharen a^~x,..., a^z\, o^z\ ; wir voll-
ziehen in einem Punkt an_1 von i7w-1 den a-ProzeB ; es entsteht Yn ; das

Urbild Sn ^(Z^) besteht aus den n — 1 Spharen an% y'1 (a""1),

i=l, 2,.. .,n— 1, und der Sphare an—ann. Die Abbildung 0n=0n_x(pn
von Yn auf Yo ist bis auf den Punkt a0 schlicht, die Ausnahmemenge ist
Zn ; Yn ist durch Modifikation in a0 aus Yo entstanden. Dièse lokale
Modifikation moge ein ,,n-facher a-Proze/i" heiBen.

Man bestatigt, durch Induktion nach n, leicht die folgenden Eigen-
schaften der Zn : je zwei der Spharen an%, i 1, 2,..., n, deren Summe
Zn ist, haben entweder keinen oder genau einen Punkt gemeinsam ; ein
gemeinsamer Punkt ist Schnittpunkt (nicht Beruhrungspunkt) ; ein
Schnittpunkt gehort nur zwei Spharen an (wenn im Schnittpunkt von
ff^"1 und a™'1 der cr-ProzeB ausgeubt wird, so haben a™ und a™ keinen
gemeinsamen Punkt). Die Zusammenhangsverhaltnisse von Zn beschrei-
ben wir am bequemsten, indem wir den ,,Nerven" von Zn konstruieren :

namlich den Streckenkomplex N(Zn) mit n Eckpunkten el9..., en, in
dem et mit e3 dann und nur dann durch eine Strecke verbunden ist, wenn
a\ und a" sich schneiden ; wir behaupten : der Nerv ist ein ,,Baum"5 das

heiBt, er ist zusammenhângend und enthâlt keinen zyklischen Strecken-

zug. In der Tat : fur n 1 und n 2 ist dies trivial ; es sei fur n — 1

bewiesen ; liegt beim Ûbergang von Yn_1 zu Yn der Punkt an_1 auf nur
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einer Sphâre an% *, so hat man dem Komplex N(2Jn_1) einen Eckpunkt
en hinzuzufugen und diesen durch eine Strecke mit et zu verbinden ; ist
an_t der Schnittpunkt zweier Sphâren cr^"1 und a*""1, so hat man die
Verbindung von ez und e5 in N(Sn_1) zu tilgen, aber den neuen Punkt en

mit et und mit e3 zu verbinden (oder, was dasselbe ist : man hat en auf die
Verbindungsstrecke von et und e} zu setzen) ; in jedem Fall bleibt der
Komplex zusammenhângend, und es entsteht kein Zyklus.

Auf Grund dieser speziellen Eigenschaften wollen wir die Gebilde Zn
)y8phârenbâume" nennen.

Was die Art der Einbettung von En in Yn betrifft, so sei nur auf fol-
gende Eigenschaft hingewiesen : die Sphàre o™, also die zuletzt einge-
setzte der Sphâren on%, hat die Selbstschnittzahl —1; dies ergibt sich
ohne weiteres aus Nr. 4. Ûbrigens ist es nicht schwer, zu zeigen, daB der
topologische Typus von Tn vollstàndig durch den topologischen Typus
von Yo und die Zahl n bestimmt ist ; die analytische Struktur von Yn

dagegen hangt von der Wahl der Punkte at ab.

7. Die w-fachen or-Prozesse sind Beispiele lokaler Modifikationen und
die Sphârenbâume Beispiele von Ausnahmemengen A bei schlichten Ab-
bildungen im Sinne des § 1. DaB es, wenn man sich auf kompakte Mengen
A beschrânkt, keine anderen analogen Beispiele gibt, wird im § 3 be-
wiesen werden. Wir wollen jetzt aber noch Beispiele angeben, bei denen
die Mengen A nicht kompakt sind ; dabei werden wir einiges nur skizzieren.

(a) Man konstruiere zunâchst Yn durch einen w-fachen cr-ProzeB und
tilge dann eine abgeschlossene echte Teilmenge F aus 2Jn ; die Mannig-
faltigkeit F* Yn — F ist durch Modification von Yo in a0 entstanden ;

die zugehôrige Ausnahmemenge A Zn— F ist nicht kompakt. Zum
Beispiel kann man F so wàhlen, daB die Sphâren o\,..., onn_x zu F
gehôren und A also nur aus einem Teil von a7^ besteht.

Auch in allen diesen Mannigfaltigkeiten F* gibt es 2-dimensionale

Zyklen (geschlossene Flâchen), die allerdings im allgemeinen nicht kom-
plex-analytisch sind, mit der Selbstschnittzahl — 1. In der Tat : wir
durfen annehmen, daB A einen nicht leeren Teil von ann enthàlt (also F
nicht ann umfaBt ; denn andernfalls brauchten wir statt Yn nur ein Yk
mit k<n zu betrachten) ; natîh Nr. 4 ist die Umgebung von a^ in Yn

homôomorph mit der Umgebung T1 einer projektiven Geraden r in der
komplexen projektiven Ebene, wobei sich d^ und r entsprechen ; daher
enthâlt 7* ein Gebiet G, das homôomorph ist mit einem Gebiet T",
welches aus T1 durch Tilgung eines abgeschlossenen echten Teiles von r
entsteht ; in T" gibt es noch ganze projektive Geraden (die den stehen-
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gebliebenen Rest von r schneiden) ; dièse Geraden sind geschlossene
Flàchen, deren Selbstschnittzahl, wie aus Nr. 4 hervorgeht, — 1 ist.

(b) Der Begrifï des w-fachen or-Prozesses làBt sich leicht zu dem Begrifï
des unendlich-fachen or-Prozesses erweitern : wir definieren fur jedes n
wie in Nr. 6 die Mannigfaltigkeiten Yn mit den Sphàrenbàumen En und
den Abbildungen cpn von Yn auf Yn_1 ; zur Vermeidung von Komplika-
tionen setzen wir aber fest, daB der Punkt an, den wir auf En zu wâhlen
haben, immer auf der Sphâre Gnn und auf keiner anderen der Sphâren a\
liegen soll (die Nerven N(En) sind dann einfache Streckenzùge). Die
Folge der Mannigfaltigkeiten Yn mit den Abbildungen cpn definiert einen
Limesraum, den ,,2?ri-adischen Limes" im Sinne von H. Freudenihal [8] ;

die Punkte dièses Limesraumes L sind die Folgen

{P} (Po>Pl>--->Pn-l>Pn>---) y

wobei immer pn e Yn und 2>n-i ç>n (pn) ist ; die Topologie in L ist in
naheliegender Weise erklàrt ; durch 0 {p} p0 ist eine stetige Abbil-
dung von L auf Yo gegeben. In unserem Falle ist L — {a} 7W eine
4-dimensionale Mannigfaltigkeit mit einer, in naturlicher Weise induzier-
ten analytischen Struktur und 0 eine analytische Abbildung, die bis
auf den Punkt a0 schlicht ist ; die zugehôrige Ausnahmemenge A ist ein
,,unendlicher Sphârenbaum" U^ lim Sn — {a}. Die Mannigfaltigkeit
Yœ ist durch lokale Modifikation von Yo entstanden, wobei der Punkt
a0 durch die nicht-kompakte Menge E^ ersetzt worden ist.

(c) Wenn man bereits eine lokale Modifikation von Y mit einer nicht-
kompakten Ausnahmemenge A in der modiflzierten Mannigfaltigkeit F*
hat, so kann man folgendermaBen zu einer neuen Modifikation von T*
und damit von Y iibergehen : man nimmt auf A eine divergente (das
heiBt keinen Hâufungspunkt besitzende) Punktfolge px, p2,. und
ubt in jedem Punkt pi den cr-ProzeB aus.

Dièse Ausùbung des cr-Prozesses in allen Punkten einer divergenten
Folge lâBt sich folgendermaBen verallgemeinern : Es sei M eine beliebige
abgeschlossene Punktmenge in der 4-dimensionalen komplexen
Mannigfaltigkeit Z ; fur jeden Punkt p von M definieren wir den ,,(T-Proze8 rela-
tiv zu M" so : man ubt erst den gewôhnlichen cr-ProzeB in p aus und ent-
fernt dann aus der Sphare a aile etwa auf ihr liegenden Hâufungspunkte
der Menge y1 (M — p), Der Begrifï der gleichzeitigen Ausùbung dieser
relativen er-Prozesse in allen Punkten von M hat einen naheliegenden
Sinn ; dabei entsteht, wie man sich leicht uberlegt, ein zusammenhângen-
der Hausdorffscher Raum mit 4-dimensional euklidischen Umgebungen
und einer komplex-analytischen Struktur ; dieser Raum ist also eine
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4-dimensionale komplexe Mannigfaltigkeit im ûblichen Sinne3), falls
er eine abzâhlbare Umgebungsbasis besitzt ; dies ist aber, wie man eben-
falls leicht sieht, gesichert, falls die Menge M abzâhlbar ist. Fur abzâhlbare

abgeschlossene Mengen M fiïhrt also der soeben skizzierte ,,<y-Pro-
ze8 in der Menge M" von der Mannigfaltigkeit Z wieder zu einer kom-
plexen Mannigfaltigkeit Z*.7)

Neue lokale Modifikationen von Y erhâlt man nun dadureh, daB man
erstens von Y durch irgendeine lokale Modification, zum Beispiel den
gewôhnlichen a-ProzeB, zu einer Mannigfaltigkeit Z iibergeht und dann
in einer abzâhlbaren abgeschlossenen Teilmenge M der Ausnahmemenge
A, gleichgûltig ob A kompakt ist oder nieht, den a-ProzeB ausûbt.

Durch Kombination der unter (a), (b), (c) skizzierten Methoden erhâlt
man sehr viele und mannigfache lokale Modifikationen mit nicht-kom-
pakten Mengen A ; aber aile dièse Beispiele beruhen auf dem a-ProzeB ;

daB dies im Wesen der Sache liegt, wird sich im nàchsten Paragraphen
herausstellen.

§3. Die Rolle des cr-Prozesses fur beliebige lokale Modiflkationen

und schlichte Âbfoildungen

1. Die Umgebung U des Punktes o (0, 0) im komplexen (xlf x2)-
Zahlenraum sei durch die analytische Abbildung /:

in den (yt, ^2)-Zahlenraum abgebildet, und es sei f(o) a (0, 0).
Die Abbildung sei eineindeutig in U — H, wobei H eine den Punkt o ent-
haltende, analytische Menge ist, die entweder nur aus o besteht oder aus
endlich vielen analytischen Flâchen Hi9 von denen jede durch eine ir-
reduzible Gleichung hi(x1, x2) 0 (mit ft,-(0, 0) 0) gegeben ist.8)
Die Urbildmenge /~1(a) A besteht entweder nur aus dem Punkt o
oder aus endlich vielen irreduziblen Flachen Cj ; da auf ihnen / konstant
ist, sind sie unter den Hi enthalten. Die Funktionaldeterminante von

7) Durch Ausiibung des (T-Prozesses in nicht-abzâhlbaren abgeschlossenen Mengen M
kônnen komplexe ,,Mannigfaltigkeitena ohne abzâhlbare Basis entstehen ; man vergleiche
hierzu die Arbeit [9].

8) Die algebraischen Begriffe ,,irreduzibel", ,,Primfaktor", ,,grôfiter gemeinsamer
Teiler", die hier und im folgenden auftreten, beziehen sich auf den Ring R derFunktionen
/(a?i, x2)j die in hinreichend kleinen Umgebungen von o regulâr sind. Die Einheiten in
R sind die Funktionen, die in o nieht verschwinden ; jedes Elément von R ist Produkt
irreduzibler Elemente, und dièse Produktdarstellung ist eindeutig bis auf Faktoren, die
Einheiten sind; je zwei Elemente/ly /2 haben einen grôfiten gemeinsamen Teiler t, der
bis auf Einheitsfaktoren bestimmt ist; ist t selbst Einheit, so darf man t 1 setzen,
und/^/2 sind ,,teilerfremd{{.

146



yl9 y2 nach xl9 x2 heiBe D ; die meromorphe Funktion /x/2 * heiBe q.
Ferner soll unter V eine hinreichend kleine, in U enthaltene Umgebung
von o verstanden werden.

Lemma. Unter den genannten Voraussetzungen ist f eineindeutig in
U' — A, also in V ^schlicht bis auf a" ; und es gilt weiter: wenn f aus-
nahmslos schlicht in U', wenn also A o ist, so ist D(Q, 0) 7^ 0, und o

ist Unbestimmtheitsstelle der Funktion q ; wenn A Ausnahmemenge ist, also

aus einer oder einigen der Flachen Ht besteht, so ist D(Q, 0) 0, und o

ist nicht Unbestimmtheitsstelle von q (cf. [ 10], p. 60—61).

Bemerkungen : (a) Das Lemma enthâlt den bekannten Satz ([10],
p. 19) : wenn / in der Umgebung von o ausnahmslos schlicht ist, so ist
D ^ 0. — (b) Aus dem Lemma ist ersichtlich : Die Eigenschaften, durch
die wir im § 1 die ,,bis auf a schlichtenu Abbildungen definiert haben,
kônnen durch die schwâcheren Voraussetzungen des Lemmas ersetzt
werden (also ohne daB die Konstanz von / auf der Ausnahmemenge ge-
fordert wird).

Beweis des Lemmas: Es sei t(xlf x2) der grôBte gemeinsame Teiler
von/1? /2, also

f1{x1, x2) =t(xl9 ff2)-0x0*1, x2) f2(xl9 x2) t(x1, x2)-g2(xl9 x2) (6)

mit teilerfremden gt, g2. Wir unterscheiden zwei Fâlle :

FallI: flr1(0,0) ff2(0,0) 0;
Fall II : gt(0, 0) =£ 0 fur wenigstens einen der Indizes i 1,2.
Es liège zunâchst der Fall I vor : Sind q q' verschiedene Zahlen, so sind

£(7i + #2> Qf9i + 92 teilerfremd; daraus folgt : zu jeder der oben
genannten irreduziblen Funktionen ht gibt es hôchstens eine Zahl çt, so
daB hl Teiler von Qtg1 -f- g2 ist ; wir kônnen daher q so wâhlen, daB

Qffi + 92 zu allen ht teilerfremd ist. Es sei p(x±, x2) ein Primfaktor von
Q9i + 92 y dann fallt die durch p 0 bestimmte irreduzible Flâche P
mit keiner der Flachen Ht zusammen, und folglich wird P durch / schlicht
abgebildet, und zwar, da auf P die Gleichung qgx -f g2 0 gilt, auf ein
Gebiet der Ebene y2 — q yt ; in dieser Ebene ist y± ein regulârer
Parameter. Andererseits besitzt P eine Parameterdarstellung xx u(z),
x2 v(z), wobei u, v eindeutige analytische Funktionen in der Ebene
des lokal uniformisierenden Parameters z sind und eine Umgebung des

Punktes z 0 eineindeutig auf eine Umgebung von o auf der Flâche
P bezogen wird. Durch Vermittlung der Flâche P und der Abbildung /
wird somit yx eine schlichte Funktion von z ; es ist dies die Funktion

yt(z) t(u(z), v(z)) .gt(u(z), v(z)) : (7)
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infolge ihrer Schlichtheit ist ^0. (8)

Da wir uns im Fall I befinden, haben die Taylorschen Reihen von gx

und g2 keine konstanten Glieder, sie beginnen also mit

gi(%i,%2)=zaxi+ bx2+ • • •, g2(x1,x2) cx1+ dx2+ - - - (9)

Berechnet man y[(0) aus (7) und der ersten Gleichung (9), so erhâlt man

y[(0) t(0, 0).(au'(0) + bv'(O)) (10)

Hieraus und aus (8) folgt erstens : £(0, 0) ^ 0 ; wir durfen also t 1,
f1== glf f2 g2 setzen ; fx, f2 sind somit teilerfremd, und daher ist der
Punkt o eine Unbestimmtheitsstelle der Funktion q fxfe1.

Zweitens folgt aus (10) und (8) : Es ist (a, b) ^ (0, 0), das heiBt, es

verschwinden nicht beide linearen Glieder in der Entwicklung (9) von
gx. Nun ist aber die Funktion g1 nicht bevorzugt vor irgendeiner linearen
Verbindung g* Xgx + jW<72, wobei A, ju beliebige Zahlen, nicht beide

gleich 0, sind; denn Voraussetzungen und Behauptungen unseres Lem-
mas bleiben ungeàndert, wenn man mit y1: y2 eine regulâre homogène
affine Transformation vornimmt. Folglich verschwinden auch in der
Reihe fur g* nicht beide linearen Glieder ; dièse Reihe beginnt nach (9)
mit

g*(xl9 x2) (Xa + fie) xx + (A6 + fid) x2-\

Dièse linearen Glieder kônnte man aber durch geeignete Wahl von
(A, fi) ^ (0, 0) zum Verschwinden bringen, wenn die Déterminante
ad — bc 0 wâre ; es ist also ad — bc ^0. Da aber gx /1? g2 f2

ist, ist ad — bc D(0, 0).
Aus D(0, 0) ^ 0 folgt nun weiter, daB / in einer Umgebung U' von o

ausnahmslos schlicht ist.
Es ist also bewiesen : Im Fall I ist f ausnahmslos schlicht in U1,

D(0, 0) 9É 0 und o Uvbestimmtheitsstelle von q,
Jetzt liège der Fall II vor : Dann liest man aus (6) ab : o ist nicht

Unbestimmtheitsstelle von q, sowie : £(0,0) 0; da die Menge A
durch t 0 charakterisiert ist, besteht sie nicht nur aus o, sondern ist
eine Ausnahmemenge ; da sie auf a abgebildet wird, ist D(Q, 0) 0.

Wir haben noch zu zeigen : / ist eineindeutig in U — A. Dies ist
trivial, falls H A ist ; H enthalte also einen irreduziblen Bestand-
teil H1, der nicht zu A gehôrt ; ot sei ein von o verschiedener Punkt auf
jSr1, und U1 eine Umgebung von o1} deren Durchschnitt mit H zu H^
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gehôrt. Die Abbildung / ist in Ux — H1 eineindeutig, und wir kônnen
unsere bisherigen Betrachtungen statt auf o, U und H analog auf ol3
£7j und H1 beziehen. Dann aber — also indem wir o durch ox ersetzen —

befinden wir uns nicht im Falle II ; denn sonst wâre, wie wir soeben ge-
sehen haben, die Menge A' der Punkte xe Ux mit f(x) /(o^ — also
die Menge, die analog zu A ist — eine Ausnahmemenge und enthielte
also eine analytische, o1 enthaltende Flàche A" ; infolge der Schliehtheit
von /in U1 — H1 miiBte A" auf Hx liegen, und / wàre somit in einem
Teilgebiet von H1 konstant ; dann wâre / auf ganz H1 konstant, also

H1dA, was nicht der Fall ist. Es liegt also in ox der Fall 1 vor, und
daher ist, wie wir oben gezeigt haben, D 7^ 0 in o1. Daher hat ox und
somit hat jeder Punkt von U — A eine Umgebung, in der / eineindeutig
und daher topologisch und gebietstreu ist ; / ist aber in U — A ûber-
haupt eineindeutig. Denn wâre f(p1) — /(p2) y fur zwei verschiedene
Punkte Pi und p2 aus U — A, so betrachte man eine gegen y konver-
gierende Folge von Punkten yin\ die nicht zu f(H) gehôren : infolge der
Gebietstreue von / in Umgebungen von px und p2 gâbe es Punktfolgen
P(1n)->Pi,PÏn)->P2 mit f(p[nï)^f(p^)^y(n\p[n>eU~H,p^eU-~H
— entgegen der Eineindeutigkeit von /in U — H.

Wir haben damit bewiesen : Im Fall II hat die Funktion q Jceine Un-
bestimmtheitsstelle, A ist Ausnahmemenge, es ist D(0, 0) 0, und f ist
eineindeutig in U — A.

Die Zusammenfassung der Ergebnisse fiir den Fall I und fur den
Fall II liefert den Beweis des Lemmas.

2. Wir betrachten jetzt eine analytische Abbildung / einer Mannig-
faltigkeit X in eine Mannigfaltigkeit Y, die schlicht bis auf einen Punkt
a € f(X) ist, und es sei wieder f~x(a) A. Wie in § 2 sei Yx die
Mannigfaltigkeit, die durch den cr-ProzeB im Punkte a aQ aus Y Yo ent-
steht, und die zugehôrige Abbildung von Yx auf Yo heiBe wieder çpx. —

Behauptung : Entweder ist f ausnahmslos schlicht (also A einpunktig), oder

f làfît sich zusammensetzen aus einer Abbildung f1 von X in Y1 und der
Abbildung (plt so dafi also f <pxfx ist.

Beweis. Wir nehmen an, daB / nicht ausnahmslos schlicht ist. yl9 y2
seien Parameter in einer Umgebung F von a (0, 0) ; W sei eine

Umgebung von A mit f(W)czV ; dann wird / fur xeW durch zwei

analytische Funktionen fx(x) yl9 /2(#) y% beschrieben ; damit ist
auch die meromorphe Funktion q fj^1 in W definiert. Wir behaup-
ten : q besitzt keine Unbestimmtheitsstelle. In der Tat : in W ¦— A ist
dies klar, da dort eine der Funktionen f{ ^ 0 ist ; es sei also o ein be-

149



liebiger Punkt von A. Da / nicht ausnahmslos schlicht ist, ist o nach
§ 1, Nr. 2, nicht isolierter Punkt von A ; dann folgt aus dem Lemma in
Nr. 1 — indem wir in der Umgebung von o Parameter xl9 x2 einfûhren
und iibrigens H A setzen —, daB o nicht Unbestimmtheitspunkt ist.

In dem Teil Vx <px^{V) der Mannigfaltigkeit Yx sind gemâB § 2 die
Parameter yx, y2, st: s2, die durch die Relation (2) verkniipft sind,
erklârt. Wir definierert die Abbildung f1 von W in Vx durch

Vi fi(x) V2 M*) > si :s2 ?(*) • (H)

Fur dièse Abbildung von PF gilt ç^/1 / ; sie kann daher in W — A
auch durch

(110

erklàrt werden. Wenn wir nun fur aile x c X — A die Abbildung jf1

durch (11') defînieren, so ist f1 in ganz X erklàrt, und es ist uberall f=q?1f1.
In dem soeben gefûhrten Beweis haben wir die Voraussetzung, daB /

in ganz X schlicht bis auf a, also in ganz X — A eineindeutig sei, nicht
ausgenutzt, sondern nur folgende schwâchere Voraussetzung : / ist in
ganz X gegeben, und die Menge A /^(a) besitzt eine Umgebung U, so

dafi f in U schlicht bis auf a ist. Denn die Anwendung des Lemmas aus
Nr. 1 spielt in der Umgebung von A, und die Définition von / durch
(117) in X — A ist von der Eineindeutigkeit ganz unabhàngig. Wir
werden dièse Bemerkung nachher anwenden.

3. Es sei auch weiterhin A Ausnahmemenge, / eineindeutig in U — A,
f1 also erklàrt ; ferner sei o ein Punkt von A, f1 (o) at, f/1)"1 (a-J Ax.
Aus der Eineindeutigkeit von / ç^/1 in U — A folgt, daB dort auch
f1 eineindeutig ist ; wir beschrànken uns zunàchst auf eine Umgebung
U(o) von o und kônnen dort das Lemma aus Nr. 1 anwenden, indem wir
die dortigen f, H, A jetzt durch f1, A, A1 ersetzen ; dann besagt das

Lemma (unter anderem), daB f1 eineindeutig in V (o) — Ax ist. Die
Vereinigung aller U' (o), wàhrend o die Menge Ax durchlàuft, ist eine

Umgebung IHA^. Wir behaupten : f1 ist eineindeutig in UiA^ — Ax.
Dies folgt aus der soeben bewiesenen lokalen Eineindeutigkeit, also
Gebietstreue von f1 in U(AX) — Ax und der globalen Eineindeutigkeit
in U — A : wàren nàmlich pl9 p2 verschiedene Punkte in U(Ax) — A1
mit /1(^1) /1(j>2)5 so kâmen wir auf gleiche Weise zu einem Wider-
spruch wie am SchluB des Beweises in Nr. 1, wobei wir die dortigen
/, H, A wieder durch f1, A, Ax zu ersetzen haben. Da somit f1 in einer
Umgebung von Ax schlicht bis auf ax ist, kônnen wir auf Grand der Fest-
stellung am SchluB von Nr. 2 das Ergebnis von Nr. 2 auf f1 anwenden.
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Demnaeh besteht die — durch den Punkt o bestimmte ~ Menge Ax
entweder (a) nur aus dem Punkt o (dann ist f1 in der Umgebung von o

eineindeutig), oder (b) es ist f1 (p2f2, wobei /2 eine Abbildung von X
in die Mannigfaltigkeit Y2 ist, welche durch den cr-ProzeB im Punkte
ai — tx{°) aus ^1 entsteht, und wobei cp2 die zugehôrige Abbildung von
Y2 auf Fx bezeichnet. Der Punkt a± liegt auf der Sphare o{ (in der Be-
zeiehnungsweise aus § 2, Nr. 6), da (px(a^) «Pi/M0) f(o) -= a0 ist.

So fahren wir fort : /2 (o) a2 ist ein Punkt der Sphàre a\ in Y2 ; es
sei (/2)~1(a2) ^2- Es bestehen zwei Môglichkeiten : (a) A2 o, also
/2 in der Umgebung von o eineindeutig ; (b) f2 ç^/3, wobei /3 eine
Abbildung von X in die Mannigfaltigkeit Y3 ist, die durch den c-Prozeû in
a2 aus Y2 entsteht. Nehmen wir an, daB bei fc-maliger Wiederholung
immer der Fall (b) vorliegt ; dann haben wir :

/ Vif1 9W2/2 • • • ?W2 • • • <P*fk **/* (12)

wobei fk eine Abbildung von X in Yk und &k die naturliche Abbildung
von Yk auf F ist. Dièse Zerlegung von / hàngt von dem gewahlten Punkt
o ab.

Es wâre nun zunâchst denkbar, daB fur einen gewissen Punkt o immer
der Fall (b) vorlàge, es also beliebig lange Zerlegungen (12) gâbe. Be-
hauptung : Das ist unmôglich. Beweis9) : Es gelte (12), und es seien, bei
Benutzung beliebiger lokaler Parameter, D(f), D(fk) die Funktional-
determinanten von / und fk in der Umgebung von o und D((pt) die Funk-
tionaldeterminante von çpt in der Umgebung von at ; dann ist

aile dièse Determinanten sind Funktionen der in der Umgebung von o

gtiltigen Parameter xl9 x2. Nun ist aber D(q>t) 0 im Punkte at, da
dieser auf der Sphàre o\ liegt, die durch çp% ganz auf den Punkt at_t ab-
gebildet wird; die Funktion D(tpt) von xl3 x2 verschwindet also in o.
Folglich ist die Funktion D(f) ein Produkt von Je nieht-trivialen, das
heiBt in o verschwindenden Funktionen, und daher ist k nicht grôBer als
die Anzahl der Faktoren bei der Zerlegung von D(f) in Primfaktoren.

Es gibt also zu jedem Punkt o von A eine Zahl k, so daB beim k-ten
Schritt unseres Vorgehens der Fall (a) eintritt. Fur dièses k k(o) gilt
(12) ; dabei ist fk eine Abbildung von X in eine Mannigfaltigkeit Yk, welche
durch einen k-fachen a-Proze/i im Punkte a a0 aus Y entstanden ist;

9) Diesen Beweis verdanke ich Herrn H. Buhrer; mein ursprungheher Beweis war
umstandheher.
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dièse Abbildung fk ist in einer Umgebung von o eineindeutig ; &k ist die
natûrliche Abbildung von Yk auf Y.

4. Da die Bedingung f(x) — a0 auf Grund der Zerlegung f 0kfk
identisch ist mit /fc(#)e27fc, wobei Ek wie in § 2 den Sphârenbaum in
Yk bezeiehnet, wird A durch fk auf einen Teil von Ek abgebildet. In einer
Umgebung von o ist fk eineindeutig ; folglich ist das dort gelegene Stuck
von A analytisch homôomorph einem Stûck eines Sphàrenbaums in der
Umgebung eines seiner Punkte ; aus Eigenschaften der Spharenbâume,
die wir in § 2, Nr. 6, festgestellt haben, folgt daher :

Satz I. Eine Ausnahmemenge A einer schlichten Abbildung besteht in
der Umgebung eines beliebigen ihrer Punkte entweder aus einem einzigen
regulâren analytischen Flàchenstuck oder aus zivei solchen Flâchenstûcken,
die sich schneiden (ohne Beruhrung).6)

Auch wenn man keine anderen Mannigfaltigkeiten X betraehtet als
die Gebiete des Zahlenraumes, verdient dièse Tatsache Interesse10). Das
Beispiel (1) in § 1 zeigt den Fall einer einzigen Ausnahmeflàche ; Bei-
spiele mit zwei Ausnahmeflâchen durch einen Punkt werden durch

yx x\x\ y2 x\x\ ; a,b, c, d>0 ad — bc 1 (13)

gegeben.

5. Wir kniipfen an das Ende von Nr. 3 an und wollen zunàchst an-
geben, wie groB man die Umgebung U von o wàhlen darf, damit fk in U
eineindeutig sei. Die Menge A besteht aus endlich oder abzahlbar unend-
lich vielen irreduziblen analytischen Flâchen Ci? von denen eine oder
zwei durch o laufen. Behauptung : fk ist in U eineindeutig, falls keine
andere Ci in U eintritt als die durch o laufenden. In der Tat : wenn
dièse Bedingung erfullt ist, so tritt, da fk auf den durch o laufenden Gi
(infolge der Eineindeutigkeit von fk in der Nâhe von o) nicht konstant
ist, keine Ausnahmemenge von fk in U ein ; folglich besitzt jeder Punkt
von U eine Umgebung, in der /* eineindeutig ist ; ferner ist fk eineindeutig

in U — A (da / 0kfk dort eineindeutig ist). Wie friiher (zum
Beispiel gegen SchluB von Nr. 1) folgt aus der lokalen Eineindeutigkeit
in U und der globalen Eineindeutigkeit in U — A leicht die
Eineindeutigkeit in U.

Jeder Punkt von A besitzt eine solche ,,ausgezeichnete" Umgebung.
Es sei nun ein kompakter Teil K von A gegeben. Wir kônnen ihn mit

io) In diesem Zusammenhang hat mich zuerst Herr Buhrer auf den Satz I aufmerksam
gemacht.
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endlich vielen ausgezeichneten Umgebungen U(ox), U(o2),..., U(om)
uberdecken. Wir bestimmen erstens die Abbildung /f1 von X in eine

Mannigfaltigkeit Y\i9 so daB f\x in U(ox) eineindeutig ist und fur welche

/ — Ëjcfi1 gilt. Die Umgebung U(o2), welche in bezug auf die Abbildung
/ von X in Y ,,ausgezeiehnet" war, ist dies auch in bezug auf die
Abbildung fl1 von X in Y\x ; denn die Ausnahmemenge B von f*1 geht aus
A hervor, mdem aus A gewisse C3 fortfallen (aber keine neuen Aus-
nahmepunkte hinzutreten). Es gibt daher eine Mannigfaltigkeit Y\
welche aus Y\ durch einen mehrfachen cr-ProzeB im Punkte f\l{o2) her-
vorgeht, und eine Abbildung f22 von X in Y\2, die in U(o2) eineindeutig
ist und fur die f\l W^ffe* 9

also / &ki WkJ^2 gilt ; die Eineindeutig -

keit von /J1 in U(o^) bleibt beim Ûbergang zu f22 erhalten, wie aus der
angegebenen Zerlegung von f\x ersichtlich ist. So fàhrt man fort und er-
hâlt schlieBlich eine Mannigfaltigkeit Y, die durch einen mehrfachen

cr-ProzeB in a aus Y entstanden ist, und eine Abbildung F von X in Y,
die in allen U(ot) eineindeutig ist und fur welche / — QF gilt, wobei

Q die natùrliche Abbildung von Y auf Y bezeichnet. Die gegebene Menge
KdA ist in der Summe U der U(ot) enthalten ; aus der Eineindeutigkeit
von F in jedem U(ot) und in 1-4 folgt die Eineindeutigkeit in U
nach demselben Schéma wie friiher : wâre F(p^) F(p2) fur verschie-
dene pl9 p2 aus U, so kàme man ebenso zum Widerspruch, wie gegen
SchluB von Nr. 1. — Wir fassen zusammen :

Satz II. K sei ein kompakter Teil der Ausnahmemenge A bei der bis

auf a schlichten Abbildung f von X in Y ; dann gibt es eine Mannigfaltigkeit

Y, die durch einen mehrfachen o-Prozeji in a aus Y entsteht, und eine

Abbildung F von X in Y, so dafi F in einer Umgebung von K eineindeutig

ist und dafi f QF gilt, wobei Q die natùrliche Abbildung von Y auf Y
bezeichnet. K selbst wird durch F analytisch homôomorph auf einen Teil des

Spharenbaumes U in Y abgebildet.
Dieser Satz enthâlt das Ergebnis von Nr. 3 als Spezialfall : dort ist K

der Punkt o.

6. Jetzt sei A kompakt ; dann diirfen wir K=A setzen. Da F sowohl
in einer Umgebung U(A) als auch von vornherein in X — A eineindeutig

ist, ist F eine homôomorphe Abbildung von X auf einen Teil X'
von Y. Das in S gelegene Bild F (A) ist mit £ identisch ; denn es ist einer-
seits kompakt, also abgeschlossen, andererseits, infolge der Eineindeutigkeit

von F, ofiEen in Z; da Z zusammenhângend ist, ist F (A) È.
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Bereits in § 1, Nr. 3, haben wir gezeigt, daB die Abbildung / vollstàndig
ist ; in unserer jetzigen Sprache bedeutet das einfach, da6 jede Um-

gebung von È durch Q auf eine voile Umgebung von a abgebildet wird. —

Hiermit ist unser Hauptsatz bewiesen :

Satz III. Ist die Ausnahmemenge A f~x (a) der bis auf den Punkt a
schlichten Abbildung f von X in Y kompakt, so là/it sich f zusammensetzen

aus einer analytisch homôomorphen Abbildung F von X auf einen Teil X!
einer Mannigfaltigkeit Y, die durch einen mehrfachen a-Prozeji in a aus Y
entstanden ist, und der naturlichen Projektion Q von Y auf Y. Durch F
geht A in den Sphârenbaum E von Y ûber. A ist also mit E homoomorph,
Das Bild f (X) enthàlt eine voile Umgebung von a.

Ûbersetzen wir dies gemâB § 1, NT. 4, in die Sprache der Modifika-
tionen, so haben wir noch zu beachten, da8 dann / eine Abbildung von X
auf die ganze Mannigfaltigkeit Y, daB also X' Y ist ; indem wir X
vermôge F mit X' identifizieren, dûrfen wir dann sagen :

Satz III'. Es gibt keine anderen lokalen Modifikationen von Y als die

n-fachen a-Prozesse, n ^ 1.

7. Auch ûber die Struktur nicht-kompakter A gibt der Satz II weit-
gehend AufschluB :

Satz IV. Die irreduziblen analytischen Flâchen Cx, C2,..., aus denen

die Ausnahmemenge A einer bis auf einen Punkt schlichten Abbildung 6e-

steht, haben folgende Eigenschaften : (a) jede C{ ist in jedem ihrer Punkte
reguMr%) ; (6) jede C{ ist einemOebiet derZahlkugel a analytisch homoomorph
(sie ist also eine ^schlichtartige" Riemannsche Floche); (c) je zwei Ct haben

hôchstens einen Punkt gemeinsam; ein solcher ist Schnitt-, nicht Berûh-
rungspunkt; (d) durch keinen Punkt gehen mehr als zwei Flâchen Gi; (e)

es gibt keinen ,,Zyklus" Cl9 C2,..., Cn, Cn+1 C1? n>2, derart, da/ï
immer Ct und Ci+1 sich schneiden.

Man bestâtigt jede dieser Behauptungen leicht mit Hilfe des Satzes II :

Wàre eine der Behauptungen falsch, so gâbe es einen kompakten Teil
von A, der nicht mit einem Teil eines Sphàrenbaumes analytisch homoomorph

wâre.
In der Sprache der Modifikationen lautet der Satz :

Satz IV7. Eine Menge A, welche bei einer lokalen Modification einer

Mannigfaltigkeit Y einen Punkt a ersetzen kann, hat — wenn sie nicht
selbst nur ein Punkt ist — notwendigerweise die im Satz IV genannten
Eigenschaften.
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8. Der Satz IV gilt unabhângig davon, ob die Abbildung / vollstàndig
ist oder nicht (er enthâlt nicht nur Aussagen uber Modifikationen). Fur
vollstândige Abbildungen kônnen wir, wenn auch nicht ûber die Struktur
von A, so doch liber die Struktur des Raumes X noch folgende Aussage
hinzufûgen :

Satz V. Die Mannigfaltigheit X gestatte eine Abbildung f, welche bis auf
einen Punkt a schlicht ist, eine nicht-triviale (das heifit mehrpunktige) Aus-
nahmemenge A f~x(a) besitzt und welche vollstàndig ist; mit anderen
Worten : X sei durch eine lokale Modification, die nicht trivial ist (dashei/it,
die a durch eine mehrpunktige Menge A ersetzt), aus einer Mannigfaltig-
keit Y entstanden. Dann enthalt X eine 2-dimensionale geschlossene

Flâche, deren Selbstschnittzahl gleich — 1 ist.5)

Beweis. G sei ein (beliebig kleines) Flàchenstiiek aus A. Wir kônnen

(in der Ausdrucksweise von Satz II) Y, F und eine Umgebung U(C) so
wâhlen, da8 W (X — A) ^ U(C) durch F eineindeutig (also topolo-
gisch) in Y abgebildet wird, und wir brauchen uns daher von der Existenz
einer geschlossenen Flàche mit der Selbstschnittzahl — 1 nur in dem
Gebiet F(W) zu iiberzeugen. Da / vollstàndig ist, enthalt f(X) QF(X)
eine Umgebung V von a ; folglich enthâlt F (X — A die Menge Q~x F — a)
und F(W) die Menge i3~1(F— a) ^FU(C) ; dièseMannigfaltigkeitaber
kann man so erzeugen : man iibt erst auf F den mehrfachen cr-ProzeB Q-1
in a aus und entfernt dann einen abgeschlossenen echten Teil des Sphâren-
baumes 27. DaB es in einer solchen Mannigfaltigkeit geschlossene Flâchen
mit der Selbstschnittzahl — 1 gibt, haben wir in § 2, Nr. 7 (a), gesehen. —

Im (xl9 o?2)-Zahlenraum hat jeder 2-dimensionale Zyklus die
Selbstschnittzahl 0 (da er homolog 0 ist) ; daher ist aus dem Satz V unter
anderem ersichtlich : eine Abbildung eines Gebietes des Zahlenraumes,
welche bis auf einen Punkt schlicht ist, ist entweder ausnahmslos schlicht
oder unvollstàndig. Es ist also kein Zufall, sondern eine Notwendigkeit,
daB bei den Abbildungen, die durch (1) und durch (13) gegeben sind,
das Bild des (xv, a?2)-Raumes keine voile Umgebung des Punktes

yx— y2 0 enthâlt.
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