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Schlichte Abbildungen
und lokale Modifikationen 4-dimensionaler
komplexer Mannigfaltigkeiten

von HEinz Horr, Ziirich

Meinem verehrten Kollegen und Freund M. Plancherel
zum siebzigsten Geburtstag gewrdmet

§ 1. Einleitung

1. Diese Arbeit betrifft eine der zahlreichen Erscheinungen in der
Theorie der analytischen Funktionen von zwei oder mehr komplexen
Variablen, welche in der Theorie fiir eine einzige Variable kein Analogon
haben: fir m > 2 gibt es analytische Abbildungen durch m Funktionen
von m Variablen, bei welchen zwar fiir fast alle Bildpunkte die Urbilder
nur aus endlich vielen Punkten bestehen, auf einige Ausnahmebildpunkte
aber ganze analytische Flichen — die Ausnahmemengen — abgebildet
werden. Das einfachste Beispiel ist die Abbildung des komplexen (z,, z,)-
Zahlenraumes X in den (y,, y,)-Zahlenraum Y, die durch

Yp = 2y , Yy = X1 %, (1)

gegeben ist : die Ebene z,= 0 ist Ausnahmemenge, der Punkt y,=y,=0
der zugehorige Ausnahmebildpunkt, im iibrigen ist die Abbildung einein-
deutig. Ahnliche Fille liegen in der komplexen algebraischen Geometrie
vor, wenn Flichen X durch rationale Transformationen so auf Flichen Y
abgebildet sind, daBl einzelne Kurven C von X in Punkte iibergehen;
dabei haben wir X und Y als komplexe Mannigfaltigkeiten von 4 reellen
Dimensionen, die C' als analytische Flichen von 2 reellen Dimensionen
aufzufassen?).

Unsere nachstehende Untersuchung wird sich nur auf den folgenden,

1) Unsere ,,Abbildungen* sollen immer eindeutig sein. Bei der Heranziehung von Bei-
spielen aus der algebraischen Geometrie ist Vorsicht am Platze, da man dort das Wort
,»Abbildung‘‘ auch fiir Korrespondenzen gebraucht, die in keiner der beiden Richtungen
eindeutig sind.
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besonders einfachen Fall beziehen: erstens wird die Abbildung ,,schlicht® —
in einem sogleich noch zu prizisierenden Sinne — und zweitens wird
m = 2 sein?). Ferner werden wir uns weniger fiir die mogliche Ver-
teilung der Ausnahmebildpunkte interessieren als fiir das Verhalten der
Abbildung f in einem einzelnen solchen Punkt ¢ und seiner Umgebung ;
daher diirfen wir (wenigstens vorldufig) annehmen, dal der Bildraum
die Umgebung eines Punktes a im (y,, y,)-Zahlenraum ist. Dagegen
wollen wir die Ausnahmemenge 4 = f~'(a) und ihre Umgebung nicht
nur lokal, sondern im GroBen studieren, und daher werden wir fiir die
Ridume X, die abgebildet werden, von vornherein beliebige komplexe
Mannigfaltigkeiten zulassen, nicht nur Teilgebiete des Zahlenraumes 3).
Die Situation, die wir betrachten, ist also die folgende :

Die 4-dimensionale komplexe Mannigfaltigkeit X ist durch die analy-
tische Abbildung f in den komplexen (y,, ¥,)-Zahlenraum abgebildet ;
f ist nicht konstant, das heiflt, die Bildmenge f(X) besteht nicht nur aus
einem einzigen Punkt. @ ist ein fester Punkt aus f(X) und A4 = f1(a)
sein Urbild in X ; die Menge X — 4 wird durch f eineindeutig abge-
bildet.

Dann sagen wir: f ¢st schlicht — oder auch, um deutlicher zu sein :
f st ,,schlicht bis auf a”“. Wenn A nur aus einem Punkt besteht, so ist f
,ausnahmslos schlicht“ ; wenn A wenigstens zwei Punkte enthilt, so ist
A ,,Ausnahmemenge”, und a ist ,,Ausnahmebildpunkt“ von f.

2. Wir werden spiter die Ausnahmemengen A4 eingehend unter-
suchen ; die einfachsten Eigenschaften wollen wir aber schon jetzt, zur
vorldufigen Orientierung, feststellen.

Daf3 4 abgeschlossen ist, folgt bereits aus der Stetigkeit von f. Die
Menge A4 ist durch die beiden analytischen Gleichungen y,(z) = a,,

%) Die Voraussetzung m = 2 wird erst im § 3 wesentlich gebraucht werden.

3) Wie iiblich verstehen wir unter einer n-dimensionalen (topologischen) Mannigfaltig-
keit M™ einen zusammenhingenden Hausdorffschen Raum mit abzéhlbarer Umgebungs-
basis, in dem die Punkte Umgebungen besitzen, welche mit dem Innengebiet der n-dimen-

sionalen euklidischen Vollkugel homéomorph sind. M?™ heifit ,,komplex‘* — genauer:
»18t mit einer komplex-analytischen Struktur versehen‘* —, wenn in den euklidischen
Umgebungen der Punkte komplexe Parametersysteme (z;,...,2,), (w,..., w,)s -

so eingefiihrt sind, daB die beim Ubereinandergreifen solcher Systeme entstehenden
Parametertransformationen analytisch sind. Der Begriff der Analytizitat von Abbildungen
einer komplexen M2™ in eine andere — also auch der Begriff der analytischen Funktion
auf einer M2 — igt in bezug auf spezielle lokale komplexe Parametersysteme erklart,
aber infolge der Analytizitiat der Parametertransformationen von den speziell benutzten
Systemen unabhéangig. — Jedes Teilgebiet einer komplexen M2™ jst selbst eine komplexe
M, — Die komplexen M2 sind die Riemannschen Flachen. — Literatur zur Einfithrung:
z. B. [1].
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Ys(x) = a, definiert, wobei a,, a, die Koordinaten von a im (y,, y,)-
Raum sind und = den variablen Punkt in X bezeichnet ; folglich ist 4
eine ,,analytische Menge®, das heilit : A besteht aus endlich oder abzihl-
bar unendlich vielen analytischen irreduziblen Flédchen, die sich nirgends
hidufen (in X), und vielleicht noch aus isolierten Punkten. Wir zeigen
aber sogleich : isolierte Punkte treten nicht auf; mit anderen Worten :
Wenn A einen isolierten Punkt p enthilt, so ist 4 = p, die Abbildung
f also ausnahmslos schlicht.

Beweis. Der Punkt p besitzt eine Umgebung U, in welcher er der
einzige Urbildpunkt von ¢ und in welcher f daher eineindeutig und folg-
lich gebietstreu ist ; mithin enthilt das Bild f(U) eine volle Umgebung
von a, und folglich besitzt jeder Punkt p’'e A eine Umgebung U’ mit
f(UYcf(U); folglich gibt es zu jedem Punkt z'e¢ U’ einen Punkt
xe U mit f(x) = f(2'); da f nicht konstant ist, diirfen wir «'e X — 4
und damit auch z¢ X — 4 annehmen ; aus der Eineindeutigkeit von f
in X — 4 folgt ' = x. Da dies fiir beliebig kleine Umgebungen U, U’
von p, p' gilt, ist &' = x unvertriaglich mit p’ ## p; esist also p’ = p,
das heiit 4 = p.

Damit ist gezeigt : Die Menge A = f~'(a) besteht entweder aus einem
einzigen Punkt, oder sie ist eine 2-dimensionale analytische Menge ohne
1solierte Punkte.

3. Unsere Abbildungen f lassen sich in zwei Klassen einteilen : wir
nennen f ,,vollstindig* oder ,,unvollstindig“, je nachdem a innerer Punkt
oder Randpunkt der Bildmenge f(X) ist. Wihrend nédmlich jeder von a
verschiedene Bildpunkt y = f(z) innerer Punkt von f(X) ist, weil f in
der Umgebung von z eineindeutig, also gebietstreu ist, sind fiir a selbst
beide Fille moglich : die durch (1) gegebene Abbildung ist unvollsténdig,
da der Punkt y, = y, = 0 auf der Ebene y, = 0 der einzige Punkt ist,
der zu f(X) gehort ; dagegen wird in § 2, Nr. 1, ein Beispiel einer voll-
stindigen Abbildung angegeben werden (auch die erwdhnten Transfor-
mationen in der algebraischen Geometrie sind vollstindig). Ubrigens ist
natiirlich jede ausnahmslos schlichte Abbildung vollstéindig, da sie auch
in der Umgebung des Punktes f-!(a) eineindeutig, also gebietstreu ist ;
diese Tatsache ist ein Spezialfall eines allgemeineren Satzes, dessen (rein
topologischer) Beweis so einfach ist, dafl wir ihn sogleich hier angeben
wollen : Wenn A kompakt ist, so ist f vollstindig.

Beweis. Die kompakte Menge A in der Mannigfaltigkeit X besitzt
eine offene Umgebung U, deren abgeschlossene Hiille U ebenfalls kom-
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pakt ist; dann ist auch die Begrenzung U = U — U kompakt und
folglich die Bildmenge f(U') abgeschlossen; da der Punkt @ nicht zu
dieser Menge gehort, besitzt er eine Umgebung V, die fremd zu f(U’)
ist ; dann ist der Durchschnitt V~ f(U) gleich dem Durchschnitt
V~ f(U) und ebenso

(V = a,)mf(ﬁ) = (V wa)nf(U —~A) .

Diese Menge, die wir W nennen, ist, da f(U) infolge der Kompaktheit
von U abgeschlossen ist, abgeschlossen in V —a; da U — A offen
und f in U — A4 eineindeutig ist, ist f(U — A4) offen, also auch W
offen (in V — a und sogar im ganzen y-Raum). Da wir V — a als zu-
sammenhingend annehmen diirfen und da W offenbar nicht leer ist,
folgt aus der Abgeschlossenheit und Offenheit von W in V — a, daB
W=V —a ist. Es ist also V —acf(U — 4)cf(X) und mithin «
innerer Punkt von f(X).

4. Wir werden uns besonders fiir die vollstindigen schlichten Abbil-
dungen interessieren. Ein wesentlicher Grund hierfiir ist der, daf3 diese
Abbildungen eng mit Modiftkationen komplexer Mannigfaltigkeiten im
Sinne von H. Behnke und K. Stein zusammenhingen [2]. Der Ubergang
von einer komplexen Mannigfaltigkeit ¥ zu einer komplexen Mannig-
faltigkeit X durch eine ,,Modifikation“ bedeutet, zundchst grob gespro-
chen, folgenden Prozef} : Man nimmt aus Y eine Teilmenge B heraus und
setzt in das dadurch entstandene Loch eine Punktmenge 4 so ein, daf,
ohne Anderung der analytischen Struktur von ¥ — B, die Mannigfaltig-
keit X entsteht ; genau : X und Y sind komplexe Mannigfaltigkeiten, 4
und B sind abgeschlossene Teilmengen von X bzw. Y ; es existiert eine
eineindeutige analytische Abbildung f von X — A4 auf Y — B, derart,
daB folgende Bedingung erfiillt ist : wenn ein Punkt ze X — 4 gegen
A strebt, so strebt f(x) gegen B (diese Bedingung besagt, dal man 4
wirklich in dasjenige Loch eingesetzt hat, welches durch Tilgung von B
aus Y entstanden ist).

Wir werden es nur mit dem einfachsten Spezialfall zu tun haben, nim-
lich mit den ,,lokalen Modifikationen : das sind diejenigen, bei denen B
nur aus einem einzigen Punkt a besteht. Dann bedeutet die soeben for-
mulierte Anndherungsbedingung einfach folgendes: Wenn wir fiir die
Punkte xe A die Abbildung f durch f(x) = a definieren, dann ist die
nunmehr in ganz X erklirte, in X — A4 analytische und eineindeutige
Abbildung f iiberall in X stetig.
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Nun gilt aber folgender Satz von Radé6- Behnke-Stein-Cartant): , Ist
y eine in der komplexen Mannigfaltigkeit X (beliebiger Dimension)
stetige Funktion, welche iiberall dort, wo sie nicht verschwindet, analy-
tisch ist, dann ist y iiberall in X analytisch.” Wenden wir diesen Satz
auf die beiden Funktionen y,, y, an, welche fiir jeden Punkt xe X die
Koordinaten des Bildpunktes f(z) angeben (wobei a die Koordinaten
0, 0 habe), so ergibt sich : unsere Abbildung f von X auf Y ist iiberall
in X analytisch. DaB f schlicht (bis auf @) und vollstindig ist, ist unmittel-
bar aus der Definition von f zu ersehen. — Umgekehrt ist von vornherein
folgendes klar: wenn eine vollstdndige, bis auf a schlichte Abbildung
von X in Y vorliegt, so ist X eine Mannigfaltigkeit, welche durch eine
lokale Modifikation von Y im Punkte a entsteht, nimlich durch die-
jenige, welche a durch die Menge A = f-1(a) ersetzt. Wir diirfen also
sagen :

Die lokalen Modifikationen von Y im Punkte a sind identisch mit den
Umkehrungen der vollstindigen, bis auf a schlichten Abbildungen von
Mannigfaltigkeiten X tn die Mannigfaltigkeit Y. In diesem Sinne ist jede
Untersuchung der vollstindigen schlichten Abbildungen gleichbedeutend mat
einer Untersuchung der lokalen Modifikationen.

Eine solche Untersuchung — immer fiir den Fall von 4 Dimensionen —
bildet den Gegenstand der vorliegenden Arbeit.

5. Unser Hauptergebnis besteht in der Feststellung, dafl eine gewisse
spezielle lokale Modifikation, die wir den ,,s- Prozef“ nennen, in folgendem
Sinne die einzige lokale Modifikation (4-dimensionaler Mannigfaltig-
keiten) ist : Es gibt aufer dem o-Prozef3 keine anderen lokalen Modifika-
tionen mat kompakten Mengen A = f~1(a) als diejenigen, welche durch mehr-
malige Wiederholung des o- Prozesses entstehen ; und auch bei nichtkompak-
ten 4 werden die Modifikationen weitgehend durch die Iterationen des o-
Prozesses beherrscht. Gleichzeitig werden wir auch fiir unvollstindige
schlichte Abbildungen zu einigen Aussagen gelangen, die nicht trivial sind.

Der o-Proze8 spielt iibrigens in der algebraischen Geometrie eine wich-
tige Rolle; er liegt vor, wenn eine Flidche birational so transformiert
wird, daB3 ein Punkt @ in eine Kurve A iibergeht, die Transformation
aber sonst in der Umgebung von a eineindeutig ist. Auch in der Funk-
tionentheorie mit zwei komplexen Variablen ist er neuerdings mit Erfolg
verwendet worden [5]. Wir werden ihn im § 2 ausfiihrlich darstellen. Im

4) Der Satz ist (in anderer Formulierung) von 7'. Radé [3] fiir eine Variable, also fir
2 Dimensionen, aufgestellt und dann von H. Behnke und K. Stein [2] auf Mannigfaltig-
keiten beliebiger Dimension iibertragen worden. Die oben benutzte elegante Formulierung
stammmt von H. Cartan, der auch einen ganz neuen Beweis angegeben hat [4].
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§ 3 werden wir dann mit Hilfe lokaler funktionentheoretischer Betrach-
tungen leicht zu unseren Resultaten gelangen.

Ich habe den obigen Satz von der Einzigkeit des o-Prozesses, also
unseren Hauptsatz, schon friiher ohne Beweis veroffentlicht [1], und
F. Hirzebruch hat den Satz bereits gelegentlich benutzt [5]. Dall der
o-Prozef} in der algebraischen Geometrie eine alte und bewidhrte Opera-
tion ist, war uns von vornherein bekannt ; aber erst spiter hat mich
Herr Zarisk: darauf aufmerksam gemacht, dal auch der Einzigkeitssatz
nicht neu ist : er deckt sich mit dem ,,Lemma*“ im Abschnitt 24 der be-
rithmten Arbeit [6]; dort handelt es sich zwar um algebraische Mannig-
faltigkeiten und birationale Transformationen, aber da die Betrachtun-
gen gerade in dem betreffenden Abschnitt lokalen Charakter haben, be-
halten sie ihre Giiltigkeit auch fiir die funktionentheoretische Situation,
die wir hier vor uns haben. Ein Teil des nachstehenden Textes kann also
als eine funktionentheoretische Darstellung und Beleuchtung des Zariski-
schen Lemmas aufgefallt werden.

Gerade in diesen Tagen (Juli 1954) habe ich die grofle Abhandlung
,,Uber meromorphe Modifikationen von W. Stoll erhalten [7], die, wie
Herr Stoll darin schreibt, durch miindliche Mitteilungen von mir, welche
den Inhalt meiner vorliegenden Arbeit betrafen, angeregt worden ist ;
sie enthilt sehr starke Verallgemeinerungen unserer Resultate und
unserer Methode (ebenfalls bei Beschrinkung auf 4 Dimensionen). Es
freut mich, dafl meine hier vorliegende Arbeit bereits vor ihrem Er-
scheinen auf so interessante Weise fortgesetzt worden ist und daf} ihre
Lektiire als Einfiihrung in das Studium der viel schwierigeren Unter-
suchungen von Stoll dienen kann.

§ 2. Der o-Proze8 und seine Iterationen

1. V sei ein Gebiet des komplexen (y,, y,)-Zahlenraumes, welches
den Punkt a = (0, 0) enthilt. S sei eine komplexe projektive Gerade
(also dquivalent der Riemannschen Zahlkugel) mit Koordinaten s, :s,.
Das cartesische Produkt P = V xS besitzt eine komplexe Struktur,
die in natiirlicher Weise durch die Strukturen von ¥ und von § induziert
ist ; P ist Summe der durch s, #% 0 bzw. s, # 0 bestimmten Teil-
gebiete P, bzw. P,, in denen

—1 ro__ -1
Y1s y2_> § = 88 bzw. Y1) Y2, 8 = 818,

analytische Parameter sind.
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Das Gebilde V*, das in P durch die Gleichung

Y182 — Y28, =0 (2)

bestimmt ist, ist eine 4-dimensionale komplexe Mannigfaltigkeit: in
dem Teil Vi = V*~ P, sind y,,s, in dem Teil V} = V*~ P, sind
Y, s’ analytische Parameter ; in V] ist y, = y,s, in V) ist y, = y,s’,
in Vin Vy ist s’ =s1,

Die natiirliche, durch (y,, ¥», 81:8,) = (41, ¥2) gegebene Projektion
von P auf V bewirkt eine analytische Abbildung ¢ von V* auf V; bei
ihr ist, wie aus (2) ersichtlich, das Urbild eines von a = (0, 0) ver-
schiedenen Punktes y = (y,, y,) der Punkt (y,, ¥., v,:¥%,) von V*
das Urbild des Punktes a = (0, 0) aber die aus den Punkten (0, 0,
8, : 8,) mit beliebigen (s, :s,)e S bestehende Sphire (= komplexe Zahl-
kugel) o.

@ ist also — in der Terminologie aus § 1 — eine vollstandige, bis auf
den Punkt a schlichte Abbildung von X = V* auf ¥ = V mit der
Ausnahmemenge 4 = o = ¢~1(a). Die Umkehrung ¢! ist eine lokale
Modifikation von V, welche den Punkt a durch die Sphire ¢ ersetzt ;
diese Modifikation nennen wir den o-Prozef3.

2. Wir wollen die Beziehungen zwischen ¥V und V* niher betrachten.
Zunichst bemerken wir noch : in jedem der Teile V7, ¢ = 1 oder ¢ = 2,
ist die Fldche y, = 0 die Sphire ¢ ohne den Punkt s, = 0.

Es sei C eine analytische Fliche (= ,,komplexe Kurve“) in V, die den
Punkt a enthilt und dort ,,reguldr ist ; das heiflt : C'ist durch f(y,, y,) =0
gegeben, wobei f regulir analytisch, f(0, 0) = 0 und (58:—;— , %) # (0, 0)

1 2
in a ist. Sei etwa % # 0; dann wird C durch eine Gleichung
2

Yo=Y+ Y +- - (3)
dargestellt ; die in V] durch

S=a, +ayY; +--- (3*)

dargestellte Fliche C* wird, da y,s = y, ist, durch ¢ auf C abgebildet ; es
ist natiirlich, C* als ,,Urbild“ ¢—1(C) zu bezeichnen — indem wir dies tun,
erginzen wir das von vornherein wohldefinierte Urbild ¢—(C — a)
durch Hinzunahme des auf ¢ gelegenen Punktes mit s = a,.

Aus der Darstellung (3*) von C* und daraus, dafl ¢ durch y, =0
dargestellt wird, ist ersichtlich : Ist C eine regulire, a enthaltende Flidche
in V, so wird ¢ durch ¢~1(C) geschnitten, nicht beriihrt.
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Daraus, daf} die Koordinate s des Schnittpunktes gleich dem Werte a,
des Differentialquotienten dy,:dy, von C in a ist, ist weiter ersichtlich :
Wenn sich die reguliren Flichen C,, C, in a schneiden, aber nicht be-
rithren, so schneiden ihre Urbilder ¢=1(C,) und ¢~*(C,) die Sphire ¢
in verschiedenen Punkten und treffen sich daher gegenseitig nicht. Durch
den o-Prozell werden also die Schnittpunkte in a beseitigt.

Wenn sich dagegen C, und C, in a beriihren, so haben sie in ihren
Entwicklungen (3) denselben Anfangskoeffizienten a,, und ihre Urbilder
schneiden daher ¢ im gleichen Punkt. Indem wir jedem analytischen
Flachenelement in @ den Schnittpunkt von ¢ mit den Urbildern der-
jenigen C zuordnen, an welche dieses Fliachenelement tangential ist,
entsteht, wie aus dem Vorstehenden ersichtlich ist, eine eineindeutige
Abbildung des Biischels der analytischen Flichenelemente in a auf die
Sphire o. (Indem man unsere analytischen Flichen als , komplexe
Kurven® auffafit, sagt man iibrigens statt ,,analytisches Flichenelement*
haufig auch , komplexes Linienelement®.)

Dieser Zusammenhang mit den Flichenelementen legt es nahe, das
Produkt P =V x §, das wir in Nr. 1 herangezogen haben, als den
Raum aller analytischen Flichenelemente in ¥ zu deuten: man identi-
fiziere den Punkt (y,, y,, $;:8,) von P mit dem Flichenelement, das
im Punkte (y;, ¥,) von V durch dy,:dy, = s,:s, bestimmt ist. Statt
(2) hat man dann als definierende Gleichung von V*:

Y18y, — Yody; = 0 ; (2')

hieraus liest man ab: V* besteht aus den Tangentialelementen der
Flachen, deren Gleichungen c¢,y; — ¢y, = 0 lauten (c,, ¢, konstant,
nicht beide 0); in der Sprache der affinen Geometrie der komplexen
(41, ¥2)-Ebene sind diese Flichen die Geraden des Biischels mit dem
Zentrum a; in jedem von a verschiedenen Punkt gehort genau ein
Fliachenelement, in a selbst gehoren alle (analytischen) Flachenelemente
zu V*; das Biischel dieser Flichenelemente in a stellt jetzt die Sphire
o dar.

3. Da es fiir Anwendungen wichtig ist, die y,, y, nicht nur als Koor-
dinaten in einem festen Zahlenraum, sondern als lokale Parameter
auf einer 4-dimensionalen komplexen Mannigfaltigkeit aufzufassen,
ist es gut, sich davon zu iiberzeugen, dal der o-Prozel invariant gegen-
iiber einer reguliren Parametertransformation ist. Es sei also durch
2y = 2.(Y1, ¥2), 2» = 2,(¥;, ¥,) eine solche Transformation in der Um-
gebung von a gegeben ; wir diirfen annehmen, dafl in @ auch 2z, =2, =0
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ist. Der Raum P der Fliachenelemente dndert sich nicht ; aber in P hat
man statt der durch (2') gegebenen Mannigfaltigkeit V* jetzt die durch

z,dzy — 2,d2; = 0 (2")

gegebene Mannigfaltigkeit W* zu betrachten. Sie enthilt, ebenso wie
V*, das Biischel o der analytischen Flichenelemente in ¢. Nun existiert
aber eine kanonische eineindeutige Abbildung A von V* auf W*: auf ¢
ist h die Identitdt, und fiir ein Element y* von V* in einem von a ver-
schiedenen Punkt ist & (y*) = z* das Element von W* in demselben
Punkt. Man zeigt leicht — ich iibergehe den Beweis —, dal » analytisch
ist. * und W* haben also die gleiche analytische Struktur; und noch
mehr : bezeichnen wir die bis auf a schlichte Abbildung von W* auf V,
die der alten Abbildung ¢ von V* auf V analog ist, mit v, so ist, wie
unmittelbar aus der Definition folgt, ¢ = p A.

In diesem Sinne sind also die Mannigfaltigkeit V*, die Abbildung ¢
und damit auch die Modifikation ¢! — also der o-Prozefl — invariant
gegeniiber Parametertransformationen. Zugleich sieht man, daf die fol-
gende Aussage einen invarianten, vom Parametersystem unabhéngigen
Sinn hat : Der o-Prozef3 besteht darin, daf man den Punkt a durch das
Bitschel seiner analytischen Flichenelemente ersetzt.

4. Wir wollen jetzt die topologische und die analytische Struktur
von V* untersuchen ; dabei sei V durch

YY1+ Y2 y.<c , 0<ec <o (4)

gegeben ; wie in Nr. 1 beschreiben wir V* durch die Parameter v,, v,,
8, : 8,, zwischen denen die Relation (2) besteht.

Wir ziehen eine komplexe projektive Ebene 7' mit Koordinaten
t,:t,: t; heran und bilden V* durch

byilyity =8,:83" Y18+ Y282 (5)
in T ab; da s,:8, % 0:0 ist, ist dies in der Tat eine Abbildung ; wir
nennen sie Q. Die Gleichungen (5) lassen sich mit Hilfe von (2) nach
Y15 Y2, $1 - S, aufldsen:

Y =titg(tyty + t25)7Y, Yo = tala(tyty + tat))7Y, S1:8y =1t 1ty (5")
folglich ist @ eineindeutig. Man liest aus (5) oder (5') ab: der durch
Y, = Y, = 0 charakterisierten Sphire ¢ entspricht im Raum 7 die

durch t; = 0 gegebene Gerade 7 ; ferner, auf Grund von (4): das Bild-
gebiet Q(V*) = T" in T ist durch

bty bty >c 1 8, (4')
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gegeben. Somit sieht man: V* ist topologisch homtomorph einer Um-
gebung 7" einer Geraden 7 in der komplexen projektiven Ebene 7', wobei
7 der Sphire ¢ entspricht.

Jede komplexe Mannigfaltigkeit besitzt eine natiirliche, durch die
komplexe Struktur ausgezeichnete Orientierung (cf. [1]). Wir behaup-
ten : die Orientierung von V* ist der Orientierung von 7' entgegenge-
setzt ; mit anderen Worten : bei Benutzung der ausgezeichneten Orien-
tierungen von V* und von 7' hat die Abbildung ¢ den Grad —1. Wir
betrachten, um dies zu zeigen, nur die Abbildung @ von V* — ¢ auf
T"— 1; in V* — ¢ konnen wir y,, y, als Parameter benutzen, und in
T — v ist &3 #% 0, so daB wir {; = 1 setzen koénnen ; dann wird @
durch die beiden ersten Gleichungen in (5') mit ¢; = 1 beschrieben,
und das sind die Formeln fiir eine Inversion (Abbildung durch reziproke
Radien), welche bekanntlich die Orientierung umkehrt (man kann auch
die reelle Funktionaldeterminante ausrechnen und findet, da@ sie negativ
ist).

Die Gerade 7 in 7' besitzt die Selbstschnittzahl -} 1 ; da @ die Orientie-
rung umkehrt und o in 7 iiberfiihrt, folgt : die Sphére o besitzt in V* die
Selbstschnittzahl —1.9%)

Der Unterschied zwischen den analytischen Strukturen der Mannig-
faltigkeit V* und des mit V* homoomorphen Teilgebietes Q(V*) = T
der projektiven Ebene 7' dullert sich aber nicht nur in der Verschieden-
heit der Orientierungen, sondern noch deutlicher : in 7" gibt es unend-
lich viele 2-dimensionale geschlossene analytische Flichen — ,analy-
tisch® im Sinne der komplex-analytischen Struktur von 7 —, nédmlich
die in 7" gelegenen projektiven Geraden; in V* aber ist ¢ die einzige
geschlossene analytische Fliache. Beweis : sei { eine geschlossene analyti-
sche Flache in V*; da y, und y, regulire analytische Funktionen sind
und da ¢ geschlossen ist, sind y, und y, auf { konstant (nach dem Maxi-
mumprinzip). Folglich wird { durch ¢ auf einen Punkt ye V' abgebildet.
Da ¢ in V* — ¢ eineindeutig ist, mufl { daher auf ¢ liegen und folglich
mit ¢ identisch sein.

Es sei noch bemerkt : Den von 7 verschiedenen komplexen projektiven
Geraden in 7" entsprechen in V* geschlossene, mit Kugeln homéomorphe
Flichen, welche zwar reell-analytisch sind, aber nicht analytisch im
Sinne der komplexen Struktur von V*, das heiflt, nicht lokal durch

5) Die Selbstschnittzahl eines (m-dimensionalen) Zyklus { in einer (2m-dimensionalen)
Mannigfaltigkeit ist die Schnittzahl zweier Zyklen {,, {,, die mit { homolog (also z. B.
durch kleine Deformationen aus { entstanden) und zueinander in allgemeiner Lage sind.
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Gleichungen wu, = f(u,) darstellbar, wobei %,, u, komplex-analytische
lokale Parameter in V* sind.

b. Nachdem der o-ProzeB in einem Punkt eines Gebietes V des
(¥,, ¥,)-Zahlenraumes definiert ist, macht die Definition des o-Prozesses
in einem Punkt a einer beliebigen komplexen Mannigfaltigkeit ¥ keine
Schwierigkeit : man nimmt eine Umgebung V von e, in der Parameter
Y1, Yo giiltig sind, interpretiert sie als Teilgebiet des (y,, y,)-Zahlen-
raumes und geht wie frither durch den ¢-ProzeB in @ zu der Mannig-
faltigkeit V* iiber, die wie friither durch ¢ analytisch so auf V abgebildet
ist, daB V* — ¢ und ¥V — a sich eineindeutig entsprechen und die
Sphire ¢ das Urbild des Punktes a ist ; dann entfernt man a aus ¥ und
identifiziert jeden Punkt y* von V* — ¢ mit seinem Bild ¢(y*); so
entsteht eine komplexe Mannigfaltigkeit Y* — von ihr sagen wir, da@}
sie durch den o-Prozef} in @ aus Y entstanden ist.

Es ist oft zweckmaiflig, ein zweites Exemplar Y, von Y heranzuziehen
— also eine komplexe Mannigfaltigkeit, auf welche Y durch einen fest
gegebenen analytischen Homoomorphismus A abgebildet ist ; dann liegt
die folgende analytische Abbildung ¢, von ¥Y* auf ¥, vor: in Y* — ¢
ist @, mit h identisch, und es ist ¢, (¢) = h(a) = a,.

Die Abbildung ¢!, welche somit Y, — a, eineindeutig auf Y* — ¢
abbildet, 148t sich, analog wie in Nr. 2, fiir reguldre Flichen C in Y,
die den Punkt a, enthalten, auch im Punkte a, selbst erkldren. Das
Urbild ¢;!(C) einer reguliren Fliche C, gleichgiiltig, ob sie a, enthilt
oder nicht, ist dann eine ebenfalls regulire und mit ' homéomorphe
Fliche in Y*. Wenn a, auf C liegt, so schneidet ¢;*(C) die Sphire o
(ohne Beriihrung). Wenn €, und C, sich in a, schneiden (nicht beriihren),
so treffen sich ¢;*(C;) und ¢;*(C,) in der Nihe von ¢ nicht. )

6. Wir werden jetzt neue lokale Modifikationen von Y, in a, vor-
nehmen, indem wir den o-ProzeBl iterieren. Wir dndern die soeben be-
nutzte Bezeichnung, indem wir Y, statt Y* und o, statt o sagen; ¢, ist
also eine Abbildung von Y, auf Y,. Es sei a, ein Punkt von ¢, ; indem
wir in ihm den ¢-Proze3 ausiiben, gehen wir von ¥, zu einer Mannig-
faltigkeit ¥, iiber. In Y, ist g, die Sphire, welche a, ersetzt ; ¢, ist die
Abbildung von Y, auf Y,, welche Y, — o, eineindeutig auf Y, — a,
und o, auf a, abbildet. Da o, eine regulire Fliche in Y, ist und @, ent-
hélt, ist @;'(0,) = o eine reguldre Sphédre in Y,, welche die Sphire o,
in einem Punkte schneidet (nicht beriihrt) und mit ihr nur diesen einen

) Definition der ,,reguliaren¢ Fliche: § 2, Nr. 2.
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Punkt gemeinsam hat. Die Vereinigung von o2 und ¢,=0¢2 nennen wir X, ;
sie ist bei der Abbildung @, = ¢,¢, von Y, auf Y, das Urbild des
Punktes a,, wihrend Y, — 2%, eineindeutig auf Y, — a, abgebildet wird.
Esliegt also eine lokale Modifikation von Yy vor, welche a, durch X, ersetzt.

Jetzt sei a, ein Punkt von 2, ; wir iiben in ihm den ¢-Prozel3 aus und
erhalten eine Mannigfaltigkeit Y ,, in welcher eine Sphére ¢, den Punkt a,
ersetzt. Die zugehorige Abbildung von Y, auf ¥, heifle ¢, ; um die Wir-
kung von ¢; ! auf 2, zu erkennen, haben wir zwei Fille zu unterscheiden,
je nachdem @, nur auf einer der beiden Sphiren ¢? und o5 liegt oder der
Schnittpunkt der beiden Sphéren ist: im ersten Fall wird X, durch ¢;*
homoéomorph abgebildet, und o; wird von einer der beiden Sphéiren
o2 = @, 1(63) und o} = @;!(c?) in einem Punkt geschnitten und ist zu
der anderen fremd ; im zweiten Fall sind die beiden Sphiren ¢} und o3
zueinander fremd, aber jede von ihnen schneidet o3 in genau einem
Punkt ; in jedem Fall sind o2, o3, o3 = o} drei regulire Sphéren, deren
Vereinigung wir 23 nennen. @; = ¢, ¢, @, ist eine Abbildung von ¥, auf
Y, welche bis auf a, schlicht ist ; die Ausnahmemenge ist X, ; die Man-
nigfaltigkeit Y4 ist durch Modifikation von Y, in a, entstanden.

So fahren wir fort: ¥ 1> 2n—1> Pn_y seien schon konstruiert ; dabei
ist X,_, die Vereinigung der Sphédren o} ™',..., 077}, 00" 1; wir voll-
ziehen in einem Punkt a, ; von X, _, den o-Prozel} ; es entsteht Y, ; das
Urbild X2, = ¢, *(Z,_,) besteht aus den » — 1 Sphiren o = ¢;(d77?),
1=1,2,...,n—1, und der Sphire ¢,=0}. Die Abbildung &,=9o,_ ,¢,
von Y, auf Y, ist bis auf den Punkt a, schlicht, die Ausnahmemenge ist
2, ; Y, ist durch Modifikation in a, aus Y, entstanden. Diese lokale
Modifikation moge ein ,,n-facher o- Prozef3* heiflen.

Man bestitigt, durch Induktion nach n, leicht die folgenden Eigen-
schaften der 2, : je zwei der Sphéren o, + = 1, 2,..., n, deren Summe
2, ist, haben entweder keinen oder genau einen Punkt gemeinsam ; ein
gemeinsamer Punkt ist Schnittpunkt (nicht Beriihrungspunkt); ein
Schnittpunkt gehort nur zwei Sphiren an (wenn im Schnittpunkt von
o; ! und ¢}~' der o-Prozell ausgeiibt wird, so haben ¢ und o} keinen
gemeinsamen Punkt). Die Zusammenhangsverhiltnisse von 2, beschrei-
ben wir am bequemsten, indem wir den ,,Nerven“ von X, konstruieren :
ndmlich den Streckenkomplex N (2,) mit » Eckpunkten e,,...,e,, in
dem e; mit ¢; dann und nur dann durch eine Strecke verbunden ist, wenn
o; und o} sich schneiden ; wir behaupten : der Nerv ist ein ,,Baum®, das
heiflt, er ist zusammenhingend und enthélt keinen zyklischen Strecken-
zug. In der Tat : fiir » = 1 und = = 2 ist dies trivial ; es sei fiir n — 1
bewiesen ; liegt beim Ubergang von Y,_, zu Y, der Punkt a,_, auf nur
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einer Sphire o}, so hat man dem Komplex N(ZX,_,) einen Eckpunkt
e,, hinzuzufiigen und diesen durch eine Strecke mit e, zu verbinden ; ist
a,_, der Schnittpunkt zweier Sphiren ¢f ' und o}~!, so hat man die
Verbindung von e, und ¢;in N (X,_,) zu tilgen, aber den neuen Punkt e,
mit e; und mit e, zu verbinden (oder, was dasselbe ist : man hat ¢, auf die
Verbindungsstrecke von e; und e; zu setzen); in jedem Fall bleibt der
Komplex zusammenhéngend, und es entsteht kein Zyklus.

Auf Grund dieser speziellen Eigenschaften wollen wir die Gebilde X,
,sSphdrenbdume’ nennen.

Was die Art der Einbettung von X, in Y, betrifft, so sei nur auf fol-
gende Eigenschaft hingewiesen : die Sphire o}, also die zuletzt einge-
setzte der Sphiren o7, hat die Selbstschnittzahl —1; dies ergibt sich
ohne weiteres aus Nr. 4. Ubrigens ist es nicht schwer, zu zeigen, daB der
topologische Typus von Y, vollstindig durch den topologischen Typus
von Y, und die Zahl » bestimmt ist ; die analytische Struktur von Y,
dagegen hingt von der Wahl der Punkte a, ab.

7. Die n-fachen o-Prozesse sind Beispiele lokaler Modifikationen und
die Sphirenbdume Beispiele von Ausnahmemengen A4 bei schlichten Ab-
bildungen im Sinne des § 1. Dal} es, wenn man sich auf kompakte Mengen
A beschrinkt, keine anderen analogen Beispiele gibt, wird im § 3 be-
wiesen werden. Wir wollen jetzt aber noch Beispiele angeben, bei denen
die Mengen A nicht kompakt sind ; dabei werden wir einiges nur skizzieren.

(a) Man konstruiere zunichst Y, durch einen n-fachen o-Proze8 und
tilge dann eine abgeschlossene echte Teilmenge F' aus 2, ; die Mannig-
faltigkeit Y* = Y, — F ist durch Modifikation von Y, in @, entstanden ;
die zugehorige Ausnahmemenge A4 = X, — F' ist nicht kompakt. Zum
Beispiel kann man F so wihlen, daB die Sphidren of,...,0},_, zu F
gehoren und 4 also nur aus einem Teil von o), besteht.

Auch in allen diesen Mannigfaltigkeiten Y* gibt es 2-dimensionale
Zyklen (geschlossene Flichen), die allerdings im allgemeinen nicht kom-
plex-analytisch sind, mit der Selbstschnittzahl —1. In der Tat: wir
diirfen annehmen, da3 4 einen nicht leeren Teil von o) enthilt (also
nicht o umfat; denn andernfalls brauchten wir statt ¥, nur ein ¥,
mit k<n zu betrachten); nach Nr. 4 ist die Umgebung von o}, in ¥,
homoomorph mit der Umgebung 7" einer projektiven Geraden 7 in der
komplexen projektiven Ebene, wobei sich o), und 7 entsprechen ; daher
enthilt Y* ein Gebiet @G, das homoomorph ist mit einem Gebiet 7,
welches aus 7" durch Tilgung eines abgeschlossenen echten Teiles von 7
entsteht ; in 7" gibt es noch ganze projektive Geraden (die den stehen-
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gebliebenen Rest von 7 schneiden); diese Geraden sind geschlossene
Flichen, deren Selbstschnittzahl, wie aus Nr. 4 hervorgeht, — 1 ist.

(b) Der Begriff des n-fachen o-Prozesses 148t sich leicht zu dem Begriff
des unendlich-fachen ¢-Prozesses erweitern: wir definieren fiir jedes n
wie in Nr. 6 die Mannigfaltigkeiten Y, mit den Sphidrenbdumen X, und
den Abbildungen ¢, von Y, auf Y ,_,; zur Vermeidung von Komplika-
tionen setzen wir aber fest, dal der Punkt a,, den wir auf X, zu wihlen
haben, immer auf der Sphéire o, und auf keiner anderen der Sphéren ¢”
liegen soll (die Nerven N (X,) sind dann einfache Streckenziige). Die
Folge der Mannigfaltigkeiten ¥, mit den Abbildungen ¢, definiert einen
Limesraum, den ,, R, -adischen Limes“ im Sinne von H. Freudenthal [8];
die Punkte dieses Limesraumes L sind die Folgen

{p} - (pcn P15+« Ppa1> pn:) ’

wobei immer p,eY, und p,_, = ¢,(p,) ist; die Topologie in L ist in
naheliegender Weise erklart; durch @ {p} = p, ist eine stetige Abbil-
dung von L auf Y, gegeben. In unserem Falle ist L —{a} =Y _ eine
4-dimensionale Mannigfaltigkeit mit einer, in natiirlicher Weise induzier-
ten analytischen Struktur und @ eine analytische Abbildung, die bis
auf den Punkt a, schlicht ist ; die zugehorige Ausnahmemenge 4 ist ein
,,unendlicher Sphirenbaum® 2 =lim 2, — {a¢}. Die Mannigfaltigkeit
Y, ist durch lokale Modifikation von ¥, entstanden, wobei der Punkt
a, durch die nicht-kompakte Menge X ersetzt worden ist.

(c) Wenn man bereits eine lokale Modifikation von ¥ mit einer nicht-
kompakten Ausnahmemenge 4 in der modifizierten Mannigfaltigkeit Y*
hat, so kann man folgendermaflen zu einer neuen Modifikation von Y*
und damit von Y iibergehen: man nimmt auf A eine divergente (das
heift keinen Héufungspunkt besitzende) Punktfolge p,, p,,... und
iibt in jedem Punkt p, den o-Prozel} aus.

Diese Ausiibung des o-Prozesses in allen Punkten einer divergenten
Folge 148t sich folgendermalien verallgemeinern : Es sei M eine beliebige
abgeschlossene Punktmenge in der 4-dimensionalen komplexen Mannig-
faltigkeit Z ; fiir jeden Punkt p von M definieren wir den ,,0-Prozel} rela-
tiv zu M“ so : man iibt erst den gewohnlichen o-Proze8 in p aus und ent-
fernt dann aus der Sphire o alle etwa auf ihr liegenden Hédufungspunkte
der Menge ¢~1(M — p). Der Begriff der gleichzeitigen Ausiibung dieser
relativen o-Prozesse in allen Punkten von M hat einen naheliegenden
Sinn ; dabei entsteht, wie man sich leicht iiberlegt, ein zusammenhéngen-
der Hausdorffscher Raum mit 4-dimensional euklidischen Umgebungen
und einer komplex-analytischen Struktur; dieser Raum ist also eine

10  Commentarii Mathematici Helvetici 145



4-dimensionale komplexe Mannigfaltigkeit im iiblichen Sinne?2), falls
er eine abzdhlbare Umgebungsbasis besitzt ; dies ist aber, wie man eben-
falls leicht sieht, gesichert, falls die Menge M abzihlbar ist. Fiir abzihl-
bare abgeschlossene Mengen M fiihrt also der soeben skizzierte ,,s-Pro-
zeB3 in der Menge M*“ von der Mannigfaltigkeit Z wieder zu einer kom-
plexen Mannigfaltigkeit Z*. 7)

Neue lokale Modifikationen von Y erhilt man nun dadurch, dafl man
erstens von Y durch irgendeine lokale Modifikation, zum Beispiel den
gewohnlichen o-Prozef3, zu einer Mannigfaltigkeit Z iibergeht und dann
in einer abzdhlbaren abgeschlossenen Teilmenge M der Ausnahmemenge .
A, gleichgiiltig ob 4 kompakt ist oder nicht, den o-Proze} ausiibt.

Durch Kombination der unter (a), (b), (c) skizzierten Methoden erhilt
man sehr viele und mannigfache lokale Modifikationen mit nicht-kom-
pakten Mengen 4 ; aber alle diese Beispiele beruhen auf dem o-Prozef ;
dafl dies im Wesen der Sache liegt, wird sich im néchsten Paragraphen
herausstellen.

§3. Die Rolle des o-Prozesses fiir beliebige lokale Modifikationen
und sehlichte Abbildungen

1. Die Umgebung U des Punktes o = (0, 0) im komplexen (z,, z,)-
Zahlenraum sei durch die analytische Abbildung f:

Y1 = hi(2y, @) Yo = fo(2y, 2)
in den (y,, y,)-Zahlenraum abgebildet, und es sei f(0) = a = (0, 0).
Die Abbildung serv einevndeutig in U — H, wobei H eine den Punkt o ent-
haltende, analytische Menge ist, die entweder nur aus o besteht oder aus
endlich vielen analytischen Flichen H,, von denen jede durch eine ir-
reduzible Gleichung A, (z,, z,) = 0 (mit k,(0, 0) = 0) gegeben ist.?)
Die Urbildmenge f-'(a) = A besteht entweder nur aus dem Punkt o
oder aus endlich vielen irreduziblen Flichen C;; da auf ihnen f konstant
ist, sind sie unter den H, enthalten. Die Funktionaldeterminante von

7) Durch Ausiibung des o-Prozesses in nicht-abzéhlbaren abgeschlossenen Mengen M
kénnen komplexe ,,Mannigfaltigkeiten‘‘ ohne abzéhlbare Basis entstehen; man vergleiche
hierzu die Arbeit [9].

8) Die algebraischen Begriffe ,,irreduzibel, ,,Primfaktor*, ,,groB8ter gemeinsamer
Teiler*, die hier und im folgenden auftreten, beziehen sich auf den Ring R der Funktionen
f(z,, ), die in hinreichend kleinen Umgebungen von o regular sind. Die Einheiten in
R sind die Funktionen, die in o nicht verschwinden; jedes Element von R ist Produkt
irreduzibler Elemente, und diese Produktdarstellung ist eindeutig bis auf Faktoren, die
Einheiten sind; je zwei Elemente f,, f, haben einen groBten gemeinsamen Teiler ¢, der
bis auf Einheitsfaktoren bestimmt ist; ist ¢ selbst Einheit, so darf man ¢ = 1 setzen,
und f, f, sind ,,teilerfremd*".
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Y., Yo nach z,, z, heie D ; die meromorphe Funktion f,f;! heiBle q.
Ferner soll unter U’ eine hinreichend kleine, in U enthaltene Umgebung
von o verstanden werden.

Lemma. Unter den genannten Voraussetzungen ist f eineindeutig in
U -- A, alsoiwn U' ,;schlicht bis auf a“; und es gilt weiter : wenn f aus-
nahmslos schlicht tn U', wenn also A = o st, so ist D(0,0) £ 0, und o
18t Unbestimmtheitsstelle der Funktion q ; wenn A Ausnahmemenge ist, also
aus einer oder einigen der Flichen H, besteht, so ist D(0,0) = 0, und o
st nicht Unbestimmthertsstelle von q (cf. |10], p. 60—61).

Bemerkungen : (a) Das Lemma enthélt den bekannten Satz ([10],
p- 19) : wenn f in der Umgebung von o ausnahmslos schlicht ist, so ist
D # 0. — (b) Aus dem Lemma ist ersichtlich : Die Eigenschaften, durch
die wir im § 1 die ,,bis auf a schlichten Abbildungen definiert haben,
kénnen durch die schwicheren Voraussetzungen des Lemmas ersetzt
werden (also ohne dafl die Konstanz von f auf der Ausnahmemenge ge-
fordert wird).

Beweis des Lemmas: Es sei t(z,, x,) der gréfite gemeinsame Teiler
von f,, f,, also

fi(@y, @) = 8@y, ) 91 (®1, @) 5, [fa®r, @) = U(2y, ) Ga (21, T,)  (6)
mit teilerfremden g,, g,. Wir unterscheiden zwei Fille :

FallI: ¢,(0,0) = g,(0,0) = 0;

Fall II: ¢,(0, 0) 34 0 fiir wenigstens einen der Indizes ¢ = 1, 2.

Es liege zunichst der Fall I vor : Sind g, ¢’ verschiedene Zahlen, so sind
091 + 9., 0'9, + g, teilerfremd ; daraus folgt: zu jeder der oben ge-
nannten irreduziblen Funktionen h; gibt es hochstens eine Zahl g, so
daBl A, Teiler von g,9; + g, ist; wir kéonnen daher g so wihlen, daf
09, + g, zu allen h, teilerfremd ist. Es sei p(z,, x,) ein Primfaktor von
09, + g,; dann fillt die durch p = 0 bestimmte irreduzible Fliche P
mit keiner der Flichen H, zusammen, und folglich wird P durch f schlicht
abgebildet, und zwar, da auf P die Gleichung pg, + ¢, = 0 gilt, auf ein
Gebiet der Ebene y, = — py,; in dieser Ebene ist y, ein regulirer
Parameter. Andererseits besitzt P eine Parameterdarstellung x;, = u(z),
x, = v(z), wobei u, v eindeutige analytische Funktionen in der Ebene
des lokal uniformisierenden Parameters z sind und eine Umgebung des
Punktes z = 0 eineindeutig auf eine Umgebung von o auf der Fliache
P bezogen wird. Durch Vermittlung der Fliche P und der Abbildung f
wird somit ¥, eine schlichte Funktion von z; es ist dies die Funktion

Y1(2) = t(u(2), ©(2)) -9, (u(2), ©(2)) ; (7)
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infolge ihrer Schlichtheit ist
71(0) # 0 . (8)

Da wir uns im Fall T befinden, haben die Taylorschen Reihen von ¢,
und g, keine konstanten Glieder, sie beginnen also mit

91(21, %) =a®y + b2y 4 -+, go(®y, %) =2y +dwy + - . (9)
Berechnet man y;(0) aus (7) und der ersten Gleichung (9), so erhéilt man
¥1(0) = £(0, 0)- (2w’ (0) + bv'(0)) . (10)

Hieraus und aus (8) folgt erstens: £(0, 0) 7= 0; wir diirfen also ¢t =1,
fi= 91, f» =9, setzen; f,, f, sind somit teilerfremd, und daher ist der
Punkt o eine Unbestimmtheitsstelle der Funktion ¢ = f, f;*.

Zweitens folgt aus (10) und (8): Es ist (a, b) £ (0, 0), das heil}t, es
verschwinden nicht beide linearen Glieder in der Entwicklung (9) von
¢,. Nun ist aber die Funktion g, nicht bevorzugt vor irgendeiner linearen
Verbindung ¢* = ig, + ug,, wobei A4, u beliebige Zahlen, nicht beide
gleich 0, sind ; denn Voraussetzungen und Behauptungen unseres Lem-
mas bleiben ungedndert, wenn man mit y,, y, eine regulire homogene
affine Transformation vornimmt. Folglich verschwinden auch in der
Reihe fiir g* nicht beide linearen Glieder ; diese Reihe beginnt nach (9)
mit

g* (%1, @) = (Aa + pc) ¢, + (Ab + pd) x5 +-- - .

Diese linearen Glieder konnte man aber durch geeignete Wahl von
(A, #) #(0,0) zum Verschwinden bringen, wenn die Determinante
ad — bc = 0 wire; esist also ad — bc 0. Da aber g, = f,, 9, = [,
ist, ist ad — bc = D(0, 0).

Aus D(0, 0) # 0 folgt nun weiter, daB} f in einer Umgebung U’ von o
ausnahmslos schlicht ist.

Es ist also bewiesen: Im Fall I ist f ausnahmslos schlicht in U’,
D(0, 0) £ 0 und o Unbestimmtheitsstelle von q .

Jetzt liege der Fall IT vor: Dann liest man aus (6) ab: o ist nicht
Unbestimmtheitsstelle von ¢, sowie: ¢(0,0) = 0; da die Menge 4
durch ¢ = 0 charakterisiert ist, besteht sie nicht nur aus o, sondern ist
eine Ausnahmemenge ; da sie auf a abgebildet wird, ist D(0, 0) = 0.

Wir haben noch zu zeigen: f ist eineindeutig in U — 4. Dies ist
trivial, falls H = A ist; H enthalte also einen irreduziblen Bestand-
teil H,, der nicht zu A gehort ; o, sei ein von o verschiedener Punkt auf
H,, und U, eine Umgebung von o,, deren Durchschnitt mit H zu H,
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gehort. Die Abbildung f ist in U, — H, eineindeutig, und wir konnen
unsere bisherigen Betrachtungen statt auf o, U und H analog auf o,,
U, und H, beziehen. Dann aber — also indem wir o durch o, ersetzen —
befinden wir uns nicht im Falle II ; denn sonst wire, wie wir soeben ge-
sehen haben, die Menge 4’ der Punkte ze¢ U, mit f(x) = f(o,) — also
die Menge, die analog zu A ist — eine Ausnahmemenge und enthielte
also eine analytische, o, enthaltende Fliche 4" ; infolge der Schlichtheit
von fin U, — H, millite 4" auf H, liegen, und f wire somit in einem
Teilgebiet von H, konstant ; dann wire f auf ganz H, konstant, also
H,c A, was nicht der Fall ist. Ks liegt also in o, der Fall 1 vor, und
daher ist, wie wir oben gezeigt haben, D s 0 in o,. Daher hat o, und
somit hat jeder Punkt von U — A4 eine Umgebung, in der f eineindeutig
und daher topologisch und gebietstreu ist; f ist aber in U — A iiber-
haupt eineindeutig. Denn wire f(p,) = f(p,) = y fiir zwei verschiedene
Punkte p, und p, aus U — 4, so betrachte man eine gegen y konver-
gierende Folge von Punkten y™), die nicht zu f(H) gehoren : infolge der
Gebietstreue von f in Umgebungen von p, und p, gibe es Punktfolgen
PO —py, P —>p, mit f(p{V) =f(Pp{°) =y™, Ve U —H, p{"eU —H
— entgegen der Eineindeutigkeit von fin U — H.

Wir haben damit bewiesen : Im Fall 11 hat die Funktion q keine Un-
bestimmitheitsstelle, A ist Ausnahmemenge, es ist D(0,0) = 0, und f ist
einetndeutig tn U — 4.

Die Zusammenfassung der Krgebnisse fiir den Fall T und fiir den
Fall IT liefert den Beweis des Lemmas.

2. Wir betrachten jetzt eine analytische Abbildung f einer Mannig-
faltigkeit X in eine Mannigfaltigkeit Y, die schlicht bis auf einen Punkt
a e f(X) ist, und es sei wieder f~1(a) = 4. Wiein § 2 sei Y, die Mannig-
faltigkeit, die durch den ¢-Prozel im Punkte @ = a, aus ¥ = Y, ent-
steht, und die zugehorige Abbildung von Y, auf Y, heille wieder ¢,. —
Behauptung : Entweder ist f ausnahmslos schlicht (also A einpunktig), oder
f lapt sich zusammensetzen aus einer Abbildung f* von X in Y* und der Ab-
bildung @,, so daf also f = @,f* st.

Beweis. Wir nehmen an, dal f nicht ausnahmslos schlicht ist. y,, y,
seien Parameter in einer Umgebung V von a = (0,0); W sei eine
Umgebung von A mit f(W)cV; dann wird f fir xe¢ W durch zwei
analytische Funktionen f,(x) = y;, fs(%) = y, beschrieben ; damit ist
auch die meromorphe Funktion ¢ = f,f;! in W definiert. Wir behaup-
ten : ¢ besitzt keine Unbestimmtheitsstelle. In der Tat: in W — 4 ist
dies klar, da dort eine der Funktionen f, % 0 ist; es sei also o ein be-
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liebiger Punkt von 4. Da f nicht ausnahmslos schlicht ist, ist o nach
§ 1, Nr. 2, nicht isolierter Punkt von 4 ; dann folgt aus dem Lemma in
Nr.1 — indem wir in der Umgebung von o Parameter «,, x, einfiihren
und iibrigens H = A4 setzen —, daB o nicht Unbestimmtheitspunkt ist.

In dem Teil V, = ¢;1(V) der Mannigfaltigkeit ¥, sind gemiB § 2 die
Parameter y,, y,, 8,:8,, die durch die Relation (2) verkniipft sind,
erklirt. Wir definieren die Abbildung f! von W in V, durch

Yi=hx), Y=/f(x), s:8=q(). (11)

Fiir diese Abbildung von W gilt ¢,f' = f; sie kann daher in W — A4
auch durch

fi(@) = o 'f(2) (11)

erklirt werden. Wenn wir nun fiir alle x¢ X — 4 die Abbildung f*
durch (11') definieren, so ist f! in ganz X erklirt, und es ist iiberall f=g, f1.

In dem soeben gefiihrten Beweis haben wir die Voraussetzung, daf f
in ganz X schlicht bis auf a, also in ganz X — A eineindeutig sei, nicht
ausgenutzt, sondern nur folgende schwichere Voraussetzung: f ist in
ganz X gegeben, und die Menge A = f~1(a) besitzt eine Umgebung U, so
dap f in U schlicht bis auf a ist. Denn die Anwendung des Lemmas aus
Nr. 1 spielt in der Umgebung von 4, und die Definition von f durch
(1) in X — 4 ist von der Eineindeutigkeit ganz unabhingig. Wir
werden diese Bemerkung nachher anwenden.

3. Essei auch weiterhin 4 Ausnahmemenge, f eineindeutigin U — 4,
f* also erklirt ; ferner sei o ein Punkt von 4, (o) = a,, (f*)"1(a,) = 4,.
Aus der Eineindeutigkeit von f = ¢,f' in U — 4 folgt, daB dort auch
f* eineindeutig ist ; wir beschrinken uns zunichst auf eine Umgebung
U (0) von o und koénnen dort das Lemma aus Nr. 1 anwenden, indem wir
die dortigen f, H, A jetzt durch f!, 4, A, ersetzen; dann besagt das
Lemma (unter anderem), daBl f* eineindeutig in U’(o) — 4, ist. Die
Vereinigung aller U’(0), widhrend o die Menge A, durchliuft, ist eine
Umgebung U (A4,). Wir behaupten : f! ist eineindeutig in U (4,) — 4,.
Dies folgt aus der soeben bewiesenen lokalen Eineindeutigkeit, also
Gebietstreue von f!in U(4,) — A, und der globalen Eineindeutigkeit
in U — A: wiren namlich p,, p, verschiedene Punkte in U(4,) — 4,
mit f1(p,) = f1(p,), so kimen wir auf gleiche Weise zu einem Wider-
spruch wie am Schlufl des Beweises in Nr. 1, wobei wir die dortigen
f, H, A wieder durch f*, 4, A, zu ersetzen haben. Da somit f!in einer
Umgebung von A, schlicht bis auf a, ist, konnen wir auf Grund der Fest-
stellung am Schlufl von Nr. 2 das Ergebnis von Nr. 2 auf f! anwenden.
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Demnach besteht die — durch den Punkt o bestimmte — Menge 4,
entweder (a) nur aus dem Punkt o (dann ist f! in der Umgebung von o
eineindeutig), oder (b) es ist f' = @,f%, wobei f? eine Abbildung von X
in die Mannigfaltigkeit Y, ist, welche durch den o-Proze8 im Punkte
a, = f*(0) aus Y, entsteht, und wobei ¢, die zugehorige Abbildung von
Y, auf Y, bezeichnet. Der Punkt a, liegt auf der Sphére o} (in der Be-
zeichnungsweise aus § 2, Nr. 6), da ¢, (a,) = @,/ (0) = f(0) = a, ist.

So fahren wir fort: f2(0) = a, ist ein Punkt der Sphire 6% in Y, ; es
sei (f?)~(a,) = A,. Es bestehen zwei Moglichkeiten: (a) 4, = o, also
f* in der Umgebung von o eineindeutig ; (b) f2 = @,f3, wobei f3 eine Ab-
bildung von X in die Mannigfaltigkeit Y, ist, die durch den o-Proze in
a, aus Y, entsteht. Nehmen wir an, dal bei k-maliger Wiederholung
immer der Fall (b) vorliegt ; dann haben wir :

f:‘P1f1:¢71¢2f2:"':¢1‘P2---‘Pkfk:¢kfk > (12)

wobei f* eine Abbildung von X in ¥, und @, die natiirliche Abbildung
von Y, auf Y ist. Diese Zerlegung von f hingt von dem gewihlten Punkt
o ab.

Es wire nun zunéchst denkbar, dag fiir einen gewissen Punkt o immer
der Fall (b) vorlige, es also beliebig lange Zerlegungen (12) gibe. Be-
hauptung : Das ist unmoglich. Beweis?) : Es gelte (12), und es seien, bei
Benutzung beliebiger lokaler Parameter, D(f), D(f*) die Funktional-
determinanten von f und f* in der Umgebung von o und D(p,) die Funk-
tionaldeterminante von ¢, in der Umgebung von ¢, ; dann ist

D(f) = D(py)-...-D(py)-D(f*) ;

alle diese Determinanten sind Funktionen der in der Umgebung von o
giiltigen Parameter x,, z,. Nun ist aber D(p,) = 0 im Punkte a,, da
dieser auf der Sphire ¢! liegt, die durch ¢, ganz auf den Punkt a, , ab-
gebildet wird ; die Funktion D(p,) von z,, x, verschwindet also in o.
Folglich ist die Funktion D(f) ein Produkt von k nicht-trivialen, das
heift in o verschwindenden Funktionen, und daher ist £ nicht gréfer als
die Anzahl der Faktoren bei der Zerlegung von D (f) in Primfaktoren.
Es gibt also zu jedem Punkt o von 4 eine Zahl £, so daf beim £-ten
Schritt unseres Vorgehens der Fall (a) eintritt. Fiir dieses k = k(o) gilt
(12) ; dabez st f* eine Abbildung von X in eine Mannigfaltigkeit Y, , welche
durch einen k-fachen o-Prozefl im Punkte a = a, aus Y entstanden ist;

9) Diesen Beweis verdanke ich Herrn H. Buhrer; mein urspriinglicher Beweis war
umsténdlicher. '
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diese Abbildung f* ist in einer Umgebung von o eineindeutiq; @, ist die
natirliche Abbildung von Y, auf Y.

4. Da die Bedingung f(x) = a, auf Grund der Zerlegung f = @,f*
identisch ist mit f*(x)e 2, wobei X, wie in § 2 den Sphirenbaum in
Y, bezeichnet, wird 4 durch f* auf einen Teil von X, abgebildet. In einer
Umgebung von o ist f, eineindeutig ; folglich ist das dort gelegene Stiick
von A analytisch homdomorph einem Stiick eines Sphirenbaums in der
Umgebung eines seiner Punkte ; aus Eigenschaften der Sphirenbidume,
die wir in § 2, Nr. 6, festgestellt haben, folgt daher :

Satz I. Ewne Ausnahmemenge A einer schlichten Abbildung besteht in
der Umgebung eines beliebigen ihrer Punkte entweder aus einem einzigen
requldren analytischen Flichenstiick oder aus zwei solchen Flichenstiicken,
die sich schneiden (ohne Berithrung). )

Auch wenn man keine anderen Mannigfaltigkeiten X betrachtet als
die Gebiete des Zahlenraumes, verdient diese Tatsache Interesse!?). Das
Beispiel (1) in § 1 zeigt den Fall einer einzigen Ausnahmeflidche ; Bei-
spiele mit zwei Ausnahmeflichen durch einen Punkt werden durch

yy =22, y,=2x{22; a,b,c,d>0, ad—bc=1 (13)
gegeben.

5. Wir kniipfen an das Ende von Nr. 3 an und wollen zunichst an-
geben, wie gro3 man die Umgebung U von o wihlen darf, damit f* in U
eineindeutig sei. Die Menge 4 besteht aus endlich oder abzdhlbar unend-
lich vielen irreduziblen analytischen Flichen C,, von denen eine oder
zwei durch o laufen. Behauptung : f* ist in U eineindeutig, falls keine
andere C; in U eintritt als die durch o laufenden. In der Tat: wenn
diese Bedingung erfiillt ist, so tritt, da f* auf den durch o laufenden C,
(infolge der Eineindeutigkeit von f* in der Néhe von o) nicht konstant
ist, keine Ausnahmemenge von f* in U ein ; folglich besitzt jeder Punkt
von U eine Umgebung, in der f* eineindeutig ist ; ferner ist f* einein-
deutigin U — A (da f= @,f* dort eineindeutig ist). Wie frither (zum
Beispiel gegen Schlull von Nr. 1) folgt aus der lokalen Eineindeutigkeit
in U und der globalen Eineindeutigkeit in U — 4 leicht die Einein-
deutigkeit in U.

Jeder Punkt von 4 besitzt eine solche ,,ausgezeichnete” Umgebung.
Es sei nun ein kompakter Teil K von A gegeben. Wir konnen ihn mit

i0) In diesem Zusammenhang hat mich zuerst Herr Bithrer auf den Satz I aufmerksam
gemacht.
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endlich vielen ausgezeichneten Umgebungen U(o,), U(0,),..., U(o,,)
iberdecken. Wir bestimmen erstens die Abbildung ff* von X in eine
Mannigfaltigkeit Y7 , so daB fi* in U(o,) eineindeutig ist und fiir welche
f= @, f{* gilt. Die Umgebung U(o,), welche in bezug auf die Abbildung
f von X in Y ,ausgezeichnet” war, ist dies auch in bezug auf die Ab-
bildung f¥* von X in Y} ; denn die Ausnahmemenge B von f#* geht aus
A hervor, indem aus A4 gewisse C; fortfallen (aber keine neuen Aus-
nahmepunkte hinzutreten). Es gibt daher eine Mannigfaltigkeit Y3 ,
welche aus Y} durch einen mehrfachen ¢-Prozefl im Punkte f}*(0,) her-
vorgeht, und eine Abbildung f** von X in ¥ %, die in U (0,) eineindeutig
ist und fiir die f*+ = Tsz;‘z, also f = @, Tk2f§2 gilt ; die Eineindeutig-
keit von f*1 in U(o,) bleibt beim Ubergang zu f** erhalten, wie aus der
angegebenen Zerlegung von f*1 ersichtlich ist. So fihrt man fort und er-

hilt schliefllich eine Mannigfaltigkeit Y, die durch einen mehrfachen
o-Prozel} in ¢ aus Y entstanden ist, und eine Abbildung # von X in 5’,
die in allen U (o,) eineindeutig ist und fiir welche f= QF gilt, wobei

0 die natiirliche Abbildung von Y auf ¥ bezeichnet. Die gegebene Menge
Kc A istin der Summe U der U (0,) enthalten ; aus der Eineindeutigkeit
von F in jedem U(o;) und in X — 4 folgt die Eineindeutigkeit in U
nach demselben Schema wie frither : wire F(p,) = F(p,) fiir verschie-
dene p,, p, aus U, so kime man ebenso zum Widerspruch, wie gegen
SchluB8 von Nr. 1. — Wir fassen zusammen :

Satz II. K sei ein kompakter Teil der Ausnahmemenge A bei der bis
auf a schlichten Abbildung f von X in Y ; dann gibt es eine Mannigfaltig-

keit Y , die durch einen mehrfachen o-Prozef in a aus Y entsteht, und eine
Abbildung F von X tn Y, so daff F in einer Umgebung von K eineindeutrg

tst und dafl f= QF gilt, wobei Q2 die natirliche Abbildung von Y auf ¥
bezeichnet. K selbst wird durch F analytisch homéomorph auf einen Teil des
Sphdrenbaumes SinY abgebildet.

Dieser Satz enthilt das Ergebnis von Nr. 3 als Spezialfall : dort ist K
der Punkt o.

6. Jetzt sei A kompakt ; dann diirfen wir K=A setzen. Da ¥ sowohl
in einer Umgebung U (A) als auch von vornherein in X — A einein-
deutig ist, ist F eine homoomorphe Abbildung von X auf einen Teil X'

von Y. Dasin X gelegene Bild F (4) ist mit  identisch ; denn es ist einer-
seits kompakt, also abgeschlossen, andererseits, infolge der Eineindeutig-

keit von F, offen in X'; da 2 zusammenhéngend ist, ist F(4) = 2.

153



Bereits in § 1, Nr. 3, haben wir gezeigt, dal3 die Abbildung f vollstindig
ist ; in unserer jetzigen Sprache bedeutet das einfach, dal jede Um-
gebung von  durch £ auf eine volle Umgebung von a abgebildet wird. —
Hiermit ist unser Hauptsatz bewiesen :

Satz III. Ist die Ausnahmemenge A = f~1(a) der bis auf den Punkt a
schlichten Abbildung f von X in Y kompakt, so lift sich f zusammensetzen
aus etner analytisch homéomorphen Abbildung F von X auf einen Teil X'

einer Mannigfaltigkent g , die durch einen mehrfachen o-Prozef3 in a aus Y
entstanden ist, und der natirlichen Projektion Q2 von Y auf Y. Durch F

geht A wn den Sphdrenbaum X von Y aber. A ist also mit = homéomorph.
Das Bild f(X) enthdlt eine volle Umgebung von a .

Ubersetzen wir dies gemidB § 1, Nr. 4, in die Sprache der Modifika-
tionen, so haben wir noch zu beachten, dafl dann f eine Abbildung von X

auf die ganze Mannigfaltigkeit ¥, daf} also X' = Y ist; indem wir X
vermoge F mit X' identifizieren, diirfen wir dann sagen :

Satz III'. Hs gibt keine anderen lokalen Modifikationen von Y als die
n-fachen o-Prozesse, n = 1.

7. Auch iiber die Struktur nicht-kompakter 4 gibt der Satz II weit-
gehend Aufschluf3 :

Satz IV. Die trreduziblen analytischen Flichen C,, C,,. .., aus denen
die Ausnahmemenge A einer bis auf einen Punkt schlichten Abbildung be-
steht, haben folgende Eigenschaften : (a) jede C; ist in jedem ihrer Punkte
regquliir ) ; (b) jede C, ist einem Gebiet der Zahlkugel o analytisch homoomorph
(ste ist also eine ,,schlichtartige” Riemannsche Fliche); (c) je zwer C; haben
hochstens einen Punkt gemeinsam ; ein solcher ist Schnitt-, nicht Beriih-
rungspunkt; (d) durch keinen Punkt gehen mehr als zwei Flichen C;; (e)
es gibt keinen ,,Zyklus“ C,,0C,,...,C,, C,.; =C,, n>2, derart, daf
vmmer C; und C,, sich schneiden.

Man bestitigt jede dieser Behauptungen leicht mit Hilfe des Satzes IT :
Wire eine der Behauptungen falsch, so gidbe es einen kompakten Teil
von A, der nicht mit einem Teil eines Sphirenbaumes analytisch homdo-
morph wire.

In der Sprache der Modifikationen lautet der Satz:

Satz 1V'. Eine Menge A, welche bei einer lokalen Modifikation eimer
Mannigfaltigkeit Y einen Punkt a ersetzen kann, hat — wenn sie niché
selbst mur ein Punkt ist — motwendigerweise die vm Satz IV genannten
Eigenschaften.
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8. Der Satz IV gilt unabhingig davon, ob die Abbildung f vollstindig
ist oder nicht (er enthélt nicht nur Aussagen iiber Modifikationen). Fiir
vollstindige Abbildungen konnen wir, wenn auch nicht iiber die Struktur
von A, so doch iiber die Struktur des Raumes X noch folgende Aussage
hinzufiigen :

Satz V. Die Mannigfaltigkeit X gestatte evne Abbildung f, welche bis auf
etnen Punkt a schlicht ist, eine nicht-triviale (das heifit mehrpunktige) Aus-
nahmemenge A = f~1(a) besitzt und welche vollstindig ist; mit anderen
Worten : X sei durch eine lokale Modifikation, die nicht trivial ist (das heifst,
die a durch eine mehrpunktige Menge A ersetzt), aus einer Mannigfaltig-
keit Y entstanden. Dann enthilt X eine 2-dimensionale geschlossene
Fliche, deren Selbstschnittzahl gleich — 1 ist.%)

Beweis. C sei ein (beliebig kleines) Flichenstiick aus 4. Wir kénnen

(in der Ausdrucksweise von Satz II) 17, F und eine Umgebung U (C) so
wihlen, dal W = (X — 4) v U(C) durch F eineindeutig (also topolo-

gisch) in Y abgebildet wird, und wir brauchen uns daher von der Existenz
einer geschlossenen Fliche mit der Selbstschnittzahl —1 nur in dem
Gebiet F (W) zu iiberzeugen. Da f vollstindig ist, enthilt f(X) = QF (X)
eine Umgebung V von a ; folglich enthélt (X — A) die Menge Q-1(V — a)
und F (W) die Menge Q-1(V—a) v FU (C); diese Mannigfaltigkeit aber
kann man so erzeugen : man iibt erst auf V den mehrfachen o-Prozell 21
in @ aus und entfernt dann einen abgeschlossenen echten Teil des Sphéren-

baumes 2. DaB es in einer solchen Mannigfaltigkeit geschlossene Flichen
mit der Selbstschnittzahl — 1 gibt, haben wir in § 2, Nr. 7 (a), gesehen. —

Im (z,, z,)-Zahlenraum hat jeder 2-dimensionale Zyklus die Selbst-
schnittzahl 0 (da er homolog 0 ist); daher ist aus dem Satz V unter
anderem ersichtlich : eine Abbildung eines Gebietes des Zahlenraumes,
welche bis auf einen Punkt schlicht ist, ist entweder ausnahmslos schlicht
oder unvollstindig. Es ist also kein Zufall, sondern eine Notwendigkeit,
daBl bei den Abbildungen, die durch (1) und durch (13) gegeben sind,
das Bild des (z,, z,)-Raumes keine volle Umgebung des Punktes
Y, = Yy, = 0 enthilt.
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