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Extremallângen und Kapazitat
von Albert Pflugeb, Zurich

Meinem verehrten Kollegen M. Plancherel zum siebzigsten Geburtstag

Im AnsehluB an die von Ahlfors und Beurling ([1]) eingefùhrte Extre
mallânge einer Kurvenschar stellen wir uns folgendes Problem : Es sei

im Einheitskreis | z | < 1 eine Jordankurve Fo und auf der Peripherie
eine Punktmenge E gegeben ; J — J(E) sei die Gesamtheit der Wege,
die Fo im Einheitskreis mit Punkten aus E verbinden. Unter wel-
chen Bedingungen fur E ist die Extremallànge von J unendlich? Es
wird gezeigt, daB dies dann und nur dann der Fall ist, wenn die âuBere

Kapazitat von E verschwindet (Satz 1). Wegen der konformen Invarianz
der Extremallange ergeben sich Anwendungen auf die konforme Abbil-
dung (Satz 2), die quasikonforme Abbildung des Kreises auf sich (Satz 4)
sowie auf eine Klasse von meromorphen Funktionen im Einheitskreis
hinsichtlich ihrer asymptotischen Werte (Satz 3).

1. Wir betrachten in der euklidischen oder in der funktionen-theoreti-
schen Ebene Kurvenmengen von zweierlei Art :

1. Mengen von Wegen j, bezeichnet mit J ;

2. Mengen von Kurven c, die das stetige Bild des halboffenen Inter-
valls 0 <£ t < 1 sind ; solche Mengen bezeichnen wir mit C.

Es sei z(t) (0 ^ t<l) eine Parameterdarstellung einer Kurve aus C

und E eine Punktmenge. Existiert eine Folge tn -> 1 mit limz(£n)

C e E, so sagen wir, dièse Kurve komme der Menge E bzw. dem Punkt f
aus E beliebig nahe.

Irgendeine Kurvenmenge bezeichnen wir mit M, ihre Elemente mit /u.
Wir definieren ihre Extremallange XM in einer von J.Hersch ([6]) gegebe-
nen Modification folgendermaBen : Es sei q (z) eine in der ganzen Ebene
erklàrte nicht-negative Funktion. Sie definiert eine Metrik do q (z) • | dz |.
allerdings ohne irgendwelche Regularitâtsvoraussetzungen. Insbesondere
ist sie ûberall dort ausgeartet, wo q verschwindet. Das untere Darboux-
sche Intégral /^(z) | dz |, als Kurvenintegral im Cauchyschen Sinne.

kann als Lange von fi und das obère Darbouxsche Intégral

A(q) J Q2(z)dxdy
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als Flâcheninhalt der Ebene in bezug auf die Metrik q interpretiert
werden. Wir nennen g zulâssig fur die Kurvenmenge M, wenn j^ g • | dz | ^ 1

ist fur jedes [/,€ M. Die untere Grenze der A (g) fur aile zulâssigen g
ist eine nicht-negative Zahl oder oo. Ihr reziproker Wert ist die Extre-
mallange XM der Kurvenmenge M. Der zugrunde gelegte Integralbegrifï
macht es môglich, sich bei diesem Variationsproblem auf stetige g zu
beschrânken. Aus der Définition folgt unmittelbar

1. die Monotonieeigenschaft : Fur M' c M ist XM, ^ XM.
2. die konforme Invarianz : Wird ein Gebiet, das die Kurvenmenge M

(aufîer eventuell ihren Endpunkten) enthâlt, konform abgebildet und ist
M' die Menge der Bildkurven, so gilt XM, kM.

Kapazitât verstehen wir im logarithmisehen Sinne. Ist die beschrànkte
und abgeschlossene Punktmenge A der Rand eines Gebietes, das den
unendlich fernen Punkt enthâlt, und g(z, oo) die Greensche Funktion
dièses Gebietes mit dem Pol in oo, so ist lim (g(z, oo) — In | z |) — yA

2->OO

die Robinsche Konstante und Cap A e~yA die Kapazitât von
A. Fur eine offene Menge 0 auf der Kreisperipherie | z | 1 ist die
Kapazitât definiert durch Cap 0 Sup Cap A und die âuBere Kapa-

ACO

zitât einer beliebigen Menge E auf | z \ 1 durch Cap E Inf Cap O

([3]). Entspreehend ist y0 Sup yA die Robinsche Konstante fur O
AQO

und yE Inf y0 die (auBere) Robinsche Konstante fur E. Eine abge-

schlossene Punktmenge ist dann und nur dann von der Kapazitât null,
wenn sie vom absoluten harmonischen MaB null ist ([9]).

2. Fur die spâtern Anwendungen beweisen wir zunâchst

Lemma 1. Es sei E eine abgeschlossene Punktmenge von der Kapazitàt
0, G ihre (zusammenhangende) Komplementârmenge, Fo eine Jordankurve
in G und C irgendeine Menge von Kurven, die auf JH0 beginnen und in G

verlaufend der Menge E beliebig nahekommen. Dann ist ihre Extremallange
Xc unendlich.

Beweis. Wir schôpfen das Gebiet G durch eine wachsende Folge von
kompakten Teilgebieten Gn aus, deren Rânder Fn je aus endlich vielen
Jordankurven bestehen. Go ist das von dem Fo des Lemmas berandete

Gebiet. un bezeichne die in Gn — Go harmonische Funktion, die auf
Fo verschwindet und auf Fn den Wert 1 annimmt. Die Folge un ist
monoton abnehmend und konvergiert gegen eine harmonische Grenz-
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funktion u, und fur die Dirichletintegrale gilt Km D(un) D(u). Unab-
n->oo

hàngig von der Wahl des Fo und der Ausschôpfung {Gn} ist entweder

u 0 oder u>0 in G~G0 ([9]). Im ersten Fall ist Capl£=O, im
zweiten Cap E>0.

Nach Voraussetzung ist Cap E 0, also lim D (un) — 0. q (z)
| grad un | ist fur die Kurvenmenge C zulàssig. Betrachten wir nâmlich
von einer beliebigen Kurve c aus C ein (sicher vorhandenes) Teilstuck c1,

das Fo innerhalb Gn — GQ mit Fn verbindet, so ist

w| \dz\
Ci CX

Aus ^4(^) D(un) folgt dann Ao =cx).
Betrachten wir nun ein Gebiet G und auf seinem Rand eine abge-

schlossene Punktmenge E. Ist J die Menge der Wege, welche eine
Jordankurve Fo in G innerhalb G mit E verbinden, so gilt im Falle
Cap2? 0 nach Lemma 1 ^=00. Dafî mit Cap2£>0 auch Xj<oo
wâre, ist im allgemeinen nicht zu erwarten. Fur den Kreis hingegen gibt
es eine solche Umkehrung. Es gilt sogar folgende schàrfere und allge-
meinere Aussage :

Satz 1 (Hauptsatz). Es sei E eine beliebige Punktmenge auf der Kreis-
peripherie \ z | 1, Fo eine (den Nullpunkt umschliefiende) Jordankurve
in |z|<l/3 und J J(E) die Gesamtheit der Wege j, welche Fo
innerhalb | z | < 1 mit (den Punkten von) E verbinden. Zwischen der
Robinschen Konstanten y yE und der Extremallânge X Xj^E) besteht

die Ungleichung
2y + k ^ 2?rA ^ 2y + K (1)

wo die positiven Grôfîen k und K nur von Fo abhàngig sind. Insbesondere ist
X dann und nur dann unendlich, wenn y 00 oder die (àufiere) Kapazitât
von E verschwindet.

Der Beweis dièses Satzes wird in drei Schritten gefiihrt.

1. Schritt : E ist eine abgeschlossene Menge A, bestehend aus endlich
vielen disjunkten Intervallen Ix, 72,..., In.

2. Schritt : E ist eine beliebige offene Menge 0.
3. Schritt : E ist eine beliebige Menge.

3. Erster Schritt. E ist die Vereinigungsmenge A von endlichvielen
abgeschlossenen Intervallen Il9Ii9...,In. Fo und die Kreisperipherie
j z | 1 beranden ein Gebiet G. h(z) ist die in G harmonische Funk-
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tion, die auf Fo verschwindet, auf A den Wert 1 annimmt und auf den

zu A komplementaren Kreisbogen eine verschwindende Normalableitung
besitzt. Es ist q | grad h | zulàssig und deshalb

D{K) A(Q) ^ X-i (2)
Setzen wir

JdA* D(h)) ==27t/a (3)

(A* bezeichnet die zu h konjugierte harmonische Funktion), so liefert
w ea<h+lh*) die konforme Abbildung des Gebietes G auf den mit
endlichvielen radialen Einschnitten versehenen Kreisring 1<| w \<ea,
die von der âuBern Kontur ausgehen und den zu A komplementaren
Kreisbogen entsprechen. Mit (0) bezeichnen wir den radialen Quer-
schnitt w Ré*0, 1 <: R <! ea, dièses Gebietes Ow, wobei 0 von den

Argumenten der genannten Einschnitte verschieden sein soll. Jedem
solchen Querschnitt entspricht in G vermittels der konformen Abbildung
ein Jordanbogen aus J(A).

Ist nun q(z) irgendeine zulâssige Metrik fur J(A), so wird mit
dz- Q(z(w)) dw

fur aile (0)

-./«s.l^i Qi-\dw\)£ QlBdB- l~ alo\RdR.
\J I J J R J
(0) (<*>) (#) (#)

Durch Intégration bezuglich 0 folgt gemâB (3)

D(h) 27t/a ^ J Q\RdRd0 J ç^dxdy ^A(q)
Ow G

und in Verbindung mit (2)

D(h) A-* (4)

4. Nun sei g(z,oo) die Greensehe Funktion des von A auf der
funktionentheoretischen Ebene berandeten Gebietes mit dem Pol in oo.

Dann ist g(z) In | z \ + yA + o(l) ftir 2 ->oo, y^ ^ 0 und

$ (5)
A

das sogenannte Gleichgewichtspotential fur A. Die Funktion

U{z) u(z) + u(Vj (6)

ist symmetrisch zum Einheitskreis ; sie hat in 0 und oo einen negativen
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logarithmischen Pol und auf A den Wert 2y ; lângs der zu A komplemen-
târen Bogen des Einheitskreises verschwindet ihre Normalableitung.
Fur die Funktion (U + k) + liefert die Greensche Formel D(U + k)+

47t(2y + h) und bei Beschrânkung auf den Einheitskreis, wegen der
Symmetrie von (U + k)+ ->

D[zl<1(U + k)+ 2n(2y + Je) (7)
Nun ist

(1 - rfjr ^ | z - eie | | 1/5- eie | g (1 + r)2/r

fur | z | r. Mit K(r) In (1 + **)2/r und k(r) In (1 - r)2/r folgt
dann gemâfi (5) und (6)

~K(r) £U(z) ^-k(r) (8)

Wir setzen rt Min | z |, r2 Max \z\ < 1/3), Z K(rt) und

Die in Nr. 3 eingefuhrte Funktion h (z) kann lângs der zu A komple-
mentaren Kreisbogen durch Spiegelung fortgesetzt werden und wir er-
halten eine zu | z | 1 symmetrische Funktion h, die auf Fo und der
symmetrischen Kurve F'o versehwindet, auf dem von Fo, F!Q und A be-

randeten Gebiet G harmonisch ist und auf A den Wert 1 annimmt. Ge-
mâ6 (8) ist anderseits U + K auf FQ positiv und U + k dort negativ ;

also nach dem Maximumprinzip

U{Z) + K
~2y + K

in G und daher

(2y + *)¦ ~ ^o(A) - (2y+Jfc)»
"

Aus (7) und (4) folgt dann die Ungleichung (1) fur y yA und À —

5. Zweiter Schritt. E ist eine beliebige offene Menge O. il9i2,...,
in>... seien die disjunkten offenen Intervalle, aus denen O besteht,
/1? /2î..., In,... die entsprechenden abgeschlossenen Intervalle und
An die Vereinigungsmenge der I1,I2,.. .y In. Es ist y0 KmyAn

und AJ(0) ^ Àj(An)> a^so gem^ dem ersten Schritt 2nkJ{0) ^
fur aile An, womit die rechte Seite der Doppelungleichung (1) fur offene
Mengen schon bewiesen ist.

Der Beweis der linken Seite der Doppelungleichung (1) ist weniger
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trivial. hn sei die in Nr. 3 eingefuhrte, zu An gehorige harmonische Funk-
tion. Mit wfoo ist hn monoton wachsend und beschrankt, konvergiert
also in G lokal gleichmaBig gegen eine harmonische Grenzfïmktion h, die
auf0 den Wert 1 annimmt und auf FQ verschwindet. Daher ist q=\ gradh \

eine fur J(0) zulassige Metrik mit A(q) D(h) ^ kj{0)- Anderseits
ist nach (4) D(hn) Aj(^n). Nun werden wir zeigen, daB Mm D(hn)=D(h)

ist ; daraus folgt dann wegen AJ(An) ^ A/(0) die Beziehung lim XJ(^4n)=AJ(Oj.
n->oo

Dièse liefert aber zusammen mit y0 lim yAn die Gultigkeit der linken
Seite von (1) fur offene Mengen. n^°°

Es verbleibt noch zu zeigen, daB lim D(hn) D(h) ist. Hiefur be-
merken wir, daB hn bekanntlich die folgende Extremaleigensehaft hat :

Ist u in G harmonisch, gleich 0 auf Fo und gleich 1 auf An, so ist D(hn)
^JD(u). Daher ist D(hm)>D(hn) fur m>n. Die wachsende Folge
D(hn) ist offenbar beschrankt und daher konvergent. Aus derselben

Extremaleigensehaft folgt D(hni hm — hn) 0 fur m>n. Demnach
ist D(hm - hn) D(hm) - D(hn) und somit lim D(hm - hn) 0.

Hieraus schlieBt man nach bekanntem Verfahren, daB lim D(h ~ hn) 0

und daher lim D(hn) D(h) ist.

6. Dritter Schritt. E ist eine beliebige Punktmenge.
1. Es sei y yE die (auBere) Robinsche Konstante fur E. Dann

existiert eine Folge von offenen Mengen On mit EaOn und lim yOn yE.
Wegen XJ{E) ^ hJ{On) folgt gemaB dem zweiten Schritt ™">0°

2yOn + h^ 2nXJ{E)

fur aile On und daher die linke Seite der Doppelungleichung (1) fur
k XJ{E) und y yE. Insbesondere ist mit yE auch ÀJ(E) unendlich.

2. Es sei jetzt X XJ{E) gegeben. Zu beliebig vorgegebenem e>0
existiert dann ein zulâssiges und stetiges q(z) mit A(q) <k~x + «. Wir
setzen

/(e**) Inf $Q\dz\
0) 3

wo aile jene Wege j zur Konkurrenz zugelassen sind, die Fo mit
et9> innerhalb | z \ <1 verbinden. f(e%q>) ist stetig. Fur jedes jeJ(E)
ist Je|dz| ^1 und daher /^l fur etveE. Die Punkte e** mit

bilden also eine ofifene Menge O, die E enthalt. Es ist J q \ dz | > ô fur
i
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aile jeJ(O) und somit Qi qIô eine zulàssige Metrik fur J(O) mit
A(g1)<X~1 + 2e. Es ist also AJ(0)> 1/A"1 + 2 e und daher nach dem
zweiten Schritt 27t\X~x + 2e<2y0 + X. Da e beliebig war, so folgt
daraus die Gultigkeit der rechten Seite der Doppelungleichung (1)
fur X XJ(E) und y yE. Insbesondere ist mit XE auch yE unendlich.

Damit ist der Beweis von Satz 1 erbracht.

î. Anwendung auf konforme Abbildung. Es sei G ein einfach zu-
sammenhàngendes Gebiet. Ein Randelement (Primende) von G gehôrt
zu einem Randpunkt f, wenn £ ein Hauptpunkt dièses Randelementes
ist. Wir sagen, daB ein Randelement zu einer Menge E von Randpunkten
gehôrt, wenn es zu einem Punkt aus E gehôrt. Ist f ein erreichbarer
Randpunkt, so definiert jeder in f endende Weg des Gebietes ein
erreichbares Randelement. Die zu einem Randpunkt gehôrigen Rand-
elemente (auch die erreichbaren Randelemente allein) kônnen die Màch-

tigkeit des Kontinuums haben. Es gilt aber

Satz 2. Ist die abgeschlossene Punktmenge E auf dem Rand eines einfach
zusammenhângenden Gebietes von der Kapazitàt null und bildet man das
Gebiet konform auf einen Kreis ab, so entspricht auf der Kreisperipherie den

zu E gehôrigen Randelementen eine Punktmenge der (âufiern) Kapazitàt 0.
Dieser Satz, der erstmals von J. Dufresnoy ([4]) bewiesen wurde, er-

gibt sich sofort aus Satz 1 und Lemma 1 auf Grund des folgenden be-
kannten Satzes von E. Lindelôf ([8]), vgl. auch [5], p. 65) : Liefert z(w)
die konforme Abbildung des Kreises K auf das Gebiet G, ist co ein Punkt
der Kreisperipherie und e das entsprechende Randelement von G, so
kommt z(w) jedem Hauptpunkt von e beliebig nahe, wenn w in K auf
irgendeinem Weg gegen co strebt. Ist also w(t), 0 ^ t ^ 1 eine Para-
meterdarstellung dièses Bogens mit w(\) co und £ ein Hauptpunkt

von e, so gilt lim inf | z(w(t)) — f | 0.

Es sei nun E' die Menge auf der Kreisperipherie, welche den zu E
gehôrigen Randelementen entspricht, Ff0 eine Jordankurve innerhalb K
und J die Gesamtheit der Wege, die Fr0 in K mit E' verbinden. Der
Abbildung von K auf G entsprechend sei JP0 die Bildkurve von r'Q

und G die Bildmenge von J. Die letztere besteht nach dem Lindelôfschen
Satz aus Kurven, die auf Po beginnen und in G verlaufend der Rand-

menge E beliebig nahe kommen. Nach Lemma 1 ist Xc oo, wegen der

konformen Invarianz auch Xj oo, und nach Satz 1 Cap E1 0.
Reduziert sich E auf einen einzigen Punkt, so besagt der Satz : Den zu
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einem Randpunkt gehorigen Randélementen entspricht auf der Kreisperi-
pherie eine Menge von der (âuflern) Kapazitàt 0.

8. Eine in | z | <1 meromorphe Funktion w(z) erzeugt eine Ûber-
lagerungsflâche der w-Ebene. Das Intégral

F(w) J dxdy

bedeutet den sphàrischen Flàcheninhalt dieser Ûberlagerungsflâche. Ana-
log zu dem in Nr. 7 erwâhnten Lindelôfschen Satze gilt

Lemma 2. Ist w(z) in \ z | <1 meromorph, F(w)<oo und lim w(z) a
(a irgendein komplexer Wert oder oo), wenn z auf einem Weg gegen eitp

strebt, so gilt

lim inf | w(z) — a \ 0 bzw. lim sup | w(z) | =oo

wenn z auf irgendeinem Weg gegen el<p strebt.

Beweis. Wir bezeichnen den Durchschnitt der Kreislinie | z — e% v \ t
und des Einheitskreises [ z | <1 mit /3t, setzen z — et<p t>ete und

w' ItdO
-h 1 w\*

Dann folgt aus der Schwarzschen Ungleichung

fit

und nach Division durch t und Intégration bezûglich t

Ci dt < nF(w)

Es gibt also eine Polge tn -> 0 mit lim L(tn) 0, das heiBt die sphâri-
sche Lange der Bildkurven von fin fïtn strebt gegen null. Wâhlen wir
also auf jedem j3n irgendeinen Punkt zn, so ist lim w(zn) a. Da nun
jeder Weg, der in etq> endet, die Querschnitte (ln trifft, so folgt sofort
die Behauptung.

Es sei w(z) wieder eine in |z|<l nicht-konstante meromorphe Funktion

mit F{w)<oo. Wir betrachten die Menge E der Punkte et(p, in
denen w(z) den asymptotischen Wert 0 hat, das heiBt, daB zu jedem
el(PeE ein Weg existiert, der in et(p endet, und lim w(z) 0 ist,
wenn z auf diesem Bogen gegen elff> strebt. Wir suchen hinreichende
Bedingungen dafur, daB die Kapazitàt von E verschwindet.
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Im Palle radialer asymptotischer Werte ist dièse Frage von A. Beur-
ling ([2]) behandelt und kiirzlieh von M. Tsuji ([10]) wieder aufgegriffen
worden1).

Die Auszeiehnung des Wertes 0 ist nur scheinbar. Denn es ist F(w)
gegenûber Kugeldrehungen invariant.

9. Da w(z) nicht konstant ist, gibt es eine einfache Stelle z0 mit
w(z0) ^ 0. Wir wàhlen um z0 herum einen so kleinen Kreis Fo, daB sein
Bild F'o eine Jordankurve ist, die den Nullpunkt nicht umsehlieBt. J sei

die Menge der Wege, die im Einheitskreis FQ mit E verbinden. Die
Bildmenge C besteht nach Lemma 2 aus den Kurven, die von FfQ

ausgehend dem Nullpunkt beliebig nahe kommen. Es ist offenbar Xc oo.

Da w(z) nicht schlicht ist, kann man nicht schlieBen, daB auch Àj oo

sei2). Unter gewissen zusâtzlichen Bedingungen wird dies aber der Fall
sein.

Wir setzen q' (w) a(w)/l + | w |2 und nennen a(w) zulassig, wenn
q1 fur die Menge C zulassig ist. Dann ist q(z) q'{w{z))-\ w1(z) |

zulassig fur J. Denn fur ein je J und ihre Bildkurve ceC gilt

$Q(z)\dz\=$Qf(w)\dw\ ^1
Anderseits ist j c

A (g) jqHxdy fo* (w)

\\l \\lj f
\z\<l \z\<l

Damit nun Xj oo sei, muB es zulàssige a(w) mit beliebig kleinen A (q)

geben. Die globale Bedingung F(w)<oo wird hiefur kaum geniigend
sein, da die Stàrke der von w (z) erzeugten Ûberlagerungsflâche iiber der
Umgebung von w 0 von ausschlaggebender Bedeutung ist. Die im-
plizite Bedingung, wonach A(q) fur aile zulâssigen a die untere Grenze
null haben soll, laBt sich leicht in eine etwas schwàchere, aber explizite
Bedingung verwandeln.

Wir wâhlen ein positives rQ so klein, daB die Kreisscheibe | w \ <r0
mit Fq punktfremd ist und setzen fur 0 < r < r0

x ; In ro/r | w |

im Ejreisring r fg | w \ ^ r0 und a(w) 0 auBerhalb. Fur dièses a(w),

*) Es ist zu bemerken, dafî in Beurlings Résultat und im nachfolgenden Satz 3 die

Punktmenge von der âufiern Kapazitàt null, bei Tsuji aber von der innern Kapazitât
null ist. Statt (10) steht bei Beurling und Tsuji die schârfere Bedingung S(t) O(t2).

2) Bei nicht-schlichten Abbildungen kann die Extremallange nicht verkleinert werden
([6]).
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das zulâssig ist und auBer von w noch von den Parametern r und rQ

abhàngig ist, wird

r<\w(z)\<r0

Integriert wird in | z \ < 1 iiber jenes Gebiet, in dem | w(z) | zwischen
den Grenzen r und r0 liegt. Das Intégral hat eine einfache geometrische
Bedeutung : Bei der von w (z) erzeugten Ûberlagerungsflâche der w-Ebene
betrachten wir die liber dem Ring r ^ | w | ^ r0 gelegenen Stûcke und
darauf die Massenbelegung, deren Dichte in den iiber w gelegenen Punk-

ten in bezug auf die sphârische Metrik gleich -j—p ist. Das Intégral stellt

dann die gesamte, von diesen Flâchenstlicken getragene Masse dar. Wir
setzen

\w(z)\<t

das ist der sphârische Inhalt der ûber | w\<t gelegenen Stiicke der
Ûberlagerungsflâche. Das Intégral in (9) schreibt sich dann in der Form

und es wird A (q) fur r -> 0 beliebig klein, wenn

ist. Durch partielle Intégration folgt

dS(t) 8(r0) fS(t)
¥ t

und es wird A (q) fur r -> 0 und dann rQ -> 0 beliebig klein, wenn

S(t) o(t2 In-M fur t -> 0 (10)
\ t 1

ist. Damit ist der folgende Satz bewiesen.

Satz 3. Ist w(z) in |z|<l meromorph, 0<F(w)<oo und geniigt
S(t) der Bedingung (10), so ist die Menge der Punhte auf dem Kreis
| z | 1, in denen w(z) den asymptotischen Wert 0 hat, von der (âufîern)
Kapazitàt 0.
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10. Zum SchluB betrachten wir eine homoomorphe Abbildung des
Kreises Kz(\ z | < 1) auf den Kreis Kw(\ w \ < 1), dargestellt durch die
Funktion w(z) u(x, y) + iv(x, y). Wir setzen voraus, da8 die par-
tiellen Ableitungen von u und v existieren und stetig sind in Kz, und die
Funktionaldekriminante

d(u, v)
u Vv — U* Vv

d(x, y)

dort immer positiv ist. Ein infinitesimaler Kreis vom Radius e geht dann
uber in eine infinitésimale Ellipse mit den Halbachsen e-a(z) und
8'b(z) (a ^6). Der sogenannte Dilatationsquotient D(z) — ajb ist in
Kz stetig und wir setzen weiter voraus, da6 er in Kz beschrânkt, also

SupD(z) JT<oo
\Z\<1

sei. Wir sprechen dann kurz von einer difïerentialgeometrischen Abbildung

von Kz auf Kw mit beschrankter Dilatation oder von einer quasi-
konformen Abbildung. Dièse Abbildung ist auf die abgeschlossenen Kreis-
scheiben Kz und Kw homôomorph fortsetzbar.

Satz 4. Die quasikonforme Abbildung von Kz auf Kw induziert eine

topologische Abbildung der Peripherie \ z \ 1 auf die Peripherie
| w | 1 mit folgender Eigenschaft : Eine Punktmenge Ez auf \ z \ 1

und die entsprechende Punktmenge Ew auf \ w \ — 1 sind immer gleich-
zeitig von der âufiern Kapazitat 0 bzw. > 03).

Beweis. Es sei Fo eine Jordankurve in Kz und Ff0 die entsprechende
Kurve in Kw, J die Menge der Wege, die Fo in Kz mit Ez verbinden
und J' ihre Bildmenge in Kw. J' besteht also aus den Wegen, die Ff0

in Kw mit Ew verbinden. Wie unten gezeigt wird, gilt fur die Extremal-
lângen von J und Jr die Ungleichung 4)

^ lj, (11)

3) Eme ahnhche Frage habe ich m einer Note der C. R. Acad. Sei. Paris 226 (1948)

p. 623 behandelt und unter allgememen Verhaltnissen (Differenzierbarkeit fast uberall)
Behauptungen aufgestellt, die unrichtig sind, z. B. daô eine abgeschlossene Menge auf
| z | 1 vom Mafi null wieder in eme Menge vom Maô null abgebildet werde. Auch unter
starkern Voraussetzungen (Differenzierbarkeit uberall m | z \ <C 1) hat der dortige Be
weis eme wesentliche Lucke, vgl. P. P.BehnsJcv), Doklady Akad. Nauk SSSR (N. S.) 93
(1953), p. 589—590, und das diesbezugliche Référât von A. J. Lohwater, Mathematical
Reviews, vol. 15 (1954) p. 614.

4) Bezughch dieser Ungleichung soll auf eme demnachst in dieser Zeitschrift erschei-
nende Arbeit von J. Hersch, Contribution à la théorie des fonctions pseudo-analytiques,
hmgewiesen \*erden.
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Mit Cap Ez — 0 ist Xj oo, also auch XJt oo und daher Cap Ew — 0.
Dasselbe gilt fur die inverse Abbildung von Kw auf Kz.

Es bleibt noch die Ungleichung (11) zu beweisen. Wegen

d(u,v) 3(tt, v)
— — a o gilt a — u *

Ist q(w) zulàssig fur J\ so ist Q1(z) g(w(z))a(z) zulâssig fur J ; denn

wegen \dw\ ^a(z)-\dz\ gilt fur ein je J und das entsprechende

feJ'

Es ist ferner

Kw Kz

und daher KXj ^ Xj Der andere Teil der Ungleichung ergibt sich mit
Hilfe der inversen Abbildung.
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