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Extremallingen und Kapazitiit
von ALBERT PFLUGER, Ziirich

Meinem verehrten Kollegen M. Plancherel zum siebzigsten Geburtstag

Im Anschlufl an die von Ahlfors und Beurling ([1]) eingefiihrte Extre-
mallinge einer Kurvenschar stellen wir uns folgendes Problem : Es sei
im Einheitskreis |z |<1 eine Jordankurve I'; und auf der Peripherie
eine Punktmenge E gegeben; J = J(£) sei die Gesamtheit der Wege,
die I'y im Einheitskreis mit Punkten aus E verbinden. Unter wel-
chen Bedingungen fiir Z ist die Extremallinge von J unendlich? Es
wird gezeigt, da dies dann und nur dann der Fall ist, wenn die dullere
Kapazitit von E verschwindet (Satz 1). Wegen der konformen Invarianz
der Extremallinge ergeben sich Anwendungen auf die konforme Abbil-
dung (Satz 2), die quasikonforme Abbildung des Kreises auf sich (Satz 4)
sowie auf eine Klasse von meromorphen Funktionen im Einheitskreis
hinsichtlich ihrer asymptotischen Werte (Satz 3).

1. Wir betrachten in der euklidischen oder in der funktionen-theoreti-
schen Ebene Kurvenmengen von zweierlei Art :

1. Mengen von Wegen j, bezeichnet mit J ;

2. Mengen von Kurven c, die das stetige Bild des halboffenen Inter-
valls 0 =< ¢ <1 sind ; solche Mengen bezeichnen wir mit C'.

Es sei z(t) (0 =<t<1) eine Parameterdarstellung einer Kurve aus C

und & eine Punktmenge. Existiert eine Folge ¢, -1 mit limz({,) =
n>oo

(e E, so sagen wir, diese Kurve komme der Menge £ bzw. dem Punkt ¢
aus & beliebig nahe.

Irgendeine Kurvenmenge bezeichnen wir mit M, ihre Elemente mit u.
Wir definieren ihre Extremallinge 4,, in einer von J.Hersch ([6]) gegebe-
nen Modifikation folgenderma@en : Es sei g(z) eine in der ganzen Ebene
erkliarte nicht-negative Funktion. Sie definiert eine Metrik do=p(z)-|dz|.
allerdings ohne irgendwelche Regularitdtsvoraussetzungen. Insbesondere
ist sie iiberall dort ausgeartet, wo ¢ verschwindet. Das untere Darboux-
sche Integral ,o(z)|dz|, als Kurvenintegral im Cauchyschen Sinne,

kann als Léi,nge—von u und das obere Darbouxsche Integral
A(e) = J ¢*(x)dxdy
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als Flicheninhalt der Ebene in bezug auf die Metrik o interpretiert
werden. Wir nennen p zuléssig fiir die Kurvenmenge M, wenn §,0-|dz| = 1

ist fiir jedes we M. Die untere Grenze der A (p) fiir alle—zul'alssigen 0
ist eine nicht-negative Zahl oder oco. Ihr reziproker Wert ist die Extre-
mallinge 4, der Kurvenmenge M. Der zugrunde gelegte Integralbegrift
macht es moglich, sich bei diesem Variationsproblem auf stetige ¢ zu
beschrinken. Aus der Definition folgt unmittelbar

1. die Monotonieeigenschaft : Fir M’ ¢ M ist 4, = 4.

2. die konforme Invarianz : Wird ein Gebiet, das die Kurvenmenge M
(auBer eventuell ihren Endpunkten) enthélt, konform abgebildet und ist
M' die Menge der Bildkurven, so gilt 1,, = 4,,.

Kapazitidt verstehen wir im logarithmischen Sinne. Ist die beschrinkte
und abgeschlossene Punktmenge 4 der Rand eines Gebietes, das den
unendlich fernen Punkt enthiit, und g¢(z, o) die Greensche Funktion

dieses Gebietes mit dem Pol in oo, so ist lim (g(z, o0) —In|2z]|) =y,

die Robinsche Konstante und Cap 4 = e 74 die Kapazitit von
A. Fir eine offene Menge O auf der Kreisperipherie |z | =1 ist die

Kapazitit definiert durch Cap O = Sup Cap 4 und die dullere Kapa-
40

zitdt einer beliebigen Menge K auf |z|=1 durch (5;5 E = Inf Cap O
([3]). Entsprechend ist 7y, = Sup y, die Robinsche Konst;n)tlé fir O
und yz = Infy, die (dullere) i{c(;)binsche Konstante fiir . Eine abge-
schlossene f’l)lflktmenge ist dann und nur dann von der Kapazitiat null,

wenn sie vom absoluten harmonischen Maf3 null ist ([9]).
2. Fiir die spdtern Anwendungen beweisen wir zunéchst

Lemma 1. Es set E eine abgeschlossene Punktmenge von der Kapazitit
0, G ihre (zusammenhingende) Komplementirmenge, I'y eine Jordankurve
m G und C irgendeine Menge von Kurven, die auf I'y beginnen und in G
verlaufend der Menge E beliebig nahekommen. Dann ist thre Extremallinge
Ao unendlich.

Beweis. Wir schopfen das Gebiet @ durch eine wachsende Folge von
kompakten Teilgebieten G, aus, deren Rinder I', je aus endlich vielen
Jordankurven bestehen. G, ist das von dem I', des Lemmas berandete

Gebiet. u, bezeichne die in G, — G’_o harmonische Funktion, die auf
I'y verschwindet und auf I’, den Wert 1 annimmt. Die Folge u, ist
monoton abnehmend und konvergiert gegen eine harmonische Grenz-
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funktion %, und fiir die Dirichletintegrale gilt lim D (u,) = D (u). Unab-

n-»oo

héingig von der Wahl des I'y und der Ausschopfung {G,} ist entweder

=0 oder u>0 in ¢ —G, ([9]). Im ersten Fall ist Cap £ = 0, im
zweiten Cap £ >0.

Nach Voraussetzung ist Cap £ = 0, also lim D(u,) = 0. p(2) =
| grad », | ist fiir die Kurvenmenge C zuldssig. Betrachten wir nidmlich
von einer beliebigen Kurve ¢ aus C ein (sicher vorhandenes) Teilstiick c,,

das Iy innerhalb @, — 50 mit I, verbindet, so ist
1= fdu, <f|gradu,| |dz]| .

Aus A(p) = D(u,) folgt dann A, =oo.

Betrachten wir nun ein Gebiet ¢ und auf seinem Rand eine abge-
schlossene Punktmenge E. Ist J die Menge der Wege, welche eine
Jordankurve Iy in G innerhalb G mit E verbinden, so gilt im Falle
Cap £ = 0 nach Lemma 1 1; =oco. Dall mit Cap £>0 auch 1;<oco
wire, ist im allgemeinen nicht zu erwarten. Fiir den Kreis hingegen gibt
es eine solche Umkehrung. Es gilt sogar folgende schirfere und allge-
meinere Aussage :

Satz 1 (Hauptsatz). Es sei K eine beliebige Punktmenge auf der Kreis-
peripherie |z | = 1, Iy eine (den Nullpunkt umschliefende) Jordankurve
wm | z|<1/3 und J = J(H) die Gesamtheit der Wege j, welche I,
innerhalb |z | <1 mat (den Punkten von) E verbinden. Zwischen der
Robinschen Konstanten y = yg und der Extremallinge A = Ay, besteht
die Ungleichung

2y +k <274 <29+ K, (1)

wo dre positiven Grofen k und K nur von I'y abhingig sind. Insbesondere ist
A dann und nur dann unendlich, wenn y =oo oder die (dufere) Kapazitit
von B verschwindet.

Der Beweis dieses Satzes wird in drei Schritten gefiihrt.

1. Schritt : E ist eine abgeschlossene Menge A, bestehend aus endlich
vielen disjunkten Intervallen 7,,71,,...,1,.

2. Schritt : X ist eine beliebige offene Menge O.

3. Schritt : K ist eine beliebige Menge.

3. LErster Schritt. £ ist die Vereinigungsmenge 4 von endlichvielen
abgeschlossenen Intervallen I,,71,,...,1,. Iy und die Kreisperipherie
|z| = 1 beranden ein Gebiet @. h(z) ist die in @ harmonische Funk-
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tion, die auf I'; verschwindet, auf 4 den Wert 1 annimmt und auf den
zu A komplementidren Kreisbogen eine verschwindende Normalableitung
besitzt. Es ist ¢ = | grad & | zuldssig und deshalb

D) = A(o) = A1 . (2)
Setzen wir

11 dh* (= D(h)) = 27/a (3)

(h* bezeichnet die zu A& konjugierte harmonische Funktion), so liefert
w = ") die konforme Abbildung des Gebietes G auf den mit
endlichvielen radialen Einschnitten versehenen Kreisring 1<|w |<e?,
die von der duflern Kontur ausgehen und den zu 4 komplementiren
Kreisbogen entsprechen. Mit (D) bezeichnen wir den radialen Quer-
schnitt w = Re'®, 12 R = e, dieses Gebietes G,,, wobei @ von den
Argumenten der genannten Einschnitte verschieden sein soll. Jedem
solchen Querschnitt entspricht in G vermittels der konformen Abbildung
ein Jordanbogen aus J(4).

Ist nun g (2) irgendeine zulédssige Metrik fiir J(4), so wird mit o, (w)

= g(z(w)) lg% fir alle (@)

2 2 dR 2
1g(fgl-[dwl)éfgleR-szafgleR.
() (®) (

(2) )

Durch Integration beziiglich @ folgt geméaf3 (3)
D(h) = 2nfa < [ 0} RARAD = | p*dxdy = A (p)
Gw @

und in Verbindung mit (2)
D) = A1 . (4)

4. Nun sei g¢(z,00) die Greensche Funktion des von A auf der
funktionentheoretischen Ebene berandeten Gebietes mit dem Pol in oo.
Dannist g(z) =In|z| 4+ y4 + o(1l) fir 2 »>c0, y, =0 und

u(2)==m-—9=-gln|z—-e“’ldﬂe (5)

das sogenannte Gleichgewichtspotential fiir 4. Die Funktion
U = ul) + ’“(‘i‘) (6)
ist symmetrisch zum Einheitskreis ; sie hat in 0 und oo einen negativen
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logarithmischen Pol und auf 4 den Wert 2y ; lings der zu 4 komplemen-
tiren Bogen des Einheitskreises verschwindet ihre Normalableitung.
Fiir die Funktion (U + k)t liefert die Greensche Formel D(U -+ k)*
= 4x(2y + k) und bei Beschrinkung auf den Einheitskreis, wegen der
Symmetrie von (U + k)*,

D (U + k)* = 27 (2y + k) (7)
Nun ist
(1 —7)r <|z—e®||1z—ef| <1+ r)2r

fir |2z|=7. Mit K(r)=In(1 4+ r)}r und k(r) =In (1 — r)¥/r folgt
dann gemif (5) und (6) :

—K(r) =UR) = — k() . (8)

Wir setzen r, =Min|z|, r,=Max|z| (<1/3), K = K(r,) und
— k(?"g) (>O) zel'y zel'y
Die in Nr. 3 eingefiihrte Funktion A(z) kann lings der zu 4 komple-
mentidren Kreisbogen durch Spiegelung fortgesetzt werden und wir er-
halten eine zu |z | =1 symmetrische Funktion %, die auf I, und der
symmetrischen Kurve I'; verschwindet, auf dem von I, I’(’, und 4 be-

randeten Gebiet ¢ harmonisch ist und auf 4 den Wert 1 annimmt. Ge-
miafB (8) ist anderseits U + K auf I'j positiv und U + k£ dort negativ ;
also nach dem Maximumprinzip

U(z) + K 1) U(z) + k
2y + K — =~ 2y 4k
inaund daher
DIZI<I(U+K)+$D0(’Z) < D|z|<1(U+k)+

2y + K)*
Aus (7) und (4) folgt dann die Ungleichung (1) fiir y = y, und 4 = 1, .

5. Zweiter Schritt. E ist eine beliebige offene Menge O. <¢,,1,,...,

') seien die disjunkten offenen Intervalle, aus denen O besteht,

ny

I1,,1,,...,1,,... die entsprechenden abgeschlossenen Intervalle und
4, die Vereinigungsmenge der I,,I,,...,I,. Es ist y,=lmy,
n-> o

und A;0, < 454, also gemiB dem ersten Schritt 274, <2y, + K
fiir alle 4,,, womit die rechte Seite der Doppelungleichung (1) fiir offene
Mengen schon bewiesen ist.

Der Beweis der linken Seite der Doppelungleichung (1) ist weniger
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trivial. &, sei die in Nr. 3 eingefiihrte, zu 4, gehorige harmonische Funk-
tion. Mit n4oco ist A, monoton wachsend und beschrinkt, konvergiert
also in G lokal gleichmiBig gegen eine harmonische Grenzfunktion 4, die
auf O den Wert 1 annimmt und auf I'y verschwindet. Daher ist o= | grad 4|
eine fiir J(0) zulissige Metrik mit A4(g) = D(h) = A5p,. Anderseits
ist nach (4) D (h,) = 43,,- Nun werden wir zeigen, dafl lim D (h,)=D (h)

n->» oo

ist ; daraus folgt dann wegen 4;,,, = 4, die Beziehung lim 4, ,, =2,
n—>co

Diese liefert aber zusammen mit y, = lim y, die Giiltigkeit der linken
Seite von (1) fiir offene Mengen. e

Es verbleibt noch zu zeigen, dafl lim D(k,) = D(h) ist. Hiefiir be-
merken wir, dal &, bekanntlich die folgende Extremaleigenschaft hat :
Ist w in G harmonisch, gleich 0 auf Iy und gleich 1 auf 4,,, so ist D(h,)
< D(u). Daher ist D(h,)>D(h,) fir m>n. Die wachsende Folge
D(h,) ist offenbar beschrinkt und daher konvergent. Aus derselben
Extremaleigenschaft folgt D(4,,h, — h,) = 0 fir m>n. Demnach
ist D(h,, —h,) = D(,)— D, und somit lim D, —h,) = 0.

m, N> 00

Hieraus schlie3t man nach bekanntem Verfahren, da§ lim Dk — &,)=0
und daher lim D(k,) = D(h) ist.

6. Dritter Schritt. E ist eine beliebige Punktmenge.

1. Es sei y =y, die (dullere) Robinsche Konstante fir #. Dann
existiert eine Folge von offenen Mengen O, mit O, und lim p, = y.
Wegen 4,5 = 4,4, folgt gemiBl dem zweiten Schritt ">

290, + &k < 2744

fir alle O, und daher die linke Seite der Doppelungleichung (1) fiir
A = Ayy und y = yg. Insbesondere ist mit y, auch 4,, unendlich.

2. Es sei jetzt A = 4,4 gegeben. Zu beliebig vorgegebenem >0
existiert dann ein zuldssiges und stetiges ¢ (z) mit A(p) <A 4+ ¢. Wir
setzen

fle’?) =Inf fo|dz]|,
Gy i
wo alle jene Wege j zur Konkurrenz zugelassen sind, die [’y mit
e'? innerhalb |z | <1 verbinden. f(e??) ist stetig. Fiir jedes jeJ(H)
ist fp|dz|] =1 und daher f=1 fiir e‘?¢ F. Die Punkte e!? mit
?

A l4-¢
o0=1 -
I> ] A1 2¢
bilden also eine offene Menge O, die E enthilt. Es ist [o|dz|>4d fiir
J
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alle jeJ(0) und somit g, = p/d eine zuldssige Metrik fiir J(0) mit

A(o)) <A1+ 2e. Esist also 1;,,>1/A"! + 2¢ und daher nach dem

zweiten Schritt 2z/A-! 4 2e<2y, + K. Da ¢ beliebig war, so folgt

daraus die Giiltigkeit der rechten Seite der Doppelungleichung (1)

fir 4= A, und y = y;. Insbesondere ist mit 1, auch y; unendlich.
Damit ist der Beweis von Satz 1 erbracht.

7. Anwendung auf konforme Abbildung. Es sei G' ein einfach zu-
sammenhingendes Gebiet. Ein Randelement (Primende) von G gehort
zu einem Randpunkt {, wenn { ein Hauptpunkt dieses Randelementes
ist. Wir sagen, daf} ein Randelement zu einer Menge ¥ von Randpunkten
gehort, wenn es zu einem Punkt aus E gehort. Ist { ein erreichbarer
Randpunkt, so definiert jeder in { endende Weg des Gebietes ein
erreichbares Randelement. Die zu einem Randpunkt gehoérigen Rand-
elemente (auch die erreichbaren Randelemente allein) kionnen die Mich-
tigkeit des Kontinuums haben. Es gilt aber

Satz 2. Ist die abgeschlossene Punktmenge K auf dem Rand eines einfach
zusammenhdingenden Gebietes von der Kapazitit null und bildet man das
Gebiet konform auf einen Kreis ab, so entspricht auf der Kreisperipherie den
zu K gehorigen Randelementen eine Punktmenge der (dufern) Kapazitit 0.

Dieser Satz, der erstmals von J. Dufresnoy ([4]) bewiesen wurde, er-
gibt sich sofort aus Satz 1 und Lemma 1 auf Grund des folgenden be-
kannten Satzes von K. Lindelof ([8]), vgl. auch [5], p. 65) : Liefert z(w)
die konforme Abbildung des Kreises K auf das Gebiet G, ist w ein Punkt
der Kreisperipherie und e das entsprechende Randelement von @G, so
kommt z(w) jedem Hauptpunkt von e beliebig nahe, wenn w in K auf
irgendeinem Weg gegen w strebt. Ist also w(t), 0 =<t <1 eine Para-
meterdarstellung dieses Bogens mit w(l) = o und ¢ ein Haupt-
punkt von e, so gilt liminf|z(w(t)) — | = 0.

t>1

Es sei nun E’ die Menge auf der Kreisperipherie, welche den zu F ge-
horigen Randelementen entspricht, I', eine Jordankurve innerhalb K
und J die Gesamtheit der Wege, die I') in K mit E’ verbinden. Der
Abbildung von K auf G entsprechend sei I'y die Bildkurve von I
und C die Bildmenge von J . Die letztere besteht nach dem Lindelofschen
Satz aus Kurven, die auf I'j beginnen und in ¢ verlaufend der Rand-
menge ¥ beliebig nahe kommen. Nach Lemma 1 ist 4, =00, wegen der

konformen Invarianz auch A; =oco, und nach Satz 1 Cap E' = 0.
Reduziert sich E auf einen einzigen Punkt, so besagt der Satz : Den zu
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einem Randpunkt gehorigen Randelementen entspricht auf der Kreisperi-
pherie eine Menge von der (dufern) Kapazitit 0.

8. Eine in |z |<1 meromorphe Funktion w(z) erzeugt eine Uber-
lagerungsfliche der w-Ebene. Das Integral

_ [ lwer
0= ] T Tw@E Ty

bedeutet den sphirischen Flicheninhalt dieser Uberlagerungsfliche. Ana-
log zu dem in Nr. 7 erwidhnten Lindelofschen Satze gilt

- dxdy

Lemma 2. Ist w(z) in | z | <1 meromorph, F(w) <<oco und limw(z) = a
(@ trgendein komplexer Wert oder oo), wenn z auf einem Weg gegen e*?
strebt, so gilt

liminf|w(z) —a| =0 bzw. limsup|w(z)|=0co,
wenn z auf irgendeinem Weg gegen ¥ strebt.

Beweis. Wir bezeichnen den Durchschnitt der Kreislinie |z —e*?| =1
und des Einheitskreises |z | <1 mit f,, setzen z — e?? = ¢{.¢® und

[ |w'|tdO

= JTHTwp
Bt
Dann folgt aus der Schwarzschen Ungleichung

| w' |2tdf
1+ |wl?)?
Bt

und nach Division durch ¢ und Integration beziiglich ¢
2
f —Iititl dt < F(w) .

Es gibt also eine Folge ¢, - 0 mit lim L(¢,) = 0, das heiBt die sphéri-
sche Liange der Bildkurven von B, = f, strebt gegen null. Wihlen wir
also auf jedem g, irgendeinen Punkt z,, so ist lim w(z,) = @. Da nun
jeder Weg, der in e'? endet, die Querschnitte f§, trifft, so folgt sofort
die Behauptung.

Es sei w(z) wieder eine in |z | <1 nicht-konstante meromorphe Funk-
tion mit F (w)<oco. Wir betrachten die Menge E der Punkte e?, in
denen w(z) den asymptotischen Wert 0 hat, das heif3t, daB zu jedem
e'?e E ein Weg existiert, der in e’? endet, und limw(z) = 0 ist,
wenn z auf diesem Bogen gegen ef? strebt. Wir suchen hinreichende
Bedingungen dafiir, dal die Kapazitit von E verschwindet.

L)

L) £ wt -
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Im Falle radialer asymptotischer Werte ist diese Frage von A. Beur-
ling ([2]) behandelt und kiirzlich von M. T'suji ([10]) wieder aufgegriffen
worden 1).

Die Auszeichnung des Wertes 0 ist nur scheinbar. Denn es ist F (w)
gegeniiber Kugeldrehungen invariant.

9. Da w(z) nicht konstant ist, gibt es eine einfache Stelle z, mit
w(zy) 7 0. Wir wihlen um 2z, herum einen so kleinen Kreis I, daf} sein
Bild I', eine Jordankurve ist, die den Nullpunkt nicht umschlieBt. J sei
die Menge der Wege, die im Einheitskreis I’y mit # verbinden. Die
Bildmenge C besteht nach Lemma 2 aus den Kurven, die von I
ausgehend dem Nullpunkt beliebig nahe kommen. Es ist offenbar 4, =cc.
Da w(z) nicht schlicht ist, kann man nicht schlieBen, daBl auch 1;=co
sei?). Unter gewissen zusédtzlichen Bedingungen wird dies aber der Fall
sein.

Wir setzen o' (w) = o(w)/1 + | w|? und nennen o¢(w) zulidssig, wenn
o' fiir die Menge C zuldssig ist. Dann ist p(2) = o'(w(2))-| w'(2) | zu-
lissig fiir J. Denn fiir ein jeJ und ihre Bildkurve ce O gilt

fo@)|dz| =fo' () |dw| =1 .
Anderseits ist J C
| w' |2

— —_ 2 w
A(g) = fgzdxdy _ fa ) o T i 400 -
2] <1 lzl<1
Damit nun 1; =oo sei, muf} es zulidssige o(w) mit beliebig kleinen 4 (p)
geben. Die globale Bedingung F(w)<oco wird hiefiir kaum geniigend
sein, da die Stirke der von w(z) erzeugten Uberlagerungsfliche iiber der
Umgebung von w = 0 von ausschlaggebender Bedeutung ist. Die im-
plizite Bedingung, wonach A4(p) fiir alle zulidssigen ¢ die untere Grenze
null haben soll, 1iBt sich leicht in eine etwas schwichere, aber explizite
Bedingung verwandeln.
Wir wihlen ein positives 7, so klein, daff die Kreisscheibe |w |<r,
mit I, punktfremd ist und setzen fir 0<r<r7,

1+ 73 1
Inry/r |w)]

o(w) =

im Kreisring r < |w| <7, und o(w) = 0 auBerhalb. Fiir dieses o (w),

1) Es ist zu bemerken, daB in Beurlings Resultat und im nachfolgenden Satz 3 die
Punktmenge von der dufern Kapazitit null, bei Tsuji aber von der innern Kapazitiét
null ist. Statt (10) steht bei Beurling und T'suji die scharfere Bedingung S(t) = O (¢?).

2) Bei nicht-schlichten Abbildungen kann die Extremallénge nicht verkleinert werden

([61).
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das zuléssig ist und auBler von w noch von den Parametern » und 7,
abhingig ist, wird

(141 1 | w' |2
40 =(imr) | Tar atTemEied O

r<]w(z)| <7y

Integriert wird in |z | <1 iiber jenes Gebiet, in dem |w(z)| zwischen
den Grenzen r und r, liegt. Das Integral hat eine einfache geometrische
Bedeutung : Bei der von w(z) erzeugten Uberlagerungsfliche der w-Ebene
betrachten wir die iiber dem Ring » < |w| < r, gelegenen Stiicke und
darauf die Massenbelegung, deren Dichte in den iiber w gelegenen Punk-

ist. Das Integral stellt

. . . 1
ten in bezug auf die sphérische Metrik gleich ]
dann die gesamte, von diesen Fliachenstiicken getragene Masse dar. Wir
setzen

|’ |

SO=" | TrTwpe

lw(z)| <t
das ist der sphérische Inhalt der iiber | w|<t¢ gelegenen Stiicke der
Uberlagerungsfliche. Das Integral in (9) schreibt sich dann in der Form

Fds (1)
t2

dxdy ,

r

und es wird 4 (p) fiir » — 0 beliebig klein, wenn

. (1 )2 raswe
&Tg(lnr,f g0

r

ist. Durch partielle Integration folgt
dS ¢ S S dt
( ) (TO) + f

12 l

;
und es wird A (p) fir » — 0 und dann 7, — 0 beliebig klein, wenn

S(t) = o(t2 ln—;—) fir ¢ — 0 (10)

ist. Damit ist der folgende Satz bewiesen.

Satz 3. Ist w(z) in |z| <1 meromorph, 0<F(w)<co wund genwiigt
S(t) der Bedingung (10), so ist die Menge der Punkte auf dem Kreis
|z| = 1, in denen w(z) den asymptotischen Wert O hat, von der (duflern)
Kapazitit 0.
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10. Zum Schlull betrachten wir eine homoomorphe Abbildung des
Kreises K,(|z | <1) auf den Kreis K, (| w]|<1), dargestellt durch die
Funktion w(z) = u(x, y) + ¢v(x, y). Wir setzen voraus, daf die par-
tiellen Ableitungen von % und v existieren und stetig sind in K,, und die
Funktionaldekriminante

a(z, y)

dort immer positiv ist. Ein infinitesimaler Kreis vom Radius ¢ geht dann
iiber in eine infinitesimale Ellipse mit den Halbachsen ¢-a(z) und
e-b(z) (@ =0b). Der sogenannte Dilatationsquotient D(z) = afb ist in
K, stetig und wir setzen weiter voraus, dal er in K, beschrinkt, also
Sup D(z) = K <oo
J2]<1
sei. Wir sprechen dann kurz von einer differentialgeometrischen Abbil-
dung von K, auf K, mit beschrinkter Dilatation oder von einer quasi-
konformen Abbildung. Diese Abbildung ist auf die abgeschlossenen Kreis-

scheiben K, und Ifw homéomorph fortsetzbar.

Satz 4. Die quasikonforme Abbildung von K, auf K, induziert eine
topologische Abbildung der Peripherie |z| =1 auf die Peripherie
|w| =1 mit folgender Eigenschaft: Eine Punkimenge E, auf |z| =1
und die entsprechende Punkimenge E, auf |w| =1 sind immer gleich-
zewtig von der duflern Kapazitdit 0 bzw. >0 3).

Beweis. Es sei I'y eine Jordankurve in K, und I', die entsprechende
Kurve in K, J die Menge der Wege, die I, in K, mit E, verbinden
und J' ihre Bildmenge in K,. J' besteht also aus den Wegen, die I,
in K,, mit E, verbinden. Wie unten gezeigt wird, gilt fiir die Extremal-
langen von J und J' die Ungleichung %)

K—IZJ_S:ZJ' éK'AJ . (11)

3) Eine ahnliche Frage habe ich in einer Note der C. R. Acad. Sci. Paris 226 (1948)
p- 623 behandelt und unter allgemeinen Verhiltnissen (Differenzierbarkeit fast tiberall)
Behauptungen aufgestellt, die unrichtig sind, z. B. da3 eine abgeschlossene Menge auf
| 2] =1 vom MaB null wieder in eine Menge vom Maf null abgebildet werde. Auch unter
stiarkern Voraussetzungen (Differenzierbarkeit tiberall in |z | << 1) hat der dortige Be-
weis eine wesentliche Liicke, vgl. P. P.Belinskij, Doklady Akad. Nauk SSSR (N. S.) 93
(1953), p. 589-590, und das diesbeziigliche Referat von A.J. Lohwater, Mathematical
Reviews, vol. 15 (1954) p. 614.

1) Beziiglich dieser Ungleichung soll auf eine demniichst in dieser Zeitschrift erschei-
nende Arbeit von J. Hersch, Contribution & la théorie des fonctions pseudo-analytiques,
hingewiesen werden.
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Mit Cap E, = 0 ist 4, =oo, alsoauch A, =oco und daher Cap E,=
Dasselbe gilt fiir die inverse Abbildung von K, auf K, .
Es bleibt noch die Ungleichung (11) zu beweisen. Wegen

o(u, v) . o(u, v)
————V—=ab gt a?=D._—"—.
3@, ) ¢ 3, )
Ist p(w) zuldssig fiir J', so ist p,(2) = o(w(2))a(z) zuldssig fiir J ; denn

wegen |dw| =a(z)-|dz]| gilt fUI‘ ein jeJ und das entsprechende
j, € J/
591 ) ldz| = fo(w) - [dw| = 1.
7"

Es ist ferner

fgz(w)dudvzfz(w (2)) 2 o ”;d dy fgldfgy ]legtdxdy

Ky K, Kz K,

und daher K1; = 4;'. Der andere Teil der Ungleichung ergibt sich mit
Hilfe der inversen Abbildung.
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