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More isoperimetric inequalities proved
and conjectured’)
by G. Poérya
Dedicated to Michel Plancherel on his seventieth birthday

Introduection

0.1. We consider a simply connected plane domain D and various
functionals depending on the shape and size of D, especially the follow-
ing?):

A the area of D,

L the length of the perimeter of D,

I the polar moment of inertia of D with respect to its center of gravity,

P the torsional rigidity of an elastic beam with cross-section D.

We shall pay especial attention to those combinations of these func-
tionals that depend on the shape of D alone and are independent of its
size. Important examples are L2A-1 A% PIA-*, etc.

0.2. For computing the torsional rigidity, Saint-Venant devised an
approximate formula which amounts to the assertion that PI4-% is
approximately 1/40 for all ,,simple® cross-sections D . Closer examination
showed that PIA—-* has 0 as lower, and oo as upper, bound when D
varies unrestrictedly, but remains between finite positive bounds when
D is convex [6, p. 11, 111, 250, 263]. Some time ago, I stated the conjec-
ture that the true values of these bounds are 1/45 and 1/27, respectively
[4]. In the first part of this paper, I shall prove one half of this conjec-
ture :

PIA-4<1/27 (1)

for all convex domains, and 1/27 is the best possible constant. That is, we
cannot replace 1/27 by a smaller number if we wish the inequality (1) to
remain valid for all convex domains. For an essential contribution to the
proof of (1) I am indebted to Professor H. Hadwiger in Bern.

1) Sponsored by the Office of Naval Research.
2) Cf. 6, p. 1-3. Numerals in heavy print refer to the bibliography.
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0.3. The isoperimetric quotient L24-! has two important proper-
ties :

(I) Of all domains, the circle has the minimum L24-1.

(IT) Of all polygons with a given number » of sides, the regular poly-
gon with n sides has the minimum ZL24-1.

These properties are not uncorrelated : (II) implies (I) insofar as we
can derive (I) from (II) by passing to the limit and using the continuity
of the functionals involved. (Observe that neither (I) nor (II) refers to
the uniqueness of the minimum in question : this omission is intentional.)
The observation of analogous cases suggests that, in some yet unclarified
sense, also (I) implies (II).

I mention only two relatively elementary analogous cases : (I) remains
true if we substitute either IA—2 or L*I-' for L2A-1.3) Various facts
suggest the conjecture that in all ‘“naturally’ arising cases in which the
analogue of (I) is true also the analogue of (II) is true. Here is a nar-
rower, but definite, conjecture : (II) remains true if we substitute for
L2A4-1 either /A2 or LAI-! or any one of the nine quantities dis-
played in the table on p. 249 of 6 (for all of which the analogue of (I)
has been abready established). This conjecture is supported by analogy
and the verification of several, although not very extensive, particular
cases [6, p. 1568—159, 248—249, 259—268]. Here is a more extensive
particular case: Of all convex polygons with a given number n of sides
only the regular polygon attains the minimum of 1A-2. This will be proved
in the second part of this paper. For an ingenious remark that led me to
the proof given in the sequel I am indebted to Professor N. G. de Bruijn
in Amsterdam. Some similar theorems that support the above conjecture
by analogy will also be treated.

First Part

1.1. Let I, and I, denote the moments of inertia of D (covered with
matter of surface density 1) about the principal axes of inertia through
the center of gravity of D. Of course

Il + I, =1 . (1)
By a theorem of E. Nicolai [2]
P < 41,1, 2)
L4100

3) The proof for IA-? is quite simple and elementary [3] but the only extant proof for
L*I-1 consists of two halfs both of which involve the theory of analytic functions {6,
p. 123-126; b, v. II, p. 21, problem 124].
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We introduce the abbreviation

41,1,=J (3)
and derive from (1), (2), and (3)
PIA— < JA . (4)

1.2. The inequality (4) leads us to investigate its right hand side.
We introduce rectangular coordinates x and y, choosing the center of
gravity of D as origin and the principal axes of inertia through the origin
as coordinate axes. Then

ff xdxdy = [ ydaedy = [ xydxdy = 0 , (5)
J =411, = 4 [ x?dxdy [ y*dxdy
= 2 [fff (z192 — %29,)*dx,dy,dz,dy, ; (6)

these double integrals (and those following in the next section) are
extended over the domain D. We see from (6) that an affinity leaves
JA~* invariant (since it multiplies 4 by the determinant of a linear sub-
stitution, and J by the fourth power of the same determinant). Thus,
JA-* has the value 1/27 for the equilateral triangle, and so for all tri-
angles ; it has the value (2x)~% for the circle, and so for all ellipses.

In order to acquire an inductive basis, I computed JA-* for a regular
polygon with n sides, and found that this value steadily decreases as n
increases from 3 to oco. This led to the conjecture : Of all convex domains,
the triangle yields the maximum, and the ellipse the minimum, of JA-*
I was aware that this conjecture harmonizes with certain results of
W. Blaschke concerning affine geometry in the large. Eventually, I
proved one half of my conjecture: the circle yields the minimum of
JA~*; cf. sect. 2.5. Unfortunately, this (easier) half of the conjecture
is irrelevant to Saint-Venant’s problem.

1.3. H. Hadwiger, to whom I communicated the foregoing remarks,
showed very simply that my conjectureis equivalent to a particular case
of Blaschke’s result and, therefore, correct.

Write p, for the point (z;, y,), dp, for dx,dy;, | p;p;p:| for the area
of the triangle with vertices p;, p,;, and p,, and finally s for the center
of gravity of D (the origin). Then, by (6),

J = 8[[ff | prpss |2dp,dp; . (7)

K = [ | p102ps |*dp1dp.dp, . (8)

Define
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Obviously

| 1023 | = | D238 | + | Paprs | + | L1028 - (9)
Yet, by (5),
4 (5§55 | apss || Psprs | dpydpadp,
ZH.”” (Y3 — Z3Y2) (23y; — X1 Yg)da,dy dxydy,daydy, (10)
=0 .
We see from (7), (8), (9), and (10) that
K =34J/8 . (11)

Yet, by a result of Blaschke [1, p. 60] the triangle yields the maximum
and the ellipse the minimum of KA-5 and, by (11), the same holds for
JA4.

Thus, the maximum of the right hand side of (4) is 1/27, and so the
theorem stated in sect. 0.2 is proved, except for the discussion of the
case of equality.

As the value of 1/27 for JA—* is only attained by triangles, we have
to discuss PIA-* for triangles only ; I leave aside this point which can
be handled in various ways [4].

Second Part

2.1. We begin with preparations for the proof of the theorem stated
in sect. 0.3. We consider a triangle with sides a, b, and ¢, we let 4
denote its area, O the vertex of its angle « (which is opposite a) and 1,
its polar moment of inertia with respect to O. (More explicitely, I, is
computed with respect to an axis that is perpendicular to the plane of
the triangle and passes through O ; the triangle is regarded as covered
with matter of surface density 1.) A straightforward computation yields

I, = A( £ “2).

tan « 6

(1)

Now

a? = b% 4 c* — 2bccos « ,
= 2bc(l — cosox) = 4A(1 — cos x)/sin o (2)

with equality if, and only if, b = c. By combining (1) and (2), we

obtain 2+ cosa

I,= A4 -
3 8in «

0 = (3)

where inequality holds unless b and c, the sides including «, are equal.
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2.2. We shall also need a property of the function

sin x

f (x) Zm- (4)

We find that :
P () = — 2(1 — cos ) sin x <0
(2 + cos x)?
for 0 <x <z and so, in this interval, f(z) is strictly convex from above.
Therefore, if oy, «,,...x, are contained in the above interval and
0C1+062+"‘+06n:0', (5)
we have
fon) + flag) 4+ flxy) = nf(afn) (6)
and inequality holds unless oy = oy =+ - .= &, = o/n.

2.3. We have now completed the preliminaries and we begin the
proof of the theorem stated in sect. 0.3. We have to consider a convex
polygon P with n sides. We let 4 denote its area, O its center of gravity,
and I its polar moment of inertia with respect to O. This point O lies
inside P. We connect O with the = vertices of P and divide so P into n
triangles with a common vertex at O. Let A,,4,,...4, denote the

areas of these triangles, «,, «,, ..., their angles at O, and I,,1,,...1,
their polar moments of inertia with respect to O. Obviously
A, =4, (7)
Yoa, =2n, (8)
I, =1; (9)

in these summations, as in the following summations in the present

sect. 2.3, » ranges from 1 to n.
Now, by (9) and (3) (observe the different notations)

7> 542 2 + cos «,

1
v 3sin «, (10)

and equality holds only if all line-segments connecting O with the ver-
tices of P are equal. Starting from (7) and using Cauchy’s inequality, we

obtain A2 = (T A)
2 4+ cos «, sin «,
2
=24, sin o, o 2 -+ cos o, (11)
<3IXf(x,)

< 3Inf(2n/n)
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from which we conclude that

s 2+ cos(2m/n) '

>
I=4 3n sin (27/n)

(12)
The work in (11) uses also (10), (4), and (6), cf. (5) and (8). Equality in
(12) cannot hold unless it holds three times in (11). Yet equality at the
last step there requires

By =g ==, = 27N ,

and equality at the foregoing step requires that all line-segments from
O to the vertices of P be equal. In short, equality in (12) requires that P
be a regular polygon of » sides with center at O. Yet for such a polygon
equality actually holds, and so the desired theorem is proved?).

2.4. We shall discuss various cases that support the conjecture
stated in sect. 0.3 by analogy, that is, such cases in which both (I) and
(II) possess an analogue.

Here is such a case. Let D be a convex domain, ¢ a point inside D,
C the curve surrounding D, and h the distance of the point @ from a
tangent to €' at a point where the line-element is ds. (We may suppose C
sufficiently ‘“smooth’’.) We define

f‘%{:‘Ba; (13)

the integral is extended along C'. We let a vary and seek the minimum of
B, ; this minimum, which we call B, is an interesting functional depend-
ing on the shape of D, but not on its size.

Observing that
24 = fhds , (14)

we obtain from (13), (14), and Schwarz’s inequality that
24B, = (f ds)? = L?
and hence, by the definition of B, that
2B > L*4-1! (15)

[6, p. 70—71, 92—93]. Equality in (15) is attained when D is a circle, or
a polygon circumscribed about a circle, and in some other cases. We

1) The ingenious idea of de Bruijn, proposed in a conversation, that led the author
eventually to this proof is scarcely visible from the final form here presented. The author
hopes to discuss this idea, which is of great heuristic interest, at another opportunity.
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easily see now, cf. sect. 0.3, that both (I) and (II) remain valid if we
substitute B for L*A-': here is one more case in which the analogue
of (I) cannot be divorced from the analogue of (II).

2.5. Both (I) and (II) remain valid if we substitute JA—* for L2A-1,
provided that the statement (1) is restricted to convex domains.

To prove this, we choose the coordinate system as in sect. 1.2, let ¢
be an appropriate positive constant, and set

we=wp, Y=ey. (16)

When the point (2, y) describes D, the point (z’, y’) describes D’, a
domain affine to D; D and D’ have the same center of gravity and
through it the same principal axes of inertia. Let 4’, I’, I;, and I} be so
related to D’ as A, I, I, and I, are to D, respectively. Obviously,

II=cl,, L=c1,, A =cA. (17)

we determine ¢ so that
I, =1,=12 (18)

which is obviously possible ; cf. (1) of the first part. By (17), (18), and (3)
of the first part, we have

JA-4 = 41, 1,44
=4I A" = (I' A'-2)2 . (19)

That is, the set of all values of JA-% coincides with the set of those par-
ticular values of (/4-2)%2 that are due to those particular domains for
which I, = I,, or the principal ellipse of inertia is a circle. Yet the
circle and the regular polygons are among these particular domains. Thus,
the minimum of 7A-?% is attained by such a particular domain in both
cases with which we are here concerned : first, when all domains are ad-
mitted [3] and second, when only convex polygons with n sides are ad-
mitted, cf. sect. 2.1—2.3. This proves the assertion stated at the be-
ginning of this section.

2.6. We consider p, the radius of the largest circle contained in D,
and R, the radius of the smallest circle containing D [6, p. 112]. The
statement (/) remains valid if we substitute 49=% or R2A4-1 for L2A4-1.
This is perfectly trivial : no domain containing a given circle can have
a lesser, and no domain contained in that circle can have a greater, area
than the circle itself. Now, also statement (/) remains valid if we sub-
stitute 492 or R24-' for L2A-1. This, however, is not so trivial. The
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following two theorems, although well known and easy to prove, are by
no means vacuous : Of all polygons with » sides containing a given circle,
the circumscribed regular polygon is of minimum area ; and of all poly-
gons with n sides contained in a given circle the inscribed regular polygon
is of maximum area.

Also in the less elementary cases with which our conjecture (sect. 0.3)

deals, the analogue of (/1) seems to be more difficult than the analogue
of (1).
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