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On the Factorization of Matrices
by NorBERT WIENER, South Tamworth (N. H.)

To Professor Plancherel, the founder of the precise theory of the Fourier
integral and the inspirer of my work on harmonic analysis

§ 1. This note will deal primarily with binary matrices whose ele-
ments are functions of a variable ©# which is to run between (— =z, m).
It represents an extension of certain well-known theorems due to Szego
and the author, concerning scalar functions of . The fundamental theo-
rem is the following :

Theorem 1. Let F (&) be non-negative and belong to Lebesgue class L
over (— m,n). Then a necessary and sufficient condition for us to be able
to write

F@)=1¢e@) [, (1.01)
where -

¢(9) = Za,e™ (1.02)
and w 0

Zla,|t<oo, (1.03)
is that o

{|log F(&) | dd (1.04)

—n

be finite. It is then possible to choose the coefficients a, in such a manner that

2a,z" (1.05)
has no zeros inside the unit circle.
Let o be an arbitrary real number between 0 and 1. Let it be repre-
sented in the binary scale by the expression :

0 = , g Ha g 414 (1.06)
Let these digits be re-numbered :
BoBrB1BaBs -

B,(x) =28, — 1 . (1.07)

and so on. Let

It will follow that the transformation of » which changes B,(x) into
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B, . (x) for all values of « lying between 0 and 1, and all values of n,
is a measure-preserving transformation 7. We may write

By (0) = B,(Ts) . (1.08)

This transformation 7' is not indeed well-defined for all values of x but
is well-defined for all values of « with the exception of a set of measure 0.

If we start with any function ¢(#) belonging to L, and containing no
negative frequencies, we can represent it, as I have said before, by the
sequence of coefficients a, where :

2la,|*<<oco . (1.09)
0

Under these circumstances, it can be proved that
2a,B_,(x) (1.10)
(1}

will converge in the mean to a function of x which we shall call f(x). The
function f(x) will then belong to L, over the interval (0,1). If we con-
sider the projection of any function g(x) belonging to L, on the closure
of the set of

f(T"x), (T ), (T 2x),... , (1.11)

this will converge in the mean to 0. It will obviously be the same as the
projection of g on the closure of the set of functions B_,(«x), B_,_;(«), ...
That is, it will be the function

o 1
2B ,(x)fg(B)B,(B)dp , (1.12)
v=0 0
and will have as the integral of the square of its absolute value
o 1
Z|[g() B_,6)ap* (1.13)
v=0 0

This leads us immediately to the closely related

Theorem 2. Let us assume in general that f(o) ts any function whatever
of the variable x which lies on (0,1). Let T' be any measure-preserving trans-
formation of « into itself. Let the projection of f(x) on the set of functions

HT-"), f(T-"1), . .. (1.14)

converge in the mean to 0 as n becomes infinite. Then there exists a function
k() which is normalized which is linearly dependent on the set of functions

f&), HTa),...
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and which s orthogonal to all functions
f(T1x), f(T2x), ... . (1.15)

It will follow that the functions A(7™«) are a normal and orthogonal
set, and it can be proved that f(x) will be equal to

flo) = OEMT—M) § HORT R dp (1.16)
as a limit in the mean. The function
%zn §HBRT=F)dp (1.17)

will be analytic inside the unit circle and will have no zeros there. Taken
around any circle concentric with the unit circle but of smaller radius,
the integral of the absolute square of this function will be uniformly
bounded.

The statement in the hypothesis that f(x) is asymptotically orthogonal

to the closure of
f(T—"x), f(T"1x),...

as » becomes infinite is obviously a statement which merely concerns the
autocorrelation coefficients

1
JH(T7) fo)dox (1.18)
0
If then, these are of the form
1 7 ;
2 9 e~ " dg | 1.19
oo JF @) e di (1.19)

we can reduce this case to the particular case in which we have derived
f(x) from @ (&) by means of the B's.

§ 2. Now, let us start with two functions of class L,, f;(x), fs(x).
Parenthetically, let me remark that these both are to belong to L, and
that we have one single transformation 7' of « into itself which preserves
measure. Let the remote pasts of both f, and f, be asymptotically or-
thogonal to f, and f, which will be the case if F,(#) and F,(3) are
respectively the functions belonging to L, with Fourier coefficients

J (T o) fy (o) dox (2.01)
and o
of fa(T"x) fa () dox (2.02)
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and let n .
fllog Fy(d) |dd<oo , []|log Fy(#)|dd <<oco . (2.03)

Under these circumstances we shall have two normalized functions
h,(x) and h,(x) such that A, is linearly dependent on f, and f,(7"«)
and orthogonal to all functions f,(7"«) where » is positive, and where
h, will bear the same relation to f,(x). We shall then have two normal
and orthogonal set of functions f,(7"«) and f,(7"«), but there will not
necessarily be any relation of orthogonality between these two sets.

Let us notice that if we put F,;(#) for the functions with Fourier
coefficients

J fi(T"0) f (o) dox (2.04)
then 0

Fl(ﬂ):Fll(ﬁ) ’ (2-05)
and

F,(9) = Fyp(d) . (2.06)

It is easy to prove that F,(#) and F,(3) are real and non-negative,
while

Fia(®) = Fu(®) . (2.07)
Moreover,
F,(9) Fyu(d)
2.08
Fial®) Fld) (2:98)
can be shown to be non-negative. Let us make the hypothesis
4 F, (@) Foy(9) l l
lo 1 2 dd <co . 2.09
L8 | Foto) Fu) (.00

Since we have made the supposition that the functions f, and f, belong
to the class L,, it is not difficult to prove that the functions F;(#) all
belong to the class L, so that the effective part of our assumption is

4 F,(9) Fu(d) ”
log=| p° ooy || 49 <o . 2.10
S 1187 Fia®) Fol@) ° (2.10)
Since however
F (@) Fy(d
Fizgﬂ; F::?ﬁ; I = FyFy — F1oFy = FuFyp — | Fra |? (2.11)
it will follow that n
Jllog=Fyy(3)Fys(3) | df <oo (2.12)
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from which we may conclude that

J|log Fy,(9) | d9 <oo
~n (2.13)

Jl1log Fyy(8) | dd <oo

-

which are the assumptions we have previously made separately for
Fi,,®) and Fy(d) .

§ 3. I now wish to introduce a lemma of very general character con-
cerning Hilbert space. It is the following :

Let H, be a closed subspace of Hilbert space and let H, be another such
closed subspace. Then their common part H,H, will be a closed sub-
space of Hilbert space. If f is any vector tn Hilbert space, and if P,f is the
projection of f on H, while P,f is the projection of f on H,, then the result of

consecutive projection
et Pif,P,P,f, P,P,Pif,...

will converge v the mean to the projection of f on H, H,.

Let us note this H, contains two orthogonal spaces, one of which is
H,H, while the other contains those functions in H; which are ortho-
gonal to all functions in H,H,. This other part we shall call H. Simi-
larly, interchanging the rdles of H, and H,, we separate every function
of H, into a part lying in H, and a part orthogonal to all functions in
H,H, which we call H;. Then the successive projection of a vector on
H, and H, will be given by its projection on H,H, plus the result of its
successive projection on H; and H,. H} and H; will not necessarily be
orthogonal to one another, but they will at any rate contain no vector
other than 0 belonging to both. If therefore I can prove that when I have
two closed subspaces of Hilbert space H; and H) not containing any
vector in common except 0, then the result of consecutive projection of
these two will converge in the mean to 0, I shall have established my
lemma.

Now let ¢,(x) be a set of normal and orthogonal functions belonging
to H} and closed on H; and let 4,(x) be a set of normal and orthogonal
functions belonging to H; and closed on Hj . Then if I start with any func-
tion f(y) on Hj T can write it

2A,9.(2) - (3.01)
If T project this function on H}, the projection will be
Z2ZA, [ @n Pl () ; (3.02)
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projecting this back on Hj I obtain
ZXZA, [ @npm [ Pm Pp) P5(2) - (3.03)

mn p
The result of these repeated projections will be to change each function

@, to

2Q,.9, (3.04)
where @, will be
2§ P Ym S Y Py - (3.04)
That is @,, will satisfy the condition that
Qup = Qo - (3.05)

The operator of double projection will have Hermitian coefficients and
will be what is known as a self-conjugate operator. It will also be an
operator which reduces the length of any known non-zero vector in H; .

Well-known theorems of Hermann Weyl prove that such an operator
will have a spectrum continuous or discrete. To transform any function
in H, by such an operator, we expand it in the spectral functions, and
change each function by a factor which is less than one in absolute value.
It is easy to prove that such an operator, when repeated sufficiently
often, will turn any vector of finite length into a vector of length as small
as we choose. ‘

Let us apply this lemma to the two spaces H, und H, consisting re-
spectively of all functions of L, orthogonal to the functions &, (7"«)
and hy(7T-"x). To form the projections of h,(x) and hy(x) on this
space is essentially the same thing as taking the projections of f, and f,
respectively on spaces which are respectively dependent on f, and its past,
but orthogonal to its past and dependent on f, and its past and ortho-
gonal to that past. Let me start with %, and find an expression for the
part of A; which is orthogonal to the past of f, and f, and form the part of
h, which is orthogonal to the past of f, and f,. These functions we shall
call respectively k,(x), ky(cx).

We shall have for the projection of 4, orthogonal to its own past A,
itself, and A,(x) will be our first approximation in the mean to £, (x).
We shall now take the part of A, which will be orthogonal to the past of
hy. This will be

hy(@) — 2 ha(T-"s) [ by (B) (TP . (3.06)

m=1
We project again to find the part orthogonal to the part of H, where A,
is orthogonal to its past and will need no new term so that only the
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second term must be taken care of. It is clear that the extra added term
to make the third approximation will be given by

+ 21 Elhl(T "rx)j"h (B) (T B) dﬂm T-mf) i (TF)df . (3.07)

The rule of continuing this series is now clear, and the terms will alter-
nately contain A,(x), the past of hy(x), the past of h,(x), and so on.
The signs of the terms will alternate. The coefficient of the first term will
contain one integral and one sign of summation, that of the second two
integrals and two signs of summation, and so on. This series

h(e) — Z & (T“mw)f hy(B)ho (T~ B)df

=1

T hy(T-mw) th(T‘"‘ﬂ) n(TB)d § () (T B if

m=1 n=1

M8

+

8

— I I Ihy(Tm) M (T-"8) hra(T—P) dﬂjhz(T—pﬁ)h(T‘"ﬂ)dﬁ

m=1 n=1 p=1

X j'hl(ﬂ hy(T-?28)dB + ...

will be k,(x). k,(x) is then the part of A,(x) which is orthogonal to the
pasts of &, and A, so that

fl by () [2dex

¢.3H

k(o) by (o) dix
|l [P — 2| [l s (Tl (3.08

| E’ jl‘hl(oc)hz(T‘"oc)doc

1 n=1

[\18 Ot ,, ©

m

It

by (T—0) by (T~™a)dx 2. . .

@h.‘

Clearly N
§1ky(x) |2dox (3.09)
0

is positive, and equally clearly
1
§1hy(x) |2doc =1 . (3.10)
0
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Therefore ,
§1ky () [2de (3.11)
0

lies between 0 and 1, and similarly
1
<l ko) [2des < 1 (3.12)
0

ky(x) is that part of A,(«x) which is orthogonal to the pasts of both f,
and f, while k,(«) is that part of A,(x) orthogonal to both pasts. Let us
notice that

(- () B, (@) do (3.13)

is always 0 if n is positive. From that and the measure-preserving charac-

ter of T it results that "
kb (To) ke, (T™ ) dox (3.14)
0

is 0 unless m and n are the same. As yet however, we know nothing in
the case where m and n are the same, except that we may reduce this
case to the case when both m and » may be given the value 0.

There are two cases which now present themselves. Either k, and k,
have a relation of linear dependence or they do not. If they are linearly
independent, they cannot, either of them, be equivalent to 0. Let us
suppose that k, is not equivalent to 0. Then we can normalize it to ob-
tain q,(x). We then form

kq( ‘“91(0‘!1"2 )¢ (B)dB . (3.15)

This function is obviously orthogonal to ¢,. If it is equivalent to 0, £,
and k, are not linearly independent. If it is not equivalent to 0, it can
be normalized, and thus we obtain ¢,(x). Then the functions ¢,(x) and
¢2() are such that ¢,(7™«) form a normal and orthogonal set, any two
of them being orthogonal, unless both ¢ and m agree.

Continuing on the assumption that %, and %, are linearly independent,
we can express f, and f, in terms of this normal and orthogonal set. In
proving this, we can establish that the formal series for f;(x) is

>3 Zq,(T“"“)ff (B)g;(T—p)dp (3.16)

i=1,2 n=1

By studying the partial sums of this series and the difference between
these partial sums and f,(x), we can see that either the series converges
in the mean to f,(x), or we shall have the projection of f;(x) on the
remote past of f, and f, together not going to 0. Since the latter has
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been excluded, we shall have

L) = E g Ta) SLOLTRIG . 0
Under these conditions |
1T
z i J 18 2 G148 § FTR) asP)df . (319

Let us notice that the series
00 1 emeiiimar oA
M;®) =X [f,(B)q;(T"B)dp (3.19)
0 0

will converge in the mean to functions belonging to L,, and that this will
be equal to

.” (T™x)f, oc)doc = o= .”Mz 1(8) M @)+ Mi,2('9)Mj,2("9)] e d . (3.20)

In other words, if we use matrix notation, the matrices whose Fourier
coefficients are given by the autocorrelation matrices with elements
belonging to L, can be factored into the matrix product

MM, (3.21)

where all the elements of M are the boundary values on the unit circle

~

of functions of class L, analytic inside the unit circle, and indeed where
it will not be difficult to show that the determinants of these matrices
have no 0’s inside the unit circle.

The other case which we have not yet discussed is that in which there
is a linear relation between k; and k,. If there is such a linear relation,
at least one of the functions g, or g, can be expressed linearly in terms of
the other and the past of both. In other words, we have a relation such as
fi(x) = cfy(x) + a vector in the past of f; and f,.

Under these circumstances ,

j‘fl(Tn fz(o" do{""‘c"‘fZ(Tn(x’)fz ) (3'22)

plus something that may be approximated by a polynomial, always with
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the same coefficients, of the form
1
§ (T *o) f (o) dox (3.23)
0

and where the coefficients do not depend on n, but merely on 2. It
follows that if H(#) is the Hermitian matrix, of which the autocorre-

lation coefficients are Fourier transforms, its elements will be such that

Hy;(9) = cHy(?) + @1(0)Hy; (D) + @o(0) Hyy (P) . (3.24)

where ¢, and ¢, are free from singularity inside the unit circle. That is,
the determinant
| H@®)| (3.25)

will vanish identically inside of the unit circle, and therefore by a simple
limit theorem, will vanish almost everywhere on the periphery. In other
words, we have a situation which contradicts our assumption that

110 | H©) Il a9 (3.26)

is finite. We may sum up these results in the following words. If the
Hermitian matriz H(9) has Fourier coefficients of the form

1
g fo(T o) f (o) dox (3.27)

where f, and f, belong to L,, and if
J | log | H@) || 49 (3.28)

converges, then we may write
H©®) = M@©®) M©®) (3.29)

where the elements of M belong to L, inside any smaller circle concentric with

the unit circle, and cgnverge in the mean to their value on the unit circle.
Indeed the determinant of the matrix M will be free from zeros inside
the unit circle. ~

§ 4. We wish now to establish two further things : one, that any Her-
mitian matrix of positive type for which the integral of the logarithm of
the determinant converges, can be represented in the manner given above ;
and second, that if the integral of the logarithm diverges, the matrix
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cannot be factored in the manner indicated. In order to establish the
first of these results, let us suppose that a Hermitian matrix H can be
written in the form

H@) = M(ﬂ)~M(19) (4.01)

~

where M is a matrix belonging to L,. This is what we shall mean by

saying that H is Hermitian and of positive type. I now introduce a
variable « which I represent as before in binary form, but I now split
its digits into two sequences labelled from (—co, c0) according to the
rule

O == 4y Obg Oig by Oig - « .

= f, Yo B YiBaV1BaP2fa¥2--. (4.02)
I write

B,x) =28, —1; T,a)=2p,—1. (4.02)
I introduce the transformation on « given by

Tou=.81y1B2V2BoVoBs Vs By V=1 --- - (4.03)
I put

M, ZEL jM ®) e~ 9 . (4.04)

i,n

I now define f,(x) when 7 is one or two by
fz 0‘) Z(Mzt an(“) + Mzz nr ((X) . (4'05)

Then it will not be dlfﬁcult to prove that H(#) will have Fourier coef-
ficients which can be written in the form ~

of fi(Ta) f;(w)dox . (4.06)

It remains to prove that if our logarithmic integral is infinite, no
factorization can take place. However, if the factorization takes place
and the said integral is infinite, then M (&) will exist such that all the

elements will belong to L, and will be boundary values of functions
analytic inside the unit circle and

f1log| M) || &b (4.07)

are divergent. However, the determinant | M (#)| will be a function

of L, around the unit circle and without zeros inside the unit circle,
and we need only to appeal to our scalar theorem to show the impossibi-
lity of the vector situation.
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§ 5. Having established our factorization theorem for Hermitian
matrices of positive type, let us examine some of the consequences of
this for a more general type of matrix. Suppose that H is Hermitian
and of positive type, which simply amounts to assumingr that H can be
written in the form -

HO)=M®)M®@) , (5.01)
and that M is an arbitrary matrix of class L,. Let us notice that

|H@) | =|(|M©)])[, (5.02)
so that n

fllog || H@®) || | d9<oo (5.03)
is equivalent to o -

fllog | M) | |d¥<<oco . (5.04)

Then we may write that

H(9) = M*(3)- M%) , (5.05)

~

where M*(#) is a function of L, around the unit circle which is the

boundal%r value of a function free from singularities inside. Inside the
unit circle it follows that

M-1(9) M*(9)- M*(9) (M-Y(8)) =1 . (5.06)
However, it is easy to prove that
(M- = () (5.07)
Under these circumstances the matrix
M1 (9) M* (@) (5.08)
will be a unitary matrix g (8), such that
U@ Uw) =1 . (5.09)
It follows from this that i i i
M@) = M*@)UO) ; (5.10)

or that any matrix H with elements belonging to L,, is the product of a
matrix of the type M*(#) and a unitary matrix. If then we can prove
that any unitary matrix can be factored into the product

U @) Ua(9) , (5.11)
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where U, and U, are both unitary matrices, but where U, is the boundary

value of a unitary matrix with no singularities inside the unit circle, and
where U, is the boundary value of a unitary matrix with no singularities

outside the unit circle, then we shall be able to prove that

M) = M*(x) U ' (@) UTL() . (5.12)
Here the product of the first two factors is the boundary value of a
function with no singularities inside the unit circle, and U~*(?#) has no

singularities outside the unit circle. Thus to establish a general facto-
rization theorem for all matrices of type L, what remains is the dis-
cussion of factorization theorem for unitary matrices.

§ 6. Every unitary matrix can be written in the form of e*Z and
if such a matrix depends on &, it can be written in the form e**Z®,
There is no difficulty in showing that this can be done in such a way that
the elements of H (¢) are bounded. Furthermore, we can write the matrix

H (¢#) in a Fourier series

N Ze“”Hn . (6.01)
We shall put B

H,(9) = Z.'Hnei"& , (6.02)
and - 1o

H,®)=2X H,e"" . (6.03)

Then clearly all the eletments of the matrices H 1(®) and H,(¢#) will
belong to the Lebesgue class L,. -
Now I am going to suppose that

eMHO) — [T (A,9)-Uy(A,9) (6.04)

where U, and U, are the boundary values of unitary matrices respecti-
vely analytic inside the unit circle and outside the unit circle. Then
et ATINE®) = U,(4,9)(Us(2,9)) (1 + i dA H(S))

(6.05)
= Ul(a,ﬂ)-m 3,9)-(1 + id2 H@))- (U (2,8)Us(2,9)) .

Now let us put
U o(4,9)- H(ﬂ) Uz(l #) = K(ﬁ) (6.04)
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Then K (&#) will be bounded and can be separated like H into the sum :
~Kl(19) + {(2(?9) ; (6.05)

where K, and K, both consist of elements belonging to L, and where they

are respectively boundary values of matrix functions inside and out-
side the unit circle. It then follows that

e PHANED) — [T (4, 9)(1 +1dAK,3)) (1 + tdAK,98) - Uy(4,9) . (6.06)

That is
aU, (4, 9 )
Pl —iv,a,9) - K@ [
(6.07)
au, (A, 9 .
A AU RLATRY ]

From this stage on the completion of the factorization theorem is easy.
Not only are the elements of the K’s functions belonging to L,, but they
all belong uniformly to L,. If we subdivide the range of 4 from 0 to 1
into small parts, we can then easily obtain an estimate for the error in
factorization which we get by assuming these small parts to be infinitesimal
parts, and this error can be made as small as we wish by a sufficiently
fine subdivision of the range 0 < A <{1. Thus, starting with the tri-
vial factorization of the identity matrix, we arrive at the case where
A =1, and we have factored

U(A) = e2® (6.08)
Notice that in (5.09), we have factored our matrix with L, elements

M (#) in the form
~ M) U2 9) U ) ; (6.09)

or what is the same thing, if ¢ is any constant, depending on 9, we have

factored
M@@)c(®) into M*@)U;*@®) U @)c(d) . (6.10)

From this it is easy to show that we have factored any matrix M ($)
with elements belonging to the Lebesgue class L, into the two matrices

M,@)=M*@)U;*@®) and M,@#)=U;'@)c ,
where M, and M, have their elements of the Lebesgue class L, and are

boundary values of matrix functions respectively analytic inside and
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outside the unit circle. This solves the matrix factorization problem for
the binary case. Our necessary and sufficient condition for the factoriza-
bility of M (&) belonging to L will be

Fllog) | M@) || | d9<oo . (6.12)

The factorization problem for matrices of higher order follows exactly
the same lines but involves a somewhat greater complication of detail.
This complication is only conspicuous in the positive Hermitian case,
where the Hilbert-space theorem on which we have rested our proof,
must be called in several consecutive times.

Once the factorization theorem has been established, it is available for
the discussion of the solution of systems of linear integral equations re-
presenting extensions of the Hopf-Wiener integral equations. The author
intends to devote a further memoir to the discussion of equations of this
type.

Such systems of equations have already been proved by several
authors, including Professor Harold Freeman of the Massachusetts In-
stitute of Technology to be of considerable value in the study of the
mathematical problems of operational analysis, and particularly in the
problem concerning the optimum distribution of tolerances in the con-
struction of a machine or an operational system.

The author wishes to thank Professor Freeman for calling this fact to
his attention. He also wishes to thank Dr. Masani of Bombay for showing
him the complete scope of the factorization problem, and for pointing
out that it is not confined to the positive Hermitian case. Nevertheless,
the positive Hermitian case contains the center of the difficulty of the
most general case.

(Received July 29, 1954.)
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