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Quelques propriétés globales des variétés
différentiables

Par René Thom, Strasbourg

Introduction

Le présent article donne la démonstration des résultats que j'ai
annoncés dans quatre Notes aux Comptes-Rendus [28]1). Il est divisé en
quatre chapitres. Le premier chapitre élabore une technique
d'approximation des applications différentiables ; les théorèmes démontrés sont
en quelque sorte une formulation différentiable du théorème
d'approximation simpliciale de la Topologie ; grâce à eux, toute la théorie

pourra être établie sans faire appel au théorème de triangulation des

variétés différentiables. Le chapitre II est consacré au problème de la
réalisation des classes d'homologie d'une variété par des sous-variétés ;

on y obtient les résultats essentiels: En homologie mod 2, toutes les

classes dont la dimension est inférieure à la moitié de la dimension de la
variété sont réalisables par des sous-variétés. En homologie entière, pour
toute classe d'homologie z de la variété orientable F, il existe un entier
non nul N tel que la classe multiple N • z soit réalisable par une sous-
variété. Le chapitre III applique les résultats précédents au problème de

Steenrod : Toute classe d'homologie d'un polyèdre fini est-elle l'image de

la classe fondamentale d'une variété? On y montre que, si le problème
admet une réponse affirmative en homologie mod 2, il existe au
contraire, pour toute dimension > 7, des classes d'homologie entière qui
ne sont Vimage d'aucune variété différentiable compacte. Le chapitre IV.
enfin, est consacré à l'étude des conditions pour qu'une variété soit une
variété-bord, et à la classification des variétés cobordantes. Ici encore,
on obtient des résultats assez complets pour les classes «mod 2», sans
condition d'orientabilité. Par contre, je n'ai pu donner que des résultats
fragmentaires pour les groupes Qk qui s'introduisent dans la classification

des variétés orientées, à cause de difficultés algébriques liées en
particulier au comportement des puissances de Steenrod dans la suite spec-

x) Les numéros placés entre crochets renvoient à la bibliographie placée à la fin de

l'ouvrage.
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traie d'une fibration. De plus, cette théorie appellerait d'autres recherches

sur la signification topologique des nombres caractéristiques de Pon-
trjagin.

La présente étude est fondée presque entièrement sur la considération
de complexes auxiliaires, que j'ai notés M(SO(k)) et M(O(k)). La
détermination des propriétés homotopiques de ces complexes n'aurait
pu être entreprise sans l'emploi des méthodes inaugurées en homotopie
par H. Cartan et J. P. Serre. Leurs résultats sur la cohomologie des

complexes d'Eilenberg-Mac Lane, notamment, se sont révélés un instrument
essentiel, et je leur dois tous mes remerciements pour m'avoir communiqué,

avant publication, les résultats de leurs recherches. Je tiens à adresser

en particulier mes remerciements à J. P. Serre pour l'aide précieuse
qu'il m'a apportée dans la rédaction du manuscrit, et la mise au point
de nombreuses démonstrations.

CHAPITRE I

Propriétés des applications dilférentiables

La notation Vn désigne, dans toute la suite, une variété paracom-
pacte2), différentiable de classe (700, de dimension n.

1. Définitions. Soit / une application de classe Cm, m ^ 1,
de la variété Vn dans la variété Mp. On appelle critique tout point x
de Vn où le rang de l'application / est strictement inférieur à la dimension

p de la variété M? ; l'ensemble £ des points x, ou ensemble critique de /,
est un ensemble fermé de Vn. Tout point y de l'ensemble image / (S)
dans Mp sera dit valeur critique de l'application /. Au contraire, tout
point y de MP n'appartenant pas à l'ensemble image f(E) sera dit
valeur régulière de l'application / s).

2. Image réciproque d'une valeur régulière. L'image réciproque
/-* (y) d'une valeur régulière y e Mp peut être vide ; c'est notamment
toujours le cas si la dimension n de Vn est strictement inférieure à la

2) Rappelons qu'une variété paracompacte connexe peut être définie comme variété
réunion dénombrable de compacts.

s) On observera que cette définition des valeurs critiques diffère sensiblement de la
définition usuelle: lorsque la dimension n de F est inférieure à la dimension p de M,
tout point de l'image /(F) est une valeur critique, même si l'application/ est de rang maximum

en tout point de f"1 (a;). Au contraire tout point n'appartenant pas à l'image /( F)
est une valeur régulière.
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dimension p de Mp ; supposons qu'il n'en soit pas ainsi, et soit x un
point de f~x(y) ; désignons par yl9 y2 yp un système de p fonctions
coordonnées pour un voisinage de y dans Mp. Dire que / est de rang
p en x, c'est dire qu'on peut former, pour un voisinage Ux de x assez

petit dans Fn, un système de n fonctions coordonnées, formé des p
fonctions (yl9 y2 yp), et de (n — p) autres fonctions xp+1 xn.
L'image réciproque f~x(y) est alors définie dans Ux par les équations :

yx y2 yp — 0. Donc x admet dans f~x(y) un voisinage
homéomorphe à l'espace euclidien Rn~p ; comme ceci est vrai de tout
point xef~x(y), l'image réciproque f~x{y) est une sous-variété diffé-
rentiablement plongée de classe Cm de la variété Vn, soit Wn~p.

Désignons par Vx l'espace des vecteurs tangents en x k Vn, par
Wx le sous-espace de Vx formé des vecteurs tangents en # à la sous-
variété Wn~p. Soit de même My l'espace des vecteurs tangents en y
à la variété Mp. Dire que / est de rang p en x, c'est dire que l'application

/, prolongée de / aux espaces de vecteurs tangents, définit un iso-

morphisme du quotient VJWX sur My. On appellera — par abus de

langage — le quotient Vx/Wx, l'espace des vecteurs transverses en x
à la sous-variété Wn~p ; supposons la variété ambiante Vn munie d'une
métrique riemannienne ; on peut alors définir en x l'espace Hx des

vecteurs normaux à la sous-variété Wn~p. Il est clair qu'alors les deux
espaces VxjWx et Hx sont isomorphes, et cet isomorphisme peut être
défini globalement, sur toute la sous-variété Wn~p. Aussi parlera-t-on
indifféremment de la structure fibrée des vecteurs transverses ou de
celle des vecteurs normaux à une sous-variété.

Nous obtenons finalement : L'image réciproque d'une valeur régulière y
de f est une sous-variété f~1(y)=Wn~p, et Vapplication prolongée f
induit un isomorphisme canonique de Vespace fibre des vecteurs normaux à
Wn~p sur le produit Wn~p X My, ou My ^ Rp est Vespace des vecteurs

tangents en y à la variété Mp.

Remarque. Ceci vaut même si y est adhérent à l'ensemble des valeurs
critiques. On observera que, si l'application / est une application propre
(en particulier, si Vn est compacte), l'ensemble f(£) des valeurs critiques

est fermé dans M?. En ce cas, toute valeur régulière y admet un
voisinage Uy sur lequel l'application / est localement fibrée. Ceci est la
forme locale d'un théorème de C. Ehresmann [10].

3. Propriétés de l'ensemble f(Z) des valeurs critiques. II peut arriver
que Yintérieur de l'ensemble f(E) ne soit pas vide. Par exemple,
H. Whitney a construit dans [30] une fonction numérique de classe C1
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sur le carré, pour laquelle toute valeur est une valeur critique. Mais ce

phénomène ne se présente que pour des applications / de classe Cm pour
lesquelles l'entier m est strictement inférieur à la dimension n de la
variété appliquée. En effet, A. P. Morse a démontré le théorème [16]:

Théorème 1.1. L'ensemble des valeurs critiques d9une fonction numérique

de classe Cm sur Rny ou m ^ n, est de mesure nulle.
(Ce théorème cesse d'être exact pour les fonctions de classe Cr, où

r<n).
Toute variété paracompacte Vn peut être recouverte d'une infinité

dénombrable de cartes homéomorphes à Rn ; comme une réunion dénom-
brable d'ensembles de mesure nulle est encore de mesure nulle, le théorème

précédent se généralise en:

Théorème I. 2. L'ensemble des valeurs critiques d'une fonction numérique

de classe Cm, ou m ^ n, sur une variété Vn, est de mesure nulle.
Une nouvelle généralisation de ce théorème donnera4):

Théorème I. 3. Si f est une application de classe Cm de Vn dans Mp
avec m^n, alors f admet sur tout ouvert de Mv des valeurs régulières.

Ou encore : L'ensemble f {S) des valeurs critiques de f n'a pas de point
intérieur.

Comme le théorème affirme une propriété locale dans la variété image
M?, on peut supposer que Mp n'est autre que l'espace euclidien Rp ;

la propriété se démontre alors par récurrence sur l'entier p ; pour p 1,
c'est une conséquence immédiate du théorème 1,2. Supposons donc le
théorème vrai jusqu'à la dimension p ¦— 1 incluse, et soit / une
application de classe Gn de Vn dans Rp. Désignons par yx, y2 yv
un système de coordonnées pour Rp et soit U un ouvert de Rp ; soit
] a, b [ un intervalle ouvert de valeurs prises par la fonction yp sur
l'ouvert U ; yP est une fonction de classe Cn sur Vn, donc, d'après
le théorème 1.2, yp admet dans ] a, b [ une valeur régulière c ;

ffrn-i __ 2/-i(c) est une sous-variété de dimension n — 1 de Vn, qu'on
supposera non vide (sinon la propriété serait trivialement vérifiée) ; soit
x un point de Wn~x ; pour un voisinage Vx assez petit de x dans Vn,
on peut faire choix d'un système de fonctions coordonnées de la forme
(xlf x2 xn_t, yv) qui contient la fonction yv. Soit Uc la coupe de

l'ouvert U par l'hyperplan yp c. La restriction fc de l'application /
à la sous-variété Wn~x est de classe Cn ; donc, par hypothèse,

4) Comme me l'a signalé M. G. de Rham, ce résultat est une conséquence d'un théorème

de A. Sard: The measure of the critical values of differentiable maps, Bull.
Amer. Math. Soc, 48, 1942, p. 883—90.
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fc : Wn~x -» Rp~~l, où Rp~x désigne l'hyperplan d'équation y9 c,
admet sur l'ouvert Uc une valeur régulière, soit a ; soit x e Vn un
point de l'image réciproque f~^{a) /^(a, c), supposée non vide. Puisque

a est valeur régulière pour /c, l'application /c, définie sur un
système de coordonnées locales d'un voisinage Vx de x dans F, est
de la forme: f(x1, x2 xn_x, c) (t/l5 ?/2, y^) et est alors de

rang (p — 1) ; donc l'un des mineurs n'est pas nul pour yv c,
dx3

et, par continuité, pour des valeurs de yv assez voisines de c ; il en résulte
qu'on peut prendre dans un voisinage Vx c Vx un système de fonctions

coordonnées de la forme: (x1, x2 xn_p, yl9 y2 yv) ; c'est
dire que / est de rang maximum en x ; comme ceci est vrai pour tout
point x de \~x{a, c), le point (a, c) eU est une valeur régulière pour /.
Le théorème 1.3 est ainsi démontré.

Si l'application / est propre (en particulier, si Vn est compacte),
l'ensemble f(£) des valeurs critiques de / est un fermé sans point intérieur,
c'est un ensemble rare de Mp dans la terminologie de Bourbaki [6].
Dans le cas général, soit Vn ^ 3 K3 un recouvrement dénombrable
de Vn par des compacts K3 ; chacun des ensembles intersections
Z3 K3 r> £ est compact, et /(2^) est un compact rare de Mp ;

donc, j(E) ^3 f(£3) est une réunion dénombrable d'ensembles fermés

rares, c'est, dans la terminologie de [6], un sous-ensemble maigre de Mp.

3. L'image réciproque d'une sous-variété.

Définition: voisinage tubuktire d'une sous-variété. Soit Np~q une
sous-variété compacte, différentiablement plongée de classe C°°, de la
variété Mp. Supposons Mp munie d'une métrique riemannienne de classe
C00 Soit T l'ensemble des points de Mp situés à une distance < e de la
sous-variété NP~Q. Si £ a été pris assez petit, par tout point x € T il ne
passe qu'une géodésique normale à Np~q, aboutissant sur NP~Q en un
point y p(x). L'application p : T -> Np~q est une fibration, la
fibre p~x{y) est une g-boule géodésique normale. Le bord F de T est
une variété de dimension p — 1, fibrée par p sur Np~q en (q — 1)-
sphères. Un tel voisinage T de Np~a sera appelé, par toute la suite, un
voisinage tubulaire normal de la sous-variété Np~q. Il est clair que la
fibration p admet pour groupe de structure un sous-groupe du groupe
orthogonal 0 (q) et la structure fibrée de T est canoniquement isomorphe
à celle de l'espace fibre des vecteurs normaux (donc transverses) à la
sous-variété Np~q dans Mp.
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Eappél sur les homéomorphismes différerttiables d'une boule.

Soit & la #-boule fermée de centre 0 ; soit A un homéomorphisme
de & de classe C00 sur elle-même ; si on suppose de plus que Fhoméo-
morphisme inverse A~x est différentiable, alors l'application de Bq sur
elle-même est en tout point de rang q. On considérera le groupe de ces

homéomorphismes qui se réduisent à l'identité sur le bord 8q~1 de
JS«, soit G.

Etant donné un point c intérieur à &, on peut définir, de bien des

façons, un homéomorphisme A de G, tel que A (c) 0 ; on peut de plus
montrer qu'un tel homéomorphisme A est homotope à l'identité dans G,
muni de la topologie ainsi définie : topologie de la convergence uniforme

pour l'application A : Bq ->2?«, ainsi que pour l'application inverse
A"19 et pour les dérivées partielles de A et A*1 jusqu'à l'ordre n inclus.
On peut définir dans G un homéomorphisme dépendant continuement du
paramètre £(0 ^ t ^ 1), At, tel que Ao A et Ax identité.

Le groupe des homéomorphismes H d'un voisinage tubulaire normal.
Soit T un voisinage tubulaire normal de la sous-variété NP~Q dans

Mp ; on lui associe le groupe H des homéomorphismes de classe Cn

de T ainsi définis:

i) Tout élément A eH applique globalement toute fibre p~x(y) sur
elle-même.

ii) Tout élément de H se réduit à l'identité sur le bord F de T. Le

groupe H est muni de la topologie ainsi définie : topologie de la convergence

uniforme pour les applications A et A"1, ainsi que leurs dérivées

partielles jusqu'à l'ordre n. (Pour définir les dérivées partielles d'une
application A : T -> ï\ on peut plonger T dans un espace euclidien
Rk ; la topologie définie à l'aide des coordonnées dans Rk est indépendante

de l'immersion). Avec la topologie ainsi définie, H est un espace de

Baire. En effet, H est un espace métrique complet : il suffit de montrer
que tout filtre de Cauchy (At) dans H converge dans H; en effet, pour
bout point x çT, les points At(x) forment un filtre de Cauchy dans T,
qui définit un point J(x) c?\ et l'application limite J est de classe Gn ;

de même, le filtre de Cauchy des A~1(x) esfc convergent, et définit une
application de classe Cn, J~x qui est inverse de J.

Définition: Application t-régulière sur une sous-variété. Soit / une
application différentiable de Vn dans Mp, et soit y un point de la
sous-variété Np~* de M?. Soit My l'espace des vecteurs tangents en y
à Mp, Nv le sous-espace des vecteurs tangents à la sous-variété Np'~q.

Soit x un point quelconque de l'image réciproque f~x (y), Vx l'espace des
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vecteurs tangents en «à Fn. On dira que y est une valeur t-régulière,

si, en tout point x c/""1 (y), l'application prolongée f:Vx-+ My -> My/Nv
est de rang q, et applique Vx sur l'espace des vecteurs transverses à

à Jf*5).

4. Image réciproque d'une sous-variété par une application t-régulière.

On dira que l'application / : Vn -> Mp est t-régulière sur la sous-variété
Np-q c Mp, si tout point y de 2V^~9 est une valeur ^-régulière de /.
Désignons, dans une carte locale autour de y, par yt,y2 • • yq un
système de q fonctions coordonnées telles que les équations yx y2

^ o définissent localement la sous-variété Np~q. Soit x un
point de l'image réciproque /-1 (y), supposée non vide ; si y est une
valeur ^-régulière, on peut trouver un voisinage Ux de x dans Vn dans

lequel existe un système de n fonctions coordonnées de la forme:
(x1,x2, xn_q, yx,y2 yq) ; l'image réciproque ^(N*-*) est définie
dans Ux par les équations : yx y2 yq 0 ; x admet donc
dans f~x{y) un voisinage homéomorphe à i?71-^. C'est dire que l'image
réciproque ^(Nv-*) est une sous-variété Wn~q différentiablement
plongée de classe Cn.

Soit Vx l'espace des vecteurs tangents en x à Vn, Wx l'espace des

vecteurs tangents en x à Wn~q. Si y /(x) est une valeur ^-régulière,
cela veut dire que l'application prolongée / induit un isomorphisme de

l'espace des vecteurs transverses VJWX sur l'espace des vecteurs
transverses en y à Np~q : My/Nv. Globalement, la structure fibrée des vecteurs
transverses (ou normaux) à Wn~q dans Vn est canoniquement isomorphe
à la structure induite de celle des vecteurs transverses à Np~q dans Mp

par Vapplication /.
Soit y un point de N*-* ; désignons par X la boule ouverte de centre y

de rayon géodésique r, dans la sous-variété Np~q, par X! la boule
concentrique de rayon 2r ; on suppose r assez petit pour que X' soit
effectivement une boule. Dans ces conditions, les sous-ensembles du voisinage
tubulaire T définis par:

D p-i(JJf) ; D! p~1(X/) sontresp. homéomorphes aux produits :

X x Bq; Xr x & puisque toute fibration est triviale sur
une boule. Soit Je : D; (ou D) -> & l'application définie par cet homéo-

morphisme. Nous allons démontrer le:

Lemme I. 4. L'ensemble des homéomorphismes içiî du voisinage

B) L'image réciproque /*~1(y) d'une valeur £-régulière yeNP~Q peut être vide; on dira
en ce cas que c'est une valeur t-régulière triviale.
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tabulaire T tels que l'application composée A o /, où / : Vn -> MP
est de classe C7*, n'est pas ^-régulière sur X, est un sous-ensemble maigre
de l'espace de Baire H.

Dire qu'une application g : Vn -> M? n'est pas ^-régulière sur X,
c'est dire que l'application composée k o g, définie sur g^"1 (Z>), admet
le centre O de la fibre Bq pour valeur critique (en effet, par définition,
l'application prolongée k induit, en un point y c M?, le quotient de

l'espace des vecteurs tangents My par le sous-espace des vecteurs
tangents Ny à la sous-variété Np~q).

Désignons par Kt un compact de Vn ; on dira qu'un homéomorphisme
AeH est i-critique, si l'application composée koAof, définie sur
f~1(D)> admet dans Kt au moins un point critique # tel que f(x)eX.
Soit at l'ensemble des AeH qui sont i-critiques. On va montrer que at
est un fermé de H sans point intérieur.

i) at est fermé. Soit A un élément de H qui n'appartient pas à ax ;

c'est dire que l'application composée k o A o / admet O comme valeur
régulière, lorsqu'elle est restreinte à Kt r> /-1 (D). Soient yx, y2 ^
un système de fonctions coordonnées pour la g-boule Bq ; par hypothèse,

sur l'intersection Kt r^ f-1 o A~1{Nï>~q), les jacobiens d'ordre q ~^
oxk

ont en valeur absolue une borne inférieure strictement positive, soit 3 JB,

où B > 0. Il existe par suite un voisinage fermé — donc compact —

J de K% <-\ f-1 o A~1(Nv'~q) dans Kt dans lequel ces jacobiens ~J~-

sont en valeur absolue y 2 B. k

Considérons maintenant l'ensemble des homéomorphismes Ar de H
assez voisins de A dans Jï pour que:
1. La nouvelle intersection Kt ^ f-1 Ar^1(Np"~9) soit tout entière

contenue dans J: ceci peut être obtenu en majorant convenablement la
distance (dans M&) de A à Ar : il suffit de prendre || Ar (y) — A (y) ||

plus petit que la distance de 0 à la frontière de l'ensemble image

koAf(J).
2. Les jacobiens associés à l'application k o Ar o / soient,

dxk
dans J, supérieurs en valeur absolue à B > 0 ; ceci sera obtenu par
une approximation convenable sur les dérivées partielles du premier
ordre de l'application Af par rapport à celles de l'application A:

en effet, les jacobiens sont des fonctions continues des
dxk

dérivées partielles du premier ordre de l'application A.
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Pour tout Ar assez voisin de A qui satisfait à ces deux conditions,

les jacobiens ne s'annulent pas sur Ki ^ f-1 il'-^JV*-*), et
dxk

par suite Af o / est ^-régulière sur la boule X.

ii) a€ n'a pas de point intérieur. Soit A un élément de ai ; l'application

composée Je o A o f admet O pour valeur critique ; mais, comme
l'application est de classe Cn, elle admet, d'après le théorème 1.3, une
valeur régulière c aussi voisine qu'on voudra de O ; soit E l'homéomor-
phisme de Dr p~1(Xr) défini comme suit: soit O un homéomorphisme
de la g-boule Bq qui applique c sur O, et se réduit à l'identité sur le bord
S**1 de Bq, et Ot un homéomorphisme dépendant continuement du
paramètre tel, tel que O0 G et Ox= identité. Soit d une fonction de classe

C00, égale à 0 sur X, égale à l'unité à la frontière de Xf, et croissant
de 0 à 1 lorsque la distance géodésique au centre y de X croît de r à 2r ;

usant de l'homéomorphisme : Dr ^ X' x Bq, E peut être défini par la
formule :

E(yl9 z) (yl90m(z)) yitXf,zeBq.
L'homéomorphisme E conserve globalement les fibres p~x(y), et se

réduit à l'identité sur la frontière de Dr ; E peut par suite être prolongé
en un homéomorphisme du voisinage tubulaire T sur lui-même ; il suffit
de prendre la transformation identique à l'extérieur de Dr. L'élément E
ainsi défini appartient alors au groupe H.

Par ailleurs, l'application E o A o / est ^-régulière sur X, car, par
construction même, l'application composée h o E o A o / admet O pour
valeur régulière. Si donc on pose A' E oA, l'application Ar o/ est
^-régulière sur X et peut-être rendue arbitrairement voisine de A o f:
en effet, l'homéomorphisme E peut-être pris aussi voisin qu'on voudra
de l'identité: il suffit pour cela de prendre la valeur régulière c assez

voisine de O.

(On remarquera que dans cette seconde partie du raisonnement le

compact Ki n'intervient pas : on montre ainsi que l'ensemble des A tels

que A o f n'est pas ^-régulière sur X est sans point intérieur dans H).
Comme la variété Vn est réunion dénombrable des compacts Kj}

l'ensemble a des A tels que A o f n'est pas ^-régulière sur X est la réunion
dénombrable des ensembles rares a{, c'est donc un ensemble maigre
de H, et le Lemme 1.4 est démontré.

La sous-variété Np~q étant supposée paracompacte, on peut la recouvrir

par une infinité dénombrable de boules ouvertes telles que X.
(Notons en passant, qu'on peut définir un voisinage tubulaire normal pour
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une sous-variété paracompaete : le seul changement par rapport au cas

compact est que le «rayon» du voisinage tubulaire doit être pris variable.)
Dès lors, l'ensemble des A tels que A o f n'est pas ^-régulière sur Np-*
est une réunion dénombrable d'ensembles maigres de H, donc aussi un
ensemble maigre, sans point intérieur. Ceci nous permet d'énoncer le
théorème :

Théorème I. 5. Soit f une application de classe Cn de la variété Vn

dans la variété Mp, et soit Np~q une sous-variété paracompaete de Mp,
et T un voisinage tubulaire normal de Np~~q dans Mp. Il est possible de

trouver un homéomorphisme A de T sur lui-même, arbitrairement voisin de

Videntité dans H, tel que, si f=io/:
i) L'image réciproque f"1 (NP~Q) de Np~q soit une sous-variété de Vn,

de dimension n — q : Wn"q différentiablement plongée de classe Cn.

ii) L'espace fibre des vecteurs normaux à Wn~q dans Vn soit canonique-
ment isomorphe à Vespace induit de la structure fibrée des vecteurs normaux à
Np-<t dans Mp.

6. Le théorème d'isotopie. La propriété énoncée ci-dessous ne nous
servira que dans la partie IV, et dans le cas Vn compacte seulement ;

aussi ne l'établirons-nous que sous cette hypothèse.
Soit / une application de classe Gn de la variété Vn dans Mp,

^-régulière sur la sous-variété compacte Np~q. Supposons qu'on ait défini
en chaque point y de N*"9 un système de g-fonctions coordonnées
normales yx, y% yq, tel que dans un voisinage de y, Np~q soit définie

par les équations yx y2 • • yq 0. Np~q étant supposée
compacte, on pourra définir Np~q avec un nombre fini de systèmes (y5).
A l'aide d'une métrique riemannienne dans Vn, on définira un voisinage
tubulaire Q de la sous-variété Wn~q f~l(Np~q), et dont le rayon e

sera pris assez petit pour satisfaire à la condition suivante :

Soit x un point de Wn~q, Bx la g-boule géodésique normale en a; à
Wn~q: les fonctions (y§) associées à y f(x), sont, pour tout xt un
système de fonctions coordonnées pour la g-boule Bx. Il est évidemment
possible de satisfaire à cette condition, puisque / est supposée f-régulière,
et que Wn~~q est compacte.

Soit A un élément du groupe H, voisin de l'identité. On se propose
d'étudier l'image réciproque g~l (Np^), où g A o /. Il est clair,
tout d'abord, que si A est assez voisin de l'identité, l'application g est
elle aussi ^-régulière sur Np~q ; en effet, si on prend A assez voisin de

l'identité pour que 11 A (y) — y \ \ dans Mp soit strictement inférieure
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à la distance de Np~* à la frontière de f(Q), l'image réciproque
g-i (J^^-s) sera tout entière contenue dans Q.

On peut de plus supposer A assez voisin de l'identité — au point de

vue de l'écart sur les dérivées partielles du premier ordre — pour que
l'application g, soit, comme /, de rang q sur toute g-boule Bx. Dans
ces conditions, l'application g est ^-régulière. On va montrer que, moyennant

éventuellement une approximation un peu plus serrée, les deux
sous-variétés W71-*1 /-^(JV*-*) et W — gr-1 (iV^-«) sont isotopes dans
Vn. La démonstration ne fait que suivre un schéma donné par Seifert
dans [21].

Désignant par (y^ un système de q fonctions coordonnées transverses
au voisinage du point y f(x) de Np~q, à tout point z e Bx,
associons le point de Rq dont les coordonnées sont yj (g (z) ; on définit
ainsi une application L: Bx -> Rq qui, si g f, donne l'homéomor-
phisme identique ; l'image réciproque L"1 (O) est l'intersection de Bx
avec la variété W y-1 (#*"-*)•

e désignant toujours le rayon de Bx, on peut prendre A assez voisin
de 1, donc g assez voisin de /, pour que, || L(z) — z \\ < e, uniformément
en #, et pour tout système (y,) associé à y f(x). Ceci implique que la
sphère L(Sq~1) image du bord S^1 de Bx est homotope à B*~l dans

l'espace B? — O, privé de l'origine 0. Il en résulte que le degré de
l'application L, est, sur le point O, égal à celui de l'application identique,
et est donc égal à + 1. Par ailleurs, l'application L est de rang maximum
en tout point de Bx : au voisinage de tout point z de Bx, L est un homéo-

morphisme local, et par suite, l'image réciproque lrx (O) ne peut contenir

que des points isolés ; comme tout point de jB^ est appliqué sur Ift
avec le degré +1 (signe du jacobien de l'application L), l'image
réciproque Lrx (O) est formée d'un point xr unique. Ainsi Wf ne rencontre
chaque boule Bx qu'en un point unique xr ; la correspondance x -> xf
est un homéomorphisme de Wn~q sur W'71"^. De plus, comme x!
peut être joint à x par un arc géodésique s(x, xf) dans Bx, on peut
définir évidemment une isotopie qui déforme Wn~q sur Wfn~q. On
obtient ainsi:

Théorème I. 6. Soit f une application de classe Cn de la variété
compacte Vn dans Mp, t-régulière sur la sous-variété compacte N**-*. Alors,
pour tout homéomorphisme A de H du voisinage tubulaire de Np~q, assez

voisin de Videntité dans H, l'application g A o / est t-régulière sur
Np-q, et les deux sous-variétés Wn~q ^(N*-*) ; Tf/n"« g-1 (#*-«)
sont isotopes dans Vn.
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CHAPITRE II

Sous-variétés et classes d'homologie d'une variété

1. Généralités. Soit Vn une variété orientable; orienter Vn, c'est
faire choix, dans le groupe d'homologie entière Hn(Vn ; Z) d'une classe

privilégiée, qu'on appellera classe fondamentale de la variété Vn ainsi
orientée. Dans Vn orientée, la dualité de Poincaré s'exprime par un
isomorphisme canonique entre ]e groupe d'homologie Hn__k(Vn ; Z) et
le groupe de cohomologie Hk Vn ; Z). On appellera classes correspondantes

deux classes images l'une de l'autre pour cet isomorphisme. Si le

groupe des coefficients est le groupe Z2 des entiers mod 2, la classe
fondamentale de Hn Vn ; Z2) est définie de façon unique, même si Vn n'est

pas orientable, et Fisomorphisme, dit de Poincaré-Veblen, entre
Hn_k(Vn ;Z2) et Hk(Vn;Z2) est canoniquement défini. Ici, et dans tout
ce qui suit, nous supposons la variété Vn compacte ; nous ne ferons
qu'indiquer brièvement la généralisation possible des résultats aux variétés
paracompactes non compactes.

Soit Wp une sous-variété de dimension p. L'application identique
i : Wp -> Vn induit un homomorphisme i^ de l'homologie HP(WP)
dans l'homologie Hp(Vn) ; soit z e Hp(Vn) la classe image par i* de la
classe fondamentale de la variété Wp. On dit alors que la classe z est
réalisée par la sous-variété Wp. La question envisagée ici est la suivante :

une classe d'homologie donnée z d'une variété Vn est-elle réalisable par
une sous-variété? Le problème, on le verra, reçoit des réponses très
différentes suivant que le groupe des coefficients est le groupe Z des entiers
ou le groupe Z2 à deux éléments. Dans le premier cas, on supposera
toujours, même si on ne le rappelle pas explicitement, que la variété Vn

considérée est orientable, et munie d'une orientation fixée, bien
qu'arbitrairement choisie.

2. Complexe associé à un sous-groupe fermé du groupe orthogonal. Soit
G un sous-groupe fermé du groupe orthogonal à k variables O(k).
On sait que tout espace fibre en sphères 8k~1 dont G est groupe de structure

est induit d'un espace fibre universel EG, dont la base BQ est une
variété compacte ; (on se restreint ici, évidemment, aux espaces fibres
dont la base est de dimension finie ^ N). Désignons par AQ le «map-
ping cylinder» de l'application fibrée EQ -> Bo, espace fibre en A-boules

sur BG ; c'est une variété à bord de bord EQ ; on désignera par A'Q

le complémentaire AQ — EQ, espace fibre en fe-boules ouvertes associé

à Eo (Cf. [27]).
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Définition. On appellera complexe associé au sous-groupe G de 0 (k),
l'espace dénoté M (G) obtenu à partir de AG par identification en un
point a de son bord EQ ; M {G) est, si l'on veut, la compactification
d'Alexandroff de l'espace fibre en boules ouvertes AG.

Cohomologie de M (G). La cohomologie Hr(M(G)) s'identifie, pour
tout r>0, à la cohomologie à supports compacts HrK(M(G)), ou encore,
à la cohomologie relative Hr(AG, EG). Or, on a l'isomorphisme classique
de la théorie des espaces fibres en boules ouvertes (Cf. [26]) :

<p* : H^{BG)^HrK{A'o) * #r(W))
les coefficients étant pris dans le groupe Z2 en général, dans Z si l'espace
fibre EG est orientable (G connexe). La cohomologie H*(M(G)) s'obtient

donc, pour les dimensions r > 0, en majorant de k unités la
graduation de la cohomologie H*(BG) de l'espace classifiant Bo. En
particulier, le premier groupe Hr(M{G)) non nul, pour r>0, est Hk(M(G))\
il est engendré par la classe U e Hk(M(G)) définie par:

U (fG (C0g)

où (oo désigne la classe-unité de H°(BG). La classe U sera appelée
classe fondamentale du complexe M (G). Rappelons que U est une classe
à coefficients entiers si EG est orientable (G connexe) ; c'est une classe

mod 2, si EG n'est pas orientable (G non connexe).

3. Le théorème fondamental. Définition. On dira qu'une classe
de cohomologie u eHk(A) d'un espace A est réalisable pour le groupe
G c O(k), ou encore: admet une G-réalisation, s'il existe une application
/ : A ->• M (G) telle que u soit l'image, pour l'homomorphisme /* induit
par /, de la classe fondamentale U du complexe M {G).

Nous avons alors le théorème:

Théorème II. 1. Pour qu'une classe d'homologie z €Hn_k(Vn), k > 0,
puisse être réalisée par une sous-variété Wn~k dont Vespace fibre des

vecteurs normaux admet G pour groupe de structure, il faut et il suffit que la
classe de cohomologie u eHk(Vn) correspondante à z soit réalisable pour
le groupe G.

i) La condition est nécessaire. Supposons qu'il existe dans Vn une
sous-variété Wn~k dont la classe fondamentale appartient à z; soit N
un voisinage tubulaire normal de Wn~~k, de bord î7. La fibration géo-
désique normale p: N -> Wn~k admet, par hypothèse, G pour groupe de

structure. N est induit de l'espace universel AG par une application
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g jpn-k -» J56 ; il existe

que fibre sur fibre),

La restriction de

telle
donc une application F :

que le

N

diagramme :

F
**AG

g
\pa

Wn-k —*BG

.F au bord T de N applique

N

T

->AG

soit

dans

(qui appli-

commutatif.

le bord EG
de AQ. Si l'on désigne par 9?*, resp. <pG les isomorphismes des espaces
fibres en îfc-boules N, resp. AQ, le diagramme:

F
Hk(N,T) >Hk(AQiEQ)
J \ (1)

H°(B0)
est également commutatif.

Par ailleurs, soit j% : Hk(N, T) -> Hk(Vn) l'homomorphisme
canonique défini par l'injection ; on sait que dans la variété ouverte JV7

N — T, la classe ç>*(eo) correspond — par la dualité de Poincaré — à

la classe d'homologie fondamentale de la base Wn~k (Cf. [27] Th. 1.8).
Par suite, la classe j+ ç?*(ct>) eHk(Vn) n'est autre que la classe u
correspondant à z.

Désignons par h : AG -> M (G) l'application obtenue en identifiant en
un point a le bord EQ de Ao ; l'application composée h o g applique
le bord T de N sur le point a ; par suite, l'application h o g peut être
étendue à toute la variété Vn: il suffit d'appliquer le complémentaire
Vn — N sur le point a ; on définit ainsi une application / de Vn dans
M (G), pour laquelle on a bien:

J(Pq((oq) j* ç?*(o>) u, d'après le diagramme commutatif

(1).

ii) La condition est suffisante. Supposons qu'il existe une application
/ de Vn dans M (G), telle que f*(U) u; l'espace M (G), privé du
point exceptionnel a, est une variété différentiable ; on pourra régulariser
la restriction de / au complémentaire Vn — /""1(a), de façon à obtenir
une nouvelle application /1? voisine de /, qui soit différentiable de classe

Cn sur Vn — Z""1 (a) ; on appliquera alors à l'application ft le théorème
1.5. On pourra ainsi définir une application F, arbitrairement voisine
de /, telle que l'image réciproque JT~1(fi(3) soit une sous-variété Wn~k ;
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l'espace des vecteurs normaux à Wn~k, induit de l'espace Ao, admet G

pour groupe de structure. Désignant alors par ç>* Fisomorphisme ç>*

associé à un voisinage tubulaire normal de Wn~k dans Vn, la classe

u f*(U) F*(U) n'est autre que j* <p*(oo), co classe-unité de

jyn-k comme on Fa vu en i), ceci exprime que u correspond par la dualité

de Poincaré à la classe du cycle fondamental porté par la sous-
variété Wn~k.

Extension du théorème II .1 aux variétés paracompactes non compactes.

Rappelons que dans une variété paracompacte non compacte, il existe
autant de théorèmes de dualité que de familles (0) de sous-ensembles
fermés utilisés pour définir homologie et cohomologie (Cf. [26], Th. 0.3).
On peut se poser, dans ces conditions, la question suivante: une classe

d'homologie à supports dans (0), z e Hft__k Vn) peut-elle être réalisée par
une sous-variété Wn~k% Peu de modifications doivent être apportées
à la démonstration précédente pour y répondre: on observera d'abord
que le voisinage tubulaire normal d'une sous-variété paracompacte peut
toujours être défini, à condition de prendre son rayon éventuellement
variable. Disons de plus qu'une application / : F -> M est 0-propre,
si l'image réciproque f~x (K) de tout compact K de M appartient à (0)
(si 0 est la famille ïJfdes compacts de V, on retrouve la définition
classique des applications projyres). On aura alors le théorème:

Théorème H. 1'. Pour qu'une classe z eH%_k(Vn) soit réalisable par
une sous-variété dont l'espace fibre des vecteurs normaux admette G pour
groupe de structure, il faut et il suffit qu'il existe une application f :

Vn->M(G), 0-propre sur M (G)—a, telle que la classe image

f*(U) eH#(Vn) corresponde à z par la dualité de Poincaré.

4. Cas où G se réduit à l'élément unité e €O(k). L'espace classifiant
BQ se réduit alors à un point, Ao est une &-boule fermée et le complexe
M(e) n'est autre que la sphère Sk. Disons qu'une classe de cohomologie
entière u d'un espace A est sphérique, s'il existe une application f : A->8k,
telle que u f*(sk), sk désignant la classe fondamentale de Hk(Sk ; Z).
Le théorème 1.1 nous donnera alors:

Théorème IL 2. Pour qu'une classe d'homologie z eHn_mk(Vn\Z) de
la variété orientable Vn puisse être réalisée par une sous-variété dont
l'espace fibre des vecteurs normaux est trivial, il faut et il suffit que la
classe de cohomologie U€Hk(Vn;Z) correspondant à z soit sphérique.

On ne connait pas, en Topologie Algébrique, de condition nécessaire
et suffisante pour qu'une classe de cohomologie donnée soit sphérique ;
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le seul résultat de nature générale a été obtenu par J. P. Serre [22] ; le
voici :

Théorème IL 3. Pour toute classe X€Hk(A;Z) d'un espace A de

dimension finie n, avec k impair, ou n (2k, il existe un entier non nul N,
ne dépendant que de Je et de n, tel que la classe multiple N • x soit une
classe sphérique. De là, on déduit:

Théorème IL 4. Soit z eHn_k(Vn;Z) une classe d'homologie entière
de la variété orientable Vn, avec Je impair, ou n (2k. Il existe alors un
entier non nul N, ne dépendant que de Je et de n, tel que la classe multiple N • z

puisse être réalisée par une sous-variété Wn~~k dont l'espace fibre des

vecteurs normaux est trivial,

5. Description des complexes M(O(Je)) et M{SO(k)) Il résulte
immédiatement du théorème II. 1 qu'on a les théorèmes suivants, qui
montrent l'importance des complexes M(O(k)) et M(SO(k)):

Théorème II. 5. Pour qu'une classe d'homologie z eHn_k(Vn ;Z) delà
variété orientable Vn soit réalisable par une sous-variété, il faut et il suffit
que la classe de cohomologie u correspondant à z soit réalisable pour le

groupe des rotations.

Théorème II.5'. Pour qu'une classe d'homologie mod 2 z eHn__k(Vn; Z2)

de la variété Vn soit réalisable par une sous-variété, il faut et il suffit que la
classe de cohomologie u correspondant à z admette une réalisation
orthogonale.

On désignera par G k la grassmannienne des fc-plans non-orientés dans

un espace euclidien Bm, où m est très grand. Gk est, c'est bien connu,
l'espace classifiant B0(k) associé au groupe orthogonal O(k). On

désignera par G k la grassmannienne des i-plans orientés dans R™ ; c'est

le classifiant BS0{k) associé au groupe des rotations SO(k) • Gk est

un revêtement à deux feuillets de Gk.
L'espace fibre universel Eso^k) s'obtient en associant à tout A-plan

de Gk son intersection Sk~l avec la sphère de rayon 1 dans Rm ; ESOik)

peut donc être considéré comme l'espace des couples formés d'un ib-plan
orienté et d'un vecteur unitaire contenu dedans ; associons à ce couple
le (k — l)-plan orthogonal au vecteur dans le fc-plan ; on définit ainsi

une fibration de ES0{k) sur la grassmannienne G k^x, la fibre étant une
sphère 8m~k, de grande dimension. Par suite, pour les dimensions
inférieures à la dimension classifiante m — k, E$o(k) a même type d'homo-
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topie que la grassmannienne Gk^1; et l'injection
s'identifie — au point de vue de l'homotopie — à l'application canonique

Qk-i~**@k déduite de l'injection du sous-groupe SO(k — 1) dans

SO(k).
Cohomologie de M{80(k)). Pour les dimensions r>0, la cohomo-

logie H*(M(SO(k))) s'identifie à la cohomologie relative H(Gk,Gk^1) ;

on la déterminera grâce à la suite exacte :

* îk s sk

- H'(Ok) - H' (gt_x) - ff'+1 (Ok, Gk_x) - Hr+1 (6k) - (2)

où l'homomorphisme i* est bien connu.
Cohomologie mod 2. On sait (cf. [3]) que la cohomologie H*(Gk;Z2)

est une algèbre de polynômes engendrée par (k — 1) générateurs:
W2, WZ9 Wk, où Wi9 de degré i, est la iéwe classe de Stiefel-Whitney.
Il est bien connu que les classes W$ s'appliquent l'une sur l'autre par
l'homomorphisme i* ; par suite, la cohomologie relative H'¥(Gk,Ok_l)
s'identifie à Vidéal engendré par la classe W k dans Valgèbre de polynômes

H*(Gk;Z2). On retrouvera directement ce résultat en considérant,
comme au n° 2, l'isomorphisme <p*.

Cohomologie mod p, p premier > 2. Distinguons deux cas:

i) k impair, fc 2m + 1. H*(Gk;Zp) est une algèbre de polynômes
engendrée par des générateurs PH de dimension divisible par 4

(classes de Pontrjagin, réduites mod p):
P*,P8, P4m.

/\
ii) k pair, k 2m;. H*(Gk; Zp) est une algèbre de polynômes engendrée

par les classes de Pontrjagin, réduites mod p:
P*,P8, P4™'-4 et la «classe fondamentale» X2m'.

/\ /\
Dans l'application canonique Gk ->Gk+1, les classes de Pontrjagin

P4* s'appliquent l'une sur l'autre, sauf, si k est pair, la classe de dimen-

sion maximum de H*m(Gk+1), P4m, qui se trouve appliquée par i* sur le

cup-carré (X2m)2 de la classe fondamentale X2m eHk(Gk) (cf. [5]).

II en résulte: si k est pair, H*(Gk,Gk_1) s'identifie à l'idéal engendré

par la classe X2m dans H*(Gk); si k est impair, H*(M(SO(k)) s'identifie

à une algèbre extérieure de générateur ô*(X2m').
Cohomologie de M(O(k)).
On utilise la même suite exacte que (2), où les Gk remplacent les Gk.
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Cohomologie mod 2. La cohomologie H*(Gk;Z2) est une algèbre de

polynômes, engendrée par k générateurs Wlf W2i WZi Wk. Comme
précédemment, on trouve que H*(Gk,Gk_1;Z2) s'identifie à Vidéal J
engendré par la classe Wk dans H*{Gk\Z2).

Cohomologie mod p, p premier > 2. Soit g le groupe d'automorphismes
/s.

du revêtement à deux feuillets Gk ->Gk. On vérifie aisément les
propriétés suivantes: les classes de Pontrjagin PH sont invariantes par g ;

par contre, g transforme, si k est pair, la classe fondamentale Xk en son
opposée — Xk. D'après un résultat classique de la théorie des revêtements

(B. Eckmann [9]), il en résulte que: pour k impair, H*(Gk]Zp)
est isomorphe à H*(Gk ; Zp) ; pour k pair 2m, H*(Gk ; Z9) est une
algèbre de polynômes engendrée par les classes de Pontrjagin:
P*y P8 P4™-4 et le cup-carré (Xk)z de la classe fondamentale Xk ;

(en effet, si Xk n'est pas invariant par g, par contre (Xk)2 l'est).

Usant toujours de la suite exacte analogue à (2), on en déduit:

i) k impair 2m + 1. Comme H*(Gk;Zp) et H*(G2m;Zp) sont
des algèbres de polynômes isomorphes, et que cet isomorphisme est
induit par i* (rappelons que i*(P4m) (X2m)2), on obtient:

Hr(Gk, Gk^ ; Zp) 0 pour tout r > 0

ii) k pair 2m. On trouve immédiatement que H*(Gk;Gk_i) s'identifie

à l'idéal engendré par la classe (X2m)2 dans l'algèbre de polynômes
H*(Gk;Z9).

Groupe fondamental. De façon générale, le groupe fondamental du
complexe M (G) s'obtient à partir du groupe fondamental de AG (ou Bo)
en annulant ceux des éléments qui sont images par l'injection EQ -> AG
d'éléments de nx (EG). Ceci nous donnera :

a) comme n^G^ 0, on a n1(M(S0(k))) 0.

b) Fhomomorphisme i# applique 7tt (G fc-1) ~ Z2 sur nx (G k) —Z2;
donc Tt^M^ik))) 0 pour £ > 1.

Les complexes M(O(k)) et M(SO(k)) sont simplement connexes;
comme leur premier groupe de cohomologie, de dimension >0, est Hk,
on en déduit que ces espaces sont asphériques jusqu'en dimension k — 1,
incluse. Le premier groupe d'homotopie non nul est 7tk(M(O(k))) Z2

et nk(M{S0{k))) Z.
Nous allons maintenant énoncer un théorème de topologie, qui permet

de ramener la détermination de l'homotopie d'un espace à des propriétés
de cohomologie ; le principe en est dû à J. H. C. Whitehead [29].
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Théorème II. 6. Soient X, Y deux complexes simplement connexes,
et f une application de X dans Y, telle que f induit un isomorphisme de

Hr(Y) sur Hr(X) pour r(k, et que /* : Hk{Y) -> Hk{X) est biuni-
voque, et ceci pour tout corps Zp de coefficients. Dans ces conditions, il
existe une application g du k-squelette de Y dans X, telle que f o g et

g o f (restreintes aux (k — l)-squelettes) sont homotopes à Videntité.

Il en résulte, en particulier, que X et Y ont même k-type : leurs groupes
d'homotopie sont isomorphes pour toute dimension ^ k — 1.

On substitue au complexe Y le mapping cylinder Y1 de l'application
/ : Y est rétracte par déformation de Y9, et lui est homotopiquement
équivalent ; écrivons la suite exacte :

Hr(Y') ~>Hr(X) -

Les hypothèses faites sur / expriment précisément que Hr(Y;, X ; Zv)
0 pour tout premier p et r ^ k ; par dualité sur le corps Zv des

coefficients, on en déduit: Hr(Yr, X ; Z^) 0 r < k, et, de là, par la
formule des coefficients universels : Hr Y1, X ; Z) 0, r ^ k. Puisque
X et Y sont simplement connexes, on peut invoquer le théorème d'Hure-
wiez relatif [15], et en déduire: nr(Y', X) 0 pour r < k. On pourra
par suite définir une application g : Yr -> X, inverse de l'injection /,
sur le ^-squelette de Y' telle que g o / ~ identité mod X{k~1} et

/og~ identité sur Y/k, où Z(fc"1) désigne le (k — l)-squelette de X.
On a vu plus haut que les groupes de cohomologie Hk+i{M(O(k))),

resp. M(80(k))), sont indépendants de k, tant que i(k. Nous allons
ici démontrer que la même propriété vaut pour l'homotopie.

Théorème II.7. Les groupes d'homotopie rc^. (M(O(k))) (resp.

M(SO(k))) sont, pour i(k, indépendants de k.
Ceci constitue un théorème de suspension, tout-à-fait analogue à celui

des sphères.
Soit Af0^k_1) l'espace fibre en (k — l)-boules ouvertes sur la grass-

mannienne Gk_x ; désignons par Af ® I, le «joint» (au sens de Whitney)
de l'espace fibre A!0^k_-^ par une structure triviale de dimension 1 (en
segments ouverts); il existe une application canonique i:Gk_1 -+Gki
qui induit cet espace fibre A1 ® / en &-boules ouvertes: c'est évidemment

l'application i précédemment considérée, déduite de l'injection
O(k — 1) c O(k). Cette application i se relève en une application / de
A! ® / dans] Ar0^k) ; compactifions Af ® I par l'adjonction d'un
point «à l'infini» x et soit X l'espace ainsi obtenu. / se prolonge en une
application F : X ~> M(0(k)) et l'homomorphisme jP* induit par F
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est un isomorphisme de Hk+i(M(O(k))) sur Hk+i(X) pour tout
i < Je — 1 ; pour i k — 1, F* est biunivoque. Par ailleurs X et
Jf(O(i)) sont simplement connexes. On peut donc appliquer le théorème

II.6, ce qui montre que les groupes d'homotopie nk+i de X et de

M(O(k)) sont isomorphes pour i< k — 1.

Désignons par T(k — 1) le complexe suspension de M(O(k — 1))
et soient #> et j/ tes deux pôles de la suspension ; désignant toujours par a
le point «à l'infini» de M(O(k)) soit g l'application qui identifie tout
le segment [p a pf] en un seul point x ; le complexe ainsi obtenu n'est
autre que X ; ici encore, g satisfait aux conditions du théorème II. 6

(on peut même montrer que g est une homotopie-équivalence) ; par suite,
les groupes d'homotopie de T(k — 1) et de X sont isomorphes.

Or, on a le théorème suivant: soit K un complexe asphérique jusqu'en
dimension n — 1 incluse, T(K) la suspension de K; désignons par
E: 7ij(K) -> 7tj+1(T (K)) Fhomomorphisme de Freudenthal; E est un
isomorphisme sur pour j* < 2n. (Cf. Blakers-Massey [2]).

La suite des isomorphismes :

W

nk_w(M(O(k - 1))) ->7tk+i(T(k - 1)) ->nk+i(X)~nk+i(M(O(k))
i < k - 1

achève la démonstration du théorème. La démonstration serait tout-à
fait analogue pour M(SO(k))

6. Etude du type d'homotopie de 3I(0(k)). Avant d'aborder la
détermination des groupes d'homotopie de M(O(k)) il est nécessaire
de rappeler quelques résultats généraux sur les complexes d'Eilenberg-
Mac Lane d'une part, et sur la grassmannienne d'autre part.

Rappel sur les complexes d'Eilenberg-Mac Lane,
Si 7t désigne un groupe abélien, on appelle complexe (TEïlenberg-Mac

Lane K(n,n) tout espace connexe dont tous les groupes d'homotopie de
dimension 0 sont nuls, à l'exception de nn (K (n, n)) n ; tous ces espaces
ont même type d'homotopie, et il en existe un qui est un complexe sim-
plicial. Si de plus le groupe n est de type fini, il existe un complexe
K(n,ri) qui est un complexe simplicial dont le g-squelette est un
complexe fini. Comme cette propriété n'est pas absolument classique,
indiquons en brièvement la démonstration, qui se fait par induction sur
l'entier q; pour q k, le ^-squelette de K(nin) se compose d'un
nombre fini de sphères Sk; soit KQ le g-squelette, supposé fini par
induction ; en vertu des théorèmes de Serre [24], le groupe d'homotopie
nq(KQ) est de type fini ; on peut l'annuler en adjoignant à Kq un nombre
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fini de (q + l)-cellules, dont les g-sphères bords sont appliquées dans Kq

par des applications qu'on peut supposer simpliciales ; on obtient ainsi
un complexe fini Kq+1, dont tous les groupes nt (Kq+1) avec k < i ^ q,
sont nuls. C'est le (q + l)-squelette cherché.

On désignera les groupes de cohomologie de K(n,n) à coefficients
dans G par la notation abrégée Hr(n,n;G); rappelons que le groupe
Hn(G,n;G) possède une «classe fondamentale» qu'on notera t. Pour
toute classe de cohomologie u e Hn (A ; G) d'un espace A, il existe une
application / : A -> K(G,n) telle que u /*(0-

La cohomologie des complexes K(Z,n;Zp) et K(Zp,n;Zp) a été
déterminée par J. P. Serre et H. Cartan. Rappelons-ici certains de leurs
résultats.

Cohomologie de K(Z2, n). (Cf. l'article de J. P. Serre [23].)
La cohomologie H*(Z2, k ; Z2) est engendrée par des carrés de Steenrod6)

de la classe fondamentale t e Hk{Z2, k ; Z2) et par leurs
cup-produits; pour h < k (partie stable de H*(Z2,k\ Z2), le groupe
Hk+h(Z2,k;Z2) est engendré par les carrés itérés Sqh SqÎ2 Sqir(i),
où Zm im h; une base de ce groupe est donnée par les suites de carrés
itérés : Sqh Squ Sqir avec ix ^ 2i2 ; i2 > 2i3 ; i3 > 2i4 ir_x > 2ir.
Une telle suite de Sq1 sera appelée, comme dans [23], suite admissible,
et symbolisée par la notation Sq1. Le rang du groupe Hk+h(Z2, k ; Z2),
soit c (A), est égal au nombre des partitions de Ventier h (sans considération

de l'ordre des termes) en entiers de la forme 2m — 1.
On a des résultats sensiblement analogues pour H(Z,k; Z2).
Cohomologie de K(Z,k) à valeurs dans Z^, p > 2.
Nous utiliserons seulement le résultat suivant de H. Cartan [7]:

L'algèbre H*(Z, k;Zp) est engendrée par des puissances de Steenrod*)
itérées de la classe fondamentale i.

Rappel sur la grassmannienne Gk.
On a vu que H*(Gk ; Z2) est une algèbre de polynômes engendrée par

les k générateurs Wi, 1 =^ i ^ k, classes de Stiefel-Whitney. Il est
souvent utile de considérer les W{ comme fonctions symétriques élémentaires

de k variables tly t2 tk de degré 1. Ces variables tr, introduites
formellement par Wu Wen-Tsiin, ont reçu une interprétation topologique
dans la théorie de Borel-Serre [4-5]. L'introduction des variables tr conduit
aux formules de Wu [34], qui donnent les carrés de Steenrod des TFi :

y r-t vv i+t \°)

•) Pour la définition et les propriétés des carrés et puissances de Steenrod, voir N.
E. Steenrod [25].
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Le Lemme suivant, dont je dois la démonstration à J. P. Serre, montre
qu'on peut, dans une certaine mesure, substituer la grassmannienne 0k
au complexe d'Eilenberg-Mac Lane K(Z2,k).

Lemme II.8. Toute combinaison linéaire de Sq1 itérés, de degré total
h ^k, qui est nulle sur la classe Wk €Hk(Wk;Z%), est identiquement
nulle.

Observons d'abord que toute classe de la forme SqI(Wk) — où la
suite / n'est pas nécessairement admissible — est de la forme W k QIt
où Qj est une classe de Hh(Ok), polynôme de poids total h par rapport
aux W{. Tout se passe donc dans l'idéal J engendré par Wk dans

Introduisons entre les monômes en Wi une relation d'ordre (J?) ainsi
définie : ordre lexicographique obtenu en posant Wm <^ Wn si m < n.
Par exemple: W4 < W4 • (WJ* < W4 W2 • Wx < W4 • W3

Soit Sq1 Bq*1 Sqiz 8qir, où les im forment une suite admissible

(iw-1 > 2im) ; formons Sq1 Wk Wk • Qr. Je dis que Qr

^»i ^h • • ^it + ^es monômes tous strictement inférieurs pour (K) à

Wix • ÎFti • Wi% Wir. Ceci se démontre par récurrence sur l'entier r ;

si r l, la formule (3) donne, en ce cas: Sq% Wk TFfc-TF^ et
(^ Tf^ et rien d'autre. Supposons la propriété établie pour r — 1,
et considérons:

flf/ JFfc Sqt^Sq** Sq* W k) ^(W"* ' P), où, par hypo^
thèse, le polynôme P est de la forme Wi% - Wit Wif + des monômes
strictement inférieurs. Développons ce produit:

Si donc on a posé Sq1 Wk Wk • Ql9 on obtient:

Dans cette somme, m 0 donne P • TF^^ Wix • Wi% Wif +
des monômes strictement inférieurs pour (R). Par ailleurs, aucun des

termes du développement de Sqm(P), m > 0, ne peut contenir un Wt
supérieur ou égal à Wit pour (R). En effet, d'après la formule (3),

SqmW8 ne contient que des Wi d'indice i<(2s. Il s'ensuit que
8qm(P))m}0, ne contient que des Tfi dont l'indice i vérifie:
i < 2i2 ^ *!• C'est dire que tous ces termes sont strictement inférieurs

pour (M) à Wh Wh... Wif.
De là on déduit que toutes les classes Sq*(Wk), lorsque / parcourt

l'ensemble des c(h) suites admissibles, de degré total h, sont linéaire-
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ment indépendantes dans Hk+h(Gk)\ si, en effet, il existait entre ces

classes une relation linéaire non triviale, on prendrait, dans cette relation,

le terme supérieur pour (jB) ; on en déduirait que ce terme peut
s'exprimer linéairement en fonction de termes strictement inférieurs pour
(R), ce qui est impossible.

Si l'on revient maintenant à l'interprétation des W{ comme fonctions
symétriques de k variables tm de degré 1, le lemme précédent prend la
forme :

Lemme 11.8/ Les classes Sq1^ t2 tk), où I parcourt Vensemble des

suites admissibles de degré total h < &, sont des fonctions symétriques des

ti linéairement indépendantes.
On a vu que la cohomologie H*(M(O(k)) ;Z2) s'identifie à l'idéal J

engendré par la classe W k dans //* (Gk ; Z2) ; or, par l'introduction des k
variables ti9 on obtient une base du groupe Hh(Ok) en formant tous
les monômes symétrisés:

r&r1 («"¦... (tr)ar w
où les entiers ai constituent une partition de l'entier h, et où on fait
pour la symétrisation S la convention classique : on ne prend du groupe
symétrique total à k variables que les permutations «essentielles» pour
le monôme (4), c'est-à-dire un système de représentants des classes du

groupe symétrique modulo le sous-groupe qui laisse invariant le monôme
(4) ; par exemple :

Si h Xi at est une partition (co) de h, et (4) le monôme associé, on
désignera par <5W un système de permutations essentielles pour (4) ;

toutes les fois que le signe Z apparait, dans les calculs, devant un monôme
tel que (4), la sommation doit s'effectuer suivant un système de permutations

essentielles, sauf convention contraire explicitement énoncée.
On obtiendra une base pour la dimension (k + h) de l'idéal J en multipliant

par W k tt - t% • tk les éléments de la base (4) ; on obtient
ainsi tous les monômes symétrisés :

En effet, toute permutation essentielle pour le monôme (4) est essentielle

pour le monôme (5), et réciproquement.

Définition. Soit P un polynôme par rapport aux variables t€ ; on
dira que la variable tn est une variable dyadique du polynôme P, si
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tn figure dans tous les monômes de P sous un exposant nul ou de la
forme 2m.

Lemme H.9. Si tn est une variable dyadique du polynôme P, tn
est également variable dyadique du polynôme Sq% P.

On sait, en effet, que Sqa(tn)m \\ (L)m+a
\a\

Or, si m est non nul, et est une puissance de 2, le coefficient binomial
[m\ (p)
\ 1 est nul, sauf pour a 0 ou a m; (en effet, j } 1 mod 2,
l») lî)
si et seulement si le développement dyadique de p contient celui de q,
cf. Whitehead-Steenrod [26]). Dans ces conditions, le nouvel exposant
m + a est encore une puissance de 2.

Définition. Dans un monôme (ti)ai{t2)a* (tr)ar9 appelons facteur
non dyadique, le sous-monôme constitué de toutes les variables qui ne
sont pas dyadiques ; on désignera par u le nombre de ces variables, par v
leur degré total. On introduit entre monômes en (t{) une relation de
préordre (Q) ainsi définie : le monôme X est dit supérieur au monôme Y pour
(Q), si u(X)}u(Y), et, si pour u(X) u(Y), on a v(X)(v(Y).

Cela étant, pour tout h < &, formons les classes :

i(1)(2r.. (tr)ar+1 • tr+1 ...th (6)

où co { ax a2 ar} parcourt l'ensemble des partitions de l'entier h
en entiers dont aucun n'est de la forme 2m — 1 (partitions non dyadiques
de h) ; on désignera par d(h) le nombre de ces partitions.

Pour toute dimension m ^h, formons les classes:

XI, Sq1 Xr * ,Sq*XZ-\..., Sq1» XhWh Sq1 Wk (7)

où les SqIh parcourent toutes les suites admissibles de carrés itérés
de degré total (m — h), et où (oh parcourt l'ensemble des d (h) partitions

non-dyadiques de h, définies en (6).
Je dis que toutes les classes du tableau (7) sont linéairement indépendantes.

En effet, prenons dans chacun des développements de Sq1 X^, ceux
des monômes qui sont supérieurs pour (Q) ; je dis qu'ils forment le
développement de:

a, (ya*+1
• • •

où la sommation E a lieu suivant le système ©„ des permutations essen-
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tielles pour le monôme (6) associé à la partition o. En effet, tout monôme
du développement de:

K+1...tk
est nécessairement d'indice u ^r, car, d'après le Lemme II.9, les
variables (tr+1, tk) sont des variables dyadiques ; si l'on a u r,
deux cas sont possibles: ou le monôme provient du développement de:

# ^ar+1 SqI {tf+i y (9)

et alors v u + A, ou il appartient à un terme provenant par carrés
successifs du facteur non dyadique (£1)ai+1(£2)<l2+1 (tr)ar+1, et, en ce

cas, l'indice v est nécessairement strictement plus grand que r + h;
c'est dire que les termes de (9) sont tous supérieurs pour (Q) à tout autre
terme du développement de Sq1 X^- D'autre part, le terme (9) ne peut
disparaître du fait de la symétrisation effectuée en (8). En effet, toute
permutation des ti essentielle pour le monôme (6) est essentielle pour son
facteur non-dyadique (tî)ai+1 (t2)a2+1 • • • (tr)ar+1> Qui est aussi le facteur
non-dyadique du terme (9) ; donc, les transformés de (9) par des permutations

de Sa, contiennent des facteurs non-dyadiques tous différents,
et leur somme ne peut être nulle, si (9) n'est pas nulle.

Comme un terme ne peut s'exprimer en fonction linéaire de termes qui
lui sont strictement inférieurs pour la relation (Q), il en résulte que les
seules combinaisons linéaires non triviales entre classes de (7) ne peuvent
contenir que des classes Sq1 X^, dont les termes supérieurs pour (Q)

ont même indice u r, et même indice v r + h, donc même valeur
pour h ; de plus les partitions co de h figurant dans les X1^ de cette relation

ne peuvent être différentes, car alors les termes supérieurs pour (Q)
des développements des Sq1 X^ ont des facteurs non-dyadiques tous
différents, et leur somme ne peut être nulle. Reste donc comme seule

possibilité une relation linéaire de la forme 27X cA Sq1* X^ 0, relative
à une seule classe X1^

Ecrivons les termes supérieurs pour (Q) de cette relation :

2:» cx (ttr+%r+i... (trrr+isq^ («f+1... g 0.

Extrayons de cette somme tous les termes contenant le monôme
(^)ai+1(f2)a2+1 (tr)ar+1 en facteur; si l'on fixe ce facteur non-dyadique,
Sw se réduit à l'identité, et il reste :

tf+i y 0

Mais on a vu, d'après le Lemme II 8', que toutes les classes
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Sq*(tr+1 tk) sont linéairement indépendantes, pourvu que m — h,
degré de /, ^ k — r. Mais on a évidemment h ^ 2r, de sorte que cette
inégalité est satisfaite pour tout m ^ k. Donc les constantes cx sont
nulles, et il n'existe entre les classes du tableau (7) aucune relation linéaire
non triviale.

Le rang de Hk+m(M(O(k))) ou rang de l'idéal J, est égal à p(m),
nombre total de partitions de l'entier m. Or les classes du tableau (7)
sont en nombre égal à Zh<mc(m — h)d(h)

Il est aisé de vérifier l'égalité:

p(m) Hh^mc(m - h) d(h)

En effet, à toute partition de m, on peut associer un couple de deux
partitions : l'une de (m — h), constituée uniquement des entiers de la
forme 2n — 1 ; l'autre de h, formée des autres entiers. Il en résulte que
les classes du tableau (7) constituent une base de Hk+m(M(O(k)))

Associons à chaque classe X^ une application

Fm:M(O(k)) -

telle que, si F* désigne Fhomomorphisme induit, on ait: JP*(*)

X^', l'ensemble des Fœ définit une application F de M{O(k)) dans
le produit:

Y K(Zt9 k) x K(Z%, k + 2) x (K(Z%9 k + *))«*>

+ ...(K(Zt92k))*<*> (10)

Dire que les classes de (7) forment une base de Hk+h(M(0(k))) c'est
dire que l'homomorphisme F* induit par F est un isomorphisme de

Hk+m(Y\Z%) sur Hk+m(M(0(k))) pour tout m<&. En coefficients
mod p,py2, la cohomologie de Y est nulle, celle de M(0(k)) est
nulle pour toute dimension < 2k; F* est donc ici encore un isomorphisme

sur pour toute dimension < 2k, et est biunivoque pour la dimension

2k. On pourra donc appliquer aux espaces M(0(k)) et Y le
théorème II.6. Cela nous donnera:

II existe une application inverse g du 2&-squelette de Y dans M(O(k))
telle que g oF identité sur le (2k — l)-squelette de M(0(k))
Donc:

Théorème 11.10. L'espace M(0(k)) a même 2k-type d'homotopie
que le produit Y de complexes d'Eilenberg-Mac Lane défini en (10).

CorollaireII.il. Le groupe d'homotopie stable 7zk+h(M(O(k))) h<k
est isomorphe à la somme directe de d(h) groupes Z%.
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En prenant la restriction de l'application inverse g au premier facteur
de 7, on obtient :

Corollaire 11.12. Il existe une application g du 2k-squelette de

K(Z2,k) dans M(O(k)) telle que g*(U) i, classe fondamentale de

K(Zt9k).
Comme toute classe u eHk(A ;Z2) d'un espace A est l'image de la

classe fondamentale i dans une application / : A -> K(Z2, k), on obtient :

Corollaire 11.13. Toute classe de cohomologie mod 2 de dimension k
d'un espace de dimension ^ 2k, admet une réalisation orthogonale.

7. Etude de M(O{k)) pour les petites valeurs de k.

k 1. L'espace des 1-vecteurs non orientés n'est autre que l'espace
projectif réel de très grande dimension PR(N) ; l'espace fibre universel
associé A0(x) n'est autre que le «mapping cylinder» du revêtement à
deux feuillets SN -> P R(N) ; si, dans ce complexe A0(^, on identifie
en un point la sphère-bord 8N, on obtient pour complexe M(O(l))
l'espace projectif réel PB(N + 1); ici, les complexes K(Z2il) et
M(0(1)) sont tous deux réalisés par l'espace projectif réel de grande
dimension PjR(oo), et toute classe de cohomologie mod 2, de dimension 1,
admet une réalisation orthogonale.

k 2. La cohomologie de MO(2) admet la description suivante:

En dimensions 2, la classe fondamentale U, définie mod 2.

En dimension 3, la classe entière Sq1 U U • Wx.

En dimension 4, une classe entière X — cup-carré de la classe fondamen¬
tale de M(8O{2)) — dont la réduction mod 2 est U2.
et une classe mod 2, définie par U • (W^f.

En dimension 5, une classe entière d'ordre 2, Sq^U • (T^)2)
U (WJ*

et une classe mod 2 U2 • Wx.

Dans l'application canonique .F : Jf(0 (2)) -> K(Z2, 2), on a, en
coefficients mod 2:

F*(i) U;F* (Sq11) U • WX\F* (Sq2 i) U2 ; #* (Sq2 Sq11)

--=8q2(U - Wx) U2 • Wx + U • (WJ* ; F*(i - Sq1 *) U2 • Wt

On considère, comme pour le théorème II.6, le «mapping cylinder»
de l'application F, qu'on notera encore K; K contient M(0(2)) -noté M
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pour simplifier — comme sous-ensemble fermé. La suite exacte associée
à l'injection F : M -> K, donne alors :

Hr(K, M ; Z9) 0 ; r < 5 ; H5(K, M;ZP) Zp pour tout premier p.

On en déduit, par dualité:

Hr(K, M ; Zp) 0, r < 5 ; ^(JT, Jlf ; Zp) Zp pour tout premier p.

La formule des coefficients universels donne alors :

Hr(K,M;Z) 0,r(5; H6(K,M;Z) Z.

Par application du théorème d'Hurewicz relatif, on obtient: 7t4K, M) 0 ;

n5(K,M)=Z, d'où tzz(M) 0, nA(M) Z

Si l'on cherche à former une application G inverse de F au point de vue
de l'homotopie, on pourra définir G sur le 4-squelette de K; mais le

prolongement de G au 5-squelette de K(Z2, 2) est interdit par une
obstruction, à valeurs dans 7tà (M) Z. Conformément à la théorie générale
de la seconde obstruction [14], cette classe-obstruction de H5(Z2, 2 ;Z)
n'est autre que l'invariant d'Eilenberg-Mac Lane associé au second groupe
d'homotopie non nul né (M) ; elle engendre le noyau de l'homomorphisme
F* : H5 (Z2, 2 ; Z) -* H5 (M;Z)

Déterminons cet homomorphisme: le groupe H5(Z2,2; Z) est cyclique
d'ordre 4 ; il est engendré par l'élément (\) ôp(i), image par l'homomorphisme

de Bockstein J • ô du carré de Pontrjagin p(i) de la classe
fondamentale e. Le groupe H5(M;Z) est cyclique d'ordre 2, et il est
engendré par la classe Sq^U • (TFi)2) dont la réduction mod 2 est
U - (TTi)3. Par l'homomorphisme F*, le générateur du premier groupe
est appliqué sur le générateur du second. Il suffit évidemment de le vérifier

sur leurs réductions mod 2. Calculons (J)<5pM, réduit mod 2;
soit u un cocycle de la classe i, v (J) ô (u) un cocycle de la classe

Sq11. L'expression du carré de Pontrjagin est : p (u) u w u + u ^ du,
d'où, par application de la formule du cobord:

ôp(u) du ^> u -\- u ^-> du -\- du ^>xàu -\- u >~> au — eu ^>*u

d'où, après division par 4:

i • ^pW w v v + v ^ !# ; réduisons mod 2

i. Sq1i + 8q* Sq11
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L'image par F* de la classe précédente est:

U2 • Wx + U2 W1 + U [Wtf U

qui est bien le générateur de H5 (M ; Z), réduit mod 2.

Comme cette classe est d'ordre 2, la classe (J) (5p(fc) est appliquée par
F* sur 0 ; c'est l'obstruction cherchée. (On observera que cette classe

est d'ordre 2, mais sa réduction mod 2 est nulle, ce qui explique qu'on
ne puisse l'exprimer à l'aide de Sq1.) On obtient ainsi:

Théorème 11.14. Pour qu'une classe x eH2(A; Z2) d'un espace A de

dimension 5 admette une réalisation orthogonale, il faut et il suffit que la
classe (|) • ôp(x) soit nulle, ou p(x) désigne le carré de Pontrjagin
de la classe x.

Une condition nécessaire pour qu'il en soit ainsi est qu'il existe une
classe X eH*(A ; Za), telle que Sq2 Sq1 x + x • Sq1 x Sq1 X.

le 3. On compare Jf(O(3)) au produit Y de complexes d'Eilen-
berg-Mac Lane défini au théorème général II. 10. On constate que jF* est
un isomorphisme pour les cohomologies, non seulement jusqu'en dimension

6, mais encore en dimension 7 ; par contre, l'isomorphisme est rompu
en dimension 8. Voici le détail des calculs :

En dimension 3: F*{i) U.
En dimension 4: F+iSq11) U • Wx.

En dimension 5: F*(Sq21) U - W2 et F*(X2) U • (WJ2 (nou¬
veau générateur).

En dimension 6: F*(Sq* i)=U2; F*(Sq2 Sq11) U • (W2 W1 +
F*(Sq1X2) U • (Wt)K

En dimension 7: F*(t • Sq11) U2 • W± ;

U • (W2 • (W,)2 + (WJ*)

On a en dimension 7 deux nouveaux générateurs F*(X*) U • (Wj)*
et F^(X22) U • (W2)2 ; en dimension 8, l'isomorphisme n'a plus lieu
à cause de la relation: F*(Sq* X2 + (Sq11)2 + Sq1 Z4) =0. Nous
pouvons donc affirmer (Th. II.6):

Théorème II. 15. Toute classe de cohomologie de dimension 3, à coefficients

dans Z2, d'un espace de dimension <^ 8 admet une réalisation
orthogonale.

Remarque. J'ignore quelle est l'obstruction en dimension 8, qui est
d'ailleurs peut-être nulle.
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Terminons par une remarque générale : une application

g:K(Zt,k)-+M(O{k))
homotopiquement inverse de F : M(O(k)) ~» K(Z2, k) ne peut exister,
pour k > 1 ; en effet, comme me Fa fait remarquer J. P. Serre, la cohomo-
logie de K (Z2, k) est, pour k > 1, une algèbre de polynômes à une
infinité de générateurs; au contraire, la cohomologie de M(O(k)) est
— à un décalage dans la graduation près — isomorphe à celle de la grass-
mannienne Gk, donc de type fini. Pour une dimension assez élevée, le

rang de H*(Z2,k) finit par excéder celui de H*(M(O(k))) et le noyau
de F* n'est pas nul, ce qui montre l'inexistence de l'application g.
Donc, pour toute dimension k > 1, il existe des classes de cohomologie mod 2

gui, dans des espaces de dimension assez élevée y 2k, n'admettent pas
de réalisation orthogonale.

8. Etude de M(80(k))\ cas stable. Nous avons pu, au n° 6, donner
une description explicite du type d'homotopie «stable» de M{O(k))\
nous ne pourrons en faire autant pour M(80(k)); en effet, le type
d'homotopie de ce dernier complexe est beaucoup plus compliqué, en raison
notamment du fait suivant: pour M(O(kj) le complexe Y équivalent
était un produit topologique de complexes K(Z2, k) ; au contraire, pour
M(SO(k)) le complexe équivalent n'est plus un produit, mais un espace
fibre multiple, dont les fibres successives sont des K (Z2, r) ou des

K(Z,m) (peut-être même des K(ZP, n)\), et où les fibrations successives

sont en général non triviales. Aussi nous bornerons nous à ne
donner la description du complexe équivalent que pour les dimensions
k + i, où i < 7.

Définition du complexe «de Zilber» K. On sait que le complexe
K (Z, k + 4) est fibre d'un espace asphérique A, dont la base est le
complexe K(Z, k + 5) (cf. J. P. Serre [24]). Soit u la classe fondamentale
du complexe base K(Z,k -{- 5); il existe une application / du complexe
K(Z,k) dans K(Z,k + 5), telle que f*(u) Stl(i), où Sf3 désigne
le «cube de Steenrod» de dimension 5, qui définit une classe entière d'ordre
3. On désignera par K l'espace induit de l'espace fibre A par l'application

/ ; K est ainsi fibre sur K(Z,k), de fibre K(Z, k + 4) ; les seuls

groupes d'homotopie non nuls de K sont nh et 7tk+4, tous deux
isomorphes à Z; Vinvariant d9Eilenberg-Mac Lane k €Hk+h{Z,k\Z)
associé n'est autre que 8t\(t) ; pour qu'une application F d'un espace
M dans K, définie sur le (k + 4)-squelette de M, puisse être prolongée
à tout M, il faut et il suffit que le cube 8t\ de la classe x image par F*
de la classe i soit nul.
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Cohomologie du complexe K.

1. Cohomologie mod 2. Désignons par F3 l'application de K(Z, k)
dans lui-même, telle que (F3)*(t) Zi. L'espace fibre induit de K par
cette application n'est autre que le produit K(Z, k) X K(Z, k + 4),
car son invariant d'Eilenberg-Mac Lane n'est autre que (F3)*(Stl(i))
8tl(F3(i)) 8tl(3i) 0. Il existe donc une application 0 du produit
K(Z, k) x K(Z, k + 4) dans K, compatible avec la fibration en
complexes K(Z, k + 4), et qui se projette sur les bases K (Z, k) suivant
l'application Fz.

G induit un homomorphisme de la suite spectrale de cohomologie relative

à la fibration de K dans celle — triviale — relative au produit
K(Z,k) xK(Z,k + é)7).

0* est un isomorphisme pour les termes E2 de ces suite spectrales ;

si l'on remarque que (F3)* est un isomorphisme pour H*(Z, k;Z2),
on en déduit que la différentielle de Leray d2 du terme E2 de la fibration
de K est nulle, car elle est nulle dans le produit ; de même pour toutes les

dt successives, et ceci démontre: la cohomologie H*(K;Z2) est
isomorphe à celle du produit K(Z, k) x K(Z,k + 4).

2. Cohomologie mod p, p premier ^ 5. Le même raisonnement que
plus haut conduit à la même conclusion: H*(K ; Zp) est isomorphe à la
cohomologie du produit K(Z,k) x K(Z,k + 4).

3. Cohomologie mod 3. Il est ici nécessaire d'expliciter un fragment de
la suite spectrale relative à la fibration de K sur K(Z, k) ; désignons

par v la classe fondamentale du complexe fibre K(Z, k + 4). Par
construction même de K, v s'envoie par transgression (ici par la différentielle

d5) sur la classe Stl(i) ; comme les puissances de Steenrod
commutent à la transgression, la classe fibre 8t% v s'envoie sur 8t% o Stl(t)
8f(c) (à un coefficient non nul près). Il en résulte que la cohomologie
H*(K;Z3) admet les générateurs suivants: en dimension k, un
générateur, qui provient de i (et qu'on désignera encore, bien qu'indûement,
par t) ; en dimension k + 4, la classe 8tl(i) ; en dimension k + 8,
la classe Stl(i) ; en dimension k + 9, on aura un élément provenant de

8t\v, qui se trouve appliqué par transgression sur 8t\ o St\(i) 0.
Mais nous ne nous en préoccuperons pas.

Le complexe équivalent à M{SO(k)) Ce sera le produit Y du com-

7) Pour la définition et les propriétés de la suite spectrale associée à une fibration, on
se reportera aux articles de J. Leray J. Math, pures et appl., 29, 1950; pp. 1—139 et
169—213) ainsi qu'à J. P. Serre [24].
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plexe K défini plus haut par un complexe d'Eilenberg-Mac Lane
K(Z2,k + 5). Définissons maintenant l'application F : M(80(k)) -> Y.

Il existe une application / du (k + 4)-squelette de M(SO(k)) dansJT,
telle que /*(*) U; comme 8% U 0 (parce que M(80(k))
comme Gk, n'a pas de co-torsion d'ordre 3), l'application

f:M(SO(kj) -+K
se prolonge à tout le complexe M(SO(k)) ; par ailleurs, il existe une
application g : M(80(k)) -+K(Z2,k + 5), telle que si i' désigne la
classe fondamentale de ce complexe, on ait: g*(i') — U • W2 Ws.
L'ensemble des applications f et g définit l'application F : M(SO(k)) -> Y
cherchée.

Calculons l'homomorphisme F* induit par F, suivant les coefficients :

Calcul mod 2. On considère les dimensions k -\- i, où 0^i^8.
On désigne ici encore par v le générateur du facteur K(Z, k + 4)

dans K, définie dans l'isomorphisme

H*(K;Z.) « H*(Z, k\Z)® H*(Z, k + 4;Z,).
* 0;
% • 1 *

% — z,
i 3;
i 4;

i 5;

» 6;

i 7;

j 8;

F*(i) U

F*(0) 0.
F*(8q2i) U ¦ W2.

F*{8q3i) U ¦ Ws.
F*(Sqéi) =V -Wt.
F*{v) U • (Fa)8.
F*{Sq5i) =U -Wt.
F*(i') U ¦ W2W3.

Jw'ig^L' cT6;(îf2 }f4 + (ÏF3)* 4
^?(^Sf^t,) u ¦ ((Ws)3 + (W3f)
F*{Sq1ir) U ¦ (W3f.
F*(8q71) U • W7;
F*(Sq& Sq* i) U • (W6 W% + Wt W3

F*{Sq3v) U ¦ W^Wtf.
F*(8q21') U ¦ W2(WS + W3 W2)

F*(Sq*i)= U -Ws;
F*(8qa Sq* i) U ¦ (W6 W2 + W6 W3

F*(8q*v) U ¦ (W^WJ* + W2(W3)2

F*(Sqzc') U ¦ W6 W3;F*(SqiSq1i'

¦ (W2f)

+ Wt ¦ {W2)2)

+ (Tf2)4)

U-W2(W3)2.

48



On vérifie que, pour tout i ^ 8, les classes de H*(M(SO(k) ; Z2))
figurant dans ce tableau sont linéairement indépendantes ; de plus, pour
i ^ 7, les classes écrites forment une base pour Hk+i(M(80(k) ;Z2)) ;

donc, F* est un isomorphisme de Hk+i(Y) sur Hk^(M(SO(k))) pour
i ^ 7, et est biunivoque pour i 8.

Remarque. On a utilisé dans ce calcul la forme canonique des générateurs

de H*(Z, k;Z2) donnée par J. P. Serre [23]; il est clair qu'on
pourrait continuer le calcul plus loin, en introduisant deux générateurs
nouveaux en dim 8 correspondant aux classes («de Pontrjagin») (W2Y
et (W,f.

Calcul mod 3. Le facteur K (Z2, k + 5) ne donne rien ; on a seulement :

i 0\F*(i) U;i 4,F*(St*i) U • P4 ; i 8;F*{8%i)

Calcul mod p ; p 5

- 2P8) «)

Calcul mod p; p} 5.

i O;jF*(0 U;i é,F*(v) C/ • P4 ; i 8,P*(0) 0.

Il en résulte que pour tout corps de coefficients, P* est un isomorphisme
de Hk^(Y) sur Hk+i(M(S0(k))) pour i < 7, et F* est biunivoque
pour i 8. Comme F et M(80(k)) sont simplement connexes, on
peut appliquer le théorème II.6, ce qui montre que M(SO(k)) a même

(k + S)4ype que Y. Donc:

Théorème 11.16. Les groupes d'homotopie stables nk+i(M(S0(k))) sont

pour i < 7 ; 7tk+1 nk+2 7rfc+3 0 ; nk+± Z ; jrfc+5 Z2 ; 7rfc+6

Théorème 11.17. £a condition nécessaire et suffisante pour qu'une
classe de cohomologie entière x de dimension k, dans un espace de dimension
k + 8 où k y S, soit réalisable pour le groupe des rotations, est que la
classe entière Stl(x) soit nulle.

9. Etude de M(SO(k)) pour les petites valeurs de k. On se bornera dans
ce paragraphe à la détermination de la première obstruction pour une
application g : K(Z, k) -> M(80(k)) pour les valeurs de &<5. Il
apparaîtra que cette obstruction est donnée, comme dans le cas stable,

par le cube de Steenrod Stl(i) de la classe fondamentale.

8) Pour le calcul des puissances de Steenrod St%v U de la classe fondamentale U, voir
l'article de Borel- Serre [5] ainsi que Wu [35].
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i) k 1. M (80(1)) s'identifie au produit $°° x S1, dans lequel
une sphère de la forme S x t, est identifiée en un point. Ce complexe a
même homotopie que le cercle S1 ; or 81 est aussi une réalisation du
complexe K (Z, 1) ; donc, toute classe de cohomologie entière de dimension 1

est réalisable pour le groupe des rotations (qui est d'ailleurs, en ce cas, réduit
à l'unité).

ii) k 2. La grassmannienne O2 des 2-plans orientés est un espace
classifiant pour $0(2) SU(l) S1 ; elle s'identifie par suite à

l'espace projectif complexe de «grande dimension» PC(N); la structure

universelle sur (?2, soit ASOi2)9 s'identifie à un voisinage tubulaire
normal de PG(N) regardé comme hyperplan projectif de PG(N + 1);
par suite, l'espace M(80(2)) s'identifie à PC(N + 1) lui-même:
M(80(2)), tout comme K(Z,2), est réalisé par l'espace projectif
complexe de «grande dimension». Il en résulte: Toute classe de cohomologie
entière de dimension 2 est réalisable pour le groupe des rotations.

iii) k 3. i désignant toujours la classe fondamentale de K(Z, 3) ;

on sait que la classe 8tl(i) n'est pas nulle, et, on peut définir le complexe
«de Zilber» K, fibre sur K(Z, 3), de fibre K(Z,1), dont l'invariant
d'Eilenberg-Mac Lane k est 8tl(i). Comme précédemment, pour tout
premier p^LS, la cohomologie H*(K;Zp) est isomorphe à celle du
produit K(Z,%) x K(Z,1). On désignera par v la classe fondamentale
de ce dernier complexe ; en cohomologie mod 3, Hz (K ; Z3) est engendré

par une classe, image de i dans la fibration K -> JT(Z, 3), et qu'on
notera encore i ; H* Hh Jî6 0 ; H7 est engendré par St$(i) ; H8

est nul.
Puisque 8tl(U) 0, il existe une application F:M(80(3)) ->#,

et l'on a, pour l'homomorphisme F*:
Mod 2. F*(i) U;F*(8q2i) U - W2;F*(8qst) U - Wz

U*;F*(v) U • (ïF2)2;#*(i • 8q*i) C72 • W2.

Mod 3. JP*(t) U ; .F*(#^ e) U • P4 et rien avant la dimension 11.

ilfod p;p>5. F*(t) U;F*(v) £7 • P4 et rien avant la dimen¬
sion 11.

Il en résulte que jP* est un isomorphisme de !?*(#) sur H*(M (SO(3)))
pour les dimensions < 7, et est biunivoque pour la dimension 8, pour
tout corps de coefficients. Le théorème II. 6 montre que K et M($0(3))
ont même 8-type, et l'on en déduit :

Théorème 11.18. La condition nécessaire et suffisante pour qu'une
classe de cohomologie entière x, de dimension 3, dans un espace de dimension
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^ 8 soit réalisable pour le groupe des rotations est que la classe entière

Stl(x) soit nulle.

iiii) le 4. On construit ici encore le complexe de Zilber K, qu'on
compare à M(S0(4); l'application F : If (#0(4)) -> K donne Heu à

Fhomomorphisme: F*, défini, avec les mêmes notations que plus haut,
par:
Mod2. F*(l) U',F*(Sq*t) U • W2 ; F*(Sqz i)

U • W3;F*(SqU) U2.
F*(v) U • (Tf2)2 et rien en dimension 9.

Mod 3. F*(i) UiF+iSt* i) U - P4;F*(i2) C72 et rien avant la
dimension 12.

Mod p;p^5. F*(t) U;F*(i*) U2;F*(v) 17 • P4 et rien
avant la dimension 12.

Ici encore F* est un isomorphisme pour les dimensions ^ 8, et est

biunivoque pour la dimension 9. Donc M(80(é)) et K ont même 9-type,
ce qui donne:

Théorème H. 19. Pour qu'une classe de cohomologie entière x, de dimension

4, d'sm espace de dimension ^ 9, soit réalisable pour le groupe des

rotations, il faut et il suffit que 8tl(x) 0 en coefficients entiers.

10. Le théorème multiplicatif.

On donne dans ce paragraphe quelques théorèmes généraux sur les
classes réalisables pour le groupe des rotations. D'abord une condition
nécessaire :

Théorème 11.20. Pour qu'une classe de cohomologie entière x soit réalisable

pour le groupe des rotations, il faut que toutes les puissances de Bteen-

rod St2™^v~l)+1 x, p premier impair, soient nulles.
En effet, toutes les puissances de Steenrod #£2m0?~1)+1 U de la classe

fondamentale U de Jf(^O(A)) sont nulles, si p est un premier

impair, car la grassmannienne G k n'a pas de p-torsion pour p y 2

(cf. [3]). La démonstration du théorème suivant exigera plusieurs
Lemmes, sur les complexes d'Eilenberg-Mac Lane K(Z,n). D'abord
une définition:

Notation : On désigne par FN l'application — définie à une homotopie
près — de K(Z, n) dans lui-même, telle que F%{i) N - i.
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Lemme 11.21. Soit 0 ->(?' ->(¦? ->(?" -> 0 $me stuïe exacte de groupes
abéliens; supposons que les homomorphismes: (FN,)* : H*(Z,k;G') et

(FNn)*: H*(Z,k;G") soient nuls. Alors Vhomomorphisme (FN)*, où

N N' - N", annule H*(Z, h;G).
Ecrivons en effet la suite exacte de cohomologie induite:

/ 9
->Hr(Z,k;G')-> Hr(Z, k;G)->Hr(Z,k;G")->

Les homomorphismes / et g de cette suite commutent avec (Fm)*,
pour tout entier m. Soit x une classe de Hr(Z ,&;(?); formons F#,,(x) ;

on a: g(F^flt(x)) F%»(g(x)) 0 par hypothèse.
Donc Fx*(x) f(y), où y est une classe de Hr (Z, k ; G'). On forme

alors
F* (x) *•*, o J*.(») FUfM) f WUV)) / (0) 0

De là on tire le

Lemme 11.22. Si G est un groupe abélien fini d'ordre N, Vhomomorphisme

(FN)* annule H*(Z,k;Q).
Par décomposition de G en ses composantes p-primaires, il suffit,

grâce au Lemme précédent, de démontrer que (Fp)* annule H* (Z, k ; Zp)

pour tout premier p. Or ceci résulte immédiatement du fait, énoncé au
n° 6: H*{Z, k ;Zp) est engendrée par des p-puissances Stp itérées de la
classe fondamentale (t).

Lemme 11.23. Si G est un groupe abélien de type fini, et si tout élément

de Hr(Z,k; G) est d'ordre fini N, il existe un entier non nul m, tel que

(FJ* annule Hr(Z,k;G).
On décompose G en sa composante libre F et sa composante de torsion

T;ona alors: Hr(Z,k;G) & Hr(Z,k ;F) ® Hr(Z,k; T).
Tout élément de Hr(Z,k; F) est d'ordre N ; il est clair qu'il suffit de

démontrer le lemme pour Hr(Z,k;F), car Hr(Z,k;T) est justiciable
du lemme 11.22, puisque T est un groupe fini.

Formons alors la suite exacte:

o-* J^*1-* J" - o

où l'homomorphisme (N) est la multiplication par l'entier non nul N.
Puisque F est de type fini, F' est un groupe fini, d'ordre N'. Soit x
une classe de Hr(Z, k ; F), et soit g l'homomorphisme de la suite exacte
induite: {N

-+Hr(Z,k;F)-+Hr(Z,k;F)-+Hr(Z,k;F') ->
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On aura: g oF%,(x) F^,(g(x)) 0 d'après le lemme 11.22.
Donc F%, (x) est de la forme N • y,yeHr(Z,k;F), et est par suite

nul. Nous sommes maintenant en mesure de démontrer le lemme :

Lemme 11.24. Soit Y un espace, dont le kième groupe d'homotopie nk(Y)
a une composante libre isomorphe à Z, de générateur t. On suppose de plus
que tous les groupes d'homotopie nq(Y), où q ^ k, sont de type fini,
et tels que les groupes de cohomologie HQ+1(Z, k ; nq(Y)) soient finis. Il
existe alors une application Gn du n-squelette Kn de K(Z, k) dans Y,
qui applique le générateur de nk(K{Z, k)) & Z sur N(q,k) • t, où Ventier

non nul N (q, k) ne dépend que de k, q et Y.
Le ^-squelette de K(Z,k) peut être réalisé par une sphère 8k ;

l'application Gk:Sk -> Y est celle définie par l'élément t de 7ik(Y);
supposons Oq définie sur le g-squelette KQ de K(Z, k) ; le prolongement
de Gq au (q + 1)-squelette de K(Z, k) est en général interdit par une
obstruction, cocycle w' dont la classe appartient au groupe — fini par
hypothèse — HQ+1(Z, k ; nq{Yf). Formons alors l'application
Fm: K(Z,k) -> K(Z,k) associée par le lemme 11.23 au groupe fini
HQ+1(Z, k ; 7tq(Y)), et composons la avec Gq:

Fm Gq
K(Z,k)~>K(Z,k)->Y

L'application composée Gq o Fm est définie sur le g-squelette de

K(Z,k) ; elle définit sur le (q + l)-squelette5 un cocycle obstruction w,
dont la classe est donnée par la relation: w {Frn)'¥(w').

D'après le lemme II.23, cette classe est nulle ; c'est dire qu'on pourra,
après une éventuelle déformation, prolonger l'application Gq oFm au
(q -+- l)-squelette de K{Z,k), et définir ainsi Gq+1 ; et l'on aura:
N(q + 1, k) m • N(q, k), ce qui définit bien un entier non nul. Le
Lemme 11.24 est ainsi entièrement démontré.

On appliquera le lemme 11.24 à la grassmannienne Gk des i-plans
orientés pour k pair, ou, plus exactement, à l'espace universel Aso^k)

qui lui est homotopiquement équivalent. Rappelons que la cohomologie

H*(Gk), à coefficients réels, est une algèbre de polynômes, dont les
générateurs sont les classes de Pontrjagin PiL ,i < [k/2], et la classe
fondamentale Xk de dimension k. Il résulte alors de la £?-théorie de J. P. Serre

[22], qu'il existe un C^-isomorphisme entre la cohomologie de Gk et celle
d'un produit de complexes d'Eilenberg-Mac Lane de la forme :

K(Z, 4) x K(Z, 8) x X K{Z, k)
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£? désignant la famille des groupes finis. Par suite, les seuls groupes

d'homotopie non finis de Gk apparaissent pour les dimensions des gêné-

rateurs, soit ai et k ; on prendra pour élément t€7ik(Gk) le générateur
de la composante Z associée — non canoniquement, mais c'est sans
importance — au générateur de dimension k lié à la classe Xk ; c'est dire

que, dans l'application t:8k ->Gky on aura t*(Xk) N° • sk, où
N° est un entier non nul.

Les hypothèses du Lemme 11.24 sont alors vérifiées; en effet, le

groupe de cohomologie Hq+1(Z, k ; 7tq(Gk)) est de type fini, parce que le

groupe 7tq(Gk) est lui-même de type fini ; et tout élément y est d'ordre

fini: en effet, ou bien le groupe des coefficients nq(Gk) est lui-même fini,
ou, s'il est infini — ce qui arrive pour q 0 mod 4 —, le groupe
Hq+1(Z, k ; 7iq(Gkj) n'a que des éléments d'ordre fini, parce que tout
élément du groupe Hq+1(Z, k ; Z) est alors d'ordre fini.

On pourra ainsi définir, pour tout entier q > k, une application GQ

du g-squelette de K(Z,k) dans AS0(k)i donc dans M(80(k));
formons l'application composée:

G ^ h

U désignant toujours la classe fondamentale de M(BO(k)), on a, si k
est pair: h*(U) Xk, et par suite: G* o h*(U) N • i où l'entier

N, non nul, ne dépend que de q et k. Donc:

Théorème 11.25. Pour toute classe de cohomologie entière x, de dimension

k, d'un espace de dimension finie q, il existe un entier non nul JV,

ne dépendant que de k et q, tel que la classe multiple N • x soit réalisable

pour le groupe des rotations.

Remarque. Ce raisonnement s'appliquerait également en substituant
à la grassmannienne réelle Ok9 la grassmannienne complexe, et,
éventuellement, pour k 0 mod 4, le classifiant du groupe symplectique.
On obtiendra donc le même théorème, en substituant au groupe 80 (k)
le groupe unitaire (resp. le groupe symplectique), mais les coefficients N
seront alors plus élevés.

11, Enoncé des résultats. Nous sommes maintenant en mesure d'énoncer
les résultats acquis pour notre problème initial : réaliser une classe d'homo-
logie donnée d'une variété par une sous-variété ; grâce aux théorèmes

II.5 et 5', on est ramené à chercher si la classe de cohomologie corres-
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pondante admet une réalisation orthogonale, problème sur lequel les

théorèmes des n° 7—8—9—10 fournissent autant de réponses partielles.

i) Classes mod 2. Les théorèmes II. 13—5 donnent:

Théorème 11.26. Dans une variété différentiable Vn les classes des

groupes d'homologie mod 2 suivants sont réalisables par des sous-variétés :

Hn^(Vn) pour tout n;Hn_2(Vn) pour n < 6 ; Hn_3(Vn) pour
n < 8 ; H{( Vn) pour i < (n/2), et pour tout n.

On observera, dans le cas de Hn_2(Vn), que l'obstruction (1/2) • ôp(u)
du théorème 11.14, est nécessairement nulle sur la classe fondamentale
d'une variété F5 de dimension 5 : c'est trivial si F5 est orientable ; si
F5 n'est pas orientable, la classe fondamentale de HB(V5 ; Z) est un
Sq1, par suite, sa réduction mod 2 n'est pas nulle. Par contre, on ne
peut rien dire des classes du groupe H4(V6): c'est là l'exemple le plus
simple de groupe d'homologie pour laquelle la question de la réalisation

par des sous-variétés ne peut être résolue par les résultats ici énoncés.

ii) Classes d'homologie entières.

Les théorèmes 11.17—8—9 nous donnent:

Théorème 11.27, Sont réalisables dans Vn orientable par des sous-
variétés orientables, les classes des groupes suivants : Hn_x(Vn) ; Hn^{Vn)
pour tout n ; H{( Vn) pour i ^ 5, et tout n.

En effet, dans le cas limite H5(V8 ;Z), l'obstruction correspondante,
donnée par le cube de Steenrod 8tl(u), est une classe d'ordre 3, et est
donc nulle sur la classe fondamentale. De là on tire:

Corollaire 11.28. Toutes les classes d'homologie entière des variétés
orientables de dimension ^ 8 sont réalisables par des sous-variétés.

Ici encore, le cas le plus simple non décidé est donné par les classes du
groupe H9(V»;Z). (Cf. la note 9), qui suit.)

On notera encore, en conséquence du théorème 11.17: Pour qu'une
classe d'homologie de dimension 8 dans une variété de dimension > 17

soit réalisable par une sous-variété, il faut et il suffit que le cube St\
de la classe de cohomologie duale soit nul.

Enfin, les théorèmes «multiplicatifs» II.4 et 11.25 donnent:

Théorème 11.29. Pour toute classe d'homologie entière z d'une variété
orientable Vn, il existe un entier non nul N tel que la classe multiple N • z

soit réalisable par une sous-variété.
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Ce théorème admet un corollaire intéressant en cohomologie réelle
ou rationnelle :

Corollaire 11.30. Les groupes d'homologie à coefficients réels ou rationnels

d'une variété orientable Vn admettent pour bases des systèmes
d'éléments représentés par des sous-variétés.

Remarques. Il ne faudrait pas croire que toute classe d'homologie
entière d'une variété peut être réalisée par une sous-variété ; nous verrons
au Chap. III l'exemple d'une classe de dimension 7 (dans une variété de
dimension 14) qui n'est pas réalisable ; on montrera, que, pour toute
dimension ^ 7, il existe des classes entières non réalisables dans des

variétés de dimension arbitrairement grande. J'ignore s'il existe des
classes de dimension 6 non réalisables.9)

Si deux classes z et z' sont réalisables, il ne s'ensuit pas que la classe

z + z' est réalisable ; cette propriété n'est exacte — en général — que
si la dimension des classes z et z' est inférieure strictement à la moitié
de la dimension de la variété. Par contre, l'intersection de deux classes

réalisables est réalisable. C'est là une conséquence presque immédiate
du théorème 1.5.

Nécessité des hypothèses de différentiabilité. Toute la théorie ici
présentée repose de façon essentielle sur la structure difïérentiable de la
variété ambiante et des sous-variétés plongées ; on peut montrer cependant
que, dans le cas du problème de la réalisation des classes mod 2 certaines
conditions tirées du théorème II. 1 ont une signification topologique
intrinsèque. Par exemple: Soit F : M(O(k)) ~> K(Z2i Je) l'application
canonique, telle que F*(i) U; soit c T(i) une classe de

jff* (Z2, Je ; Z2) qui appartient au noyau de F (T désigne ici une somme de

cup-produits de Sql itérés) ; il est clair que, pour qu'une classe de
cohomologie x eHk(Vn) corresponde à la classe d'une sous-variété différen-
tiablement plongée, il faut que T(x) 0. Or on peut montrer que si

T(x) n'est pas nul, mod 2, la classe correspondante k x ne peut être
réalisée, même par une sous-variété topologiquement plongée. J'ai montré
en effet dans [27] qu'à toute sous-variété topologiquement plongée, on
peut associer des classes caractéristiques normales généralisées Wl ; ces

classes ont les mêmes propriétés formelles que les classes de Stiefel-
9) Par un calcul plus poussé, j'ai pu montrer que toute classe d'homologie entière de

dimension 6 est réalisable; l'obstruction correspondante, définie par l'homomorphisme
St%; Hn~® (Vn; Z) -> Hn~l{Vn;Z) est identiquement nulle. De même les résultats des
théorèmes II. 18 et 19 peuvent être améliorés; dans le corollaire II. 28 la limite 8 peut
être remplacée par 9. Le premier cas à décider est celui du groupe H7 (F10; Z).
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Whitney de la structure des vecteurs normaux à une sous-variété diffé-
rentiablement plongée, et satisfont notamment aux formules (3) de Wu
(qui se démontrent alors à l'aide des relations d'Adem [1] entre 8q{
itérés). A toute opération telle que T, augmentant la dimension de i
unités, on peut associer un polynôme en W3, de poids total i. Si la
classe T (i) appartient au noyau de F, ce polynôme est identiquement
nul; il en résulte que T{x) doit être nul, d'où une contradiction. On

pourra conduire explicitement les calculs sur l'exemple suivant, qui m'a
été indiqué par J. P. Serre: Si i est la classe fondamentale de K(Z2, 2),
prendre T(i) (Sq2 Sq11) • t2 + (Sq11)3 + Sq11 ¦ *3

CHAPITRE III

Sur un problème de Steenrod

1. Enoncé du problème. N. Steenrod a, dans [12], posé le problème
suivant : étant donnée une classe d'homologie z e Hr (K) d'un polyèdre
fini K, existe-t-il une variété Mr compacte, et une application / : Mr -> K,
telle que z soit l'image par /* de la classe fondamentale de la variété
MT\ Nous supposerons ici encore que la variété Mr considérée est
différentiable. Comme on le verra, la réponse est très différente, suivant
le groupe de coefficients (Z ou Z2), qui sert à définir la classe d'homologie

donnée z. Ce problème est en rapport étroit avec le problème du
Chapitre II sur la réalisation des classes d'homologie de variétés par des

sous-variétés. Nous allons préciser ce rapport.

2. Définition: Variétés associées à un polyèdre fini K. Soit K un
polyèdre fini, de dimension n ; K peut toujours être plongé rectilinéai-
rement dans un espace euclidien Rn, où n ^ 2m -{- l ; on peut alors
définir — par exemple, comme solution d'un problème de Dirichlet —

une fonction numérique nulle sur K, strictement positive et de classe C00

sur le complémentaire Rn — K. Puisque K est un rétracte absolu de

voisinage, il existe un voisinage ouvert U de K, et une rétraction
r : U -> K. Soit c une valeur régulière de la fonction /, assez petite pour
que l'image réciproque f~x (0, c) soit tout entière contenue dans U
(il en existe, d'après le Théorème 1.1). Dans ces conditions, l'image
réciproque /-1 (0, c) est une variété à bord Mn, dont le bord régulier
différentiable Tn~x est l'image réciproque /~1(c) K est rétracte, par la
restriction de la rétraction r, de la variété à bord Mn.
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Remarque. S'il n'existait dans l'intervalle [0,c] aucune valeur
critique de la fonction /, on pourrait affirmer, de façon plus précise,

que K est un rétracte par déformation de la variété à bord Mn : la
déformation Mn -> K serait alors définie grâce aux trajectoires intégrales du
champ de vecteurs défini par le gradient de / ; mais je ne sais si on peut
exclure pour la fonction / la possibilité d'admettre des valeurs critiques
arbitrairement petites.

Etant donnée la variété à bord Mn, on peut en déduire, par la
construction classique du «dédoublement» (Verdoppelung) une variété
compacte Vn : on prend deux exemplaires isomorphes de Mn qu'on identifie
le long de leur bord commun Î7n~1 ; on désignera par g : Mn -> Vn

l'injection, et par h : Vn -> Mn l'application définie par le passage au
quotient quand on identifie les deux composantes M\ et M\. Une
variété telle que Vn sera appelée variété associée au polyèdre fini K.
Il est clair que K est un rétracte de toute variété associée, et par suite
l'application r oh: Vn ->K induit, pour tout groupe de coefficients, un
homomorphisme A* o r* : Hr(K) -> Hr(Vn) qui est biunivoque. En effet,
si on désigne par i l'application identique de K dans Mm, l'application
r oh est inverse de l'application g o i. Un voisinage à bord différen-
tiable régulier tel que Mn sera appelé voisinage associé à K. Nous avons
alors le théorème, qui donne le rapport entre les questions des Chapitres
II et III:

Théorème III. 1. Pour qu'une classe d'homohgie z eHr(K) soit Vimage
d'une variété différentiable compacte, il faut et il suffit que la classe z

puisse être réalisée par une sous-variété dans un voisinage associé à K,
de dimension assez grande.

Il est immédiat que la condition est suffisante : si, en effet, la classe z

est réalisée dans le voisinage Mn par une sous-variété compacte Wr, z

est l'image de la classe fondamentale de Wr par l'homomorphisme r*
induit par la rétraction r : Mn ~> K.

La condition est nécessaire. Supposons que z soit l'image, par une
application / de la classe fondamentale d'une variété différentiable compacte
Wr. Donnons-nous alors:

a) un plongement régulier différentiable de Wr dans un R11, soit g.

b) un plongement rectilinéaire de K dans un R™, soit i.
Désignons par Y le «mapping cylinder» de l'application donnée / ;

soit (x,t) le point de F qui, pour tout point # de Wr9 divise le segment
[/(#), x] pris dans cet ordre dans le rapport £(0 ^ t ^ 1).
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Soit enfin a un paramètre réel > 0. On définit un plongement Fa
de Y dans l'espace euclidien jR^+wh-i & Rn x Rm X R par la formule:

Fa(x, t) (atg(x), (1 — t)i o f(x), at)

et pour tout point y de K

Soit M un voisinage associé au plongement de K dans Rn+m+i défini

par jP0 (jSl Par raison de compacité, il existe une valeur c du paramètre a
assez petite pour que, si a <( c, l'espace image Fa F) soit tout entier
contenu dans M. Dans ces conditions, l'image ,Fa(TFr, 1) est une sous-
variété de M, et sa classe fondamentale appartient à la classe k(z),
image de z par l'injection k; K -> M définie par Fa. Le théorème

III. 1 est ainsi entièrement démontré.

3. Application: Cas des coefficients mod 2. Toutes les fois qu'on
pourra réaliser la classe k (z) par une sous-variété dans la variété associée

Vn, on pourra résoudre affirmativement le problème de Steenrod. C'est
précisément le cas lorsque les coefficients sont les entiers mod 2. En effet,
la dimension n de la variété associée peut toujours être prise plus grand
que 2r, de sorte qu'on peut appliquer le théorème 11.26. Ceci nous
donne:

Théorème III. 2. Toute classe d'homologie mod 2 d'un polyèdre fini est

l'image de la classe fondamentale d'une variété différentiable compacte.

En coefficients entiers, le théorème 11.27 donne:

Théorème III.3. Toute classe d'homologie entière de dimension ^ 5

d'un polyèdre fini est l'image de la classe fondamentale d'une variété orientable

compacte.

Le théorème II. 29 nous donne le théorème «multiplicatif» :

Théorèmes III.4. Pour toute classe z de dimension p d'homologie entière

d'un polyèdre fini K, il existe un entier non nul N, ne dépendant que de p,
tel que la classe multiple Nz soit l'image de la classe fondamentale d'une
variété différentiable compacte.

Pour obtenir des résultats plus précis dans le cas des coefficients
entiers, on va introduire dans l'homologie de K de nouveaux opérateurs.

4. Les opérateurs #f. Soit toujours K un polyèdre fini, plongé (topo-
logiquement) dans Rm ; formons la limite projective des cohomologies à

supports compacts des voisinages ouverts de K dans Rm, soit H*(U).
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La dualité de Poincaré donne alors (cf. [27] Théorème III.4) un iso-
morphisme % de Hr(K) sur H^'r(U), pour tout groupe de
coefficients.

A toute puissance de Steenrod d'indice i pair Stlp10), on associe

l'homomorphisme 0f : Hr(K ; Zp) -> Hr_t(K ; Z), défini par la relation:

On définira les opérateurs êp correspondant aux 8tp d'indice i
impair directement par la formule :

où #f désigne l'homomorphisme de Bockstein \/p*à (ceci afin d'éviter
des complications de signe, dues au fait que l'opérateur Stp ne commute
pas à la suspension).

Ces opérateurs #f ont les propriétés suivantes, démontrées dans [27]
pour le cas p 2, mais qui s'étendent sans difficultés au cas p > 2 :

i) Ce sont des invariants topologiques, indépendants de l'immersion de

K dans l'espace euclidien.

ii) Dans toute application / : K -> K', #f commute avec l'homomorphisme

/* induit par /.

iii) Sur le corps Zp, les opérateurs $\ peuvent être déterminés en
fonction des Stlp ; si #f applique Hr(K) dans Hr_l(K), désignons par
Q* l'homomorphisme dual, qui applique Hr~l (K ; Zp) da,ns Hr(K ; Zp).
Alors les Q* d'indice pair s'expriment en fonction des Stp par les
formules :

S% Qp"1 Stlp O m, i 0 mod 2 (p — 1) #° identité.

La démonstration de cette formule est en tout point analogue à celle de la
formule (60) Th. III.23 de [27]. Les Ql d'indice impair s'obtiennent à

partir des Q% pairs par la relation, transposée des ^ :

Qpr+1 Q2p o Qp où Qp désigne l'homomorphisme de Bockstein

1/p'ô, suivi de la réduction mod p.
Par exemple, on aura:

Q\ - #*34 ; Ql - - stloQl stt sti.
10) On suppose ici les puissances de Steenrod Stp '**" ' munies du coefficient norma-

lisateur introduit par J. P. Serre dans [5], où St^^1^ est notée Pp Les puissances d'indice

impair se déduisent des puissances d'indice pair Pp par l'homomorphisme de Bock-
stem l/p ô.
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Revenons maintenant au polyèdre K, plongé dans une variété associée

Vm; si z est une classe de Hr(K;Z), la classe x(z) €Hm-r(U;Z) a
dans Hm~r(Vm) une image canonique u qu'on dénotera encore %{z)\u
n'est autre que la classe de cohomologie qui correspond à la classe d'homo-
logie i* (z) € Hr Vm) par la dualité de Poincaré ; comme i# : Hr (K) ->
Hr(Vm) est biunivoque, % : Hr(K) -+Hm-r(Vm) l'est aussi. Et l'on a

par définition:
st; X{z) ± xipm) ¦

On sait que, pour que la classe d'homologie i* (z) soit réalisable dans Vm

par une sous-variété, il faut que toutes les puissances St^(i, p impairs)
de la classe de cohomologie correspondante % (z) soient nulles (Th. II. 20).
Ceci nous donne:

Théorème III.5. Pour qu'une classe d'homologie entière z d'un polyèdre
fini soit l'image de la classe fondamentale d'une variété différentiable
compacte, il faut que toutes les classes entières #? (2), p, i impairs, soient nulles.

Cette condition est suffisante pour les classes de dimension ^ 8 ;

en effet, le théorème II. 17 donne :

Théorème III.6. Pour qu'une classe d'homologie entière z de dimension

< 8 d'un polyèdre fini soit l'image de la classe fondamentale d'une variété
orientable différentiable compacte, il faut et il suffit que la classe entière

i%{z) soit nulle.
Pour r ^ 5, on retrouve le résultat du théorème III.3. Considérons

le cas r — 6; la classe &l(z) est une classe de HX{K\Z), d'ordre 3.

Si elle n'est pas nulle, il existe un entier m (multiple de 3), et une classe
de cohomologie u eHx{K \Zm) dont le produit scalaire avec &l(z)
n'est pas nul.

Soit / l'application canonique de K dans K(Zm, 1), telle que /*(t)
u, i désignant toujours la classe fondamentale de K(Zm, 1). Ecrivons
alors le diagramme commutatif :

H,(K;Z)

Or, le groupe H6 (Zm, 1 ; Z) est nul, comme il ressort de la détermination

connue [11] de Thomologie des groupes cycliques ; donc /*(#|(z)) =0,
et le produit scalaire &\ (z), u est nul. Comme ceci est vrai pour tout
entier m, on en déduit que la classe entière #5(2) est nulle. Donc:
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Corollaire III. 7. Toute classe d'homohgie entière de dimension 6 d'un
polyèdre fini, est Vimage de la classe fondamentale d'une variété différen-
tiable compacte.

Nous allons montrer que ce résultat ne peut être amélioré ; dans ce

but, énonçons d'abord un lemme sur les complexes d'Eilenberg-Mac
Lane:

Lemme III.8. La classe StlStl(t) du complexe K(Zz,r) n'est pas
nulle dès que r ^ 2.

Observons d'abord que, si la classe Stl 8tl(i) n'est pas nulle pour la
valeur r n, elle n'est pas nulle dans tous les complexes K(ZZ, m)
où m y n, à cause de la suspension ; il suffit par suite de montrer que
Stl 8tl(i) n'est pas nulle dans K(ZZ, 2) ; il en est effectivement ainsi ;

mais, comme il est assez délicat de le voir directement, il est plus
commode de substituer au complexe K(ZZ, 2) un produit de deux complexes
K(ZZ9 1). Désignons par vly resp. v2 leurs classes fondamentales, par
t^ St\ v1, resp. u2 8t\ v2 les générateurs de H2(ZZ, 1 ; Zz) dans
les deux complexes. On a alors :

v2) StlStUu, • v2 - vx • u2) Stl^f v2 - (u2f
3 f t* 0

Le lemme est ainsi démontré. Puisque la classe entière

n'est pas nulle, on en déduit, par dualité, qu'il existe une classe

z c Jffr+6(Z3, r ; Z) dont le produit scalaire avec la classe Stl $4(0 n'est

pas nul (mod 3). C'est dire que < z, Ql(i) > ^ 0 donc < #§(z), * > # 0

et &l(z) yéz 0. Nous avons ainsi démontré:

Théorème III.9. Pour toute dimension r > 7, il existe des classes

d'homologie entière de polyèdres finis qui ne sont l'image d'aucune variété
orientable différentiable compacte.

Un exemple. On réalise les complexes K(ZZi 1) par des espaces
lenticulaires ; il suffit ici de prendre des espaces V de dimension 7, quotients
de la sphère S1 par le groupe Zz qui y opère sans point fixe. On désigne
ici encore par vx, resp. v2 les générateurs de H1 (Lt ; Zz) resp. H1 (L2 ; Z3),

par ut St\vt, resp. u2 St\v2, ceux de H2(LX\ZZ) Te&ç.H2{L2\Zz)
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pour deux exemplaires Lx et L2 de L, et on forme la variété F14

produit de Lx par L2. Considérons alors la classe :

X ux • v2{u2f ~ vx - (u2f

C'est une classe entière, car X #4(vi * V2(^2)2) •

Désignons par z € H1( F14 ; Z) la classe qui lui correspond par la dualité
de Poincaré. Je dis que la classe ê\{z) n'est pas nulle mod 3 ; formons en
effet le produit scalaire :

Ce produit scalaire peut être remplacé par le cup-produit:

X • 84 8%{v± • v2) X • ((^)3 • wa - Vl • (w2)3) ^ • «,(«! • u2f ^ 0

ê\(z) n'est donc pas nulle, et la classe z n'est l'image d'aucune variété
différentiable compacte. A fortiori, z ne peut être réalisée dans F14 par
aucune sous-variété, ce qu'on vérifie en formant :

St\ X StKiurf • v2(u2f) K • u2f # 0

On pourrait donner de même des exemples de classes de dimension 7 non
réalisables par des sous-variétés dans des variétés de dimension arbitrairement

grande.

5. Les puissances de Steenrod dans la cohomologie d'une variété
différentiable. Soit Vn une variété différentiable compacte, et Vn) sa
classe fondamentale ; d'après le théorème III.5 dont c'est un cas
particulier, toutes les classes entières #f Vn), p premier impair, i 1

mod 2(p — 1) sont nulles. On en déduit par dualité:

Théorème III. 10. Dans toute variété orientable différentiable compacte
Vn, les homomorphismes Qlp : H71** Vn ; Zp) -> Hn Vn ; Zp) sont nuls
(p,i impaires).

Par exemple: Q\ St\ 8t\ : Hn~5(Vn) ->Hn(Vn ; Z8) est nul.

On retrouvera ces relations en exprimant que dans le produit Vn x Vn,
la classe diagonale est réalisable par une sous-variété à l'aide du théorème
II. 20. On remarquera que ces relations sont vérifiées non seulement dans
toute variété différentiable, mais encore, dans toute variété image par
une application de degré 1 d'une variété différentiable. Elles ne semblent
point provenir, cependant, de la dualité de Poincaré. D'où la question
ouverte: Ces relations peuvent-elles être établies pour une variété
topologique, sans hypothèse de différentiabilité?
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CHAPITRE IV

Yariétés différentiables eobordantes

Soit Vn une variété compacte orientable ; on dit que Jfn+1 est une
variété à bord de bord Vn, si les conditions suivantes sont remplies :

a) Le complémentaire Mn+X~ Vn est une variété (ouverte) de dimension
n + 1.

b) En tout point x de Vn il existe une carte locale, compatible avec les

structures difïérentiables données sur F et M, dans laquelle l'image
de Mn+1 est un demi-espace JRti+1 limité par un espace Rn image
de Vn.

Si la variété Mn+1 — Vn est orientable, alors le bord Vn est également
orientable, et toute orientation de Mn+1 induit canoniquement une
orientation de Vn ; il suffit pour cela d'introduire l'opérateur bord défini

par: ô:Hn+1(M^\ F») -+Hn{V").
On dira qu'une variété compacte orientée Vn est une variété-bord

s'il existe une variété à bord orientable compacte Mn+1 de bord Fn,
et si on peut munir M1l+1 d'une orientation qui induise l'orientation
donnée de Vn. Le présent Chapitre est consacré à la question suivante,
également soulevée par N. Steenrod dans [12]: Donner des conditions
nécessaires et suffisantes pour qu'une variété Vn donnée soit une variété-
bord. J'ai donné dans [27] un certain nombre de conditions nécessaires

pour qu'une variété soit un bord, ou un bord mod 2 (sans condition
d'orientabilité) ; par une généralisation convenable du problème, il nous
sera possible d'aborder la question des conditions suffisantes.

Définition. Variétés eobordantes.

Deux variétés compactes F, F' de même dimension k, orientées,
seront dites eobordantes (notation F~ F'), si la variété V — F',
réunion de la variété V et de la variété F dont on a renversé l'orientation,

est une variété-bord.
Si F et V sont eobordantes à une même variété V", alors F et V

sont eobordantes entre elles, comme le montre une construction géométrique

très simple (identifier le long de V" les deux variétés à bord qui
définissent V~V" et V'~V"). L'ensemble des variétés de dimension

k, compactes et orientées, se trouve ainsi partagé en classes
d'équivalence ; on notera [ F] la classe de la variété F.

On peut définir entre ces classes une loi d'addition commutative, en
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posant [F] + [F'] [F ^ F'] ; —V désignant la variété F dont on a
renversé l'orientation, on aura [F] + [— F] 0, où la classe 0 est la
classe des variétés-bords; en effet, V ^(—V) est le b&rd du produit
F X /. L'ensemble des classes [F] des variétés de dimension Je forme
ainsi un groupe abélien qu'on dénotera Qk (groupe de cobordisme de
dimension k).

Si F est cobordante à F', on vérifie immédiatement que, pour toute
variété compacte orientée W, le produit F X W est cobordant à
F' X W ; il en résulte qu'on peut définir sur les classes [F] une structure
multiplicative, anticommutative et distributive par rapport à l'addition.
On désigne par Q l'anneau qu'elle définit sur la somme directe des Qk.

Si dans ces définitions, on abandonne toutes les conditions d'orienta-
bilité, on définit: les variétés cobordantes mod 2, la classe d'équivalence
mod 2, notée [F]2, le groupe de cobordisme mod 2 de dimension k,
noté yik, et l'anneau 9t des classes de cobordisme mod 2. Il est clair que
dans l'anneau îl tout élément est d'ordre 2.

2. Les invariants des classes de cobordisme. Tous les critères connus

pour qu'une variété soit une variété-bord donnent évidemment des
critères pour que deux variétés soient cobordantes. Ainsi, le théorème

V.ll de [27]: Si une variété F4fc orientée est une variété-bord, l'index
t de la forme quadratique définie par le cup-produit sur H2k(V*k)
est nul, va donner:

Théorème IV. 1. Si deux variétés V, V, orientées, de dimension 4k,
sont cobordantes, les formes quadratiques définies par le cup-produit
sur H2k(V) resp. H2k(V) ont même index r.

(Rappelons que l'index d'une forme quadratique est ici l'excès du
nombre des carrés positifs sur celui des carrés négatifs — en coefficients
réels ou rationnels.)

Il est aisé de voir que cet invariant r des classes de cobordisme de
dimension 0 mod 4 se comporte additivement, et multiplicativement,
et définit ainsi un homomorphisme de l'anneau Q dans Z.

Enfin un théorème de Pontrjagin [18], cité en [27], sur la nullité des
nombres caractéristiques d'une variété-bord, donnera:

Théorème IV.2. Si deux variétés V, F' orientées, de dimension 4k,
sont cobordantes, leurs nombres caractéristiques de Pontrjagin II(Pu)
sont égaux.

Ces invariants se comportent additivement dans l'addition des classes ;

seul le nombre caractéristique associé à la classe de dimension maximum
P4& se comporte multiplicativement. (Ceci résulte de la loi tensorielle
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qui définit les classes de Pontrjagin de la structure fibrée sphérique joint
de deux structures données).

Pour les classes de Stiefel-Whitney, on aura:

Théorème IV.3. Si deux variétés V,V de même dimension k sont cobor-
dantes mod 2, leurs nombres caractéristiques de Stiefel-Whitney sont égaux.
Ici encore, seul le nombre associé à la classe de dimension maximum se

comporte multiplicativement, alors que tous se comportent additivement.
L'invariant associé n'est autre, comme il est connu, que la caractéristique

d'Euler-Poincaré, réduite mod 2.

3. Applications diîférentiables d'une variété à bord. Définition. Soit
Xn+1 une variété à bord compacte, de bord Fn, et / une application

différentiable de Xn+1 dans une variété Mp, contenant une sous-
variété compacte Np~q. On dira que l'application / est t-régulière sur la
sous-variété Np~q, si les restrictions de /, d'une part à l'intérieur
Xn+1 -— Vn, d'autre part, au bord Fn, sont séparément ^-régulières
(au sens de 1.3) sur Np~~q.

Image réciproque d'une application t-régulière. En vertu des propriétés
générales des applications ^-régulières énoncées en 1.4, l'intersection par
Vn de l'image réciproque A11*1** F~1(Np~q) est une sous-variété
Qn-q (je yn. ^e même, l'intersection de An+1~* par l'intérieur
(In+1 — Vn) est une sous-variété An+X~« — Cn de dimension n + 1 — q.
Nous allons montrer que An+1"q est une variété à bord, de bord Cn;
soit x un point de Cn, y f(x) le point image de Np~q, yY, y2, y
un système de g-fonctions coordonnées pour la g-boule géodésique
normale en y à Np~q. Soit (xl9 x2 xn, t) un système de fonctions
coordonnées d'une carte locale autour de a;, où la dernière coordonnée t ne

prend que des valeurs positives, t 0 étant l'équation du bord Vn.
Dire que la restriction de / à Vn est ^-régulière, c'est dire que l'application

f(xl9 x2 xn9 0) -> (yl9 y2, yq) est de rang q au point x ; il
tyr

Q

existe par suite un jacobien d'ordre q non nul, pour x{; 0,

et pour t — 0 ; par continuité, ce jacobien sera également non nul pour
des valeurs assez petites des x{ et de t. C'est dire qu'on pourra trouver un
voisinage de x admettant un système de coordonnées de la forme

Dans ce voisinage An+1"^q est défini par les équations linéaires: yx

y2 yq 0, et Cn en y ajoutant la relation t 0 ; c'est dire que x
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admet dans An+1~q un voisinage homéomorphe au demi-espace
(de coordonnées xq+1, xn ; t) limité par un espace Rn~q (de
coordonnées zq+1 xn) image de Cn • C. Q. F. D.

Définition, Orientation induite sur une sous-variété.

Soit / une application de la variété orientée Vn dans Mp, ^-régulière
sur la sous-variété Np~q, et soit Cn~q la variété image réciproque de
Np~q. Supposons que le voisinage fibre normal à Np~q dans M? soit
orientable ; on peut alors définir dans un voisinage tubulaire normal de N
une classe «fondamentale» U ç?*(eo) eHq(T ;Z) ; le voisinage tubulaire

de Cn~q est également orientable, et on peut y définir une classe U
image par /* de la classe U de Hq(T); on dira que la variété Cn~~q

est munie de Yorientation induite de Vn si son cycle fondamental (Cn~q)

est donné, dans un voisinage tubulaire normal de Cn~q, par le cap-produit

(O-«) (F*) rs U

(Vn) désignant la classe fondamentale de l'homologie (à supports fermés)
de dimension n du voisinage tubulaire ouvert de Cn, qui induit l'orientation

donnée de Vn.
Supposons qu'on ait, comme précédemment, une application de la

variété à bord Xn+1, orientée, compacte, de bord Vn, dans Mp, ^-régulière

sur la sous-variété Np~q. On suppose de plus la structure fibrée
normale à Np~q orientable. Dans ces conditions, les images réciproques
An+1-q /-*1 (#*-«), et Cn An+1~q ^ Vn sont également orientables.
On peut s'en assurer, par exemple, grâce au théorème de dualité de

Whitney [32] ; Vn est supposée munie de l'orientation induite de l'orientation

de Xn+1 : (Vn) d(Xn+1, Vn), d désignant l'opérateur de bord.
Dans ces conditions, l'orientation induite sur Cn~q par son immersion
dans Vn est l'orientation induite quand on considère Cn~~q comme bord
de An+1"qi une fois qu'on a muni An+1~q de l'orientation induite de
X**1. Il suffit d'écrire: Vn * U 3(X^+1) r> U 3(Z^+1 - 17).
Nous allons maintenant démontrer le

Théorème IV.4. Soient /, g deux applications de classe Cm,m ^ n,
de la variété compacte orientée Vn dans la variété Mp, ^-régulières sur
une sous-variété Np~q de Mp, compacte, à voisinage normal orientable ;

soient Wn~q /-1 {Np~*), W g-x(Np~q) les images réciproques de
Np~q, sous-variétés orientables qu'on munira de l'orientation induite de
Vn. Si les applications f et g sont homotopes, alors les variétés Wn~q et
W'n~q sont cobordantes.
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Il est clair qu'en abandonnant dans cet énoncé toutes les conditions
d'orientation, on obtiendra : les images réciproques j~l (Np~q), g*1 (Np~q)
sont des variétés cobordantes mod 2,

Nous allons démontrer d'abord le lemme suivant, dont le principe m'a
été suggéré par H. Whitney:

Lemme IV. 5. Si deux applications f et g de classe Cm de la variété Vn

dans Mp sont komotopes par une déformation continue, elles sont également
homotopes par une déformation de classe Cm.

Soit F : F X / -> Mp l'application donnée, de classe C° ; on lui
substitue une application G : F X / -> Mp ainsi définie : pour tel, on

pose G(V,t) =f F(V,O) pour 0 < t < | ;G(F, t) F (^V ,4^~

pour l t^t < f ; C?(F ,t) g pour | ^ t < 1. Munissons le produit
F x / de la métrique riemannienne produit d'une métrique sur Vn et
de la métrique euclidienne de I. On régularise alors l'application G par le

procédé classique, en substituant à l'application G sa moyenne sur des

boules géodésiques de rayon r. Le rayon r sera pris constant et < J pour
| ^ t ^ j ; dans les tranches terminales t < J, resp. j < t, on prend r
variable décroissant avec t (resp. (1— t)), de classe O00, et égal à 0

pour t 0 et t 1. Ainsi, la régularisation augmente de 1 la classe

de diflférentiabilité de G sur la tranche | < t ^ j, et elle ne la diminue
pas sur 0 ^ t ^ J et ~ ^ t ^ 1 ; et les applications f et g, restrictions
de G à (F, 0) et (F, 1) sont inchangées. En itérant le procédé, on
obtiendra une application de F x / dans Mp de classe Cm.

L'application obtenue F : F X / -> Mp de classe Cm n'est peut-être
pas ^-régulière sur la sous-variété Np~q ; mais l'ensemble Ho des homéo-

morphismes h eH du voisinage tubulaire T de Np~q, tels que h oF,
restreint à l'intérieur de F X / ne soit pas ^-régulière sur Np~q est
maigre dans H; de même pour ceux des h tels que la restriction de

h oF à (F, 0) ^ (F, 1) ne soit pas ^-régulière sur NP~Q ; par suite, le
théorème 1.5 peut se généraliser aux applications de variétés à bord ; et
l'homéomorphisme h peut être pris assez voisin de l'identité, pour que le
théorème 1.6 puisse s'appliquer aux restrictions / et g de F à (F, 0),
resp. (V, 1). Posons F' h o F, et soient /' et g' les restrictions de F' à

(F, 0) et (F, 1). A cause du théorème 1.6, les variétés images réciproques

Cn~q f~x (Np~q), C'n~q g'~x (Np~q) sont isotopes aux variétés
ffln-q -- j-i (Np-q) 9 resp. W'n~q g"1 (Np~q) ; cette isotopie conserve
l'orientation induite, de sorte que Cn~q et C'n-q forment le bord de la
variété à bord A Ff-1(Np-q), munie de l'orientation induite. Par
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suite, les variétés Cn~q,C'n~q, donc Wn~q et W'n~q sont cobordantes,
et le théorème IV.4 est entièrement démontré.

4. Sous-variétés L-équivalentes. Au chapitre II.2, on a associé à

toute sous-variété Wn~k, orientée, dans la variété orientable Vn, une
application / : Vn -> M(SO(k)). Nous allons ici préciser cette définition.

Supposons la variété Vn plongée dans un espace euclidien En+m ;

soit, en tout point x de Wn~k, H(x) le &-p]an tangent en xà Vn, et
normal à Wn~k (pour une métrique riemannienne arbitraire). Menons

par l'origine 0 de Rn+m un &-plan parallèle à H(x). On définit ainsi une
application

Gk désignant, comme précédemment, la grassmannienne des fc-plans
orientés. Soit N un voisinage tubulaire de Wn~k dans Vn. En associant
à toute géodésique normale issue de x e Wn~k, son vecteur tangent en x,
on définit par parallélisme une application

> AsO{k)
telle que le diagramme:

F
+ ASO(k)

Wn-k

soit commutatif (p et pf désignant les fibrations canoniques en A:-boules).
Comme en II. 2, l'application F s'étend en une application

Si on remplace le plongement initial de Vn dans Rn+m par un autre
plongement, ou la métrique par une autre métrique, l'application / est
remplacée par une application homotope. En effet, deux métriques rieman-
niennes sur une variété Vn peuvent toujours être déformées continûment
l'une sur l'autre ; il en résulte une isotopie entre les voisinages tubulaires N
et N' associés à ces deux métriques, et par suite une homotopie entre les

applications F : N -> AS0{k), donc entre les applications

/: Vn~>M(SO{k)).

Reste à montrer que la classe d'homotopie ne dépend pas du plongement
initial de Vn dans Rn+m ; nous aurons besoin dans ce but du lemme
suivant que nous rencontrerons encore par la suite :
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Soit Qn+1 une variété à bord, de bord Vn ; soit X*+1 une sous-variété
à bord, plongée dans Qn+1, dont le bord, plongé dans Vn, est une sous^
variété Wk de Vn ; on suppose de plus qu'en tout point x de Wk,
le demi-espace Rk+1 des vecteurs tangents à Xk+1 est transverse au
bord Vny en ce sens que l'intersection de ce demi-espace Rk+1 par
l'espace des vecteurs tangents à Vn se réduit à l'espace des vecteurs
tangents à Wk. Supposons donnée sur Q71*1 une métrique riemannienne ;

elle permet de définir un voisinage normal de Vn dans Qn+1, de la
forme Vn X I, où les semi-droites de la forme (x, t), t el, sont des

géodésiques normales à Vn. On peut alors montrer:

Lemme IV.5'. Après un homéomorphisme 0 de Q™"1 sur lui-même,
on peut toujours supposer que Xk+1 rencontre orthogonalement le
bord Fw.

Cet homéomorphisme 0 de Qn+1 est ainsi défini : il se réduit à l'identité
à l'extérieur de Vn x / ; sur Vn x /, il est l'image réciproque de

l'homéomorphisme de / sur lui-même défini par une fonction V <p(t),
telle que: 0 <p(0) ; 1 <p(l) ; dt'/dt + oo pour t 0, et dt'/dt 1

pour t 1.
On vérifie alors directement que tout vecteur tangent en # à 0(Xk+1)

est tangent au cylindre orthogonal à Vn, Wk X t', où t' varie dans /.
Revenons maintenant à la variété Vn, plongée dans Rn+m suivant

deux plongements différents iQ et ix ; si m} n -\- 2, on peut supposer
les images io(Vn), h(Vn) disjointes -— au besoin après une translation
convenable de iL ; on peut alors trouver, d'après un théorème de H. Whit-
ney un plongement i du produit Vn X I dans Rn+m, dont la restriction
à (F,0), resp. (F, 1), est précisément i0, resp. it. La variété à bord
plongée i(Vn X I) contient une sous-variété plongée de la forme
Wn-k x I, qui rencontre le bord de Vn X I transversalement. Supposons

donnée sur Vn x I une métrique riemannienne ; d'après le lemme,
on peut supposer que Wn~~k X I rencontre les bords (Vn, 0) et (Vn, 1)

de Vn x I orthogonalement. Formons alors un voisinage tabulaire normal

de Wn~k x I dans Vn X I, soit N. Les intersections J^o

N r^ io{Vn), Nt iV r\ i^V71) ne sont autres que les voisinages tubu-
laires normaux associés à io(Wn~k), resp. ix{Wn~k) plongées dans

io(Vn), resp. ii(Fn). Formons l'application canonique — par
parallélisme - : F-N-+A
Par extension, on obtient une application:

F: Vn xi ->M(S0{k))
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telle que les restrictions de F à (Fn, 0), resp. (Vn, 1) sont précisément
les applications canoniques /0, resp. fx définies grâce aux plongements
i0, resp. ix de Vn. F définit bien l'homotopie annoncée entre /0 et fx.

Définition. Sous-variétés L-équivalentes, Soient Wl~~k, W\~k deux
sous-variétés orientées de même dimension n — k plongées dans la
variété orientable Vn. On dira que TF£~"*, W"~k sont L-équivalentes,
s'il existe une variété à bord orientable Xn~k+1, de bord W% k ^ W"
plongée dans le produit Vn X /, de façon que:

Xn-k+l r,(Fnj l)= Wn-k

et si Xn~k+1 peut être munie d'une orientation telle que dXn~k+1

W^~k - WnQ~k.

Il résulte immédiatement de cette définition et du lemme IV. 5' que
deux sous-variétés jL-équivalentes à une même troisième sont L-équivalentes

entre elles. L'ensemble des sous-variétés de dimension n — k,
orientées, de la variété Vn se trouve ainsi partagé en classes de L-équi-
valence; on désignera par Ln_k(Vn) l'ensemble de ces classes.

Si, dans les définitions précédentes, on abandonne toutes les conditions
d'orientabilité, on définit les sous-variétés L-équivalentes mod 2, et les
ensembles Ln_k(Vn ;Z2) des classes de L-équivalence mod 2.

Il est clair que deux sous-variétés L-équivalentes sont à la fois homologues

et cobordantes ; si deux sous-variétés Wo, Wx constituent dans Vn
le bord d'une même sous-variété à tord X, alors Wo et Wx sont
L-équivalentes.

Il existe une application évidente de l'ensemble Ln__fc (Vn) dans le groupe
Hn_k(Vn;Z); les classes images sont les classes réalisables par des sous-
variétés ; le «noyau» de cette application est en général non nul, comme
nous en verrons des exemples. Il est naturel de se demander si l'on peut
munir Ln_k(Vn) d'une structure de groupe, compatible avec l'application
précédente. Il en est ainsi dans un cas au moins, lorsque n — k < n/2 — 1.
En effet, en ce cas, on peut définir entre classes de L-équivalence une loi
d'addition, par simple réunion de sous-variétés représentant les classes ;

en effet, ces représentants peuvent toujours, si n — k < n/2, être supposés
disjoints et, pour n — k < n/2 — 1, la L-classe ainsi définie ne dépend
pas du plongement choisi des deux sous-variétés. Par ailleurs, la somme
[W] + [—W] donne bien la classe nulle, car on peut toujours —
localement — plonger le produit W X I dans un voisinage tubulaire normal
de W.
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A toute sous-variété Wn~k de Vn correspond une classe d'applications

de Vn dans M (80 (Je)) ; on démontre sans difficulté que si W et W
sont L-équivalentes, les applications associées /: Vn -» M (80 (h)) sont
homotopes.

Si, en effet, Wo et Wx sont L-équivalentes, il existe une sous-variété
à bord X plongée dans Vn x /, dont le bord se compose de Wo plongée
dans (Vn,0) et Wx plongée dans (Fn, 1). On peut toujours supposer,
à cause du lemme IV 5;, que X rencontre orthogonalement les variétés
bords (Vn,0) et (Vn, 1). On forme alors un voisinage tabulaire normal
Q de X dans Vn X /, et l'application F associée F :Q -> J^ (fc). Par
extension on obtient une application Fx\ Vn x I -^ M(80(Je)), qui
définit précisément l'homotopie annoncée entre les applications
canoniques :

F | (Vn, 0) /0, jP | (Fw, 1) fx associées resp. à Wo et Wx.

Ceci définit une application J de l'ensemble Lw_fc Vn) des classes de

L-équivalence dans l'ensemble Ck(V) des classes d'homotopie d'applications

/ : Vn -> M (80 (Je)) L'application J est biunivoque: si, en effet,
deux sous-variétés ïF0, Wt donnent lieu à des applications

homotopes, le théorème IV.4 montre qu'on peut régulariser l'application
d'homotopie F : Vn x I -> M(SO(Je)), de telle façon que les images

réciproques f^~1(G1c) WQ et /i""1^^) W1 forment — après
éventuellement une isotopie qui est une L-équivalence — le bord d'une variété

abord A =F-1(Gk).
On peut remarquer que J applique la classe des variétés L-équivalentes

à 0 sur la classe nulle des applications / : Vn -> M(80 (Je)) inessentielles.
Si Je > (n/2) + l, l'ensembleCk(V) des applications de F dans M(80(Je)),
espace asphérique jusqu'en dimension Je, peut être muni d'une structure de

groupe abélien, conformément à la théorie générale de la cohomotopie11).
Il est d'une vérification presque immédiate que l'application J est alors

un homomorphisme ; il suffit d'expliciter la loi de groupe dans Ck(V):
on vérifiera que l'image réciproque (/ + Ç^fàh) Par l'application somme

n) Les groupes de cohomotopie ont été étudiés par E. Spanier (Ann. of Math., 50,
1949, pp. 203—45) dans le cas des sphères; leur généralisation aux espaces asphériques,
ici mentionnée, doit faire l'objet d'un travail de E. Spanier, N. E. Steenrod et J. H. C.

Whitehead, à paraître ultérieurement. La démonstration esquissée plus bas est aisée à
expliciter dans le cas typique de la sphère; et la généralisation n'introduit aucun
élément nouveau de difficulté.
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est à une L-équivalence près la réunion des images réciproques /-1 (G k)

Nous allons maintenant montrer que l'application J applique Ln_k(Vn)
sur Ck(Vn).

Soit c une classe de Ck(V), et h une application de la classe c ; d'après
le théorème 1.5, on peut supposer l'application h ^-régulière sur la grass-

mannienne Gk plongée dans M(SO(k)). Soit Wn~k h*1^^ l'image

réciproque de Gk, et N un voisinage tubulaire normal de Wn~k dans
Vn ; on peut de plus supposer h normalisée, de façon que h applique
l'intérieur de N sur M(SO(k)>) — a, i-boule ouverte sur k-boule ouverte, et
que, de plus, h applique le complémentaire Q Vn — N sur le point a.
Désignons alors par i : Vn -> Rp un plongement arbitraire de Vn dans

Rt>, par: g : Wn~k ->Gk, F : N -> AS0(k), f : Vn -> M(SO(k)) les

applications qui lui sont canoniquement associées par parallélisme. Or, les

applications :

}i : jyn-k _> Gfc (restriction de h) et g : Wn~k ->Gk
induisent toutes deux l'espace fibre des vecteurs normaux à Wn~k dans
Vn ; en raison du théorème de classification des espaces fibres, ces deux
applications sont homotopes. Or, si nous écrivons à nouveau le

diagramme commutatif : -,

nous en déduisons, par relèvement de l'homotopie JtC^Lg, qu'il existe
une application hx, homotope à h, telle que :

ASO(k)

C'est dire que la nouvelle application Ax ne diffère de l'application F que
par un isomorphisme oc du voisinage tubulaire N sur lui-même. On aura:
hx F o oc (restreint à N).

Or, je dis qu'il est possible de définir (au besoin en augmentant la
dimension de l'espace euclidien ambiant) un nouveau plongement i' de

Vn, tel que, pour la restriction à N, on ait:

i' oc o i
En effet, on peut démontrer le lemme :
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Lemme. Soit Q une variété à bord, de bord T; supposons donné un
plongement i d'un voisinage de T (de la forme T x I) dans un espace
BP; il est possible de prolonger ce plongement à toute la variété Q dans

un espace Rp+q, où Ventier q est assez grand.
En effet, soient yl9 y2 yp les p fonctions coordonnées de Rp ;

dans un voisinage U de T x I, les fonctions y%, arbitrairement
prolongées à tout Q, séparent les points ; prenons ensuite un nombre suffisant
de fonctions (xx, x2 xq), nulles sur T x I, pour séparer tous les

points de Q — U (il suffit d'en prendre au plus 2n + 1, n dimension de

Q). L'ensemble des fonctions y%, x3 définit alors le plongement cherché
de Q dans jR*>+«.

On appliquera ce lemme au complémentaire Q Vn — N ; le plongement

donné sur le bord T de N et un voisinage de T de la forme T x I
sera donné par: i' <x oi

Dans ces conditions, on vérifie immédiatement que l'application F'
canoniquement attachée à l'immersion i' : F' : N -> AS0(k) s'identifie à

l'application hx ; par extension, on en déduit que l'application

fx: Vn->M(SO{kj)

déduite de ht s'identifie à l'application canonique associée à l'immersion
i'. Or, comme hx: N -> A (SO(k)y) était homotope à la restriction de h
à N, l'application «étendue» ft est homotope à h. (Car on a supposé h
«normalisée» de telle façon que h(Q) soit le point a compactifiant de

M(SO(k)).) Nous avons ainsi démontré:

Théorème IV. 6. Uensemble Ln_k(Vn) des classes de L-équivalence
d'une variété Vn s'identifie à Vensemble Ck(V) des classes d'applications
de Vn dans M(SO(k)); si k}(n/2) + l, cette identification est compatible
avec la structure de groupe abélien donnée sur Ln_k et Ck(V). On a un
théorème analogue pour Ln_k(Vn;Z2), le complexe M(O(k))
remplaçant M(80(k)).

Applications. Le nombre maximum de i-classes contenues dans une
classe d'homologie z correspondant à la classe u €Hk(Vn;Z) est donné

par le nombre des classes d'applications du complexe d'Eilenberg-Mac
Lane K(Z,k) dans M(SO(k)), telles que f*(U) i. Comme

M(80(l)) et M(S0(2)) s'identifient à K(Z,l) et K(Z,2), on
obtient :

Deux sous-variétésf orientées, de dimension n — 1 ou n — 2, de la
variété orientable Vn sont L-équivalentes dès qu'elles sont homologues.
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Corollaire : Toute sous-variété de dimension n — 2 homologue à 0 est

une variété-bord. (Résultat trivial pour n — 1.)
On a un résultat semblable pour les sous-variétés de dimension n — 1

en homologie mod 2.

Enfin, on a vu, au chap. II. (Th. II. 16), que le second groupe d'homo-
topie non nul de M(SO(k)) apparaît en dimension k + 4 ; on en
déduit que deux applications de Vn dans M(80(k)) qui sont homotopes
sur le ^-squelette de Vn le sont également sur le (k + 3ième). Donc :

Deux sous-variétés orientées de dimension ^ 3, homologues, sont L-équi-
valentes.

5. Un théorème fondamental. Nous allons appliquer le théorème
précédent au cas où la variété Vn est la sphère Sn. Enonçons le

Lemme IV.7. Le groupe Lk(Sn) des classes de L'équivalence pour la
sphère 8n s'identifie, pour n > 2k + 2, au groupe Qk des classes de

cobordisme.

Il existe une application canonique de Lk(Sn) dans Qk, obtenue en
assignant à tout représentant d'une i-classe sa classe de cobordisme ;

cette application est évidemment un homomorphisme pour la structure
de groupe, car, dans les deux groupes, l'addition est définie par la réunion
des représentants. Cet homomorphisme applique Lk(8n) sur Qk ; soit c

une classe de Qk, Wk une variété de la classe c. Wk peut être plongée
dans Rn pour n ^ 2k + 2, donc dans Sn, et par suite c est l'image
d'une L-elasse de 8n. Reste à montrer que le noyau de cet homomorphisme

est nul; c'est-à-dire: si deux variétés Wk, W'k plongées dans
Sn sont cobordantes, alors elles y sont L-équivalentes. Soit Xk+1 une
variété à bord, telle que dXk+1 W'k — Wk. On peut toujours plonger
Xk+1 dans J2n, si n} 2k + 2. Définissons sur Xk+1 une fonction (de
classe C°°) t, comprise entre 0 et 1, telle que les équations t 0, resp.
t 1, définissent Wk, resp. W'k. Par compactification des (2^,0
en (Sn, t), on obtient bien le plongement de X dans 8n X I qui définit
la L-équivalence. Si Ton remarque en plus que deux plongements
arbitraires de Wk dans 8n, sont toujours, pour n ^ 2 k + 2, i-équiva-
lents, on a bien démontré que la correspondance entre Lk(Vn) et Qk
est un isomorphisme.

Nous pouvons maintenant énoncer le théorème essentiel de ce

chapitre :

Théorème IV.8. Les groupes de cobordisme Qk et de cobordisme mod 291*

sont resp. isomorphes aux groupes d'homotopie stables 7zn+k(M(SO(n))),
resp. 7tn+k(M(0{n)))
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Il suffit d'appliquer le théorème IV. 6 au cas où Vn est la sphère Sn,
en tenant compte de l'isomorphismeZ/^S*1) ~ Qk du lemme IV. 7. On
doit simplement remarquer, ce qui est un résultat classique en théorie
de la cohomotopie, que l'ensemble des classes d'applications

f:8n+k->M(80(n))9
muni de sa structure de groupe de cohomotopie est isomorphe au groupe
d'homotopie 7tn+k(M(SO(n)))

6. Les groupes 5Rfc des classes mod 2. Au chapitre II, on a déterminé
les groupes d'homotopie stables nn+h(M(p(n))) ; on a vu (théorème
11.10) que l'espace M(O(n)) a dans les dimensions < 2n, même type
d'homotopie qu'un produit Y de complexes d'Eilenberg-Mac Lane:

Y K(Z2, n) x K(Z2, n + 2) x (K(Z2, n + h))d(h) x h < n

où d(h) est le nombre des partitions non-dyadiques de h, c'est-à-dire des

partitions qui ne contiennent aucun entier de la forme 2m — 1. Donc :

Théorème IV.9. Pour toute dimension Je, le groupe 91k est isomorphe
à la somme directe de d(k) groupes isomorphes à Z2, ou d(k) désigne
le nombre des partitions non-dyadiques de Ventier k.

Ceci détermine la structure additive des 9lk.
Il résulte du théorème 11.10 que toute application de Sn+k,ny k,

dans M (O(nj), qui est homologiquement nulle (mod 2), est homotopi-
quement nulle. Ce résultat peut être précisé comme suit : pour toute
partition non-dyadique w de i, on a défini une application

Fw : M(0(n)) -> K(Z2, k + n)

telle que F*(i) !„, où X^ désigne la classe de Hk+n(M(0(n)))
définie par la fonction symétrique:

où les entiers (a{) constituent la partition non-dyadique co de k.
Posons, dans la cohomologie Hk(Gk; Z2):

On a alors, avec les notations de II. 2 :

Désignons par /^ une base de nn+ k(M(0(n))), telle que, par dualité
avec les jPw, on ait:
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f*t Fm(i) dZ(8), s classe fondamentale de Hk+n(Sk+n ; Z2) (1)

et où à^x est le symbole de Kronecker avec sa signification classique,
les partitions co remplaçant les entiers pour indices.

Les applications /wi peuvent être supposées £-régulières sur la grass-
mannienne Gn contenue dans M(O(n)); soit Vwi une image réciproque
de Gn pour fœX ; formons alors un voisinage tubulaire normal de F
dans Sn+k, et soit ç?* Fisomorphisme (99*) associé; désignons par
Y'œ l'image de la classe Yw dans la cohomologie de F par l'application
/wi, restreinte à Vwx ; la classe Y'^ s'exprime alors en fonction des

classes Wi, classes caractéristiques de Stiefel-Whitney de la structure
fibrée normale à F dans 8n+k. D'après le diagramme commutatif (1)
de II.2, on aura:

ç>*(O V*&{YJ ftvt{TJ /*¦ (XJ - CW d'après (1). (2)

Appelons nombres caractéristiques normaux les valeurs prises par tout
polynôme en Wi, de poids total Je, sur la classe fondamentale de F.
La relation (2) exprime que si une application / : Sn+k -> M(O(n))
n'est pas homotopiquement nulle, il existe une combinaison linéaire non
triviale des Xw dont l'image par /* n'est pas nulle dans H*(8n+k);
par suite, un au moins des nombres caractéristiques normaux de F n'est
pas nul. Ceci nous permet d'énoncer la réciproque du théorème de Pon-
trjagin:

Théorème IV. 10. Si une variété Vk a tous ses nombres caractéristiques
de Stiefel-Whitney nuls, c'est une variété-bord (mod 2).

En effet, si tous les nombres caractéristiques définis à partir des
classes Wi de la structure tangente sont nuls, il en va de même des

nombres caractéristiques normaux définis à partir des classes Wr ; en
effet, d'après les relations de Whitney

F. W • W =0"i n i rr r-i u

les Wr sont des polynômes par rapport aux W{.

Corollaire IV. 11. Si les nombres caractéristiques de Stiefel-Whitney
de deux variétés V, V sont égaux, V et V sont cobordantes mod 2.

Remarque. Ce résultat implique que, dans le groupe — isomorphe à

Hk(Gn) — des nombres caractéristiques (tangents) d'une variété Vk
de dimension Je, il y en a exactement d (Je) qui sont linéairement
indépendants ; on peut vérifier ce résultat pour les petites dimensions
(& ^ 6), en tenant compte des relations de Wu Wen-Tsùn [33] qui lient
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les classes W{ de la structure tangente d'une variété. La question se

trouve ainsi posée de savoir si les relations de Wu donnent toides les
relations liant les W€ de la structure des vecteurs tangents à une variété.

7. Structure multiplicative des groupes 5lfc. Posons k r + s ;

soit cùx une partition non-dyadique de r, a>2 une partition non-dyadique
de s ; la réunion (cols co2) est une partition non-dyadique de k.

On a défini plus haut la variété F£ ; rappelons que tous les nombres
caractéristiques normaux Y^, de F£ sont nuls, à l'exception du nombre
Yw. On va montrer que la variété Vk est cobordante mod 2 au produit
des variétés : FJ,1 X F^2. Il suffira pour cela de montrer, d'après le
corollaire IV. 11, que tous leurs nombres caractéristiques de Stiefel-
Whitney sont égaux.

Or cela résulte immédiatement de la formule suivante, que nous allons

Yw S(fouta%) (JuJ (^cu2) (3)

où (ù)li (o2) parcourt toutes les décompositions possibles de la partition
o> de k en une partition cd1 de r et une partition co2 de s. Il résulte en
effet, de (3), que tous les nombres Yw, du produit FWl X VW2 sont
nuls, à l'exception de Yœ, où o> (col9 €t>2).

Rappelons que la structure fibrée normale du produit VrWl x V8^
est le joint des structures fibrées normales de F^x, et de F^2.
Désignons par TTi les classes normales de la variété-produit, par U{
celles du facteur FJ, par Vt celles du facteur F2. Le théorème de
«dualité» de Whitney s'exprime par la formule symbolique:

Désignons par ui9 resp. v$ les r racines symboliques du premier (resp.
les s racines du second) facteur. Si dans l'expression

on substitue aux racines ti l'ensemble des k racines ni et v$, on doit
tout d'abord annuler tous les termes pour lesquels le degré total en
(wc) est ^ r, et le degré total en (v;.) est ^s, ceci pour des raisons de

degré ; les termes restants peuvent se grouper sous la forme :

où mx désigne la partition ax, a2 aq de r, extraite de œ, et co2

désigne la partition (bl9b2 bn) de s, formée des entiers restants. Le
premier S s'effectue suivant toutes les décompositions possibles de la par-
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tition co en une partition œ1 de r et une partition co% de s ; les deux autres
£ sont des E de symétrisation, avec la convention classique en pareil cas.
Par ailleurs, si co se décompose en (c^, co2), je dis que cette décomposition

ne figure qu'une seule fois dans l'expression (4), même si cette
décomposition peut être obtenue de plusieurs manières différentes à partir de co.

Supposons en effet que la décomposition (col9co2) puisse s'obtenir de deux
manières différentes à partir de co, c'est-à-dire qu'il existe une
permutation P des k variables (tt), qui, dans le monôme typique

(h)"1 ih)a* • • (Uam (Wi)dl • • • (h)bn

transforme la décomposition (œ1, co2) en une décomposition isomorphe.
Alors la permutation P transforme le monôme typique en lui-même,
et par suite, la permutation P, inessentielle, n'intervient pas dans la
symétrisation. La formule (4) s'identifie donc bien à la formule (3) à
démontrer. Par suite, si la partition non-dyadique co de k se décompose
en une partition cox de r, et une partition co2 de s, on a, pour les classes

des variétés F* correspondantes:

[F*] [7y X [FJJ (5)

Les seules classes [F£] non décomposables sont par suite les classes

[F*j.)], où (k) est la partition de k constituée de l'entier k lui-même
(k non de la forme 2m — 1). Toute autre classe se met — univoquement
— sous forme d'une somme de produits de ces classes indécomposables.
Ceci nous permet d'énoncer:

Théorème IV. 12. L'anneau 91 des groupes 91k est isomorphe à une
algèbre de polynômes sur le corps Z29 admettant un générateur [F*^]
pour toute dimension k qui n'est pas de la forme 2m — 1.

Corollaire: Si V et V ne sont pas des bords (mod 2), la variété produit

V X V n'est pas un bord (mod 2),

Les générateurs pour les petites dimensions.
Le premier générateur apparaît pour k 2 ; le nombre caractéristique

correspondant est Z(t2) {Etf {Wxf (Wi)2; un représentant

de la classe [F(22)] est donné par le plan projectif réel PB(2).

Pour k 3,9Ï3 0.
Pour k 4, on a un nouveau générateur, de nombre caractéristique

normal (£)4 (Wtf (Tfi)4; il est représenté par la
somme Pi?(4) + (PjR(2))2; le groupe 9l4 est
isomorphe à Z2 + Z2; on notera que le plan projectif
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complexe PC(2) est cobordant mod 2 au carré du plan
projectif réel PB(2).

Pour k 5, 9t5, isomorphe à Z2, est engendré par le générateur
[F(5)]. Le nombre caractéristique tangent correspondant
est W2 - W3 ; la classe est représentée par une variété
fibrée sur S1, de fibre PC(2), qui a été construite par
Wu Wen-Tsùn [33].

Pour k 6,9? est isomorphe à (Z2)3 ; deux classes décomposables:
(Pi?(2))3 et PB(4) x PB(2); la classe primitive
[F(6)] admet pour nombre caractéristique normal

Z(?) (Z{t)J (Wtf +{Wt- W,f + (Wtf

On vérifie aisément qu'un représentant de cette classe est donné par
l'espace projectif PB (6).

Pour k 7, comme k 23 — 1, toute classe est décomposable
5R7 Z2, de générateur [F(5)] X [F(2)].

Pour k 8. on a une classe primitive, dont le nombre caractéristique
associé est (Wx)8 ; tout élément de cette classe [F(8)]
est cobordant mod 2 à l'espace projectif P B(8), modulo
des éléments décomposables qu'on pourrait expliciter
sans difficulté.

De façon plus générale, on peut montrer:

Pour toute dimension paire n 2r, la classe primitive [F*w)]
s'obtient en ajoutant à la classe [P B(n)] de l'espace projectif réel
certaines classes décomposables convenablement choisies.

Il suffit de démontrer que le nombre caractéristique normal Z(^-)w

n'est pas nul pour PB(n) (on désigne ici par ti les variables ti associées

symboliquement aux classes normales W{) ; si, en eflet, outre

27(^)n, d'autres nombres caractéristiques normaux tels que

où les a{ forment une partition non dyadique co de n, ne sont pas nuls

pour PB(n), on formera la somme PB(n) + U* V^i ; pour cette
variété, tous les nombres caractéristiques normaux définis par des partitions

non-dyadiques de n sont nuls, à la seule exception de £{t)n ;

cette variété est donc un représentant de la classe primitive [ V"n)].
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Et, d'après la formule (5), toutes les classes [Fy, o>i ^ (n), sont dé-

composables.

Or, pour toute variété Vn, le nombre caractéristique normal Z{t)n
est égal au nombre caractéristique tangent Z(tn). En effet, d'après la
formule de dualité de Whitney [32], les variables t de la structure
tangente, et les ti de la structure normale sont liées par la relation :

ZW{t{ xZW,? 1

ce qui signifie que toute fonction symétrique de l'ensemble des ti et
des tj, non constante, est nulle. Par suite 27(^)n + E{t-)n 0.

Or, si l'on désigne par d le générateur de H1^ P R (n) ; Z2), le
polynôme de Stiefel-Whitney de PR(n) s'écrit:

Ceci peut s'écrire, symboliquement: (comme dn+1 0) (1 +d
On peut donc considérer que ce polynôme admet n + 1 racines toutes

égales à t — l/d ; comme n est pair, la somme Z(ti)n est égale à

l/(d)n et le nombre caractéristique associé est égal à 1.

J'ignore par contre s'il existe une généralisation convenable de la
construction de Wu qui fournisse les générateurs de dimension impaire.

8. Les groupes Qk. Les groupes d'homotopie stables

nn+t(M(S0(n))

ne sont pas connus en général ; pour les petites valeurs de k, on a seulement

le résultat du théorème II. 16, qui donne:

Théorème IV. 13. Pour les valeurs de k(8, les groupes Qk sont:

Résultat trivial pour k < 2 ; les résultats concernant û3 et Si1 ont
été annoncés par Rokhlin [19—20]. Le générateur de QA est représenté

par le plan projectif complexe PC(2); ceci entraîne en particulier:

Corollaire IV. 14. Le nombre caractéristique P4 de Pontrjagin d'une
variété orientée de dimension 4 est égal à 3r, ou r désigne Vindex de la
forme quadratique définie par le cup-produit sur H2 F4, B).

Cela résulte immédiatement des théorèmes IV. 1 et 2, associés au fait
que jQ4 Z ; le coefficient 3 s'obtient en calculant la valeur de P4

Ûl
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pour PC (2), pour lequel t 1. Ce résultat avait été conjecturé par
Wu Wen-Tsun, qui avait démontré que le nombre P4 est divisible par
3 [35]. Il a été également obtenu par Rokhlin [20] et par moi-même, par
une voie différente12).

On remarquera que ce résultat entraîne l'invariance topologique de la
classe P4 dans une F4 ; il n'en serait pas moins très souhaitable d'avoir
une démonstration plus directe de la relation P4 3r. En particulier,
la classe de cobordisme d'une F4 est indépendante de sa structure diffé-
rentiable.

On a vu au chap. II.5 que la cohomologie H*(M(80 (n))) est, à

coefficients rationnels, isomorphe à celle d'un produit Y de complexes
d'Eilenberg-Mac Lane:

où c(m) est le rang de Him(Gk; R), et il existe une application
F : M(80 (&)) -> Y qui induit un tel isomorphisme. On en déduit, par
application de la (?-théorie de J. P. Serre, Q désignant ici la famille des

groupes finis (cf. [22]).

Théorème IV. 15. Tous les groupes Ql sont finis, si i^kO mod 4;
la composante libre du groupe Q*m est de rang c(m), nombre de Betti

de dimension 4 m de la grassmannienne Gk.

Corollaire IV, 16. Si tous les nombres caractéristiques de Pontrjagin
d'une variété orientée Vk, sont nuls, il existe un entier non nul N tel que
la variété N • F soit une variété-bord.

On remarquera que le générateur de fi5 ~ Z2 est la variété de Wu
définie en [33].

La structure multiplicative des Qk.
Désignons par QT l'ensemble des éléments d'ordre fini de û • QT

est un idéal de Q, et l'on peut définir l'anneau quotient Q/QT. On a vu
(Th. IV. 15) que la composante de cet anneau pour la dimension 4m,
est la somme directe de c (m) groupes isomorphes à Z ; désignons par Q

le corps des rationnels ; nous trouvons ainsi que

&* ® Q ~ nk+tm(M(S0(k))) ® Q

est en dualité (sur le corps Q) avec le groupe de cohomologie

12) Voir mon exposé au Colloque de Topologie de Strasbourg (Juin 1952). La Note
[20] de Rokhlin contient également des résultats sur les groupes $1, dont le résultat erroné
91* Z2 (au lieu de Z% -f- Z%).
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Hk+*m(M(80(k));Q) ~H*m(Gk;Q) ;

ainsi, tout élément de Q/QT pour la dimension 4 m est entièrement
caractérisé par les valeurs des nombres caractéristiques normaux

définis dans l'immersion d'une variété F4m de la classe dans l'espace
euclidien. Il importe toutefois de préciser le point suivant : si l'on se

donne «a priori» un système de c(m) valeurs entières ni, il n'est nullement

certain qu'il existe une variété admettant pour ensemble de ses

nombres caractéristiques normaux (ou tangents) le système des ni ; mais
on peut affirmer l'existence d'un entier non nul N tel que le système
des produits N • ni constitue l'ensemble des nombres caractéristiques
normaux (ou tangents) d'une variété F4m.

Cela étant, on peut refaire pour le produit tensoriel Q ® Q la théorie
faite pour l'anneau 31. Rappelons que dans la théorie de Borel-Serre,
les classes de Pontrjagin sont associées aux fonctions symétriques élémentaires

des carrés (x{)2 de variables x{ de dimension 2 (s'il existe une
structure unitaire subordonnée à la structure orthogonale donnée, les

fonctions symétriques des x{ donnent les classes de Chern de cette struc-

ture). On obtient ainsi une base du groupe H*m(Gk) en formant tous les
monômes symétrisés:

où les entiers al9a2 ar constituent toutes les partitions (co)
possibles de l'entier m.

Si Xp et Yq sont deux variétés orientées, les nombres caractéristiques

normaux de la variété-produit Xp x Yq sont donnés en fonction
de ceux des facteurs Xp et Yq par la formule :

PJXp x F«) ZWuO)2 PWi(Xp) • PW2(Yq) (3')

où coj, o)2 parcourent l'ensemble des partitions complémentaires de
telles que deg cox p, deg œ2 q.

Or, d'après la remarque plus haut, il existe pour toute dimension 4m,
des variétés F4m dont tous les nombres caractéristiques normaux sont
nuls, à la seule exception du nombre < Z(xifm, F4m > ; soit Y[Am] la
classe correspondante de i34m ® Q. Il résulte alors de la formule (3') et
du corollaire IV. 16, que les classes F[4m] sont indécomposables, et que
toute autre classe de Q (g) Q s'exprime de façon univoque comme somme
de produits de classes F[4w]. D'où le:
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Théorème IV. 17. Ualgèbre Q®Q est une algèbre de polynômes admettant

un générateur Y[ém^ pour toute dimension divisible par 4. Nous allons
maintenant montrer que la classe Y4m est, à un facteur non nul près,
la somme de la classe de l'espace projectif complexe PC(2m) et
d'éléments décomposables ; on pourra ainsi faire choix, comme nouveau
générateur r'[4w], de la classe de PC(2m). Il suffit, ici encore, de vérifier
que le nombre caractéristique normal de PC(2m), associé à la classe

£(%i)2m n'est pas nul. Or, en vertu des formules de dualité entre classes

normales et classes tangentes, le nombre caractéristique normal associé à

E(xi)2m est l'opposé du nombre caractéristique tangent associé à la
même classe. Or on sait que le polynôme de Chern de l'espace projectif
complexe PC(2m) s'écrit (en désignant par d la classe de la droite
projective) :

soit, symboliquement:
C(X) (l

On peut donc considérer que les racines de ce polynôme sont en nombre
2m -{- 1, et toutes égales à xi — 1/d.

Dans ces conditions, le nombre caractéristique (KE(xi)2m, PC(2m)>
estégalà 17 < (- \/dffm, d2m > 2m + 1

Le nombre caractéristique normal de PC (2m) associé à la classe

(^)2m est donc égal à -—(2m + 1) ^ 0 et la propriété est prouvée.
On en tire:

Corollaire IV.18. Pour toute variété orientée Vn, il existe un entier

non nul N tel que la variété multiple N • Vn soit cobordante à une combinaison

linéaire à coefficients entiers mi de produits d'espaces projectifs
complexes de dimension complexe paire. Les entiers mi sont des fonctions
linéaires homogènes des nombres caractéristiques de Pontrjagin de N • Vn.

Remarque. On peut se demander si les produits d'espaces PC(2j)
ne constituent pas une base du Z-module Q/QT. Il en est effectivement
ainsi pour la dimension 4, car la classe PC(4) engendre £?4. On peut
montrer qu'il en est de même en dimension 8 ; en effet, pour cette dimension

les nombres caractéristiques P8 et (P4)2 sont liés par les relations
suivantes :

(P4)2 — 2 • P8 0 mod 5

7 P8 — (P4)2 45t
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La première relation provient de la relation 8t\A 0, dans la variété-
produit (cf. Wu [35]) ; la seconde s'obtient en écrivant r comme fonction
linéaire homogène de P8 et (P4)2, et en déterminant les cpefficients par
les exemples-types PC(4) et (PG(2))2. Soit F8 une variété, r la
signature de la forme quadratique du cup-carré sur JET4(F8, R). Si on
pose (P4)2 — 2P8 5q, alors on vérifie que F8 et la variété

ont mêmes nombres de Pontrjagin et sont cobordantes (mod QT). La
généralisation de ce résultat exigerait des connaissances plus précises sur
les propriétés arithmétiques et topologiques des nombres de Pontrjagin13).
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