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Quelques propriétés globales des variétés
différentiables

Par RENE THOM, Strasbourg

Introduction

Le présent article donne la démonstration des résultats que j’ai an-
noncés dans quatre Notes aux Comptes-Rendus [28]). Il est divisé en
quatre chapitres. Le premier chapitre élabore une technique d’appro-
ximation des applications différentiables ; les théorémes démontrés sont
en quelque sorte une formulation différentiable du théoréme d’appro-
ximation simpliciale de la Topologie; grace a eux, toute la théorie
pourra étre établie sans faire appel au théoreme de triangulation des
variétés différentiables. Le chapitre II est consacré au probléme de la
réalisation des classes d’homologie d’une variété par des sous-variétés;
on y obtient les résultats essentiels: En homologie mod 2, toutes les
classes dont la dimension est inférieure a la moiti€ de la dimension de la
variété sont réalisables par des sous-variétés. En homologie entiére, pour
toute classe d’homologie z de la variété orientable V, il existe un entier
non nul N tel que la classe multiple N -z soit réalisable par une sous-
variété. Le chapitre I1I applique les résultats précédents au probleme de
Steenrod: Toute classe d’homologie d'un polyédre fini est-elle I'image de
la classe fondamentale d’une variété? On y montre que, si le probleme
admet une réponse affirmative en homologie mod 2, il existe au con-
traire, pour toute dimension =T, des classes d’homologie entiére qui
ne sont Uimage d’aucune variété différentiable compacte. Le chapitre 1V,
enfin, est consacré 4 I’étude des conditions pour qu'une variété soit une
variété-bord, et & la classification des variétés cobordantes. Ici encore,
on obtient des résultats assez complets pour les classes «mod 2», sans
condition d’orientabilité. Par contre, je n’ai pu donner que des résultats
fragmentaires pour les groupes 0% qui s’introduisent dans la classifica-
tion des variétés orientées, a cause de difficultés algébriques liées en par-
ticulier au comportement des puissances de Steenrod dans la suite spec-

1) Les numéros placés entre crochets renvoient & la bibliographie placée & la fin de
I'ouvrage.
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trale d’une fibration. De plus, cette théorie appellerait d’autres recherches
sur la signification topologique des nombres caractéristiques de Pon-
trjagin.

La présente étude est fondée presque entiérement sur la considération
de complexes auxiliaires, que j’ai notés M (SO(k)) et M(O(k)). La
détermination des propriétés homotopiques de ces complexes n’aurait
pu étre entreprise sans ’emploi des méthodes inaugurées en homotopie
par H. Cartan et J. P. Serre. Leurs résultats sur la cohomologie des com-
plexes d’Eilenberg-Mac Lane, notamment, se sont révélés un instrument
essentiel, et je leur dois tous mes remerciements pour m’avoir communi-
qué, avant publication, les résultats de leurs recherches. Je tiens & adres-
ser en particulier mes remerciements & J. P. Serre pour l'aide précieuse
qu’il m’a apportée dans la rédaction du manuscrit, et la mise au point
de nombreuses démonstrations.

CHAPITRE 1

Propriétés des applications différentiables

La notation V» désigne, dans toute la suite, une variété paracom-
pacte?), différentiable de classe C”, de dimension n.

1. Définitions. Soit f une application de classe C™, m > 1,
de la variété V» dans la variété MP?. On appelle critigue tout point z
de V7 oule rang de ’application f est strictement inférieur & la dimension
p de la variété MP; I’ensemble X des points x, ou ensemble critique de f,
est un ensemble fermé de V”. Tout point y de I’ensemble image f(2)
dans MP sera dit valeur critigue de P’application f. Au contraire, tout
point y de MP n’appartenant pas & ’ensemble image f(ZX) sera dit
valeur réguliére de 'application f 3).

2. Image réciproque d’une valeur régulitre. L’image réciproque
f~1(y) d’une valeur réguliére y ¢ M? peut étre vide ; c’est notamment
toujours le cas si la dimension » de V" est strictement inférieure & la

2) Rappelons qu’une variété paracompacte connexe peut 8tre définie comme variété
réunion dénombrable de compacts.

3) On observera que cette définition des valeurs critiques différe sensiblement de la
définition usuelle: lorsque la dimension n de V est inférieure & la dimension p de M,
tout point de I’image f(V) est une valeur critique, méme si I’application f est de rang maxi-
mum en tout point de f-1(x). Au contraire tout point n’appartenant pas & I'image f(V)
est une valeur réguliére.

18



dimension p de M?; supposons qu’il n’en soit pas ainsi, et soit z un
point de f~1(y); désignons par y,,y, ... ¥, un systéme de p fonctions
coordonnées pour un voisinage de y dans MP. Dire que f est de rang
p en z, c’est dire qu’on peut former, pour un voisinage U, de x assez
petit dans V™, un systéme de n fonctions coordonnées, formé des p

fonctions (y,, ¥, ... y,), et de (n — p) autres fonctions =z, ,... z,.
L’image réciproque f~!(y) est alors définie dans U, par les équations:
Y=Y = -+ =y, = 0. Donc x admet dans f'(y) un voisinage

homéomorphe & I’espace euclidien R"?; comme ceci est vrai de tout
point x e f'(y), l'image réciproque f~1(y) est une sous-variété diffé-
rentiablement plongée de classe C™ de la variété V7, soit Wn—»,

Désignons par V, lespace des vecteurs tangents en x a V*, par
W, le sous-espace de V, formé des vecteurs tangents en x a la sous-
variété WnP. Soit de méme M, Dl'espace des vecteurs tangents en y
a la variété MP. Dire que f est de rang p en x, c’est dire que I’applica-
tion 7, prolongée de f aux espaces de vecteurs tangents, définit un iso-
morphisme du quotient V_ /W, sur M,. On appellera — par abus de
langage — le quotient V /W, l'espace des vecteurs transverses en x
a la sous-variété Wn—?; supposons la variété ambiante V* munie d’une
métrique riemannienne; on peut alors définir en x ’espace H, des
vecteurs normaux a la sous-variété W7—?, Il est clair qu’alors les deux
espaces V /W, et H, sont isomorphes, et cet isomorphisme peut &tre
défini globalement, sur toute la sous-variété W»-P. Aussi parlera-t-on
indifféremment de la structure fibrée des vecteurs transverses ou de
celle des vecteurs normaux & une sous-variété.

Nous obtenons finalement: L’tmage réciproque d’une valeur réguliére y
de | est une sous-variété f~1(y)=WrP et Uapplication prolongée f -
duit un isomorphisme canonique de Uespace fibré des vecteurs normauz &
Wr—> sur le produit Wr—> x M, ou M, ~ RP est lespace des vecteurs
tangents en y a la variété MP.

Remarque. Ceci vaut méme si y est adhérent a I’ensemble des valeurs
critiques. On observera que, si ’application f est une application propre
(en particulier, si V" est compacte), 'ensemble f(2) des valeurs criti-
ques est fermé dans MP. En ce cas, toute valeur réguliére y admet un
voisinage U, sur lequel P'application f est localement fibrée. Ceci est la
forme locale d’un théoréme de C. Ehresmann [10].

3. Propriétés de ’ensemble f(Z') des valeurs critiques. Il peut arriver
que Dintérieur de l’ensemble f(X) ne soit pas vide. Par exemple,
H. Whitney a construit dans [30] une fonction numérique de classe C*
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sur le carré, pour laquelle toute valeur est une valeur critique. Mais ce
phénomene ne se présente que pour des applications f de classe C™ pour
lesquelles I'entier m est strictement inférieur & la dimension n de la
variété appliquée. En effet, A. P. Morse a démontré le théoréeme [16]:

Théoréme 1. 1. L’ensemble des valeurs critiques d’ume fonction numé-
rique de classe C™ sur R", ou m > n, est de mesure nulle.

(Ce théoréme cesse d’étre exact pour les fonctions de classe Cr, ou
r{m).

Toute variété paracompacte V™ peut étre recouverte d’une infinité
dénombrable de cartes homéomorphes & B"; comme une réunion dénom-
brable d’ensembles de mesure nulle est encore de mesure nulle, le théo-
réeme précédent se généralise en:

Théoréme 1. 2. L’ensemble des valeurs critiques d’une fonction numé-
rique de classe C™, ou m = n, sur une variété V"™, est de mesure nulle.
Une nouvelle généralisation de ce théoréeme donnera?):

Théoréme 1. 3. Si f est une application de classe C™ de V™ dans MP
avec m >=n, alors f admet sur tout ouvert de MP des valeurs réguliéres.

Ou encore: L’ensemble f(X) des valeurs critiques de f n’a pas de point
intérieur.

Comme le théoréme affirme une propriété locale dans la variété image
M?, on peut supposer que MP n’est autre que l’espace euclidien R?;
la propriété se démontre alors par récurrence sur l’entier p ; pour p =1,
c’est une conséquence immédiate du théoréme 1.2. Supposons donc le
théoréme vrai jusqu’a la dimension p — 1 incluse, et soit f une appli-
cation de classe O de V" dans RP. Désignons par v,, %, ... Y,
un systeme de coordonnées pour R?, et soit U un ouvert de R?; soit
Ja,b[ un intervalle ouvert de valeurs prises par la fonction y, sur
Pouvert Uy, est une fonction de classe C" sur V", donc, d’apres
le théoréme 1.2, y, admet dans ]a,b[ wune valeur réguliere c;
Wn—1 = y~1(c) est une sous-variété de dimension n — 1 de V", qu’on
supposera non vide (sinon la propriété serait trivialement vérifiée) ; soit
x un point de Wn~1; pour un voisinage V, assez petit de x dans V7,
on peut faire choix d’un systéme de fonctions coordonnées de la forme
(%1, %y ... ®,_4, y¥,) qui contient la fonction y,. Soit U, la coupe de
Pouvert U par ’hyperplan y, = c¢. La restriction f, de 'application f
4 la sous-variété W71 est de classe C"; done, par hypothése,

4) Comme me 1’a signalé M. G. de Rham, ce résultat est une conséquence d'un théo-
réme de A. Sard: The measure of the critical values of differentiable maps, Bull.
Amer. Math. Soc., 48, ‘1942, p. 883—90.
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f, : Wr1 > RP-1 ou RP-! désigne I’hyperplan d’équation y, = c,
admet sur 'ouvert U, une valeur réguliére, soit a; soit e V" un
point de I'image réciproque f;'(a) = f~'(a, c), supposée non vide. Puis-
que a est valeur réguliére pour f,, l'application f,, définie sur un
systéme de coordonnées locales d’un voisinage V, de x dans V, est

de la forme: f(xz,, % ..., %,4,¢) = (Y1, Y2, --. Yp_;) et est alors de
rang (p — 1); donc I'un des mineurs g‘% n’est pas nul pour y, = c,
i

et, par continuité, pour des valeurs de y, assez voisines de ¢ ; il en résulte
qu’on peut prendre dans un voisinage V. ¢ V_, un systéme de fone-
tions coordonnées de la forme: (v, ... %, ,, %, Y .. y,); cest
dire que f est de rang maximum en x; comme ceci est vrai pour tout
point x de f(a,c), le point (a,c)e U est une valeur réguliére pour f.
Le théoreme 1.3 est ainsi démontré.

Si Papplication f est propre (en particulier, si V™ est compacte), ’en-
semble f(X) des valeurs critiques de f est un fermé sans point intérieur,
c’est un ensemble rare de MP dans la terminologie de Bourbaki [6].
Dans le cas général, soit V" = o, K; un recouvrement dénombrable
de V* par des compacts K,; chacun des ensembles intersections
2; =K, ~2 est compact, et f(2,) est un compact rare de M»;
donc, f(X) = v, f(Z;) est une réunion dénombrable d’ensembles fermés
rares, c’est, dans la terminologie de [6], un sous-ensemble maigre de MP.

3. L’image réciproque d’une sous-variété.

Définition: voisinage tubulaire d’une sous-variété. Soit NP—2 une
sous-variété compacte, différentiablement plongée de classe C*, de la
variété M?. Supposons M? munie d’une métrique riemannienne de classe
C*. Soit T I’ensemble des points de MP situés & une distance < ¢ de la
sous-variété NP-2. Si ¢ a été pris assez petit, par tout point = € 7' il ne
passe qu’une géodésique normale & NP—2, aboutissant sur N?-¢ en un
point y = p(x). L’application p : 7T — NP2 est une fibration, la
fibre p~1(y) est une g-boule géodésique normale. Le bord F de T est
une variété de dimension p — 1, fibrée par p sur NP2 en (¢ — 1)-
spheres. Un tel voisinage 7' de NP—¢ sera appelé, par toute la suite, un
vorsinage tubulaire normal de la sous-variété NP-2. 1l est clair que la
fibration p admet pour groupe de structure un sous-groupe du groupe
orthogonal O(q) et la structure fibrée de 7' est canoniquement isomorphe

a celle de I’espace fibré des vecteurs normaux (donc transverses) & la
sous-variété NP-¢ dans MP.

21



Rappel sur les homéomorphismes différentiables d’une boule.

Soit B? la g-boule fermée de centre O ; soit 4 un homéomorphisme
de B? de classe C sur elle-méme ; si on suppose de plus que I’homéo-
morphisme inverse A1 est différentiable, alors 'application de B¢ sur
elle-méme est en tout point de rang q. On considérera le groupe de ces
homéomorphismes qui se réduisent & l'identité sur le bord 82! de
B2, soit G.

Etant donné un point ¢ intérieur & B?, on peut définir, de bien des
fagons, un homéomorphisme 4 de G, tel que A(c) = O; on peut de plus
montrer qu'un tel homéomorphisme 4 est homotope & l'identité dans G,
muni de la topologie ainsi définie: topologie de la convergence uniforme
pour l'application A4 : B? - B¢, ainsi que pour l’application inverse
A1, et pour les dérivées partielles de 4 et 4-! jusqu’a ’ordre » inclus.
On peut définir dans G un homéomorphisme dépendant continuement du
paramétre (0 <t <1),4,, tel que 4= A et A, = identité.

Le groupe des homéomorphismes H d’un voisinage tubulaire normal.

Soit 7' un voisinage tubulaire normal de la sous-variété N?-¢ dans
M7 ; on lui associe le groupe H des homéomorphismes de classe C”
de T ainsi définis:

i) Tout élément A € H applique globalement toute fibre p~1(y) sur
elle-méme.

ii) Tout élément de H se réduit 4 l'identité sur le bord F de 7. Le
groupe H est muni de la topologie ainsi définie: topologie de la conver-
gence uniforme pour les applications 4 et A4-!, ainsi que leurs dérivées
partielles jusqu’a l’ordre n. (Pour définir les dérivées partielles d’une
application 4 : 7' — T, on peut plonger 7' dans un espace euclidien
R¥; la topologie définie a 1’aide des coordonnées dans R* est indépen-
dante de I'immersion). Avec la topologie ainsi définie, H est un espace de
Baire. En effet, H est un espace métrique complet : il suffit de montrer
que tout filtre de Cauchy (4,) dans H converge dans H; en effet, pour
tout point z €7, les points A,(x) forment un filtre de Cauchy dans T,
qui définit un point J(z) €7', et 'application limite J est de classe C";
de méme, le filtre de Cauchy des A;'(x) est convergent, et définit une
application de classe (", J~! qui est inverse de J.

Détinition: Application t-réguliére sur une sous-variété. Soit f une
application différentiable de ¥» dans MP, et soit y un point de la
sous-variété N?—¢ de MP. Soit M, l’espace des vecteurs tangents en y
a MP, N, le sous-espace des vecteurs tangents & la sous-variété NP1,
Soit x un point quelconque de I'image réciproque f~1(y), V, l’espace des
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vecteurs tangents en x & V*. On dira que y est une valeur t-réguliére,
si, en tout point = ef~1(y), 'application prolongée f_: V,->M,—>M,/N,
est de rang ¢, et applique V, sur I'espace des vecteurs transverses a
Nr-¢ 3 MPp5),

4. Image réciproque d’une sous-variété par une application t-réguliére.

On dira que I'application f : V*» —~ MP est t-réguliére sur la sous-variété
NP-2 ¢ M?, si tout point y de NP—2 est une valeur ¢-réguliere de f.
Désignons, dans une carte locale autour de y, par w,,%, ..y, un
systéme de ¢ fonctions coordonnées telles que les équations y, = y, =
++- =y, = 0 définissent localement la sous-variété N?-2. Soit z un
point de l'image réciproque f-'(y), supposée non vide; si y est une
valeur ¢{-réguliere, on peut trouver un voisinage U, de x dans ¥V dans
lequel existe un systéme de n fonctions coordonnées de la forme:
(%), Ty, . Xpg> Y15 Y2 -+ Y,); l'image réciproque f-1(N?-9) est définie
dans U, par les équations: y, = y, = .. = y, = 0; x admet donc
dans f-'(y) un voisinage homéomorphe &4 R"2. C’est dire que I'image
réciproque f~1(NP-2) est ume sous-variété Wn—2 différentiablement
plongée de classe C™.

Soit V, D'espace des vecteurs tangents en z & V», W, l'espace des
vecteurs tangents en x & Wn2. Si y = f(x) est une valeur ¢-réguliére,

cela veut dire que l'application prolongée 7 induit un isomorphisme de
Pespace des vecteurs transverses V,/W, sur ’espace des vecteurs trans-
versesen y & N?~2: M,/N,. Globalement, la structure fibrée des vecteurs
transverses (ou normaux) @ W™ dans V™ est canoniquement isomorphe
a la structure tnduite de celle des vecteurs transverses a NP-2 dans MP
par Uapplication f.

Soit ¥ un point de N?-¢; désignons par X la boule ouverte de centre y
de rayon géodésique r, dans la sous-variété N?-¢, par X’ la boule con-
centrique de rayon 2r; on suppose r assez petit pour que X' soit effec-
tivement une boule. Dans ces conditions, les sous-ensembles du voisinage
tubulaire 7' définis par:

D= p1(X); D' = p1(X’) sontresp. homéomorphes aux produits:
X x Bg; X' x B® puisque toute fibration est triviale sur

une boule. Soit k : D’ (ou D) — B? Papplication définie par cet homéo-
morphisme. Nous allons démontrer le:

Lemme I. 4. L’ensemble des homéomorphismes 4 ¢ H du voisinage

%) L’image réciproque f—1(y) d’une valeur ¢-réguliére y € NP—¢ peut étre vide; on dira
en ce cas que c’est une valeur ¢-réguliére triviale.
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tubulaire 7' tels que l'application composée A4 of, ou f: V> > MP
est de classe O™, n’est pas ¢-réguliére sur X, est un sous-ensemble maigre
de I'espace de Baire H.

Dire qu’une application g : V» — M? n’est pas ¢-réguliére sur X,
c’est dire que ’application composée k og, définie sur g—1(D), admet
le centre O de la fibre B? pour valeur critique (en effet, par définition,
Papplication prolongée k induit, en un point y e MP, le quotient de
Pespace des vecteurs tangents M, par le sous-espace des vecteurs tan-
gents N, & la sous-variété N?—9).

Désignons par K, un compact de V" ; on dira qu'un homéomorphisme
A e H est i-critique, si application composée k o A4 of, définie sur
f~1(D), admet dans K, au moins un point critique x tel que f(x) e X.
Soit ¢; I’ensemble des 4 € H qui sont ¢-critiques. On va montrer que o,
est un fermé de H sans point intérieur.

i) o; est fermé. Soit A un élément de H qui n’appartient pas a o,;
c’est dire que l’application composée &k o A of admet O comme valeur
réguliere, lorsqu’elle est restreinte a K, ~ f~*(D). Soient y,,¥%,..y,
un systeme de fonctions coordonnées pour la g-boule B?; par hypothése,
0Y:
ox,
ont en valeur absolue une borne inférieure strictement positive, soit 3 B,
ou B> 0. Il existe par suite un voisinage fermé — donc compact —

J de K;~f1o A 1(NP?) dans K, dans lequel ces jacobiens g—g’—
sont en valeur absolue > 2 B. *

sur P'intersection K, ~ f~1 o A-1(N?P-9), les jacobiens d’ordre ¢

Considérons maintenant ’ensemble des homéomorphismes A’ de H
assez voisins de 4 dans H pour que:

1. La nouvelle intersection K, ~ f~1 A’-1(NP-2) soit tout entiére con-
tenue dans J: ceci peut étre obtenu en majorant convenablement la
distance (dans M?) de A & A’: il suffit de prendre || A’ (y) — 4 (y) ||
plus petit que la distance de O & la frontiére de ’ensemble image
koAf(J).

0Y;

0x;,

dans J, supérieurs en valeur absolue &4 B ) 0; ceci sera obtenu par
une approximation convenable sur les dérivées partielles du premier
ordre de lapplication A’ par rapport & celles de I'application A4:
9y,
o0x;,
dérivées partielles du premier ordre de ’application 4.

2. Les jacobiens

associés & Lapplication koA’ of soient,

en effet, les jacobiens sont des fonctions continues des

24



Pour tout 4’ assez voisin de 4 qui satisfait & ces deux conditions,
0Y;
0x;,
par suite A’ of est t-réguliére sur la boule X.

les jacobiens

ne s’annulent pas sur K; ~ f"1 A’-1(NP-9), et

il) o; n’a pas de point intérieur. Soit A un élément de o¢,; l'applica-
tion composée k oA of admet O pour valeur critique ; mais, comme
Papplication est de classe C*, elle admet, d’aprés le théoréme 1.3, une
valeur réguliére ¢ aussi voisine qu’on voudra de O ; soit £ ’homéomor-
phisme de D’ =p~1(X’) défini comme suit: soit ¢ un homéomorphisme
de la g-boule B? qui applique c sur O, et se réduit a I'identité sur le bord
Se-1de B?, et G, un homéomorphisme dépendant continuement du para-
métre ¢t € I, tel que Gy= @ et G, = identité. Soit d une fonction de classe

C*”, égale a 0O sur X , 6gale & l'unité & la frontiére de X', et croissant
de 0 & 1 lorsque la distance géodésique au centre y de X croit de r a 2r;
usant de ’homéomorphisme: D’ ~ X’ x B?, E peut étre défini par la
formule:

E(yy,2) = (Z/de(y)(z)) €X' ,zeBl.

L’homéomorphisme E conserve globalement les fibres p~—1(y), et se
réduit & I’identité sur la frontiére de D’ ; E peut par suite étre prolongé
en un homéomorphisme du voisinage tubulaire 7' sur lui-méme ; il suffit
de prendre la transformation identique a I’extérieur de D’. L’élément E
ainsi défini appartient alors au groupe H.

Par ailleurs, I'application K o A4 of est t-réguliere sur X, car, par
construction méme, I'application composée k o £ o 4 of admet O pour
valeur réguliére. Si donc on pose A’ = E o A, D'application A4’ of est
t-réguliére sur X et peut-étre rendue arbitrairement voisine de A4 o f:
en effet, ’homéomorphisme E peut-étre pris aussi voisin qu’on voudra
de l'identité: il suffit pour cela de prendre la valeur réguliere c assez
voisine de O.

(On remarquera que dans cette seconde partie du raisonnement le
compact K, n’intervient pas: on montre ainsi que I’ensemble des 4 tels
que 4 of n’est pas t-réguliére sur X est sans point intérieur dans H).

Comme la variété V” est réunion dénombrable des compacts K,
I’ensemble ¢ des A tels que A o f n’est pas ¢-réguliére sur X est la réunion
dénombrable des ensembles rares o;, c’est donc un ensemble maigre
de H, et le Lemme 1.4 est démontré.

La sous-variété NP-¢ étant supposée paracompacte, on peut la recou-
vrir par une infinité dénombrable de boules ouvertes telles que X . (No-
tons en passant, qu’on peut définir un voisinage tubulaire normal pour
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une sous-variété paracompacte: le seul changement par rapport au cas
compact est que le «rayon» du voisinage tubulaire doit étre pris variable.)
Dés lors, ’ensemble des A4 tels que A of n’est pas ¢-réguliére sur NP2
est une réunion dénombrable d’ensembles maigres de H, donc aussi un
ensemble maigre, sans point intérieur. Ceci nous permet d’énoncer le
théoréme:

Théoréme I.b. Soit f une application de classe C™ de la variété V»
dans la variété MP, et sovt NP2 une sous-variété paracompacte de MP,
et T un voisinage tubulaire normal de NP—2 dans MP. Il est possible de
trouver un homéomorphisme A de T sur lui-méme, arbitrairement voisin de
Videntité dans H, tel que, st f' = A of:

i) L’'image réciproque f'—1(N?-9) de NP~ soit une sous-variété de Vn,
de dimension mn — q : W2 différentiablement plongée de classe C™.

ii) L’espace fibré des vecteurs normaux a W2 dans V" soit canonique-
ment 1.somorphe a I’espace induit de la structure fibrée des vecteurs normaux a
N?»—¢ dans MP.

b. Le théoréme d’isotopie. La propriété énoncée ci-dessous ne nous
servira que dans la partie IV, et dans le cas V" compacte seulement ;
aussi ne 1’établirons-nous que sous cette hypothése.

Soit f une application de classe C* de la variété V» dans M7,
t-réguliére sur la sous-variété compacte NP~2. Supposons qu’on ait défini
en chaque point ¥ de N?—¢ un systéme de g-fonctions coordonnées nor-
males y,,y, ... ¥,, tel que dans un voisinage de y, NP~¢ soit définie
par les équations y, = y, = - .- = y, = 0. NP~¢ étant supposée com-
pacte, on pourra définir NP-¢ avec un nombre fini de systémes (y,).
A Yaide d’une métrique riemannienne dans V”, on définira un voisinage
tubulaire @ de la sous-variété W»2 = f-1(N?-2), et dont le rayon ¢
sera pris assez petit pour satisfaire a la condition suivante:

Soit x un point de W»—2, B, la g-boule géodésique normale en x &
Wn-2: les fonctions (y,;) associées & y = f(x), sont, pour tout x, un
systéme de fonctions coordonnées pour la g-boule B,. Il est évidemment
possible de satisfaire & cette condition, puisque f est supposée ¢t-réguliére,
et que W™2 est compacte.

Soit 4 un élément du groupe H, voisin de l'identité. On se propose
d’étudier I'image réciproque g¢g-1(N?-2), ou g = A of. Il est clair,
tout d’abord, que si A est assez voisin de ’identité, I'application g est
elle aussi ¢-réguliére sur NP-¢; en effet, si on prend A assez voisin de
P’identité pour que || A(y) — y || dans MP soit strictement inférieure
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a la distance de N?—¢ & la frontiere de f(Q), l'image réciproque
g~1(N?-9) sera tout entiére contenue dans Q.

On peut de plus supposer A assez voisin de 'identité — au point de
vue de ’écart sur les dérivées partielles du premier ordre — pour que
I’application g, soit, comme f, de rang ¢ sur toute g-boule B,. Dans
ces conditions, I'application g est {-réguliere. On va montrer que, moyen-
nant éventuellement une approximation un peu plus serrée, les deux
sous-variétés W4 = f-1(NP-9) et W' = g~1(INP—9) sont isotopes dans
Vr. La démonstration ne fait que suivre un schéma donné par Seifert
dans [21].

Désignant par (y,) un systéme de g fonctions coordonnées transverses
au voisinage du point y = f(x) de NP2, a tout point z e B,, asso-
cions le point de R¢ dont les coordonnées sont y,(g(z)); on définit
ainsi une application L: B, - R? qui, si ¢ = f, donne I’homéomor-
phisme identique ; I’image réciproque L~!(0) est 'intersection de B,
avec la variété W/ = g-1(NP-9),

¢ désignant toujours le rayon de B, on peut prendre A4 assez voisin
de 1, donc g assez voisin de f, pour que, || L(z) — 2z || { ¢, uniformément
en x, et pour tout systéme (y,) associéd y = f(x). Ceciimplique que la
sphére L (S?-1) image du bord S?2-! de B, est homotope & S2-! dans
Pespace R? — O, privé de l'origine O. Il en résulte que le degré de 1’ap-
plication L, est, sur le point O, égal & celui de I'application identique,
et est donc égal & -+ 1. Par ailleurs, ’application L est de rang maximum
en tout point de B, : au voisinage de tout point zde B,, L est un homéo-
morphisme local, et par suite, 'image réciproque L-!(0) ne peut conte-
nir que des points isolés ; comme tout point de B, est appliqué sur R?
avec le degré + 1 (signe du jacobien de ’application L), I'image réci-
proque L-1(0) est formée d’un point 2’ unique. Ainsi W’ ne rencontre
chaque boule B, qu’en un point unique z’; la correspondance = — 2’
est un homéomorphisme de W72 sur W/»—2. De plus, comme z’
peut &tre joint & x par un arc géodésique s(z, z’) dans B,, on peut
définir évidemment une isotopie qui déforme W72 sur W'»—2, On
obtient ainsi:

Théoréme 1. 6. Soit f une application de classe C" de la variété com-
pacte V™ dans MP, t-réguliére sur la sous-variété compacte NP—2. Alors,
pour tout homéomorphisme A de H du voisinage tubulaire de NP—2, assez
voisin de 'identité dans H, Uapplication g = A of est t-réguliére sur
Nr-a et les deux sous-variétés Wn1 = f-1(NP-1); W/"-¢ = g~1(NP-9)
sont isotopes dans V™.
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CHAPITRE 1I

Sous-variétés et classes d’homologie d’une variété

1. Généralités. Soit V» wune variété orientable ; oriemter V», c’est
faire choix, dans le groupe d’homologie entiere H,(V"; Z) d’une classe
privilégiée, qu’on appellera classe fondamentale de la variété V™ ainsi
orientée. Dans V" orientée, la dualité de Poincaré s’exprime par un
isomorphisme canonique entre le groupe d’homologie H,_ ,(V"; Z) et
le groupe de cohomologie H*(V™;Z). On appellera classes correspon-
dantes deux classes images 1'une de ’autre pour cet isomorphisme. Si le
groupe des coefficients est le groupe Z, des entiers mod 2, la classe fonda-
mentale de H,(V";Z,) est définie de fagon unique, méme si V" n’est
pas orientable, et [P'isomorphisme, dit de Poincaré-Veblen, entre
H, .(V*;Z,) et H*(V*;Z,) est canoniquement défini. Ici, et dans tout
ce qui suit, nous supposons la variété V" compacte ; nous ne ferons qu’in-
diquer briévement la généralisation possible des résultats aux variétés
paracompactes non compactes.

Soit W? une sous-variété de dimension p. L’application identique
t: WP — V* induit un homomorphisme ¢  de I'homologie H,(W?)
dans I'homologie H_,(V™"); soit z € H,(V") la classe image par iy de la
classe fondamentale de la variété W». On dit alors que la classe z est
réalisée par la sous-variété W?. La question envisagée ici est la suivante:
une classe d’homologie donnée z d’une variété V™ est-elle réalisable par
une sous-variété? Le probléme, on le verra, recoit des réponses trés dif-
férentes suivant que le groupe des coefficients est le groupe Z des entiers
ou le groupe Z, a deux éléments. Dans le premier cas, on supposera tou-
jours, méme si on ne le rappelle pas explicitement, que la variété V=
considérée est orientable, et munie d’une orientation fixée, bien qu’arbi-
trairement choisie.

2. Complexe associé 4 un sous-groupe fermé du groupe orthogonal. Soit
G un sous-groupe fermé du groupe orthogonal & k variables O(k).
On sait que toub espace fibré en sphéres S¥-1 dont G est groupe de struc-
ture est induit d’un espace fibré universel Z;, dont la base B, est une
variété compacte ; (on se restreint ici, évidemment, aux espaces fibrés
dont la base est de dimension finie < N). Désignons par A4, le «map-
ping cylinder» de I’application fibrée E, — B, espace fibré en k-boules
sur By; c’est une variété & bord de bord E,; on désignera par Ag

le complémentaire 4, — E,, espace fibré en k-boules ouvertes associé
a E, (Cf.[27)).

28



Définition. On appellera complexe associé au sous-groupe G de O (k),
I’espace dénoté M (G) obtenu & partir de A4, par identification en un
point @ de son bord E;; M(G) est, si 'on veut, la compactification
d’ Alexandroff de l'espace fibré en boules ouvertes A.

Cohomologie de M (G). La cohomologie HT"(M (G)) s’identifie, pour
tout 7> 0, a la cohomologie a supports compacts H. (M (G)), ou encore,
a la cohomologie relative H"(4,, E;). Or, on a I'isomorphisme classique
de la théorie des espaces fibrés en bonules ouvertes (Cf. [26]):

g : H=%(Bg) ~ Hi(4g) ~ H"(M(G))

les coefficients étant pris dans le groupe Z, en général, dans Z si ’espace
fibré E, est orientable (@ connexe). La cohomologie H*(M (G)) s’ob-
tient donc, pour les dimensions r » 0, en majorant de k£ unités la gra-
duation de la cohomologie H*(B;) de l'espace classifiant B,. En par-
ticulier, le premier groupe H” (M (#)) nonnul, pour r > 0, est H*(M (G));
il est engendré par la classe U e H*(M (@)) définie par:

U= (P;(wa)

ol wg désigne la classe-unité de H°(Bg;). La classe U sera appelée
classe fondamentale du complexe M (G). Rappelons que U est une classe
a coefficients entiers si K, est orientable (G connexe); c’est une classe
mod 2, si F, n’est pas orientable (G non connexe).

3. Le théoréme fondamental. Définition. On dira qu’une classe
de cohomologie u e H*(A) d’un espace A est réalisable pour le groupe
G CO(k), ou encore: admet une G-réalisation, s’il existe une application
f:4 - M(Q) telle que u soit 'image, pour ’homomorphisme f* induit
par f, de la classe fondamentale U du complexe M (().

Nous avons alors le théoréme:

Théoréme II.1. Pour qu’une classe d’homologie z e H,_,(V"), k>0,
puisse étre réalisée par une sous-variété Wn—% dont Uespace fibré des vec-
teurs normaux admet G pour groupe de structure, il faut et il suffit que la
classe de cohomologie u € H*(V™) correspondante a z soit réalisable pour
le groupe Q.

i) La condition est nécessaire. Supposons qu’il existe dans V" une
sous-variété W»—k dont la classe fondamentale appartient & z; soit N
un voisinage tubulaire normal de Wn-*, de bord 7. La fibration géo-
désique normale p: N — Wn—* admet, par hypothése, G pour groupe de
structure. N est induit de 1’espace universel A, par une application
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g: Wr-k > B, il existe donc une application F: N - 4, (qui appli-
que fibre sur fibre), telle que le diagramme:

F

N"’—‘“>A(;

p| , |po

Wnt —> Bg soit commutatif.

La restriction de ¥ au bord 7' de N applique 7' dans le bord E,
de A,. Sil’on désigne par ¢*, resp. ¢, , les isomorphismes des espaces
fibrés en k-boules N, resp. 44, le diagramme:

F
HY(N,T)— H*(4q, Eq)
* : 3
@ T g %;T (1)

Ho( Wn-k ) —> Hoe (BG)
est également commutatif.

Par ailleurs, soit j, : H*(N, T) - H¥(V") I’homomorphisme cano-
nique défini par l'injection ; on sait que dans la variété ouverte N’ =
N — T, la classe ¢*(w) correspond — par la dualité de Poincaré — a
la classe d’homologie fondamentale de la base Wn—* (Cf.[27] Th.I.8).
Par suite, la classe j, ¢*(w) e H¥(V™) n’est autre que la classe u cor-
respondant & z.

Désignons par h: A; — M (Q) l'application obtenue en identifiant en
un point a le bord E; de 4,; l’application composée h og applique
le bord 7' de N sur le point a ; par suite, ’application A& og peut étre
étendue & toute la variété Vn: il suffit d’appliquer le complémentaire
V*» — N sur le point @ ; on définit ainsi une application f de V" dans
M (@), pour laquelle on a bien:

*(U) = f ¢g (0g) = jx ¢*(w) = u, d’aprés le diagramme commu-
tatif (1).

il) La condition est suffisante. Supposons qu’il existe une application
fde V» dans M(Q®), telle que f*(U) = u; l'espace M(G), privé du
point exceptionnel a, est une variété différentiable ; on pourra régulariser
la restriction de f au complémentaire V™ — f-1(a), de facon & obtenir
une nouvelle application f,, voisine de f, qui soit différentiable de classe
C"* sur V» — f~1(a); on appliquera alors a I'application f, le théoreme
I.5. On pourra ainsi définir une application F, arbitrairement voisine
de f, telle que I'image réciproque F-!(B;) soit une sous-variété Wn—¥k;
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I’espace des vecteurs normaux & W=k  induit de I'espace 4;, admet G
pour groupe de structure. Désignant alors par ¢* I'isomorphisme ¢*
associé & un voisinage tubulaire normal de W»—% dans V», la classe
u = f¥(U) = F*(U) n’est autre que j, ¢*(w), w classe-unité de
Wn—%; comme on I’a vu en i), ceci exprime que u correspond par la dua-
lité de Poincaré a la classe du cycle fondamental porté par la sous-
variété Wn—Fk,

Extension du théoréme 11.1 aux variétés paracompactes non compactes.

Rappelons que dans une variété paracompacte non compacte, il existe
autant de théoremes de dualité que de familles (@) de sous-ensembles
fermés utilisés pour définir homologie et cohomologie (Cf. [26], Th. 0. 3).
On peut se poser, dans ces conditions, la question suivante: une classe
d’homologie & supports dans (D), z e He , (V") peut-elle &tre réalisée par
une sous-variété Wn-%? Peu de modifications doivent étre apportées
4 la démonstration précédente pour y répondre: on observera d’abord
que le voisinage tubulaire normal d’une sous-variété paracompacte peut
toujours étre défini, & condition de prendre son rayon éventuellement
variable. Disons de plus qu’une application f: V — M est @-propre,
si 'image réciproque f-1(K) de tout compact K de M appartient & (D)
(si @ est la famille & des compacts de V, on retrouve la définition clas-
sique des applications propres). On aura alors le théoréme:

Théoréme II.1’. Pour qu'une classe z e HY (V") soit réalisable par
une sous-variété dont lespace fibré des vecteurs normaux admette G pour
groupe de structure, il faut et il suffit qu’tl existe une application f:
Ve - M(G), D-propre sur M(G) — a, telle que la classe tmage
f*(U) e H: (V™) corresponde a z par la dualité de Poincaré.

4. Cas ou G se réduit & I’élément unité e eO (k). I espace classifiant
B, se réduit alors & un point, A, est une k-boule fermée et le complexe
M (e) n’est autre que la sphére S¥%. Disons qu’une classe de cohomologie
entiére u d’un espace A est sphérique, s’il existe une application f: 4— S¥,
telle que u = f*(s*), s* désignant la classe fondamentale de H*(S*; Z).
Le théoréme I.1 nous donnera alors:

Théoréme II. 2. Pour qu’une classe d’homologie zeH,_ ,(V*;Z) de
la variété orientable V™ puisse étre réalisée par une sous-variété dont
Vespace fibré des vecteurs normaux est trivial, il faut et il suffit que la
classe de cohomologie w e H¥(V™;Z) correspondant a z soit sphérique.

On ne connait pas, en Topologie Algébrique, de condition nécessaire
et suffisante pour qu’une classe de cohomologie donnée soit sphérique ;
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le seul résultat de nature générale a été obtenu par J. P. Serre [22]; le
voici:

Théoréme II. 3. Pour toute classe x e H*(4;Z) d'un espace A de
dimension finie n, avec k vmpair, ou n { 2k, il existe un entier non nul N,
ne dépendant que de k et de n, tel que la classe multiple N - x soit une
classe sphérique. De la, on déduit:

Théoréme II. 4. Soit zeH,_,(V";Z) une classe d’homologie entiére
de la variété orientable V™, avec k impair, ou n { 2k. Il existe alors un
entier non nul N , ne dépendant que de k et de n, tel que la classe multiple N -2
puisse élre réalisée par une sous-variété Wn—* dont Uespace fibré des vec-
teurs mormaux est trivial.

b. Description des complexes M(O(k)) et M(SO(k)) . Il résulte im-
médiatement du théoréme I1.1 qu’on a les théorémes suivants, qui mon-
trent 'importance des complexes M(O(k)) et M(SO(k)):

Théoréme II.5. Pour qu’une classe d’homologie z e H,_,(V";Z) de la
variété orientable V™ soit réalisable par une sous-variété, il faut et il suffit
que la classe de cohomologie u correspondant a z soit réalisable pour le
groupe des rotations.

Théoréme II.5'. Pour qu’une classe d’homologie mod 2 z e H,_,(V"; Z,)
de la variété V™ soit réalisable par une sous-variété, il faut et il suffit que la
classe de cohomologie w correspondant a z admette une réalisation ortho-
gonale.

On désignera par G, la grassmannienne des k-plans non-orientés dans
un espace euclidien R™, ol m est trés grand. G, est, ¢c’est bien connu,
I'espace classifiant B, associé au groupe orthogonal O(k). On

/\
désignera par @, la grassmannienne des k-plans orientés dans RB™; c’est

N\
le classifiant Bg,;, associé au groupe des rotations SO(k) - G, est
un revétement & deux feuillets de G,.
L’espace fibré universel Hgg,,;, s’obtient en associant & tout k-plan

de G « son intersection S§*-! avec la sphere de rayon 1 dans R™; Hgy,
peut donc étre considéré comme ’espace des couples formés d’un k-plan
orienté et d’un vecteur unitaire contenu dedans ; associons a ce couple
le (k — 1)-plan orthogonal au vecteur dans le k-plan; on définit ainsi

N
une fibration de Eyg,,, sur la grassmannienne @,_,, la fibre étant une
sphére S™ % de grande dimension. Par suite, pour les dimensions in-
férieures & la dimension classifiante m — k, Egy;, & méme type d’homo-
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topie que la grassmannienne é‘k_l; et linjection Hgy,y —> Agoq,
g’identifie — au point de vue de I’homotopie — & I’application canonique
ak_l — @, déduite de l'injection du sous-groupe SO(k — 1) dans
SO (k).

Cohomologie de M (S8O(k)). Pour les dimensions r > 0, la cohomo-
logie H*(M(SO(k))) s’identifie & la cohomologie relative H ((’i % G Ik
on la déterminera grace a la suite exacte:

* 3% A *

A1 6 A A A
— H"(Gy) — H" (Gk—l) - HT+1(GL-’ Gk-—l) - Hr+1(Gk) - (2)

olt ’homomorphisme :* est bien connu.

Cohomologie mod 2. On sait (cf. [3]) que la cohomologie H* (G x> Zs)
est une algebre de polynémes engendrée par (k — 1) générateurs:
Wy, Wy, .., Wy, ot W,, de degré ¢, est la 1™ classe de Stiefel-Whitney.
Il est bien connu que les classes W, s’appliquent 'une sur 'autre par
I’homomorphisme ¢*; par suite, la cohomologie relative H* (é\ k> G k—1)
s’identifie & U'idéal engendré par la classe W, dans Ualgébre de polynomes

N\
H*(@,;Z,). On retrouvera directement ce résultat en considérant,
comme au n° 2, I'isomorphisme ¢*.

Cohomologie mod p, p premier » 2. Distinguons deux cas:

i) k impasr, k = 2m + 1. H* (é‘\ x> 4,) est une algébre de polyndémes
engendrée par des générateurs P* de dimension divisible par 4
(classes de Pontrjagin, réduites mod p):

P P8, ... Pim,

ii) kpair, k = 2m'. H* (8' x> Z,) est une algébre de polynémes engendrée
par les classes de Pontrjagin, réduites mod p:
Py ps ., P-4 et ]la «classe fondamentale» X2/,

Dans P'application canonique G > @ x+1, les classes de Pontrjagin
P g’appliquent I'une sur ’autre, sauf, si k£ est pair, la classe de dimen-
sion maximum de H4m (’(}k 1), P¥, qui se trouve appliquée par t* sur le
cup-carré (X2m)2 de la classe fondamentale X eH ’“( ¢ (cf. [5]).
Il en résulte: si k est pair, H* (Gk, Gk—l) s’identifie & 1'idéal engendré

par la classe X?" dans H *(6 %) 5 sikestimpair, H*(M (SO (k)) s’iden-
tifie & une algébre extérieure de générateur o*(X2m'),

Cohomologie de M (O(k)).

On utilise la méme suite exacte que (2), ol les @, remplacent les ¢ P
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Cohomologie mod 2. La cohomologie H*(G,;Z,) est une algébre de
polyndémes, engendrée par k générateurs W,, W,, W,, ... W,. Comme
précédemment, on trouve que H*(G,,G,_,;Z,) s’identifie & l'idéal ¥
engendré par la classe W, dans H*(Q,;Z,).

Cohomologie mod p, p premier ) 2. Soit ¢ le groupe d’automorphismes

du revétement & deux feuillets G, —@,. On vérifie aisément les pro-
priétés suivantes: les classes de Pontrjagin P* sont invariantes par g;
par contre, g transforme, si k est pair, la classe fondamentale X, en son
opposée — X ,. D’aprés un résultat classique de la théorie des revéte-
ments (B. Eckmann [9]), il en résulte que: pour k impair, H*(G,; Z,)

est isomorphe a H *(@ x> 4,); pour k pair = 2m, H*((',; Z,) est une
algébre de polyndémes engendrée par les classes de Pontrjagin:

P, P8 . P'mt et le cup-carré (X,)? de la classe fondamentale X, ;
(en effet, si X, n’est pas invariant par g, par contre (X,)? l'est).

Usant toujours de la suite exacte analogue & (2), on en déduit:

i) k tmparr = 2m + 1. Comme H*(Q,;Z,) et H*(Q,,;Z,) sont
des algébres de polynémes isomorphes, et que cet isomorphisme est in-
duit par +* (rappelons que i*(P*™) = (X,,,)?), on obtient:

H'(Gy,Gy1:2Z,) = 0 pour tout r> 0.

ii) k pair = 2m. On trouve immédiatement que H*(G; G;_;) s’iden-
tifie & 1’'idéal engendré par la classe (X,,)? dans l’algébre de polynémes
H*(G . Z,).

Groupe fondamental. De fagon générale, le groupe fondamental du
complexe M (@) s’obtient & partir du groupe fondamental de A4, (ou By)
en annulant ceux des éléments qui sont images par l'injection K, — 4,
d’éléments de «,(E,). Ceci nous donnera:

a) comme nl(é\k) =0, ona m(M(SO(k)) =0.

b) 'homomorphisme 2, applique =, (G,) =2, sur m,(G;)>=2Z,;
donc ,(M(O(k))) = 0 pour k >1.

Les complexes M(O(k)) et M(SO(k)) sont simplement connexes
comme leur premier groupe de cohomologie, de dimension ) 0, est H%,
on en déduit que ces espaces sont asphériques jusqu’en dimension k — 1,
incluse. Le premier groupe d’homotopie non nul est z,(M(0(k))) = Z,
et 7, (M(SO(Kk))) =Z.

Nous allons maintenant énoncer un théoréme de topologie, qui permet
de ramener la détermination de ’homotopie d’un espace & des propriétés
de cohomologie ; le principe en est dii & J. H. C. Whitehead [29].
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Théoréme II.6. Soient X, Y deux complexes simplement connexes,
et f une application de X dans Y, telle que f indust un isomorphisme de
Hr(Y) sur H"(X) pour r{k, et que f*: H*(Y) > H*(X) est biuni-
voque, et ceci pour tout corps Z, de coefficients. Dans ces conditions, il
existe une application g du k-squelette de Y dans X, telle que fog et
g of (restreintes aux (k — 1)-squelettes) sont homotopes a Uidentité.

11 en résulte, en particulier, que X et Y ont méme k-type : leurs groupes
d’homotopie sont isomorphes pour toute dimension <k — 1.

On substitue au complexe Y le mapping cylinder Y’ de V’application
f: Y est rétracte par déformation de Y’, et lui est homotopiquement
équivalent ; écrivons la suite exacte:

Hr(Y') ~f->H'(,X) - H*Y(Y', X) - H+\(X) - H™+t(Y') .

Les hypothéses faites sur f expriment précisément que H"(Y’, X ; Z,)
= 0 pour tout premier p et r << k; par dualité sur le corps Z, des
coefficients, on en déduit: H (Y',X;Z)) = 0 r <k, et, de la, par la
formule des coefficients universels: H (Y, X ;Z) = 0,r < k. Puisque
X et Y sont simplement connexes, on peut invoquer le théoréme d’Hure-
wicz relatif [15], et en déduire: n,(Y’, X) = 0 pour r << k. On pourra
par suite définir une application ¢g: Y’ — X, inverse de l'injection f,
sur le k-squelette de Y’ telle que ¢ of~~ identité mod X®*-V et
f og >~ identité sur Y’* ou X(*-1 désigne le (k — 1)-squelette de X.

On a vu plus haut que les groupes de cohomologie H*+i( M(O(k))),
resp. M (SO (k))), sont indépendants de k, tant que ¢ { k. Nous allons
ici démontrer que la méme propriété vaut pour I’homotopie.

Théoréme II.7. Les groupes d’homotopie .., (M(O(k))) (resp.
M(SO(k))) sont, pour ik, indépendants de k.

Ceci constitue un théoréme de suspension, tout-a-fait analogue a celui
des spheres.

Soit A(’)(k_l) Pespace fibré en (k — 1)-boules ouvertes sur la grass-
mannienne G,_,; désignons par 4’ ® I, le «joint» (au sens de Whitney)
de Iespace fibré Ag;_,, par une structure triviale de dimension 1 (en
segments ouverts); il existe une application canonique ¢:G,_;, -G,
qui induit cet espace fibré A’ ® I en k-boules ouvertes: c’est évidem-
ment ’application ¢ précédemment considérée, déduite de l’injection
O(k — 1) CO(k). Cette application ¢ se reléve en une application f de
A" Q1 dansl Aowy; compactifions A’ ® I par P'adjonction d’un
point «a l'infini» z et soit X 1’espace ainsi obtenu. f se prolonge en une
application F:X — M(O(k)) et ’homomorphisme F* induit par F
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est un isomorphisme de H*+(M(O(k))) sur H*(X) pour tout
t{(k—1; pour ¢ =4k — 1,F* est biunivoque. Par ailleurs X et
M(O(k)) sont simplement connexes. On peut donc appliquer le théo-
réme I1.6, ce qui montre que les groupes d’homotopie =,,; de X et de
M(O(k)) sont isomorphes pour 2<{ k — 1.

Désignons par T'(k — 1) le complexe suspension de M(O(k — 1)),
et soient p et p’ les deux poéles de la suspension ; désignant toujours par a
le point «a linfini» de M(O(k)) , soit g Vapplication qui identifie tout
le segment [pa p’] en un seul point z; le complexe ainsi obtenu n’est
autre que X ; ici encore, g satisfait aux conditions du théoréme II.6
(on peut méme montrer que g est une homotopie-équivalence) ; par suite,
les groupes d’homotopie de 7'(k — 1) et de X sont isomorphes.

Or, on a le théoréme suivant: soit K un complexe asphérique jusqu’en
dimension n — 1 incluse, 7'(K) la suspension de K ; désignons par
E:7n;(K)—>n;,(T(K)) 'homomorphisme de Freudenthal; E est un
isomorphisme sur pour j< 2n. (Cf. Blakers-Massey [2]).

La suite des isomorphismes:

E
T (MO — 1)) =7y Tk — 1)) =7y (X) ~ 70, (M (O(K))
t{k—1

achéve la démonstration du théoréme. La démonstration serait tout-a
fait analogue pour M(SO(k)) .

6. Etude du type d’homotopie de A/ (O(k)) . Avant d’aborder la dé-
termination des groupes d’homotopie de M(O(k)), il est nécessaire
de rappeler quelques résultats généraux sur les complexes d’Eilenberg-
Mac Lane d’une part, et sur la grassmannienne d’autre part.

Rappel sur les complexes d’Eilenberg-Mac Lane.

Si 7z désigne un groupe abélien, on appelle complexe d’Eilenberg-Mac
Lane K (7, n) tout espace connexe dont tous les groupes d’homotopie de
dimension ) 0 sont nuls, & I'exception de =, (K (7, n))=n ; tous ces espaces
ont méme type d’homotopie, et il en existe un qui est un complexe sim-
plicial. Si de plus le groupe n est de type fini, il existe un complexe
K(n,n) qui est un complexe simplicial dont le g-squelette est un com-
plexe fini. Comme cette propriété n’est pas absolument classique, indi-
quons en briévement la démonstration, qui se fait par induction sur
Pentier ¢; pour ¢ = k, le k-squelette de K (m»,n) se compose d’un
nombre fini de sphéres S*; soit K2 le ¢-squelette, supposé fini par in-
duction ; en vertu des théorémes de Serre [24], le groupe d’homotopie
7, (K?) est de type fini ; on peut 'annuler en adjoignant & K2 un nombre
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fint de (g + 1)-cellules, dont les g-sphéres bords sont appliquées dans K¢
par des applications qu’on peut supposer simpliciales ; on obtient ainsi
un complexe fine K2+, dont tous les groupes =, (K?+1) avec k<7 < q,
sont nuls. C’est le (¢ + 1)-squelette cherché.

On désignera les groupes de cohomologie de K (m,n) & coefficients
dans G par la notation abrégée H"(n,n;(@); rappelons que le groupe
H*(G,n;G) posséde une «classe fondamentale» qu’on notera ¢. Pour
toute classe de cohomologie u € H"(4 ; @) d’un espace A, il existe une
application f: 4 — K(G,n) telle que u = f*(¢).

La cohomologie des complexes K(Z,n;Z,) et K(Z,,n;Z,) a été
déterminée par J. P. Serre et H. Cartan. Rappelons-ici certains de leurs
résultats.

Cohomologie de K (Z,, n). (Cf.Darticle de J. P. Serre [23].)

La cohomologie H*(Z,, k;Z,) est engendrée par des carrés de Steen-
rod®) de la classe fondamentale e H*(Z,,k;Z,) et par leurs
cup-produits ; pour k< k (partie stable de H*(Z,, k; Z,), le groupe
H*"Z, k;Z,) est engendré par les carrés itérés Sq™* Sq'z .. Sq'r (1),
ou 2 . 14, = h; une base de ce groupe est donnée par les suites de carrés
itérés: Sq't Sq' ... 8q'r avec @ = 2iy;0y = 205305 = 20y .. 0, = 21,.
Une telle suite de Sq* sera appelée, comme dans [23], suite admissible,
et symbolisée par la notation Sq’. Le rang du groupe H**(Z, k; Z,),
soit c(h), est égal au nombre des partitions de U'entier h (sans considéra-
tion de l'ordre des termes) en entiers de la forme 2™ — 1.

On a des résultats sensiblement analogues pour H(Z, k; Z,).

Cohomologie de K(Z, k) a valeurs dans Z,,p > 2.

Nous utiliserons seulement le résultat suivant de H. Cartan [7]:
L’algébre H*(Z,k;Z,) est engendrée par des puissances de Steenrod®)
wtérées de la classe fondamentale ¢.

Rappel sur la grassmannienne G .

On a vu que H*(@,;Z,) est une algébre de polyndémes engendrée par
les k& générateurs W,,1 <<¢ <k, classes de Stiefel-Whitney. 1l est
souvent utile de considérer les W, comme fonctions symétriques élémen-
taires de k variables ¢,,t, ... t, de degré 1. Ces variables ¢,, introduites
formellement par Wu Wen-Tsiin, ont regu une interprétation topologique
dans la théorie de Borel-Serre [4-5]. L’introduction des variables ¢, conduit
aux formules de Wu [34], qui donnent les carrés de Steenrod des W, :

seWo=Ef T WL w, )

%) Pour la définition et les propriétés des carrés et puissances de Steenrod, voir N.
E. Steenrod [25].

37



Le Lemme suivant, dont je dois la démonstration & J. P. Serre, montre
qu’on peut, dans une certaine mesure, substituer la grassmannienne @,
au complexe d’Eilenberg-Mac Lane K (Z,, k).

Lemme I1.8. Toute combinaison linéaire de Sq* itérés, de degré total
h <k, qui est nulle sur la classe W, ,eH¥(W,;Z,), est identiquement
nulle.

Observons d’abord que toute classe de la forme Sq¢'(W,) — ou la
suite I n’est pas nécessairement admissible — est de la forme W, -@,,
ou Q; est une classe de H*(G@,), polynéme de poids total A par rapport
aux W,. Tout se passe donc dans I'idéal ¥ engendré par W, dans
H*@Q,).

Introduisons entre les monémes en W, une relation d’ordre (R) ainsi
définie: ordre lexicographique obtenu en posant W, < W, si m{n.
Par exemple: W, < W, - (W,)2< W, - W, - W, < W,-W,.

Soit Sq¢! = Sq¢*+ 8q¢** ... Sq'r, ou les 4, forment une suite admis-
sible (ip_y > 21,,); formons S¢! W, = W, -Q,. Je dis que @Q; =
Wi, W, .. W, + des mondmes tous strictement inférieurs pour (R) a
W, W, -W,...W,. Cecise démontre par récurrence sur l'entier 7 ;
gi r=1, la formule (3) donne, en ce cas: S¢ W, =W, - W, et

¢ = W, et rien d’autre. Supposons la propriété établie pour » — 1,
et considérons:

Sq' W, = Sq*(Sq* ... S¢*r W,) = S¢"*(W, - P), ou, par hypo-
thése, le polynéme P est de la forme W, - W, ... W, -+ des mondmes
strictement inférieurs. Développons ce produit:

Sqi (W, -P)= Zosmsil Sq™ (P)- Sqi_m W= Zogmgil Sq"(P)-W,_,,-W,.
Si donc on a posé Sq¢f W, = W, - @Q;, on obtient:
QI = Zogmgil Sqm (P) ‘ Wil-—m

Dans cette somme, m = 0 donne P - W, =W, - W, .... W, +
des mondémes strictement inférieurs pour (R). Par ailleurs, aucun des
termes du développement de Sq™(P), m > 0, ne peut contenir un W,
supérieur ou égal & W, pour (R). En effet, d’aprés la formule (3),
Sg™ W, ne contient que des W, d’indice i< 2s. Il s’ensuit que
Sq¢™(P),m >0, ne contient que des W; dont l'indice 7 vérifie:
1 { 21, < ¢;. C'est dire que tous ces termes sont strictement inférieurs
pour (R)a W, - W, ... W,.

De 13 on déduit que toutes les classes Sq¢’(W,), lorsque I parcourt
I'ensemble des c¢(h) suites admissibles, de degré total , sont linéaire-
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ment indépendantes dans H*h(G,); si, en effet, il existait entre ces
classes une relation linéaire non triviale, on prendrait, dans cette rela-
tion, le terme supérieur pour (R); on en déduirait que ce terme peut
g’exprimer linéairement en fonction de termes strictement inférieurs pour
(R), ce qui est impossible.

Si ’on revient maintenant & l'interprétation des W, comme fonctions
symétriques de k variables ¢, de degré 1, le lemme précédent prend la
forme:

Lemme I1.8." Les classes Sq’(t, ¢, ... t,), ou I parcourt I'ensemble des
suites admissibles de degré total h < k, sont des fonctions symétriques des
t; linéairement indépendantes.

On a vu que la cohomologie H*(M(O(k));Z,) s’identifie & 1'idéal ¥
engendré par la classe W, dans H*(G,; Z,); or, par 'introduction des k
variables ¢;, on obtient une base du groupe H*(G,) en formant tous
les monémes symétrisés:

Z(t)" ()™ ... ()Y (4)

ou les entiers a; constituent une partition de l'entier %, et ol on fait
pour la symétrisation X' la convention classique: on ne prend du groupe
symétrique total & k variables que les permutations «essentielles» pour
le mondme (4), c’est-a-dire un systéme de représentants des classes du

groupe symétrique modulo le sous-groupe qui laisse invariant le monéme
(4); par exemple:

S)(E) . () =8 - by - ... by,

Si b =2, a, est une partition (w) de h, et (4) le monéme associé, on
désignera par S, un systéme de permutations essentielles pour (4);
toutes les fois que le signe X apparait, dans les calculs, devant un monome
tel que (4), la sommation doit s’effectuer suivant un systeme de permu-
tations essentielles, sauf convention contraire explicitement énoncée.
On obtiendra une base pour la dimension (k + &) de I’idéal ¥ en multi-

pliant par W, =1, - t, - ... ¢, les éléments de la base (4); on obtient
ainsi tous les mondmes symétrisés:
Z(E)" TG @) T ey - (5)

En effet, toute permutation essentielle pour le monéme (4) est essentielle
pour le mondéme (5), et réciproquement.

Définition. Soit P un polynéme par rapport aux variables £,; on
dira que la variable ¢, est une variable dyadique du polynéme P, si
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t, figure dans tous les mondémes de P sous un exposant nul ou de la
forme 2m.

Lemme I1.9. S: ¢, est une variable dyadique du polynome P, t,
est également variable dyadique du polynome Sq* P.

m
On sait, en effet, que Sq¢*(t,)™ = { } (¢,)mte .
a
Or, si m est non nul, et est une puissance de 2, le coefficient binomial
m 4
est nul, sauf pour @ = 0 ou a = m; (en effet, = 1 mod 2,
@ q

si et seulement si le développement dyadique de p contient celui de ¢,
cf. Whitehead-Steenrod [26]). Dans ces conditions, le nouvel exposant
m -+ a est encore une puissance de 2.

Définition. Dans un monéme (¢,)* (¢,)% ... ({,)*", appelons facteur
non dyadique, le sous-mondéme constitué de toutes les variables qui ne
sont pas dyadiques ; on désignera par u le nombre de ces variables, par v
leur degré total. On introduit entre mondmes en (¢;) une relation de pré-
ordre (§) ainsi définie: le monéme X est dit supérieur au monéme Y pour
@), si u(X)>u(Y), et, si pour u(X) = u(Y), on a v(X)<{v(Y).

Cela étant, pour tout h <<k, formons les classes:
Xb= X (t)" M (8,)% " ... (@) e, . g (6)

ol w = {a,a,...a,} parcourt I'ensemble des partitions de 'entier A
en entiers dont aucun n’est de la forme 2™ — 1 (partitions non dyadiques
de k) ; on désignera par d(k) le nombre de ces partitions.

Pour toute dimension m < h, formons les classes:

Xn, 8¢t Xnt, S Xm2, ..., 8¢ Xh ... Sg'W, (7)

o les Sg¢'* parcourent toutes les suites admissibles de carrés itérés
de degré total (m — k), et ol w, parcourt I’ensemble des d(h) parti-
tions non-dyadiques de h, définies en (6).

Je dis que toutes les classes du tableau (7) sont linéairement tndépen-
dantes.

En effet, prenons dans chacun des développements de Sq! X”, ceux
des mondémes qui sont supérieurs pour (Q) ; je dis qu’ils forment le déve-
loppement de:

Do, )™H (B L ) 8 Gy - - 1) (8)

w

ou la sommation X' a lieu suivant le systéeme S, des permutations essen-
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tielles pour le mondme (6) associé & la partition w. En effet, tout monéme
du développement de:

B @) G L )Tt

est nécessairement d’indice u <r, car, d’aprés le Lemme II.9, les

variables (¢,.,, ...,%;) sont des variables dyadiques; si I'on a u = r,
deux cas sont possibles: ou le monéme provient du développement de:
G E) T @) S (e - ) (9)

et alors v = u + h, ou il appartient & un terme provenant par carrés
successifs du facteur non dyadique (¢,)***1(¢,)%*! .. (¢,)**!, et, en ce
cas, l'indice v est nécessairement strictement plus grand que r + h;
c’est dire que les termes de (9) sont tous supérieurs pour (@) & tout autre
terme du développement de Sq¢’ X . D’autre part, le terme (9) ne peut
disparaitre du fait de la symétrisation effectuée en (8). En effet, toute
permutation des ¢; essentielle pour le mondme (6) est essentielle pour son
facteur non-dyadique (¢,)**+!(,)%+! ... (¢,)* !, qui est aussi le facteur
non-dyadique du terme (9) ; done, les transformés de (9) par des permu-
tations de S, contiennent des facteurs non-dyadiques tous différents,
et leur somme ne peut étre nulle, si (9) n’est pas nulle.

Comme un terme ne peut s’exprimer en fonction linéaire de termes qui
lui sont strictement inférieurs pour la relation (), il en résulte que les
seules combinaisons linéaires non triviales entre classes de (7) ne peuvent
contenir que des classes Sq¢' X*, dont les termes supérieurs pour (Q)
ont méme indice u = r, et méme indice v = r 4 h, donc méme valeur
pour % ; de plus les partitions w de & figurant dans les X de cette rela-
tion ne peuvent étre différentes, car alors les termes supérieurs pour (@)
des développements des Sq’ X ont des facteurs non-dyadiques tous
différents, et leur somme ne peut étre nulle. Reste donc comme seule
possibilité une relation linéaire de la forme X, ¢, Sq¢’* X® = 0, relative
4 une seule classe X7 .

Ecrivons les termes supérieurs pour () de cette relation:

Zycn () ) L () g (b - 1) =0

Extrayons de cette somme tous les termes contenant le monéme
(t)* T (t,) %t ... (¢,)% ! en facteur; sil’on fixe ce facteur non-dyadique,
S, se réduit a 'identité, et il reste:

(G () L ()T D 8g M (G - 1) =0

Mais on a vu, d’aprés le Lemme II.8, que toutes les classes
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Sq'(¢,,, - .. t;) sont linéairement indépendantes, pourvu que m — h,
degréde I, <<k — r. Mais on a évidemment A > 27, de sorte que cette
inégalité est satisfaite pour tout m < k. Donc les constantes ¢, sont
nulles, et il n’existe entre les classes du tableau (7) aucune relation linéaire
non triviale.

Le rang de H¥*m(M(O(k))) , ou rang de I'idéal ¥, est égal & p(m),
nombre total de partitions de I’entier m. Or les classes du tableau (7)
sont en nombre égal & X,_, c(m — h)d(h).

Il est aisé de vérifier 1’égalité:

p(m) = Zycnc(m — h)d(h).

En effet, a toute partition de m, on peut associer un couple de deux par-

titions: I'une de (m — A), constituée uniquement des entiers de la

forme 2" — 1; l'autre de h, formée des autres entiers. Il en résulte que

les classes du tableau (7) constituent une base de H*+m(M(O (k))) .
Associons & chaque classe X* une application

F,: M(O(k)) —~ K (Z,, k + h)

telle que, si F, désigne 'homomorphisme induit, on ait: F) (1) =
X! ; Yensemble des F, définit une application F de M (O(k)) dans
le produit:

Y =K(Zy, k) X K(Zy, k+2) X ... (K(Zy, &+ h))*®
+ ... (K(Zy, 2k))*® (10)

Dire que les classes de (7) forment une base de H*+*(M(O(k))) , c’est
dire que ’homomorphisme F* induit par F est un isomorphisme de
H¥*m(Y ; Zy,) sur H¥m(M(O(k))) pour tout m < k. En coefficients
mod p,p )2, la cohomologie de Y est nulle, celle de M(O(k)) est
nulle pour toute dimension { 2k; F* est donc ici encore un isomor-
phisme sur pour toute dimension { 2k, et est biunivoque pour la dimen-
sion 2k. On pourra donc appliquer aux espaces M(O(k)) et Y le
théoréme II.6. Cela nous donnera:

11 existe une application inverse g du 2k-squelette de ¥ dans M(O (k))
telle que ¢ oF = identité sur le (2k — 1)-squelette de M(O(k)) .
Donc:

Théoréme I1.10. L’espace M (O(k)) a méme 2k-type d’homotopie
que le produit Y de complexes d’Eilenberg-Mac Lane défint en (10).

Corollaire I1.11. Le groupe d’homotopie stable z,, (M (O(k))) , h <k
est isomorphe a la somme directe de d(h) groupes Z,.
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En prenant la restriction de I'application inverse g au premier facteur
de Y, on obtient:

Corollaire I1.12. Il existe ume application g du 2k-squelelte de
K(Z,, k) dans M(O(k)), telle que g*(U) = i, classe fondamentale de
K(Z,, k).

Comme toute classe u e H*(A4 ;Z,) d’un espace 4 est I'image de la
classe fondamentale « dans une application f:4 — K(Z,, k), on obtient:

Corollaire I1.13. Toute classe de cohomologie mod 2 de dimension k
d’un espace de dimension < 2k, admet une réalisation orthogonale.

7. Etude de M(O(k)) pour les petites valeurs de k.

k = 1. L’espace des l-vecteurs non orientés n’est autre que ’espace
projectif réel de trés grande dimension P R(N); l’espace fibré universel
associé A4,,, n’est autre que le «mapping cylinder» du revétement &
deux feuillets S¥ — PR(N); si, dans ce complexe A4,,,, on identifie
en un point la sphére-bord S¥, on obtient pour complexe M(O(1))
Pespace projectif réel P R(N -+ 1); ici, les complexes K(Z,,1) et
M(O(1)) sont tous deux réalisés par ’espace projectif réel de grande
dimension P R(co), et toute classe de cohomologie mod 2, de dimension 1,
admet une réalisation orthogonale.

k = 2. La cohomologie de MO(2) admet la description suivante:

En dimensions 2, la classe fondamentale U, définie mod 2.
En dimension 3, la classe entiere Sq* U = U - W,.

En dimension 4, une classe entiére X — cup-carré de la classe fondamen-
tale de M(SO(2)) — dont la réduction mod 2 est UZ2.
et une classe mod 2, définie par U - (W,)%.

En dimension 5, une classe entiére d’ordre 2, Sq'(U - (W,)?d
=U . (W,)?
et une classe mod 2 U2 . W,.

Dans l'application canonique F:M(O(2)) - K(Z,,2), on a, en
coefficients mod 2:

F*()) = U ;F*(Sq* ) =U - W, ; F*(8¢?) = U?; F*(8¢* Sq* ()
=8¢(U - W) =0 - W, + U - (W,)*; F¥(u - Sq*v) = U? - W, .

On considére, comme pour le théoréme II.6, le «mapping cylinder»
de I'application F, qu’on notera encore K; K contient M(O(2)) —noté M
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pour simplifier — comme sous-ensemble fermé. La suite exacte associée
& l'injection F: M — K, donne alors:
]

H"(K,M;Z,) =0;r{5; H (K, M;Z,) = Z, pour tout premier p.
On en déduit, par dualité:
H(K,M;Z,)=0, r{5; H(K, M;Z,) = Z, pour tout premier p.
La formule des coefficients universels donne alors:
H(K,M;Z)y=0,r{5; H(K,M;Z)=272.
Par application du théoréme d’Hurewicz relatif, on obtient: =, K, M) = 0;
(K, M) =72, dou ny(M)=0,m(M)=2.

Si I’on cherche & former une application G inverse de F' au point de vue
de I’homotopie, on pourra définir G sur le 4-squelette de K ; mais le
prolongement de G au 5-squelette de K (Z,, 2) est interdit par une obs-
truction, & valeurs dans ,(M) = Z. Conformément & la théorie générale
de la seconde obstruction [14], cette classe-obstruction de H?%(Z,, 2; Z)
n’est autre que l'invariant d’Eilenberg-Mac Lane associé au second groupe
d’homotopie non nul =, (M) ; elle engendre le noyau de I’lhomomorphisme
F*:H%Z,,2;Z) > H(M;Z).

Déterminons cet homomorphisme: le groupe H®(Z,, 2; Z) est cyclique
d’ordre 4 ; il est engendré par 1’élément (}) é p(¢), image par I’homomor-
phisme de Bockstein } - 6 du carré de Pontrjagin p(:) de la classe fon-
damentale ¢. Le groupe H®(M ;Z) est cyclique d’ordre 2, et il est en-
gendré par la classe SqY(U - (W,)?), dont la réduction mod 2 est
U - (W,)3. Par Phomomorphisme F*, le générateur du premier groupe
est appliqué sur le générateur du second. 1l suffit évidemment de le véri-
fier sur leurs réductions mod 2. Calculons (}) 6 p(:), réduit mod 2;
soit # un cocycle de la classe ¢,v = (}) 6 (u) un cocycle de la classe
8¢ ¢. L’expression du carré de Pontrjagin est: p(u) =4 vu + v v, du,
d’oli, par application de la formule du cobord:

op(u) = uvu—+ uv du+ duv,du + uv du — du vu
d’ou, apres division par 4:

}-0p(u) =uvv+vv, v; réduisons mod 2
=4+ 8¢ ¢+ S¢®*Sq* .
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L’image par F* de la classe précédente est:
U Wy U Wyt U - (W) = U - (W)

qui est bien le générateur de H®(M ; Z), réduit mod 2.

Comme cette classe est d’ordre 2, la classe (}) dp(c) est appliquée par
F* sur 0; c’est I'obstruction cherchée. (On observera que cette classe
est d’ordre 2, mais sa réduction mod 2 est nulle, ce qui explique qu’on
ne puisse 'exprimer & 1’aide de Sg‘.) On obtient ainsi:

Théoréme I1.14. Pour qu’une classe x € H*(A ; Z,) d’un espace A de
dimension 5 admette une réalisation orthogonale, il faut et il suffit que la

classe (%) - op(x) soit nulle, ou p(x) désigne le carré de Pontrjagin
de la classe x.

Une condition nécessaire pour qu’il en soit ainsi est qu’il existe une
classe X e H*(A ;Z,), telle que S¢2Sq*x + « - St x = Sq* X.

k = 3. On compare M(O(3)) au produit Y de complexes d’Eilen-
berg-Mac Lane défini au théoréme général I1.10. On constate que F'* est
un isomorphisme pour les cohomologies, non seulement jusqu’en dimen-
sion 6, mais encore en dimension 7 ; par contre, I'isomorphisme est rompu
en dimension 8. Voici le détail des calculs:

En dimension 3: F*(:) = U.

En dimension 4: F*(Sq*«) = U - W,.

En dimension 5: F*(S8q¢®¢) = U - W, et F*(X? = U - (W,;)? (nou-
veau générateur).

En dimension 6: F*(Sq®¢)=U?; F*(S8¢*Sq* )= U - (W, W, + (W,)3);
F*(Sq* X2) = U - (W,)3.

En dimension 7: F*(¢ - Sqt¢) = U? - W,

F*(S¢* X?) = U - (W, - (W, + (Wy)).

On a en dimension 7 deux nouveaux générateurs F*(X?*) = U - (W,)*
et F*(X®2) = U - (W,)?; en dimension 8, I'isomorphisme n’a plus lieu
a cause de la relation: F*(S¢® X2 4 (8¢ ¢)? + Sq* X*) = 0. Nous pou-
vons donc affirmer (Th. II.6):

Théoréme II.16. Toute classe de cohomologie de dimension 3, a coeffi-

cients dans Z,, d’un espace de dimension { 8 admet une réalisation ortho-
gonale.

Remarque. J’ignore quelle est 'obstruction en dimension 8, qui est
d’ailleurs peut-étre nulle.
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Terminons par une remarque générale : une application
9: K (Zy, k) > M(O(K))

homotopiquement inverse de F : M(O(k)) — K(Z,, k) ne peut exister,
pour k> 1; en effet, comme me I’a fait remarquer J. P. Serre, la cohomo-
logie de K(Z,, k) est, pour k> 1, une algébre de polynémes & une in-
finité de générateurs; au contraire, la cohomologie de M(O(k)) , est
— & un décalage dans la graduation prés — isomorphe & celle de la grass-
mannienne G, donc de type fini. Pour une dimension assez élevée, le
rang de H*(Z,, k) finit par excéder celui de H*(M(O(k))), et le noyau
de F* n’est pas nul, ce qui montre l'inexistence de I’application g¢.
Done, pour toute dimension k > 1, il existe des classes de cohomologie mod 2
qui, dans des espaces de dimension assez élevée > 2k, n’admeltent pas
de réalisation orthogonale.

8. Etude de M(SO(k)); cas stable. Nous avons pu, au n°® 6, donner
une description explicite du type d’homotopie «stable» de M(O(k));
nous ne pourrons en faire autant pour M(SO(k)); en effet, le type d’ho-
motopie de ce dernier complexe est beaucoup plus compliqué, en raison
notamment du fait suivant: pour M(O(k)) , le complexe Y équivalent
était un produit topologique de complexes K(Z,, k); au contraire, pour
M(80(k)), le complexe équivalent n’est plus un produit, mais un espace
fibré multiple, dont les fibres successives sont des K(Z,,r) ou des
K(Z,m) (peut-étre méme des K(Z,,n)!), et ol les fibrations succes-
sives sont en général non triviales. Aussi nous bornerons nous & ne
donner la description du complexe équivalent que pour les dimensions
E+1d, o 2 <7,

Définition du complexe «de Zilber» K. On sait que le complexe
K(Z,k + 4) est fibre d’un espace asphérique 4, dont la base est le com-
plexe K(Z,k + 5) (cf. J. P. Serre [24]). Soit u la classe fondamentale
du complexe base K(Z,k -+ 5); il existe une application f du complexe
K(Z,k) dans K(Z,k + 5), telle que f*(u) = St3(:), ou St désigne
le «cube de Steenrod» de dimension 5, qui définit une classe entiére d’ordre
3. On désignera par K l'espace induit de l’espace fibré 4 par 'applica-
tion f; K est ainsi fibré sur K(Z, k), de fibre K(Z,k 4 4); les seuls
groupes d’homotopie non nuls de K sont =, et =,,, tous deux iso-
morphes & Z; Uinvariant d’Eilenberg-Mac Lane keH*5(Z,k;Z)
associé n’est autre que St3(:); pour qu’une application F' d’un espace
M dans K, définie sur le (k + 4)-squelette de M, puisse étre prolongée
a tout M, il faut et il suffit que le cube St} de la classe x image par F'*
de la classe ¢ soit nul.
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Cohomologie du complexe K.

1. Cohomologie mod 2. Désignons par F? I'application de K(Z, k)
dans lui-méme, telle que (F?)*(:) = 3¢. L’espace fibré induit de K par
cette application n’est autre que le produit K(Z,k) X K(Z,k + 4),
car son invariant d’Eilenberg-Mac Lane n’est autre que (F°)*(St; (1)) =
St5(F?(e)) = St3(3¢) = 0. 1l existe donc une application @ du produit
K(Z,k) x K(Z,k + 4) dans K, compatible avec la fibration en com-
plexes K(Z,k + 4), et qui se projette sur les bases K(Z, k) suivant
Papplication F?.

G induit un homomorphisme de la suite spectrale de cohomologie rela-
tive & la fibration de K dans celle — triviale — relative au produit
K(Z,k) x K(Z,k+ 4)7).

G* est un isomorphisme pour les termes E? de ces suite spectrales;
si on remarque que (F°)* est un isomorphisme pour H*(Z,k;Z,),
on en déduit que la différentielle de Leray d, du terme E? de la fibration
de K est nulle, car elle est nulle dans le produit ; de méme pour toutes les
d, successives, et ceci démontre: la cohomologie H*(K ;Z,) est iso-
morphe & celle du produit K(Z,%k) Xx K(Z,k + 4).

2. Cohomologie mod p, p premier > 5. Le méme raisonnement que
plus haut conduit & la méme conclusion: H*(K ;Z,) est isomorphe & la
cohomologie du produit K(Z,k) x K(Z,k + 4).

3. Cohomologie mod 3. Il est ici nécessaire d’expliciter un fragment de
la suite spectrale relative & la fibration de K sur K(Z, k); désignons
par v la classe fondamentale du complexe fibre K(Z, k 4+ 4). Par cons-
truction méme de K, v s’envoie par transgression (ici par la différen-
tielle d;) sur la classe S (:); comme les puissances de Steenrod com-
mutent & la transgression, la classe fibre Sti v s’envoie sur St; o St3(¢) =
St (1) (& un coefficient non nul prés). Il en résulte que la cohomologie
H*(K ; Z,) admet les générateurs suivants: en dimension k, un géné-
rateur, qui provient de ¢ (et qu’on désignera encore, bien qu’indiement,
par t); en dimension k + 4, la classe St3(:); en dimension k 4 8,
la classe St3(:); en dimension k + 9, on aura un élément provenant de
St;v, qui se trouve appliqué par transgression sur St o Sti(:) = 0.
Mais nous ne nous en préoccuperons pas.

Le complexe équivalent & M(SO(k)) . Ce sera le produit ¥ du com-

?) Pour la définition et les propriétés de la suite spectrale associée & une fibration, on
se reportera aux articles de J. Leray (J. Math. pures et appl., 29, 1950; pp. 1—139 et
169—213) ainsi qu’a J. P. Serre [24].
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plexe K défini plus haut par un complexe d’Eilenberg-Mac Lane
K (Z,, k + 5). Définissons maintenant I'application F : M(SO(k)) — Y.

Il existe une application f du (k¥ -+ 4)-squelette de M(SO(k)) dans K,
telle que f*(t) = U; comme St U = 0 (parce que M(SO(k)),

comme (,, n’a pas de co-torsion d’ordre 3), ’application

f: M(SO(k)) -~ K
se prolonge a tout le complexe M(8SO(k)); par ailleurs, il existe une
application g¢: M(8SO(k)) — K(Z,, k + 5), telle que si ¢ désigne la
classe fondamentale de ce complexe, on ait: g*(i/) = U - W, W,. L’en-

semble des applications f et g définit I’application F: M(SO(k)) — Y
cherchée.

Calculons ’homomorphisme F* induit par F, suivant les coefficients:

Calcul mod 2. On considére les dimensions t + ¢, ou 0 <7 < 8.
On désigne ici encore par v le générateur du facteur K(Z, k + 4)
dans K, définie dans l’isomorphisme

H*(K;Z,) ~ H*(Z,k;2)® H*(Z, k + 4;Z,) .

t=0; F*() =U.
t=1; F*¥(0)=0.
1 =2; F*S8¢?) =U - -W,.
1=3; F*(S8¢*) =U - W,.
P = 4; F*(Sq“a)———U-W,,.
F*x(w) = U - (W,).
i=5; F*(8¢)=U - W;.
Fx(/)y=U- - W, W,.
1 =6; F*(8¢°) = U - Wy;
F*(8¢" 8¢y = U - (Wz W4 + (W32 + (Wy)) .
F*(Sqg*v) = U - ((W2)* + (W,)) .
F*@8qr/)=1U - (Wa)"‘

t=17; F*(Sq¢" ) =U-W,;
F*(S8¢®Sq2)=U - (W Wy + W, W, 4+ W, (W,)0?) .
FX(8q°v) = U - Wy(Wy)*.
FX(82/) = U - Wo(Ws+ W5 Wy).

i =8; F*(8¢°¢) =U - Wg;
F*S¢* 8@ ) =U - (W Wy + Wy W, + W, - (W,)?) .
F*(Sq*v) = U - (Wo(W2)2 4 Wy(Wo): + (W, )4) .
F*(Sq® /) =U - Wy Wy ; F*(S@2Sqt /) = U - Wy(W,)2.
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On vérifie que, pour tout ¢ << 8, les classes de H*(M(SO (k); Z,))
figurant dans ce tableau sont linéairement indépendantes ; de plus, pour
i <7, les classes écrites forment une base pour H*+i(M(SO(k); Z,)) ;
done, F* est un isomorphisme de H*+i(Y) sur H*+(M(SO(k))) pour
1 <7, et est biunivoque pour ¢ = 8.

Remarque. On a utilisé dans ce calcul la forme canonique des généra-
teurs de H*(Z,k;Z,) donnée par J.P. Serre [23]; il est clair qu’'on
pourrait continuer le calcul plus loin, en introduisant deux générateurs
nouveaux en dim 8 correspondant aux classes («de Pontrjagin») (W,)*
et (W,)2.

Calcul mod 3. Le facteur K (Z,, k + 5) ne donne rien ; on a seulement :

1 =0;F*1)=U;it=4,F*@St*t)=U - P,;1 = 8; F*(St31)
—U - (P + 2Py).
Calcul mod p;p =5
t=0;F*0)=U;F*(v) =U - P; F*(St31) = U - ((P,)? — 2P,) ?®)
Calcul mod p;p> 5.
t=0;F*()=U;1=4,F*v)=U - P;;t = 8,F*(0) = 0.

Il en résulte que pour tout corps de coefficients, F'* est un isomorphisme
de H*i(Y) sur H*(M(SO(k))) pour ¢ <7, et F* est biunivoque
pour ¢ = 8. Comme Y et M(SO(k)) sont simplement connexes, on
peut appliquer le théoréeme I1.6, ce qui montre que M(SO(k)) a méme
(k + 8)-type que Y. Donc:

Théoréme I1.16. Les groupes d’homotopie stables 7, ,(M(SO (k))) sont
pour ¢ KTy My = Mgy =Npy3 =0, Tpy =24 Npyy = Zy; Ty
— nk+7 —_ O.

Théoréme I1.17. La conditton nécessaire et suffisante pour qu’une
classe de cohomologie entiére x de dimension k, dans un espace de dimension

k+ 8 ou k)8, soit réalisable pour le groupe des rotations, est que la
classe entiére St3(x) soit nulle.

9. Etude de M(SO (k)) pour les petites valeurs de k. On se bornera dans
ce paragraphe a la détermination de la premiere obstruction poutr une
application g¢: K(Z, k) - M (SO(k)) pour les valeurs de k(5. Il
apparaitra que cette obstruction est donnée, comme dans le cas stable,
par le cube de Steenrod Sti(1) de la classe fondamentale.

8) Pour le calcul des puissances de Steenrod St; U de la classe fondamentale U, voir
l’article de Borel-Serre [5] ainsi que Wu [35].
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i) k=1. M(SO(1)) #’identifie au produit S x 8!, dans lequel
une sphére de la forme S X ¢, est identifiée en un point. Ce complexe a
méme homotopie que le cercle S'; or S! est aussi une réalisation du
complexe K (Z, 1) ; donc, toute classe de cohomologie entiére de dimension 1

est réalisable pour le groupe des rotations (qui est d’ailleurs, en ce cas, réduit
a I'unité).

il) ¥ = 2. La grassmannienne é} des 2-plans orientés est un espace
classifiant pour SO(2) = SU(1) = 8*; elle s’identifie par suite & ’es-
pace projectif complexe de «grande dimension» PC(N); la structure

universelle sur G,, soit Ag,,, s’identifie & un voisinage tubulaire
normal de PC(N) regardé comme hyperplan projectif de PC(N + 1);
par suite, I'espace M (SO(2)) s’identifie & PC(N + 1) lui-méme:
M(80(2)), tout comme K(Z,2), est réalisé par I’espace projectif com-
plexe de «grande dimension». Il en résulte: Toute classe de cohomologie
entiére de dimension 2 est réalisable pour le groupe des rotations.

iii) & = 3. « désignant toujours la classe fondamentale de K(Z, 3);
on sait que la classe St3(:) n’est pas nulle, et, on peut définir le complexe
«de Zilber» K, fibré sur K(Z, 3), de fibre K(Z,7), dont 'invariant
d’Eilenberg-Mac Lane k est St3(:). Comme précédemment, pour tout
premier p # 3, la cohomologie H*(K ;Z,) est isomorphe a celle du
produit K(Z,3) x K(Z,7). On désignera par v la classe fondamentale
de ce dernier complexe ; en cohomologie mod 3, H*(K ; Z,) est engendré
par une classe, image de ¢ dans la fibration K — K(Z, 3), et qu'on
notera encore ¢; H* = H® = H® = 0; H’ est engendré par St3(:); H®
est nul.

Puisque S&(U) = 0, il existe une application F: M (S0(3)) - K,
et 'on a, pour ’homomorphisme F*:

Mod 2. F*(1) = U; F*(8q®t) = U - W,; F¥(8¢° ) = U - W,
= U2, F*(v) = U - (W,)2; F*(t - 8q?) = U2 - W,.
Mod 3. F*(1) = U;F*(St31) = U - P, et rien avant la dimension 11.
Mod p; p>5. F*(t) = U; F*(v) = U - P, et rien avant la dimen-
sion 11.

Il en résulte que F* est unisomorphismede H*(K) sur H*(M (SO(3)))
pour les dimensions < 7, et est biunivoque pour la dimension 8, pour
tout corps de coefficients. Le théoréme II.6 montre que K et M (SO(3))
ont méme 8-type, et ’on en déduit:

Théoréme I1.18. La condition nécessaire et suffisante pour qu’une
classe de cohomologie entiére x , de dimension 3, dans un espace de dimension
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< 8 sott réalisable pour le groupe des rotations est que la classe entiére
St (x) soit nulle.

iiii) £ = 4. On construit ici encore le complexe de Zilber K, qu’on
compare & M (SO(4); lapplication F: M(SO(4)) - K donne lieu a
I’homomorphisme: F*, défini, avec les mémes notations que plus haut,
par:

Mod 2. F*(1) = U;F*(8q%1) = U - W,; F*(S¢* )
=U - W,; F*(S¢* ) = U2.
F*(w) = U - (W,)? et rien en dimension 9.

Mod 3. F*(1) = U; F*(St*t) = U .- P,; F*(2®) = U? et rien avant la
dimension 12.

Mod p;p>=5. F*(1)=U;F*@?) = U*;F*(v)=U - P, et rien
avant la dimension 12.

Ici encore F* est un isomorphisme pour les dimensions < 8, et est
biunivoque pour la dimension 9. Donec M (SO (4)) et K ont méme 9-type,
ce qui donne:

Théoréme II.19. Pour qu’une classe de cohomologie entiére x, de dimen-
sion 4, d’un espace de dimension < 9, soit réalisable pour le groupe des
rotations, il faut et il suffit que St} (x) = O en coefficients entiers.

10. Le théoréme multiplicatif.

On donne dans ce paragraphe quelques théorémes généraux sur les
classes réalisables pour le groupe des rotations. D’abord une condition
nécessaire:

Théoréme II.20. Pour qu’une classe de cohomologie entiére x soit réali-
sable pour le groupe des rotations, il faut que toutes les puissances de Steen-
rod SE™P-DF g p premier impair, soient nulles.

En effet, toutes les puissances de Steenrod St2"»~V+1U de la classe
fondamentale U de M(SO(k)) sont nulles, si p est un premier
impair, car la grassmannienne é\ x n'a pas de p-torsion pour p )2
(cf. [3]). La démonstration du théoréme suivant exigera plusieurs

Lemmes, sur les complexes d’Eilenberg-Mac Lane K(Z,n). D’abord
une définition:

Notation : On désigne par Fy Papplication — définie & une homotopie
prés — de K(Z,n) dans lui-méme, telle que F(:) = N - ¢.
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Lemme I1.21. Soit 0 - G' -G — G"' — 0 une suite exacte de groupes
abéliens; supposons que les homomorphismes: (Fy)*: H*(Z,k;G') et
(Fyn)*: H*(Z, k; Q") soient nuls. Alors Uhomomorphisme (F y)*, ou
N=N'.-N", annule H*(Z , k; Q).

Ecrivons en effet la suite exacte de cohomologie induite:

/ g
—H"(Z,k; Q) > H (Z,k;G)~> H (Z,k;G")—

Les homomorphismes f et g de cette suite commutent avec (F,)*,
pour tout entier m. Soit x une classe de H"(Z, k;@Q); formons Fj.(z);
on a: g(Fy(x)) =Fy.(g(x)) =0, par hypothése.

Donc Fjy.(x) = f(y), ou y est une classe de H'"(Z, %k ;). On forme
alors

Fy(@)=Fy oFy.(x)=Fy.(f(y) =f Fx(9)=1(0)=0.
De 14 on tire le

Lemme I1.22. Si G est un groupe abélien fint d’ordre N, I’homomor-
phisme (Fy)* annule H*(Z,k; Q).

Par décomposition de G' en ses composantes p-primaires, il suffit,
grice au Lemme précédent, de démontrer que (F,)* annule H*(Z,k;Z,)
pour tout premier p. Or ceci résulte immédiatement du fait, énoncé au
n® 6: H*(Z,k;Z,) est engendrée par des p-puissances St itérées de la
classe fondamentale ().

Lemme I1.23. St G est un groupe abélien de type fini, et si tout élément
de H"(Z,k; Q@) est d’ordre fint N, il existe un entier non nul m, tel que
(F,)* annule H"(Z,k;@G).

On décompose G en sa composante libre ¥ et sa composante de torsion
T; on a alors: H (Z,k;G) ~ H (Z,k;F)®H"(Z,k;T).

Tout élément de H"(Z,k; F) est d’ordre NV ; il est clair qu’il suffit de
démontrer le lemme pour H"(Z,k; F), car H"(Z,k;T) est justiciable
du lemme II.22, puisque 7" est un groupe fini.

Formons alors la suite exacte:

0>F—>F->F -0
(N)

ou 'homomorphisme (V) est la multiplication par l’entier non nul N.
Puisque F est de type fini, F’ est un groupe fini, d’ordre N’. Soit x
une classe de H"(Z,k; F), et soit g ’homomorphisme de la suite exacte
induite: (V) p ,
—~H"(Z,k;F)—> H"(Z,k;F)—> H" (Z,k; F') —
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On aura: g o Fy,(z) = F}.(9(z)) = 0 d’aprés le lemme II.22.
Donc Fj}/ (x) est de la forme N - y,y e H'(Z,k; F), et est par suite
nul. Nous sommes maintenant en mesure de démontrer le lemme:

Lemme II1.24. Soit Y un espace, dont le k™ groupe d’homotopie 7, (Y)
a une composante libre tsomorphe a Z, de générateur t. On suppose de plus
que tous les groupes d’homotopie m,(Y), ou q =k, sont de type fini,
et tels que les groupes de cohomologie HYZ, k; m,(Y)) soient finis. I1
existe alors une application G, du n-squelette K* de K(Z,k) dans Y,
qui applique le générateur de 7, (K(Z,k)) ~Z sur N(q,k) - t, ou Uen-
teer non nul N (q, k) me dépend que de k,q et Y.

Le k-squelette de K (Z,k) peut étre réalisé par une sphére Sk;
Iapplication G,:8% — Y est celle définie par I'élément ¢t de =, (Y);
supposons @, définie sur le g-squelette K2 de K (Z, k) ; le prolongement
de G, au (¢ + 1)-squelette de K(Z, k) est en général interdit par une
obstruction, cocycle w’ dont la classe appartient au groupe — fini par
hypothése — H®(Z,k;n,(Y)). Formons alors Papplication
F,:K(Z,k) - K(Z,k) associée par le lemme 1I.23 au groupe fini
H®Y(Z,k;m,(Y)), et composons la avec G, :

F, G,
K(Z,k)—>KZ k)—>Y

L’application composée @G, oF,, est définie sur le g-squelette de
K(Z,k); elle définit sur le (¢ + 1)-squelette, un cocycle obstruction w,
dont la classe est donnée par la relation: w = (F,,)*(w').

D’apres le lemme II.23, cette classe est nulle ; c’est dire qu’on pourra,
apres une éventuelle déformation, prolonger l'application G, oF, au
(g + 1)-squelette de K(Z, k), et définir ainsi G,.,; et l'on aura:
N(@+1,k)=m . N(q, k), ce qui définit bien un entier non nul. Le
Lemme II.24 est ainsi entiérement démontré. .

On appliquera le lemme 1I.24 & la grassmannienne G, des k-plans
orientés pour k pair, ou, plus exactement, & l'espace universel Aggy,
qui lui est homotopiquement équivalent. Rappelons que la cohomologie

H* (é‘,c) , a coefficients réels, est une algebre de polynémes, dont les géné-
rateurs sont les classes de Pontrjagin P* ¢ ( [k/2], et la classe fonda-
mentale X, de dimension k. Il résulte alors de la (Z-théorie de J. P. Serre

[22], qu’il existe un (Pisomorphisme entre la cohomologie de (’ik et celle
d’un produit de complexes d’Eilenberg-Mac Lane de la forme:

K(Z,4) xK(Z,8) x ... xK(Z,k).
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(@ désignant la famille des groupes finis. Par suite, les seuls groupes
d’homotopie non finis de G, apparaissent pour les dimensions des géné-

rateurs, soit 4:¢ et k; on prendra pour élément ¢ en,(G;) le générateur
de la composante Z associée — non canoniquement, mais c¢’est sans im-
portance — au générateur de dimension % lié & la classe X, ; c’est dire
que, dans l’application ¢:S* Ny x, on aura *(X,) = N°.s* ou
N° est un entier non nul.

Les hypothéses du Lemme II.24 sont alors vérifiées; en effet, le

groupe de cohomologie H™'(Z,k;x, (a x)) est de type fini, parce que le
groupe x,(@;) est lui-méme de type fini; et tout élément y est d’ordre

fini: en effet, ou bien le groupe des coefficients 7, (@ ) est lui-méme fini,
ou, s’il est infini — ce qui arrive pour ¢ = 0 mod 4 —, le groupe
Het\(Z, k; =, (6,9) n’a que des éléments d’ordre fini, parce que tout élé-
ment du groupe HYY(Z, k;Z) est alors d’ordre fini.

On pourra ainsi définir, pour tout entier ¢ > k, une application G,
du g-squelette de K(Z, k) dans Agy;,, donc dans M(SO(k)); for-
mons 'application composée:

G A h
K> G, - M(SO(k)) .

U désignant toujours la classe fondamentale de M (SO (k)), on a, si k
est pair: A*(U) = X,, et par suite: G*oh*(U) = N - ¢ ou l'en-
tier N, non nul, ne dépend que de g et k. Donc:

Théoréme II.25. Pour toute classe de cohomologie entiére x, de dimen-
sion k, d’un espace de dimension finie q, il existe un entier non nul N,
ne dépendant que de k et q, tel que la classe multiple N - x soit réalisable
pour le groupe des rotations.

Remarque. Ce raisonnement s’appliquerait également en substituant

a la grassmannienne réelle é\ x> la grassmannienne complexe, et, éven-
tuellement, pour * = 0 mod 4, le classifiant du groupe symplectique.
On obtiendra donc le méme théoréme, en substituant au groupe SO (k)
le groupe unitaire (resp. le groupe symplectique), mais les coefficients N
seront alors plus élevés.

11. Enoncé des résultats. Nous sommes maintenant en mesure d’énoncer
les résultats acquis pour notre probléme initial : réaliser une classe d’homo-
logie donnée d’une variété par une sous-variété; grace aux théorémes
II.5 et 5’, on est ramené & chercher si la classe de cohomologie corres-
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pondante admet une réalisation orthogonale, probléme sur lequel les
théorémes des n® 7—8—9—10 fournissent autant de réponses partielles.

i) Classes mod 2. Les théorémes 11.13—5 donnent:

Théoréme I1.26. Dans une variété différentiable V7 les classes des
groupes d’homologie mod 2 susvants sont réalisables par des sous-variétés :

H, ,(V*) pour tout =n;H, ,(V*) pour =< 6;H, ,(V*) pour
n{ 8; H, (V") pour i < (n/2), et pour tout n.

On observera, dans le cas de H,_,(V"), quel’obstruction (1/2) - dp(u)
du théoréme II. 14, est nécessairement nulle sur la classe fondamentale
d’une variété V°® de dimension 5: c’est trivial si V® est orientable ; si
V® n’est pas orientable, la classe fondamentale de H°®(V®;Z) est un
Sq', par suite, sa réduction mod 2 n’est pas nulle. Par contre, on ne
peut rien dire des classes du groupe H,(V%): c’est la ’exemple le plus
simple de groupe d’homologie pour laquelle la question de la réalisation
par des sous-variétés ne peut étre résolue par les résultats ici énoncés.

ii) Classes d’homologie entiéres.
Les théorémes I1.17—8—9 nous donnent:

Théoréme I1.27. Sont réalisables dans V™ orientable par des sous-
variétés orventables, les classes des groupes swivants: H,_,(V*); H, _,(V7)
pour tout n; H (V™) pour v < 5, el tout n.

En effet, dans le cas limite Hy(V®;Z), 'obstruction correspondante,
donnée par le cube de Steenrod Sit3(u), est une classe d’ordre 3, et est
donc nulle sur la classe fondamentale. De 13 on tire:

Corollaire I1.28. Toutes les classes d’homologie entiére des variétés
orientables de dimenmsion <8 sont réalisables par des sous-variétés.
Ici encore, le cas le plus simple non décidé est donné par les classes du
groupe Hq(V?; Z). (Cf. la note ?), qui suit.)

On notera encore, en conséquence du théoréme II.17: Pour qu’une
classe d’homologie de dimension 8 dans une variété de dimension > 17
soit réalisable par une sous-variété, il faut et il suffit que le cube St}
de la classe de cohomologie duale soit nul.

Enfin, les théorémes «multiplicatifs» II.4 et II.25 donnent:

Théoréme I1.29. Pour toute classe d’homologie entiére z d’une variété
orientable V™, 1l existe un entier non nul N tel que la classe multiple N -2z
soit réalvsable par une sous-variété.
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Ce théoréme admet un corollaire intéressant en cohomologie réelle
ou rationnelle:

Corollaire I1.30. Les groupes d’homologie @ coefficients réels ou ration-
nels d’une variété orientable V™ admettent pour bases des systémes d’élé-
ments représentés par des sous-variélés.

Remarques. Il ne faudrait pas croire que toute classe d’homologie en-
tiere d’'une variété peut étre réalisée par une sous-variété ; nous verrons
au Chap. III 'exemple d’une classe de dimension 7 (dans une variété de
dimension 14) qui n’est pas réalisable; on montrera, que, pour toute
dimension > 7, tl existe des classes entiéres non réalisables dans des
variétés de dimension arbitrairement grande. J’ignore s’il existe des
classes de dimension 6 non réalisables.?)

Si deux classes z et 2’ sont réalisables, il ne s’ensuit pas que la classe
z + 2’ est réalisable ; cette propriété n’est exacte — en général — que
si la dimension des classes z et 2’ est inférieure strictement & la moitié
de la dimension de la variété. Par contre, I'intersection de deux classes
réalisables est réalisable. C’est 1a une conséquence presque immédiate
du théoreme I.5.

Neécessité des hypothéses de différentiabilité. Toute la théorie ici pré-
sentée repose de fagon essentielle sur la structure différentiable de la va-
riété ambiante et des sous-variétés plongées ; on peut montrer cependant
que, dans le cas du probléme de la réalisation des classes mod 2 certaines
conditions tirées du théoréeme II.1 ont une signification topologique
intrinséque. Par exemple: Soit F: M (O(k)) - K(Z,, k) D'application
canonique, telle que F*(1) = U; soit ¢ = T() une classe de
H*(Z,, k ; Z,) qui appartient au noyau de F' (7' désigne ici une somme de
cup-produits de Sgq° itérés) ; il est clair que, pour qu’une classe de coho-
mologie x e H%(V™) corresponde & la classe d’une sous-variété différen-
tiablement plongée, il faut que 7' (x) = 0. Or on peut montrer que si
T (x) n’est pas nul, mod 2, la classe correspondante & x ne peut étre
réalisée, méme par une sous-variété topologiquement plongée. J’ai montré
en effet dans [27] qu’a toute sous-variété topologiquement plongée, on
peut associer des classes caractéristiques normales généralisées W*; ces
classes ont les mémes propriétés formelles que les classes de Stiefel-

) Par un calcul plus poussé, j’ai pu montrer que toute classe d’homologie entiére de
dimension 6 est réalisable; ’obstruction correspondante, définie par I’homomorphisme
St3; Hn-8 (Yn; Z) > H*1(Vn; Z) est identiquement nulle. De méme les résultats des
théordmes II. 18 et 19 peuvent étre améliorés; dans le corollaire II. 28 la limite 8 peut
étre remplacée par 9. Le premier cas & décider est celui du groupe H, (V10; Z).
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Whitney de la structure des vecteurs normaux & une sous-variété diffé-
rentiablement plongée, et satisfont notamment aux formules (3) de Wu
(qui se démontrent alors & l'aide des relations d’Adem [1] entre Sg¢*
itérés). A toute opération telle que 7', augmentant la dimension de 7
unités, on peut associer un polynome en W,, de poids total ¢. Si la
classe 7'(:) appartient au noyau de F, ce polynome est identiquement
nul; il en résulte que 7'(x) doit étre nul, d’olt une contradiction. On
pourra conduire explicitement les calculs sur ’exemple suivant, qui m’a
été indiqué par J. P. Serre: Si ¢ est la classe fondamentale de K (Z,, 2),
prendre T'(:) = (Sq¢2Sqt¢) - &+ (8¢t ¢)? + Sqte - 3.

CHAPITRE III

Sur un probléme de Steenrod

1. Enoncé du probléme. N. Steenrod a, dans [12], posé le probleme
suivant: étant donnée une classe d’homologie z € H,(K) d’un polyedre
fini K, existe-t-il une variété M" compacte, et une application f: M™ — K,
telle que z soit I'image par f, de la classe fondamentale de la variété
M™? Nous supposerons ici encore que la variété M"™ considérée est
différentiable. Comme on le verra, la réponse est trés différente, suivant
le groupe de coefficients (Z ou Z,), qui sert & définir la classe d’homo-
logie donnée z. Ce probléme est en rapport étroit avec le probléeme du
Chapitre II sur la réalisation des classes d’homologie de variétés par des
sous-variétés. Nous allons préciser ce rapport.

bl

2. Définition: Variétés associées & un polyédre fini K. Soit K un
polyédre fini, de dimension n; K peut toujours étre plongé rectilinéai-
rement dans un espace euclidien R", ou n > 2m + 1; on peut alors
définir — par exemple, comme solution d’un probléme de Dirichlet —
une fonction numérique nulle sur K, strictement positive et de classe C*
sur le complémentaire R® — K. Puisque K est un rétracte absolu de
voisinage, il existe un voisinage ouvert U de K, et une rétraction
r: U — K. Soit ¢ une valeur réguliére de la fonction f, assez petite pour
que l'image réciproque f~1(0,c) soit tout entiere contenue dans U
(il en existe, d’apreés le Théoreme 1.1). Dans ces conditions, I'image réci-
proque f~1(0,c¢) est une variété & bord M™, dont le bord régulier diffé-
rentiable 7™-1 est 1'image réciproque f~'(c) . K est rétracte, par la
restriction de la rétraction r, de la variété & bord M.

1
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Remarque. S’il n’existait dans lintervalle [ 0,c¢] aucune valeur
critique de la fonction f, on pourrait affirmer, de facon plus précise,
que K est un rétracte par déformation de la variété & bord M» : la défor-
mation M* — K serait alors définie grace aux trajectoires intégrales du
champ de vecteurs défini par le gradient de f; mais je ne sais si on peut
exclure pour la fonction f la possibilité d’admettre des valeurs critiques
arbitrairement petites.

Etant donnée la variété & bord M", on peut en déduire, par la cons-
truction classique du «dédoublement» (Verdoppelung) une variété com-
pacte V™: on prend deux exemplaires isomorphes de M™ qu’on identifie
le long de leur bord commun 7™-1; on désignera par g =: M*» — V»
Pinjection, et par h: V™ — M™ Dapplication définie par le passage au
quotient quand on identifie les deux composantes M} et M;. Une
variété telle que V™ sera appelée variété associée au polyédre fini K.
11 est clair que K est un rétracte de toute variété associée, et par suite I’ap-
plication 7 oh: V® — K induit, pour tout groupe de coefficients, un
homomorphisme A* or*: H"(K) — H" (V") qui est biunivoque. En effet,
si on désigne par ¢ 'application identique de K dans M™, P’application
r o h est inverse de l'application g o¢. Un voisinage & bord différen-
tiable régulier tel que M™ sera appelé voisinage associé & K. Nous avons

alors le théoréme, qui donne le rapport entre les questions des Chapitres
IT et III:

Théoréme III.1. Pour qu’une classe d’homologie z € H,(K) soit U'image
d’une variété différentiable compacte, il faut et il suffit que la classe z
puisse étre réalisée par une sous-variété dans un voisinage associé a K,
de dimension assez grande.

11 est immédiat que la condition est suffisante: si, en effet, la classe z
est réalisée dans le voisinage M™ par une sous-variété compacte W',z
est 'image de la classe fondamentale de W” par ’homomorphisme 7,
induit par la rétraction »: M™ — K.

La condition est nécessaire. Supposons que z soit I'image, par une appli-
cation f de la classe fondamentale d’une variété différentiable compacte
Wr. Donnons-nous alors:

a) un plongement régulier différentiable de W* dans un R", soit g.

b) un plongement rectilinéaire de K dans un R™, soit ¢.

Désignons par Y le «mapping cylinder» de 'application donnée f;
soit (x,t) le point de Y qui, pour tout point x de W, divise le segment
[f(z), ] pris dans cet ordre dans le rapport (0 <<? < 1).
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Soit enfin @ un parameétre réel > 0. On définit un plongement F,
de Y dans I'espace euclidien R*tm+l1 ~ R® x R™ x R par la formule:

F,(z,1) = (atg(x), (1 —t)i o f(), at)
et pour tout point y de K

Fa(y) = (02 @(y): a’t) .

Soit M un voisinage associé au plongement de K dans R»tm+1 défini
par F,(K). Parraison de compacité, il existe une valeur ¢ du parametre a
assez petite pour que, si @ ( ¢, l'espace image F,(Y) soit tout entier
contenu dans M. Dans ces conditions, 'image F, (W7, 1) est une sous-
variété de M, et sa classe fondamentale appartient a la classe k(z),
image de z par l'injection k: K — M définie par F,. Le théoréme
IIT.1 est ainsi entierement démontré.

3. Application: Cas des coefficients mod 2. Toutes les fois qu’on
pourra réaliser la classe k(z) par une sous-variété dans la variété associée
V®, on pourra résoudre affirmativement le probléme de Steenrod. C’est
précisément le cas lorsque les coefficients sont les entiers mod 2. En effet,
la dimension » de la variété associée peut toujours étre prise plus grand
que 2r, de sorte qu’on peut appliquer le théoréme II.26. Ceci nous
donne:

Théoréme III.2. Toute classe d’homologie mod 2 d’un polyédre fini est
Iimage de la classe fondamentale d’une variété différentiable compacte.

En coefficients entiers, le théoréme I1.27 donne:

Théoréme III.3. Toute classe d’homologie entiére de dimension <5
d’un polyédre fint est U'image de la classe fondamentale d’une variété orien-
table compacte.

Le théoréme II.29 nous donne le théoréme «multiplicatif»:

Théorémes III.4. Pour toute classe z de dimension p d’homologie entiére
d’un polyédre fini K , il existe un entier non nul N, ne dépendant que de p,
tel que la classe multiple Nz soit Uimage de la classe fondamentale d’une
variété différentiable compacte.

Pour obtenir des résultats plus précis dans le cas des coefficients en-
tiers, on va introduire dans ’homologie de K de nouveaux opérateurs.

4. Les opérateurs ¥7. Soit toujours K un polyédre fini, plongé (topo-
logiquement) dans R™; formons la limite projective des cohomologies &
supports compacts des voisinages ouverts de K dans R™, soit H*(U).
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La dualité de Poincaré donne alors (cf.[27] Théoréme III.4) un iso-
morphisme y de H,_(K) sur H%"(U), pour tout groupe de coeffi-
cients.

A toute puissance de Steenrod d’indice ¢ pair St} %), on associe
Phomomorphisme ¢} : H,(K;Z,) - H,_;(K;Z), défini par la relation:

9 =784 1

On définira les opérateurs ¢ correspondant aux St d’indice 3
impair directement par la formule:

83,41 = 000 0,

ou 97 désigne 'homomorphisme de Bockstein 1/p-4 (ceci afin d’éviter
des complications de signe, diies au fait que I’opérateur St, ne commute
pas & la suspension).

Ces opérateurs ¥#? ont les propriétés suivantes, démontrées dans [27]
pour le cas p = 2, mais qui s’étendent sans difficultés au cas p ) 2:

i) Ce sont des invariants topologiques, indépendants de I'immersion de
K dans l’espace euclidien.

ii) Dans toute application f: K — K',9? commute avec I’lhomomor-
phisme f, induit par f.

iii) Sur le corps Z,, les opérateurs ¥ peuvent étre déterminés en
fonction des St ; si 97 applique H,(K) dans H,_ ;(K), désignons par
Q;, lhomomorphlsme dual, qui applique H™*(K ; Z,) dans H"(K ; Z,).
Alors les @) d’indice pair s’expriment en fonction des St par les for-
mules:

2, Qr 8t =0 m,i=0 mod2 (p — 1), Q°=identité.

La démonstration de cette formule est en tout point analogue a celle de la
formule (60) Th. I11.23 de [27]. Les @° d’indice impair s’obtiennent &
partir des @° pairs par la relation, transposée des ¥?:

QYT =QY -Q, ou @, désigne I’homomorphisme de Bockstein
1/p+6, suivi de la réduction mod p.

Par exemple, on aura: .
Q= —Sth; @=—SthoQh=SH84.

10) On suppose ici les puissances de Steenrod 82E @1 unies du coefficient norma.-

2k (p~1)

lisateur introduit par J. P. Serre dans [5], o St;, est notée Pg. Les puissances d’in-

dice impair se déduisent des puissances d’mdlce pair Pp par ’homomorphisme de Bock-
stein 1/p- 4.
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Revenons maintenant au polyedre K, plongé dans une variété associée
V™, si z est une classe de H, (K ;Z), la classe x(2) e H*"(U;Z) a
dans H™ (V™) une image canonique % qu’'on dénotera encore x(z); u
n’est autre que la classe de cohomologie qui correspond & la classe d’homo-
logie i, (2) e H,(V™) par la dualité de Poincaré ; comme 1, : H (K) —
H,(V™) est biunivoque, y:H, (K) — H™7(V™) Dest aussi. Et 'on a
par définition:

Stf, 1) = + x(97(2)) .

On sait que, pour que la classe d’homologie i, (2) soit réalisable dans V™
par une sous-variété, il faut que toutes les puissances S¢ (¢, p impairs)
de la classe de cohomologie correspondante y(z) soient nulles (Th. II.20).
Ceci nous donne:

Théoréme IIL.b. Pour qu’'une classe d’homologie entiére z d’un polyédre
fint sout Uimage de la classe fondamentale d’une variété différentiable com-
pacte, il faut que toutes les classes entiéres 9% (z), p, t impairs, soient nulles.

Cette condition est suffisante pour les classes de dimension < 8;
en effet, le théoréme I1.17 donne:

Théoréme III.6. Pour qu’une classe d’homologie entiére z de dimension
< 8 d’un polyédre fini soit U'image de la classe fondamentale d’une variété
orientable différentiable compacte, il faut et il suffit que la classe entiére
% (2) soit nulle.

Pour » << 5, on retrouve le résultat du théoréme I1I.3. Considérons
le cas r = 6; la classe 93(2) est une classe de H,(K;Z), d’ordre 3.
Si elle n’est pas nulle, il existe un entier m (multiple de 3), et une classe
de cohomologie u e H'(K ;Z,) dont le produit scalaire avec 93(z)
n’est pas nul.

Soit f I’application canonique de K dans K (Z,, 1), telle que f*(:) =
u, ¢ désignant toujours la classe fondamentale de K(Z,,,1). Ecrivons
alors le diagramme commutatif':

H,(K;Z)—> H((Z,,1;Z)
9 ﬂzl

4

H,(K;Z) »i*—»Hl(Zm, 1; )

Or, le groupe Hy(Z,,, 1;Z) est nul, comme il ressort de la détermina-
tion connue [11] de I’homologie des groupes cycliques ; donc f, (92 (z)) =0,
et le produit scalaire 9%(2), » est nul. Comme ceci est vrai pour tout
entier m, on en déduit que la classe entiére 93 (z) est nulle. Donc:
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Corollaire III.7. Toute classe d’homologie entiére de dimension 6 d’un
polyédre fini, est U'image de la classe fondamentale d’une variété différen-
tiable compacte.

Nous allons montrer que ce résultat ne peut étre amélioré ; dans ce
but, énongons d’abord un lemme sur les complexes d’Eilenberg-Mac
Lane:

Lemme III.8. La classe St St;(t) du complexe K(Z,,r) n’est pas
nulle dés que r > 2.

Observons d’abord que, si la classe St Sti(:) n’est pas nulle pour la
valeur r» = n, elle n’est pas nulle dans tous les complexes K (Z,, m)
ol m > mn, a cause de la suspension ; il suffit par suite de montrer que
St Sti(t) n’est pas nulle dans K(Z,, 2); il en est effectivement ainsi ;
mais, comme il est assez délicat de le voir directement, il est plus com-
mode de substituer au complexe K (Z,;, 2) un produit de deux complexes
K(Z;,1). Désignons par v,, resp. v, leurs classes fondamentales, par
u, = Stz vy, resp. u, = Sty v, les générateurs de H*(Z,, 1;Z,) dans
les deux complexes. On a alors:

SESB, - v) = S SB - v — v, - w) = SB(W) - v — (W) - v)

= ()« Uy — ;- (uy)° # 0.
Le lemme est ainsi démontré. Puisque la classe entiére
SESty(t) e H 8 (Z,, 7 2),r > 2,

n’est pas nulle, on en déduit, par dualité, qu’il existe une classe
zeH, ;(Z;,r;Z) dont le produit scalaire avec la classe St; St;(:) n’est
pas nul (mod 3). C’est dire que <{z,@5(t)> #% 0 donc {#(z),:> # 0
et 93(z) % 0. Nous avons ainsi démontré:

Théoréme III.9. Pour toute dimension r =T, il existe des classes
d’homologie entiére de polyédres finis qui ne sont l'image d’aucune variété
orientable différentiable compacte.

Un exemple. On réalise les complexes K (Z;, 1) par des espaces lenti-
culaires ; il suffit ici de prendre des espaces L’ de dimension 7, quotients
de la sphére S? par le groupe Z; qui y opére sans point fixe. On désigne
ici encore par v,, resp. v, les générateurs de H!(L, ; Z,) resp. H (L, ; Z,),
par u, = Sti v,, resp. u, = St:v,, ceux de H2(L,;Z,) resp. H*(L, ; Z;)
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pour deux exemplaires L, et L, de L, et on forme la variété V4
produit de L, par L,. Considérons alors la classe:

X = uy - vy ()2 — vy - (w)°

C’est une classe entiére, car X = St;(v; - v,(u,)?) .

Désignons par z € H,(V*; Z) la classe qui lui correspond par la dualité
de Poincaré. Je dis que la classe 9#2(z) n’est pas nulle mod 3 ; formons en
effet le produit scalaire:

(B(2), v 0> = (2, Q5(v,-v,)) = (z, Stz St; (v, v,)> mod 3
Ce produit scalaire peut étre remplacé par le cup-produit:
X . Stg St;(”l c ) =X - ((%)3 * Vg — Uy - (uz)s) = vy - Uy - u2)3 # 0,

92(2) n’est donc pas nulle, et la classe z n’est I'image d’aucune variété
b s

différentiable compacte. A fortiori, z ne peut étre réalisée dans V* par
aucune sous-variété, ce qu’on vérifie en formant:

8t X = 8t;((w,)° - v (wp)?) = (uy - up)* # 0.

On pourrait donner de méme des exemples de classes de dimension 7 non
réalisables par des sous-variétés dans des variétés de dimension arbitrai-
rement grande.

5. Les puissances de Steenrod dans la cohomologie d’une variété
différentiable. Soit V" une variété différentiable compacte, et (V") sa
classe fondamentale ; d’aprés le théoréme III.5 dont c’est un cas par-
ticulier, toutes les classes entiéres ¥7(V"), p premier impair, ¢ =1
mod 2(p — 1) sont nulles. On en déduit par dualité:

Théoréme II1.10. Dans toute variété orientable différentiable compacte
Ve, les homomorphismes @ :H"*(V*;Z,)) — H*(V";Z,) sont nuls
(p,t impaires).

Par exemple: Q5 = St; Stl: H»3(V*) — H*(V";Z,) est nul.

On retrouvera ces relations en exprimant que dans le produit V» x V=,
la classe diagonale est réalisable par une sous-variété & I’aide du théoréme
II.20. On remarquera que ces relations sont vérifiées non seulement dans
toute variété différentiable, mais encore, dans toute variété image par
une application de degré 1 d’une variété différentiable. Elles ne semblent
point provenir, cependant, de la dualité de Poincaré. D’ol la question
ouverte: Ces relations peuvent-elles étre établies pour une variété topo-
logique, sans hypothése de différentiabilité?
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CHAPITRE 1V

Variétés diftérentiables cobordantes

Soit V™ une variété compacte orientable ; on dit que M"+! est une
variété a bord de bord V™, si les conditions suivantes sont remplies:

a) Le complémentaire M"+1— V" est une variété (ouverte) de dimension

n-+ 1.

b) En tout point z de ¥” il existe une carte locale, compatible avec les
structures différentiables données sur V et M, dans laquelle I'image

de Mn*t! est un demi-espace R"*! limité par un espace R"™ image
de V=.

Sila variété Mn+1 — V7 est orientable, alors le bord V7 est également
orientable, et toute orientation de M"+! induit canoniquement une orien-
tation de V7; il suffit pour cela d’introduire ’opérateur bord défini
par: o6:H, (M, V*) - H,(V").

On dira qu’une variété compacte orientée V™ est une wvariété-bord
s’il existe une variété a bord orientable compacte M"+! de bord V=,
et si on peut munir M»*+! d’une orientation qui induise l’orientation
donnée de V™. Le présent Chapitre est consacré a la question suivante,
également soulevée par N. Steenrod dans [12]: Donner des conditions
nécessaires et suffisantes pour qu’une variété V" donnée soit une variété-
bord. J’ai donné dans [27] un certain nombre de conditions nécessaires
pour qu’une variété soit un bord, ou un bord mod 2 (sans condition
d’orientabilité) ; par une généralisation convenable du probléme, il nous
sera possible d’aborder la question des conditions suffisantes.

Définition. Variétés cobordantes.

Deux variétés compactes V, V' de méme dimension k, orientées,
seront dites cobordantes (notation V =~ V'), si la variété V' — V,
réunion de la variété V'’ et de la variété V dont on a renversé I’orienta-
tion, est une variété-bord.

Si V et V' sont cobordantes & une méme variété V'’', alors V et V'
sont cobordantes entre elles, comme le montre une construction géomé-
trique trés simple (identifier le long de V'’ les deux variétés a bord qui
définissent V= V" et V' = V"). L’ensemble des variétés de dimen-
sion k, compactes et orientées, se trouve ainsi partagé en classes d’équi-
valence ; on notera [V] la classe de la variété V.

On peut définir entre ces classes une loi d’addition commutative, en
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posant [V] 4 [V'] = [V v V’']; —V désignant la variété ¥V dont on a
renversé l'orientation, on aura [V] + [— V] = 0, ol la classe 0 est la
classe des variétés-bords; en effet, ¥V v(— V) est le bérd du produit
V x I. L’ensemble des classes [V] des variétés de dimension k£ forme
ainsi un groupe abélien qu’on dénotera Q% (groupe de cobordisme de
dimension k).

Si V est cobordante & V’, on vérifie immédiatement que, pour toute
variété compacte orientée W, le produit V X W est cobordant a
V' x W il en résulte qu’on peut définir sur les classes [ V] une structure
multiplicative, anticommutative et distributive par rapport & I’addition.
On désigne par £2 I'anneau qu’elle définit sur la somme directe des Q%.

Si dans ces définitions, on abandonne toutes les conditions d’orienta-
bilité, on définit: les variétés cobordantes mod 2, la classe d’équivalence
mod 2, notée [V],, le groupe de cobordisme mod 2 de dimension £k,
noté N*, et 'anneau N des classes de cobordisme mod 2. Il est clair que
dans I’anneau N tout élément est d’ordre 2.

2. Les invariants des classes de cobordisme. Tous les critéres con-
nus pour qu’'une variété soit une variété-bord donnent évidemment des
critéres pour que deux variétés soient cobordantes. Ainsi, le théoréme
V.11 de [27]: Si une variété V** orientée est une variété-bord, I'index
7 de la forme quadratique définie par le cup-produit sur H?2*(V4k)
est nul, va donner:

Théoréme IV.1. Si deux varidtés V, V', orientées, de dimension 4k,
sont cobordantes, les formes quadratiques défintes par le cup-produit
sur H2k(V) resp. H2*(V') ont méme index .

(Rappelons que I'index d'une forme quadratique est ici I'exces du
nombre des carrés positifs sur celui des carrés négatifs — en coefficients
réels ou rationnels.)

Il est aisé de voir que cet invariant v des classes de cobordisme de
dimension = 0 mod 4 se comporte additivement, et multiplicativement,
et définit ainsi un homomorphisme de 'anneau 2 dans Z.

Enfin un théoréme de Pontrjagin [18], cité en [27], sur la nullité des
nombres caractéristiques d’une variété-bord, donnera:

Théoréme IV.2. 87 deux variétés V, V' orientées, de dimension 4k,
sont cobordantes, leurs mombres caractéristiques de Pontrjagin II(P*)
sont égaucx.

Ces invariants se comportent additivement dans ’addition des classes ;
seul le nombre caractéristique associé & la classe de dimension maximum
Pk se comporte multiplicativement. (Ceci résulte de la loi tensorielle
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qui définit les classes de Pontrjagin de la structure fibrée sphérique joint
de deux structures données).

Pour les classes de Stiefel-Whitney, on aura:

Théoréme IV.3. St deux variétés V, V' de méme dimension k sont cobor-
dantes mod 2, leurs nombres caractéristiques de Stiefel-Whitney sont égauzx.
Ici encore, seul le nombre associé & la classe de dimension maximum se

comporte multiplicativement, alors que tous se comportent additivement.
" L’invariant associé n’est autre, comme il est connu, que la caractéris-
tique d’Euler-Poincaré, réduite mod 2.

3. Applications différentiables d’une variété a bord. Définition. Soit
X"+l une variété a bord compacte, de bord V", et f une applica-
tion différentiable de X"t! dans une variété MP, contenant une sous-
variété compacte NP—¢. On dira que P'application f est ¢{-réguliére sur la
sous-variété NP-¢, si les restrictions de f, d’'une part & l'intérieur
Xntl — Pr d’autre part, au bord V», sont séparément ¢-réguliéres
(au sens de 1.3) sur NP9,

Image réciproque d’une application t-réguliére. En vertu des propriétés
générales des applications t-régulieres énoncées en 1.4, 'intersection par
V» de I'image réciproque A4n*+—¢ = F-1(NP-2) est une sous-variété
Cr2 de Vm; de méme, l'intersection de Ant-2 par Pintérieur
(X7t — V7) est une sous-variété 47+1-¢ — (" dedimension » + 1 — q.
Nous allons montrer que A"+~ est une variété a bord, de bord C*;
soit  un point de C", y = f(x) le point image de N*=2,y,, y,, .., ¥y,
un systéme de g-fonctions coordonnées pour la g-boule géodésique nor-
male en y & NP—¢. Soit («,, z, .. z,,t) un systéme de fonctions coor-
données d’une carte locale autour de x, ou la derniére coordonnée ¢ ne
prend que des valeurs positives, ¢ = 0 étant 1’équation du bord V=.
Dire que la restriction de f & V¥ est t-réguliére, c’est dire que 'applica-
tion f(x,, % .. 2,,0) > (¥,¥,, .. y,) est de rang ¢ au point x; il
23
ox;
et pour ¢ = 0; par continuité, ce jacobien sera également non nul pour
des valeurs assez petites des z; et de t. C’est dire qu’on pourra trouver un
voisinage de x admettant un systéme de coordonnées de la forme

existe par suite un jacobien d’ordre ¢

non nul, pour =z, = 0,

(yl’ ?/2 L yq’ xq+1’ M xn’t) *

Dans ce voisinage A*+1-¢ est défini par les équations linéaires: y, =
Y, = Yy, = 0, et C" en y ajoutant la relation { = 0; c’est dire que =
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admet dans A*+1-¢ un voisinage homéomorphe au demi-espace R»t1—¢
(de coordonnées z,,,, ... z,;t) limité par un espace R"¢ (de coor-
données x,., ... z,) image de C* . C.Q. F. D.

Définition. Orientation induite sur une sous-variété.

Soit f une application de la variété orientée V" dans MP, ¢-réguliére
sur la sous-variété NP—9, et soit C"¢ la variété image réciproque de
Nr-2, Supposons que le voisinage fibré normal & N?—¢ dans MP soit
orientable ; on peut alors définir dans un voisinage tubulaire normal de N
une classe «fondamentale» U = ¢*(w) e H4(T ;Z); le voisinage tubu-
laire de C"—2 est également orientable, et on peut y définir une classe U
image par f* de la classe U de H?(T); on dira que la variété C"—¢
est munie de P'orientation induite de V™ si son cycle fondamental (C"—9)
est donné, dans un voisinage tubulaire normal de C*»~¢, par le cap-pro-
duit

() = ()~ T

(V™) désignant la classe fondamentale de ’homologie (& supports fermés)
de dimension n du voisinage tubulaire ouvert de C", qui induit I’orien-
tation donnée de V™.

Supposons qu’on ait, comme précédemment, une application de la
variété a bord X"+l  orientée, compacte, de bord V*, dans M?, t-régu-
liére sur la sous-variété N?-¢. On suppose de plus la structure fibrée
normale & NP-? orientable. Dans ces conditions, les images réciproques
Artl-e — f~1(NP-4), et O = Ant1-¢ ~ P» gsont également orientables.
On peut s’en assurer, par exemple, grice au théoréme de dualité de
Whitney [32]; V™ est supposée munie de ’orientation induite de I’orien-
tation de X7+l:(V7) = ¢(Xn+1, V»), @ désignant 'opérateur de bord.
Dans ces conditions, 'orientation induite sur C™¢ par son immersion
dans V" est l’orientation induite quand on considére C"~¢ comme bord
de Ant1-¢, une fois qu'on a muni A4"*~¢ de l'orientation induite de
Xr+t, 11 suffit d’écrire: V* ~ U = 9(X**) ~ U = 9(X" ~ U).
Nous allons maintenant démontrer le

Théoréme IV.4. Soient f,g deux applications de classe C™, m > n,
de la variété compacte orientée V* dans la variété MP, t-réguliéres sur
une sous-variété N?-¢2 de MP, compacte, & voisinage normal orientable ;
soient Wn¢ = f~1(NP—9), W' = g~1(N?-2) les images réciproques de
NP-¢, gous-variétés orientables qu’on munira de I’orientation induite de
V. Si les applications f et g sont homotopes, alors les varidtés Wn—2 et
W'm—¢ gont cobordantes.
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Il est clair qu’en abandonnant dans cet énoncé toutes les conditions
d’orientation, on obtiendra: les images réciproques f-1(N?-4), g—1(N?P—9)
sont des variétés cobordantes mod 2.

Nous allons démontrer d’abord le lemme suivant, dont le principe m’a
été suggéré par H. Whitney :

Lemme IV.b. 8¢ deux applications f et g de classe C™ de la variété V»
dans MP sont homotopes par une déformation continue, elles sont également
homotopes par une déformation de classe C™.

Soit F:V x I — MP lapplication donnée, de classe C?; on lui sub-
stitue une application G:V X I — MP ainsi définie: pour ¢tel, on

pose G(V,t) =f=F(V,0) pour 0 <t < };G(V,t) =F(V,it—;—l—)

pour } <t<$%;G(V,t)=g¢g pour 2 <t <1. Munissons le produit
V x I de la métrique riemannienne produit d’'une métrique sur V* et
de la métrique euclidienne de 1. On régularise alors I’application @ par le
procédé classique, en substituant a P'application G' sa moyenne sur des
boules géodésiques de rayon r. Le rayon r sera pris constant et ( } pour
§ <t < 1; dans les tranches terminales ¢t { }, resp. I (¢, on prend r
variable décroissant avec t (resp. (1 — ¢)), de classe C*, et égal & 0
pour t = 0 et £ = 1. Ainsi, la régularisation augmente de 1 la classe
de différentiabilité de G sur la tranche § <{? < I, et elle ne la diminue
passur 0 <t <<} et T <t < 1; et les applications f et g, restrictions
de G a (V,0) et (V,1) sont inchangées. En itérant le procédé, on ob-
tiendra une application de V x I dans M? de classe O™.
L’application obtenue F:V x I — M? de classe C™ n’est peut-étre
pas t-réguliére sur la sous-variété NP-¢; mais ’ensemble H; des homéo-
morphismes Ak € H du voisinage tubulaire 7' de NP2, tels que h o F,
restreint & l'intérieur de V X I ne soit pas ¢-réguliére sur N?P—¢ est
maigre dans H; de méme pour ceux des A tels que la restriction de
hoF & (V,0) v (V,1) ne soit pas ¢-réguliére sur NP—¢; par suite, le
théoréme 1.5 peut se généraliser aux applications de variétés & bord ; et
I’homéomorphisme 2 peut étre pris assez voisin de 1'identité, pour que le
théoréme 1.6 puisse s’appliquer aux restrictions f et g de F a (V, 0),
resp. (V, 1). Posons F' = h o F, et soient f’ et g’ les restrictions de I’ &
(V,0) et (V,1). A cause du théoreme 1.6, les variétés images récipro-
ques C" ¢ = f-1(Nr-9), 0’2 = g'~}(NP~?) sont isotopes aux variétés
Wn—4 = f-1(NP-9), resp. W™ = g~1(NP-9); cette isotopie conserve
Porientation induite, de sorte que C"2 et C'*~¢ forment le bord de la
variété a bord A = F’'-1(N?—9), munie de l'orientation induite. Par
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suite, les variétés C"4, C'»—1, donc W2 et W'm2 sont cobordantes,
et le théoréeme IV .4 est entiérement démontré.

4. Sous-variétés L-équivalentes. Au chapitre I1.2, on a associé a
toute sous-variété Wn—k  orientée, dans la variété orientable V7, une
application f: V» — M (SO(k)). Nous allons ici préciser cette définition.

Supposons la variété V" plongée dans un espace euclidien R"+m;
soit, en tout point x de W»* H(x) le k-plan tangent en z & V*, et
normal & W»* (pour une métrique riemannienne arbitraire). Menons
par V'origine O de R™*™ un k-plan parallele & H (). On définit ainsi une
application R

g: Wt @, ,

e

G, désignant, comme précédemment, la grassmannienne des k-plans
orientés. Soit N un voisinage tubulaire de W»~* dans V». En associant
a toute géodésique normale issue de x € W%, son vecteur tangent en z,
on définit par parallelisme une application

F:N — Aoy
telle que le diagramme:
F

N——> Aoy
pl ﬂl
we .G,

soit commutatif (p et p’ désignant les fibrations canoniques en k-boules).
Comme en II.2, Papplication F' s’étend en une application

f:Vr—> M(SO(k)).

Si on remplace le plongement initial de V* dans R»*™ par un autre
plongement, ou la métrique par une autre métrique, Papplication f est
remplacée par une application homotope. En effet, deux métriques rieman-
niennes sur une variété ¥ peuvent toujours étre déformées contintiment
I'une sur ’autre ; il en résulte une isotopie entre les voisinages tubulaires N
et N’ associés & ces deux métriques, et par suite une homotopie entre les
applications F: N — Agy;y, donc entre les applications

f:Vm > M(SO(K)).

Reste & montrer que la classe d’homotopie ne dépend pas du plongement
initial de V» dans R»*™; nous aurons besoin dans ce but du lemme sui-
vant que nous rencontrerons encore par la suite:

69



Soit @7+ une variété & bord, de bord V*; soit X**' une sous-variété
a bord, plongée dans @™*!, dont le bord, plongé dans V*, est une sous-
variété W* de V»; on suppose de plus qu'en tout point x de W¥,
le demi-espace R¥+! des vecteurs tangents & X*+1 est transverse au
bord V™, en ce sens que l'intersection de ce demi-espace R*+! par
I’espace des vecteurs tangents & V" se réduit & ’espace des vecteurs tan-
gents & W¥. Supposons donnée sur "' une métrique riemannienne ;
elle permet de définir un voisinage normal de ¥» dans @"*!, de la
forme V» x I, ou les semi-droites de la forme (x,t),%el, sont des
géodésiques normales & V™. On peut alors montrer:

Lemme IV.5’. Aprés un homéomorphisme @ de @**! sur lui-méme,
on peut toujours supposer que X¥+1 rencontre orthogonalement le
bord V=.

Cet homéomorphisme @ de Q"+ est ainsi défini: il se réduit a 'identité
a l'extérieur de V» x I; sur V™ x I, il est I'image réciproque de
I’homéomorphisme de I sur lui-méme défini par une fonction ' = ¢(t),
telle que: 0 =@ (0); 1 =g@(1);dt'/dt = + 0o pour t =0, et dt'/dt =1
pour £ = 1.

On vérifie alors directement que tout vecteur tangent en x & @ (X¥+1)
est tangent au cylindre orthogonal & V», W* x t’, oli t’ varie dans I.

Revenons maintenant & la variété V>, plongée dans R"t™ suivant
deux plongements différents 1, et ¢,; si m > n + 2, on peut supposer
les images 17,(V™"), ¢,(V™) disjointes — au besoin aprés une translation
convenable de 7;; on peut alors trouver, d’aprés un théoréme de H. Whit-
ney un plongement ¢ du produit V" x I dans R"*™, dont la restriction
a (V,0), resp. (V,1), est précisément ¢,, resp. ¢,. La variété & bord
plongée (V™ x I) contient une sous-variété plongée de la forme
Wn-k x I, quirencontre le bord de ¥» x I transversalement. Suppo-
sons donnée sur ¥* x I une métrique riemannienne ; d’apres le lemme,
on peut supposer que W»—% x I rencontre les bords (V*, 0) et (V*, 1)
de V* x I orthogonalement. Formons alors un voisinage tubulaire nor-
mal de W»-% x I dans V» x I, soit N. Les intersections N, =
N ~4,(V?),N, = N ~ i, (V") ne sont autres que les voisinages tubu-
laires normaux associés & i,(Wn¥), resp. i,(W" %) plongées dans
to(V?), resp. 7,(V"). Formons l’application canonique — par paral-

lélisme —: F:N - Agg, -
Par extension, on obtient une application:

F:Vn x I ->M(SO(k)
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telle que les restrictions de ¥ & (V», 0), resp. (V*, 1) sont précisément
les applications canoniques f,, resp. f, définies grice aux plongements
iy, Tesp. i, de V. F définit bien 'homotopie annoncée entre f, et f,.

Définition. Sous-variétés L-égquivalentes. Soient W% Wr—* deux
sous-variétés orientées de méme dimension » — k plongées dans la
variété orientable V*. On dira que Wi~ %, W% sont L-équivalentes,
8’1l existe une variété & bord orientable X%+l de bord Wi=% o Wik,
plongée dans le produit V* X I, de fagon que:

Xn—k+1 (Vn’ 0) — Wg~—k
Xn—k+1 (Vn, 1) = W;'“"

et st Xkl peut étre munie d’une orientation telle que 0X"k+l =
Wyt — Wik,

Il résulte immédiatement de cette définition et du lemme IV.5 que
deux sous-variétés L-équivalentes & une méme troisiéme sont L-équiva-
lentes entre elles. L’ensemble des sous-variétés de dimension n — k, ori-
entées, de la variété V™ se trouve ainsi partagé en classes de L-équi-
valence ; on désignera par L,_,(V") ’ensemble de ces classes.

Si, dans les définitions précédentes, on abandonne toutes les conditions
d’orientabilité, on définit les sous-variétés L-équivalentes mod 2, et les
ensembles L,_,.(V";Z,) des classes de L-équivalence mod 2.

Il est clair que deux sous-variétés L-équivalentes sont & la fois homo-
logues et cobordantes ; si deux sous-variétés W,, W, constituent dans V=
le bord d’'une méme sous-variété a kord X, alors W, et W, sont L-équi-
valentes.

I1 existe une application évidente de I’ensemble L,_, (V") dans le groupe
H,_ .(V™;Z);les classes images sont les classes réalisables par des sous-
variétés ; le «noyau» de cette application est en général non nul, comme
nous en verrons des exemples. Il est naturel de se demander si ’'on peut
munir L,_, (V") d’une structure de groupe, compatible avec I’application
précédente. Il en est ainsi dans un cas au moins, lorsque n —k{(n/2—1.
En effet, en ce cas, on peut définir entre classes de L-équivalence une loi
d’addition, par simple réunion de sous-variétés représentant les classes ;
en effet, ces représentants peuvent toujours, si n —k{n/2, étre supposés
disjoints et, pour n — k< n/2 — 1, la L-classe ainsi définie ne dépend
pas du plongement choisi des deux sous-variétés. Par ailleurs, la somme
[W] 4+ [— W] donne bien la classe nulle, car on peut toujours — loca-

lement — plonger le produit W x I dans un voisinage tubulaire normal
de W.

71



A toute sous-variété Wn-* de V" correspond une classe d’applica-
tionsde V» dans M (SO (k)) ; on démontre sans difficulté que si W et W’
sont L-équivalentes, les applications associées f: V» — M (SO(k)) sont
homotopes.

Si, en effet, W, et W, sont L-équivalentes, il existe une sous-variété
a bord X plongée dans V™ x I, dont le bord se compose de W, plongée
dans (V*,0) et W, plongée dans (V",1). On peut toujours supposer,
& cause du lemme IV 5’ que X rencontre orthogonalement les variétés
bords (V*,0) et (V*,1). On forme alors un voisinage tubulaire normal
@ de X dans VP x I, et l'application F associée F :Q — Agy;,. Par
extension on obtient une application F,: V* x I -~ M(SO(k)), qui
définit précisément 1’homotopie annoncée entre les applications cano-
niques:

F|(Vr,0) =/, F|(V*, 1) =f associées resp. & W, et W,.

Ceci définit une application J de I’ensemble L, ,(V”?) des classes de
L-équivalence dans ’ensemble C*(V) des classes d’homotopie d’applica-
tions f: V™ — M (8O (k)). L’application J est biunivoque: si, en effet,
deux sous-variétés W,, W, donnent lieu & des applications

for fo: V™ = M (SO (R))

homotopes, le théoréeme IV .4 montre qu’on peut régulariser ’application
d’homotopie F : V” x I —M(SO k)) de telle fagon que les images

réciproques fg—l( o = W, et fi1 (G = W, forment — apreés éven-
tuellement une isotopie qui est une L-équivalence — le bord d’une variété
3bord 4 — F1(@,).

On peut remarquer que J applique la classe des variétés L-équivalentes
a 0 sur la classe nulle des applications f: V» — M (SO(k)) inessentielles.
Si k> (n/2)+1, Pensemble C* (V) des applications de V dans M (SO (k)),
espace asphérique jusqu’en dimension &, peut étre muni d’une structure de
groupe abélien, conformément & la théorie générale de la cohomotopiel?).
I1 est d’une vérification presque immédiate que ’application J est alors
un homomorphisme ; il suffit d’expliciter la loi de groupe dans C*(V):

on vérifiera que I'image réciproque (f + g)"l(a ) par I'application somme

11) Les groupes de cohomotopie ont été étudiés par E. Spanier (Ann. of Math., 59,
1949, pp. 203—45) dans le cas des sphéres; leur généralisation aux espaces asphériques,
ici mentionnée, doit faire ’objet d’un travail de E. Spanier, N. E. Steenrod et J. H. C.
Whitehead, & paraitre ultérieurement. La démonstration esquissée plus bas est aisée &
expliciter dans le cas typique de la sphére; et la généralisation n’introduit aucun élé-
ment nouveau de difficulté.
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/N
est & une L-équivalence pres la réunion des images réciproques f-1(G )
N

et g71(G ).

Nous allons maintenant montrer que I’application J applique L,_,(V")
sur Ck(Vn).

Soit ¢ une classe de C*(V), et h une application de la classe ¢ ; d’apres
le théoreme 1.5, on peut supposer 1’application A ¢-réguliére sur la grass-

mannienne é\ » Plongée dans M (SO (k)). Soit Wrn-* = Irl(é\ ©) I'image
réciproque de G,, et N un voisinage tubulaire normal de W»—% dans
V7 ; on peut de plus supposer h normalisée, de fagon que A applique I'in-
térieur de N sur M (SO (k)) — a, k-boule ouverte sur k-boule ouverte, et
que, de plus, & applique le complémentaire ¢ = V* — N sur le point a.
Désignons alors par ¢: V* — R? un plongement arbitraire de V" dans
Rr, par: g: Wrk G, F: N - Agoqy, [: V* - M(SO(k)), les ap-
plications qui lui sont canoniquement associées par parallélisme. Or, les
applications:
A\ A\
h: Wr—k @, (restriction de h)et ¢g: Wr—k (@G,

induisent toutes deux I’espace fibré des vecteurs normaux & W»—* dans
V7 ; en raison du théoréme de classification des espaces fibrés, ces deux
applications sont homotopes. Or, si nous écrivons a nouveau le dia-
gramme commutatif: h

1|V > ‘l‘lsoac)

v h X

Wntk — @,
nous en déduisons, par relevement de I’homotopie k~ ¢, qu’il existe
une application %,, homotope a &, telle que:

h

le — Aoy
Wr-k ____g___,_ &k

C’est dire que la nouvelle application %, ne différe de 'application F que
par un isomorphisme x du voisinage tubulaire N sur lui-méme. On aura:
hy = F o« (restreint & N).

Or, je dis qu’il est possible de définir (au besoin en augmentant la
dimension de I’espace euclidien ambiant) un nouveau plongement 3’ de
V~, tel que, pour la restriction & N, on ait:

V= xo1.

En effet, on peut démontrer le lemme:
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Lemme. Soit @ une variété a bord, de bord T; supposons donné un
plongement © d’un voisinage de T (de la forme T x I) dans un espace
R?; 4l est possible de prolonger ce plongement a toute la varidté Q dans
un espace RPYe ou Dentier q est assez grand.

En effet, soient ¥;,y, ..y, les p fonctions coordonnées de R?;
dans un voisinage U de 7' x I, les fonctions y;, arbitrairement pro-
longées a tout @, séparent les points ; prenons ensuite un nombre suffisant
de fonctions (z,,, .. x,), nulles sur 7' x I, pour séparer tous les
points de @ — U (il suffit d’en prendre au plus 27 + 1, n dimension de
Q). L’ensemble des fonctions y,, x; définit alors le plongement cherché
de @ dans Rrta,

On appliquera ce lemme au complémentaire ¢ = V*» — N ; le plonge-
ment donné sur le bord 7' de N et un voisinage de 7' de la forme T x I
sera donné par: ¢ = x o4 .

Dans ces conditions, on vérifie immédiatement que I’application F'
canoniquement attachée a I'immersion ' : F’': N — Ag,,;, s’identifie &
Papplication , ; par extension, on en déduit que I'application

fr: Vo > M (SO(k))

déduite de h, s’identifie & 'application canonique associée a I'immersion
i’. Or, comme h,: N — A(SO(k)) était homotope & la restriction de A
a N, lapplication «étendue» f, est homotope & k. (Car on a supposé h
«normalisée» de telle facon que A(Q) soit le point @ compactifiant de
M (SO (k)).) Nous avons ainsi démontré:

Théoréme IV.6. L’ensemble L, (V™) des classes de L-équivalence
d’une variété V* sidentifie a Uensemble C¥*(V) des classes d’applications
de V™ dans M (SO (k)); si k) (n/2)+ 1, cette identification est compatible
avec la structure de groupe abélien donnée sur L, , et C*(V). On a un
théoréme analogue pour L,_,(V";Z,), le complexe M(O(k)) rem-
plagant M (SO(k)).

Applications. Le nombre maximum de L-classes contenues dans une
classe d’homologie z correspondant & la classe w e H*(V";Z) est donné
par le nombre des classes d’applications du complexe d’Eilenberg-Mac
Lane K(Z,k) dans M(SO(k)), telles que f*(U)= . Comme
M(SO(1)) et M(SO(2)) #’identifient & K(Z,1) et K(Z,2), on
obtient:

Deux sous-variétés, orientées, de dimension n —1 ou n — 2, de la
variété orientable V™ sont L-équivalentes dés qu’elles somt homologues.
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Corollaire: Toute sous-variété de dimension n — 2 homologue a 0 est
une variété-bord. (Résultat trivial pour n — 1.)

On a un résultat semblable pour les sous-variétés de dimension » — 1
en homologie mod 2.

Enfin, on a vu, au chap. II. (Th. I1.16), que le second groupe d’homo-
topie non nul de M (SO(k)) apparait en dimension k£ + 4; on en
déduit que deux applications de V* dans M (SO(k)) qui sont homotopes
sur le k-squelette de V™ le sont également sur le (k -+ 3*"°). Donc:
Deux sous-variétés orientées de dimension << 3, homologues, sont L-équa-
valentes.

b. Un théoréme fondamental. Nous allons appliquer le théoréme pré-
cédent au cas ol la variété V" est la sphére S*. Enoncons le

Lemme 1V.7. Le groupe L ,(8") des classes de L-équivalence pour la
sphére 8" s’identifie, pour n > 2k + 2, au groupe 0% des classes de
cobordisme.

11 existe une application canonique de L ,(S*) dans 2%, obtenue en
assignant a tout représentant d’une L-classe sa classe de cobordisme ;
cette application est évidemment un homomorphisme pour la structure
de groupe, car, dans les deux groupes, ’addition est définie par la réunion
des représentants. Cet homomorphisme applique L, (S*) sur 2F%; soit c
une classe de 2%, W¥ une variété de la classe c. W* peut étre plongée
dans R" pour n > 2k + 2, donc dans 8", et par suite ¢ est I'image
d’'une L-classe de 8™. Reste & montrer que le noyau de cet homomor-
phisme est nul; c’est-a-dire: si deux variétés Wk, W’k plongées dans
8™ sont cobordantes, alors elles y sont L-équivalentes. Soit X*+! une
variété a bord, telle que 9Xk+1 = W'k — W¥. On peut toujours plonger
X*1 dans R", si n ) 2k + 2. Définissons sur X **! une fonction (de
classe C*) ¢, comprise entre 0 et 1, telle que les équations ¢ = 0, resp.
t = 1, définissent W¥, resp. W’'k. Par compactification des (R",?)
en (8",t), on obtient bien le plongement de X dans 8™ X I qui définit
la L-équivalence. Si I’on remarque en plus que deux plongements arbi-
traires de W¥* dans S”, sont toujours, pour n > 2k 4 2, L-équiva-
lents, on a bien démontré que la correspondance entre L, (V") et Q%
est un isomorphisme.

Nous pouvons maintenant énoncer le théoréme essentiel de ce cha-
pitre:

Théoréme IV.8. Les groupes de cobordisme Q% et de cobordisme mod 2N *
sont resp. isomorphes aux groupes d’homotopie stables =, . (M(SO(n))),

resp. 7, (M ©O(xn))) .
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I1 suffit d’appliquer le théoréme IV.6 au cas ol V* est la sphére S»,
en tenant compte de I'isomorphisme L ,(S*) >~ Q% du lemme IV.7. On
doit simplement remarquer, ce qui est un résultat classique en théorie
de la cohomotopie, que I’ensemble des classes d’applications

f: 8tk —~ M(SO(n)),
muni de sa structure de groupe de cohomotopie est isomorphe au groupe

d’homotopie =, (M (SO (n))) .

6. Les groupes N* des classes mod 2. Au chapitre IT, on a déterminé
les groupes d’homotopie stables =, (M (O(n))); on a vu (théoréme
IT.10) que l’'espace M (O(n)) a dans les dimensions <{ 2%, méme type
d’homotopie qu’un produit Y de complexes d’Eilenberg-Mac Lane:

Y =K(Zy,n) X K(Zy,n +2) X ... (K(Zp,n+h)YM x.. h<n.

ou d(h) est le nombre des partitions non-dyadiques de k, c’est-a-dire des
partitions qui ne contiennent aucun entier de la forme 2™ — 1. Donec:

Théoréme IV.9. Pour toute dimension k, le groupe N* est isomorphe
a la somme directe de d(k) groupes isomorphes & Z,, ou d(k) désigne
le nombre des partitions non-dyadiques de Uentier k.

Ceci détermine la structure additive des R*.

Il résulte du théoréme II.10 que toute application de Stk = >k,
dans M (O(n)), qui est homologiquement nulle (mod 2), est homotopi-
quement nulle. Ce résultat peut étre précisé comme suit: pour toute par-
tition non-dyadique w de k, on a défini une application

Fo,: M(O(n)) > K(Z,, k& + n),

telle que Fj () = X,, ou X, désigne la classe de H (M (0(n)))
définie par la fonction symétrique:

E(tl)a1+1(t2)a2+l e (tr)ar+1tr+1 ° t‘n

ou les entiers (a;) constituent la partition non-dyadique w de k. Po-
sons, dans la cohomologie H*(G,; Z,):

Y = 2(0)" @) .. ()™
On a alors, avec les notations de II.2:
Xy =9g ().
Désignons par f,. une base de =, (M (0O(n))), telle que, par dualité

avec les F_, on ait:

76



fo F (1) = 65:(s), s classe fondamentale de H*+»(Sk+n; Z) (1)

et ol d, est le symbole de Kronecker avec sa signification classique,
les partitions o remplacant les entiers pour indices.

Les applications f,. peuvent étre supposées ¢-réguliéres sur la grass-
mannienne @, contenue dans M (O(n)); soit V.. une image réciproque
de @, pour f,; formons alors un voisinage tubulaire normal de V
dans 8"t*, et soit ¢* l'isomorphisme (p*) associé; désignons par
Y, limage de la classe Y, dans la cohomologie de V par I’application
fu, restreinte & V. ; la classe Y, s’exprime alors en fonction des

classes W,, classes caractéristiques de Stiefel-Whitney de la structure
fibrée normale & V dans 8»+*. D’apreés le diagramme commutatif (1)
de II.2, on aura:

o*(Yo) = o*fur(Y) = farws (Vo) = for (Xo,) = 8in(s) d'aprés (1). (2)
Appelons nombres caractéristiques mormaux les valeurs prises par tout

polynéme en _1'17,-, de poids total k, sur la classe fondamentale de V.
La relation (2) exprime que si une application f: 87tk — M (O(n))
n’est pas homotopiquement nulle, il existe une combinaison linéaire non
triviale des X, dont I'image par f* n’est pas nulle dans H*(S"t+¥);
par suite, un au moins des nombres caractéristiques normaux de V n’est
pas nul. Ceci nous permet d’énoncer la réciproque du théoréme de Pon-
trjagin:

Théoréme 1V.10. Si une variété V* a tous ses nombres caractéristiques
de Stiefel-Whitney nuls, c’est une variété-bord (mod 2).

En effet, si tous les nombres caractéristiques définis a partir des
classes W, de la structure tangente sont nuls, il en va de méme des

nombres caractéristiques normaux définis & partir des classes W
effet, d’apres les relations de Whitney

Zi Wi * Wr—-i =0

les W, sont des polynémes par rapport aux W.,.

.5 en

Corollaire IV.11. Si les mombres caractéristiques de Stiefel-Whitney
de deux variétés V, V' sont égaux, V et V' sont cobordantes mod 2.

Remarque. Ce résultat implique que, dans le groupe — isomorphe a
H*(@,) — des nombres caractéristiques (tangents) d’'une variété V*
de dimension k, il y en a exactement d(k) qui sont linéairement indé-
pendants; on peut vérifier ce résultat pour les petites dimensions
(k < 6), en tenant compte des relations de Wu Wen-Tsiin [33] qui lient
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les classes W, de la structure tangente d’une variété. La question se
trouve ainsi posée de savoir si les relations de Wu donnent toutes les rela-
tions liant les W, de la structure des vecteurs tangents & une variété.

7. Structure multiplicative des groupes M*. Posons k = r + s;
soit w, une partition non-dyadique de r, w, une partition non-dyadique
de s; la réunion (w,, w,) est une partition non-dyadique de k.

On a défini plus haut la variété VZ; rappelons que tous les nombres
caractéristiques normaux Y, , de V% sont nuls, & 'exception du nombre
Y,. On va montrer que la variété V* est cobordante mod 2 au produit
des variétés: Vi, X Vi, . Il suffira pour cela de montrer, d’apres le
corollaire IV.11, que tous leurs nombres caractéristiques de Stiefel-
Whitney sont égaux.

Or cela résulte immédiatement de la formule suivante, que nous allons

Stablir
et Yw = Z(whwz) (le) (Y‘”z) (3)

ou (w,, w,) parcourt toutes les décompositions possibles de la partition
o de k en une partition , de r et une partition w, de s. Il résulte en
effet, de (3), que tous les nombres Y,, du produit V, x V, sont
nuls, & P'exception de Y, ol o = (w,, w,).

Rappelons que la structure fibrée normale du produit Vi, X Vg,
est le joint des structures fibrées normales de V, , et de V;, . Dé-

signons par I/—V—,. les classes normales de la variété-produit, par U,
celles du facteur Vi, par V, celles du facteur V;. Le théoreme de
«dualité» de Whitney s’exprime par la formule symbolique:

Désignons par wu;, resp. v; les r racines symboliques du premier (resp.
les s racines du second) facteur. Si dans ’expression

Yw =2 (tl)al (tz)az oo (tq)aq

on substitue aux racines #; ’ensemble des k racines u; et v;, on doit
tout d’abord annuler tous les termes pour lesquels le degré total en
(u;) est # r, et le degré total en (v;) est # s, ceci pour des raisons de
degré ; les termes restants peuvent se grouper sous la forme:

Y= Doy, w2 @)™ () oo ()" - Z'(0)" ()" (0,)  (4)

ol w, désigne la partition a,,a,...a, de r, extraite de w, et w,
désigne la partition (b,, b, b,) de s, formée des entiers restants. Le pre-
mier X' g’effectue suivant toutes les décompositions possibles de la par-

78



tition w en une partition w, de r et une partition w, de s ;les deux autres
2 sont des 2’ de symétrisation, avec la convention classique en pareil cas.
Par ailleurs, si w se décompose en (w;, w,), je dis que cette décomposi-
tion ne figure qu’une seule fois dans ’expression (4), méme si cette décom-
position peut étre obtenue de plusieurs maniéres différentes & partir de .
Supposons en effet que la décomposition (w,, w,) puisse s’obtenir de deux
maniéres différentes & partir de w, c’est-a-dire qu’il existe une per-
mutation P des k variables (¢;,), qui, dans le mondéme typique

(tl)al (tz)a2 . (tm)am (tm+1)bl . (tk)bn

transforme la décomposition (w,, w,) en une décomposition isomorphe.
Alors la permutation P transforme le monéme typique en lui-méme,
et par suite, la permutation P, inessentielle, n’intervient pas dans la
symétrisation. La formule (4) s’identifie donc bien & la formule (3) a
démontrer. Par suite, si la partition non-dyadique  de k se décompose
en une partition w, de r, et une partition w, de s, on a, pour les classes
des variétés V% correspondantes:

[Vel = [Ve,] X [Ve,] (5)

Les seules classes [V¥] non décomposables sont par suite les classes
[V(",c)] , ou (k) est la partition de k constituée de l’entier k£ lui-méme
(£ non de la forme 2™ — 1). Toute autre classe se met — univoquement
— sous forme d’une somme de produits de ces classes indécomposables.
Ceci nous permet d’énoncer:

Théoréme IV.12. L’anneau N des groupes N* est isomorphe & une
algébre de polyndémes sur le corps Z,, admeltant un générateur [V(’“k)]
pour toute dimension k qui n’est pas de la forme 2™ — 1.

Corollaire: St Vet V' ne sont pas des bords (mod 2), la variété pro-
dutt V X V' n’est pas un bord (mod 2).

Les générateurs pour les petites dimensions.

Le premier générateur apparait pour & = 2; le nombre caractéris-
tique correspondant est X () = (X't)2 = (W,)? = (W,)?; un représen-
tant de la classe [V7] est donné par le plan projectif réel P R(2).
Pour t =3, =0.

Pour k& = 4, on a un nouveau générateur, de nombre caractéristique
normal () = (W,)* = (W,)*; il est représenté par la
somme PR(4)+ (PR(2))?; le groupe N* est iso-
morphe & Z, + Z,; on notera que le plan projectif
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complexe PC(2) est cobordant mod 2 au carré du plan
projectif réel P R(2).

Pour k = 5,N°, isomorphe & Z,, est engendré par le générateur
[V)]. Le nombre caractéristique tangent correspondant
est W,-W,; la classe est représentée par une variété
fibrée sur S, de fibre PC(2), qui a été construite par
Wu Wen-Tsiin [33].

Pour k = 6, N est isomorphe & (Z,)’; deux classes décomposables:
(PR(2))* et PR(4) x PR(2); la classe primitive
[V] admet pour nombre caractéristique normal

Z(t%) = (Z@°R = (Wl + (Wy - Wy + (W)

On vérifie aisément qu’un représentant de cette classe est donné par
I’espace projectif P R(6).

Pour ¥ = 7, comme k = 2> — 1, toute classe est décomposable
N = Z,, de générateur [V] X [Vy].

Pour k£ = 8. on a une classe primitive, dont le nombre caractéristique
associé est (W,)°; tout élément de cette classe [V ]
est cobordant mod 2 & I’espace projectif P R(8), modulo
des éléments décomposables qu’on pourrait expliciter
sans difficulté.

De fagon plus générale, on peut montrer:

Pour toute dimension paire n = 2r, la classe primitive [V(,]
s’obtient en ajoutant & la classe [P R(n)] de l'espace projectif réel cer-
taines classes décomposables convenablement choisies.

Il suffit de démontrer que le nombre caractéristique normal X (t_;)"
n’est pas nul pour P E(n) (on désigne ici par ;t; les variables —t: asso-
ciées symboliquement aux classes normales ﬁ’_,i); si, en effet, outre

X (t;)*, d’autres nombres caractéristiques normaux tels que

Z(8)™ (8) - - (t)™

ol les a, forment une partition non dyadique w de », ne sont pas nuls
pour P R(n), on formera la somme P RE(n)-+ U; V¢, ; pour cette va-
riété, tous les nombres caractéristiques normaux définis par des parti-

tions non-dyadiques de » sont nuls, & la seule exception de ZXZ'({)*;
cette variété est donc un représentant de la classe primitive [V,].
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Et, d’apres la formule (5), toutes les classes [VG,.], w; # (n), sont dé-
composables.

Or, pour toute variété V», le nombre caractéristique normal Z'(t_)"
est égal au nombre caractéristique tangent X'(¢*). En effet, d’aprés la
formule de dualité de Whitney [32], les variables ¢ de la structure tan-

gente, et les Zi de la structure normale sont liées par la relation:

ce qul signifie que toute fonction symétrique de I'ensemble des ¢, et

des #;, non constante, est nulle. Par suite 2(¢;)" + 2 (t = 0.
Or, si 'on désigne par d le générateur de H 1(PR Z) le poly-
néme de Stiefel-Whitney de P R(n) s’écrit:

B e ey

Ceci peut s’écrire, symboliquement: (comme d"+! = 0) (1 + d-¢)*+1,
On peut donc considérer que ce polynéme admet n + 1 racines toutes
égales & t = — 1/d; comme n est pair, la somme 2X'(t,)* est égale &
1/(d)* et le nombre caractéristique associé est égal a 1.
J’ignore par contre s’il existe une généralisation convenable de la
construction de Wu qui fournisse les générateurs de dimension impaire.

8. Les groupes Q%. Les groupes d’homotopie stables
Ty x (M (SO (n))

ne sont pas connus en général ; pour les petites valeurs de &, on a seule-
ment le résultat du théoréme II.16, qui donne:

Théoréme IV.13. Pour les valeurs de k{8, les groupes Q% sont:
P =72, N == =0, P =2;,=27,;=0"=0.

Résultat trivial pour k < 2; les résultats concernant 2° et Q' ont
été annoncés par Rokhlin [19—20]. Le générateur de £2* est représenté
par le plan projectif complexe PC(2); ceci entraine en particulier:

Corollaire IV.14. Le nombre caractéristique P* de Pontrjagin d’une
variété orientée de dimension 4 est égal & 3v, ou v désigne Uindex de la
forme quadratique définie par le cup-produit sur H2(V*, R).

Cela résulte immédiatement des théorémes IV.1 et 2, associés au fait
que Q' = Z; le coefficient 3 s’obtient en calculant la valeur de P*
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pour PC(2), pour lequel T = 1. Ce résultat avait été conjecturé par
Wu Wen-Tsiin, qui avait démontré que le nombre P* est divisible par
3 [35]. Il a été également obtenu par Rokhlin [20] et par moi-méme, par
une voie différente!?).

On remarquera que ce résultat entraine I'invariance topologique de la
classe P* dans une V*; il n’en serait pas moins trés souhaitable d’avoir
une démonstration plus directe de la relation P* = 3v. En particulier,
la classe de cobordisme d’une V* est indépendante de sa structure diffé-
rentiable.

On a vu au chap. II.5 que la cohomologie H*(M (SO(n))) est, &
coefficients rationnels, isomorphe & celle d’un produit Y de complexes
d’Eilenberg-Mac Lane:

Y=K(Z.k) X K(Z,k+4) X (K(Z,k+8)2...(K(Z,k+4m))™...,m<k,

ou c(m) est le rang de H*m (@k; R), et il existe une application
F:M(8O(k)) > Y qui induit un tel isomorphisme. On en déduit, par
application de la (Pthéorie de J. P. Serre, (* désignant ici la famille des
groupes finis (cf. [22]).

Théoréme IV.15. Tous les groupes Q sont finis, st 15~ 0 mod 4;
la composante libre du groupe 2*" est de rang c(m), nombre de Betti

Fal
de dimension 4m de la grassmannienne @ .

Corollaire IV.16. 8¢ tous les nombres caractéristiques de Pontrjagin
d’une variété orientée V¥, sont nuls, 1l existe un entier non nul N tel que
la variété N -V soit une variété-bord.

On remarquera que le générateur de Q° =~ Z, est la variété de Wu
définie en [33].

La structure multiplicative des 0%,

Désignons par Q7 D’ensemble des éléments d’ordre fini de Q.Q7
est un idéal de 2, et I’on peut définir ’anneau quotient 2/027. On a vu
(Th. IV.15) que la composante de cet anneau pour la dimension 4m,
est la somme directe de c¢(m) groupes isomorphes & Z ; désignons par @
le corps des rationnels ; nous trouvons ainsi que

Q"Q Q= 7ram(M(SOR))) @ Q
est en dualité (sur le corps @) avec le groupe de cohomologie

12) Voir mon exposé au Colloque de Topologie de Strasbourg (Juin 1952). La Note
[20] de Rokhlin contient également des résultats sur les groupes M, dont le résultat erroné
m‘ == Zg (all lieu de Z2 + Zg).
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Hierm(M (SO (k)); Q) ~ H™(G ;5 Q) ;

ainsi, tout élément de £2/02T pour la dimension 4m est entiérement ca-
ractérisé par les valeurs des nombres caractéristiques normaux

CII(PE), Vom 5,

définis dans I'immersion d’une variété V*m de la classe dans ’espace
euclidien. Il importe toutefois de préciser le point suivant: si l'on se
donne «a priori» un systéme de c(m) valeurs entiéres =,, il n’est nulle-
ment certain qu’il existe une variété admettant pour ensemble de ses
nombres caractéristiques normaux (ou tangents) le systéme des n, ; mais
on peut affirmer l'existence d’un entier non nul N tel que le systéme
des produits N -n; constitue I’ensemble des nombres caractéristiques
normaux (ou tangents) d’une variété Vim.

Cela étant, on peut refaire pour le produit tensoriel 2 ® @ la théorie
faite pour I'anneau N. Rappelons que dans la théorie de Borel-Serre,
les classes de Pontrjagin sont associées aux fonctions symétriques élémen-
taires des carrés (z,;)> de variables z; de dimension 2 (s’il existe une
structure unitaire subordonnée & la structure orthogonale donnée, les
fonctions symétriques des x; donnent les classes de Chern de cette struc-

A\
ture). On obtient ainsi une base du groupe H*"(G,) en formant tous les
monomes symétrisés:

Py =X (a)™ (#3)" ... (2]

ou les entiers a,,a, .. a, constituent toutes les partitions (w) pos-
sibles de l’entier m.

Si X? et Y? sont deux variétés orientées, les nombres caractéris-
tiques normaux de la variété-produit X? x Y? sont donnés en fonction
de ceux des facteurs X? et Y?¢ par la formule:

P, (X? X Y9 = 24,0, Py, (XP)- P, (YY) (3

ol w,, w, parcourent l’ensemble des partitions complémentaires de
telles que deg w, = p, deg w, = ¢.

Or, d’apres la remarque plus haut, il existe pour toute dimension 4m,
des variétés V*m dont tous les nombres caractéristiques normaux sont
nuls, 4 la seule exception du nombre { X(x;)*™, V4™ ); soit Y, la
classe correspondante de 2™ ® Q. Il résulte alors de la formule (3') et
du corollaire IV .16, que les classes Y, sontindécomposables, et que
toute autre classe de 2 ® @ s’exprime de fagon univoque comme somme
de produits de classes Y,,;. D’ou le:
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Théoréme IV.17. L’algébre Q2 Q @ est une algébre de polynomes admet-
tant un génératewr Y, pour toute dimension divisible par 4. Nous allons
maintenant montrer que la classe Y,, est, & un facteur non nul pres,
la somme de la classe de I’espace projectif complexe PC(2m) et d’élé-
ments décomposables ; on pourra ainsi faire choix, comme nouveau géné-
rateur Y'y,,, de la classe de PC(2m). Il suffit, ici encore, de vérifier
que le nombre caractéristique normal de PC(2m), associé & la classe
Z(x;)* n’est pas nul. Or, en vertu des formules de dualité entre classes
normales et classes tangentes, le nombre caractéristique normal associé &
2/(z;)* est I'opposé du nombre caractéristique tangent associé a la
méme classe. Or on sait que le polynéme de Chern de I’espace projectif
complexe PC(2m) s’écrit (en désignant par d la classe de la droite
projective):

O(2)=1+ {Zm—{—l}

FR— {2m+1}

i 2mA+1) s om
= v a +{ om sz x*

soit, symboliquement:

C(x) = (1 + da)zm+1

On peut donc considérer que les racines de ce polynéme sont en nombre
2m + 1, et toutes égales & x;, = — 1/d.

Dans ces conditions, le nombre caractéristique ¢ XZ'(z,)*™, PC(2m) )
estégala X (— 1/, d* > = 2m + 1.

Le nombre caractéristique normal de PC(2m) associé & la classe
(2,)* est donc égal & —(2m 4 1) % 0 et la propriété est prouvée.
On en tire:

Corollaire IV.18. Pour toute variété oriemtée V7™, il existe un entier
non nul N tel que la variété multiple N - V™ soit cobordante a une combinai-
son linéaire & coefficients entiers m; de produits d’espaces projectifs com-
plexes de dimension complexe paire. Les entiers m,; sont des fonctions
linéaires homogénes des nombres caractéristiques de Pontrjagin de N - V™.

Remarque. On peut se demander si les produits d’espaces P C(2j)
ne constituent pas une base du Z-module 2/27. 1l en est effectivement
ainsi pour la dimension 4, car la classe P(C(4) engendre £,. On peut
montrer qu’il en est de méme en dimension 8 ; en effet, pour cette dimen-
sion les nombres caractéristiques P® et (P*)? sont liés par les relations
suivantes:

(P2 —2.PP=0 mod 5

7 P — (P2 = 457 .
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La premiére relation provient de la relation S# 4 = 0, dans la variété-
produit (cf. Wu [35]) ; la seconde s’obtient en écrivant T comme fonction
linéaire homogéne de P® et (P!)?, et en déterminant les coefficients par
les exemples-types PC(4) et (PC(2))®*. Soit V® une variété, 7 la
signature de la forme quadratique du cup-carré sur H*(V®, R). Si on
pose (P — 2P® = 5¢, alors on vérifie que V® et la variété

q-PC4) + (r —q) - (PC2)Y

ont mémes nombres de Pontrjagin et sont cobordantes (mod Q7). La
généralisation de ce résultat exigerait des connaissances plus précises sur
les propriétés arithmétiques et topologiques des nombres de Pontrjagin13).
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