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Normalfunktionen und Hauptfolgen
von HEINZ BACHMANN, Ziirich

Meinem verehrten Lehrer, Herrn Prof. Dr. P. Finsler, zum 60. Geburtstag

1. Einleitung

Diese Mitteilung ist eine Weiterfithrung eines Teils der Arbeit des Ver-
fassers iiber Normalfunktionen und Hauptfolgen [1], kann jedoch ohne
Kenntnis der letzteren gelesen werden. Wir legen das Zermelo-Fraenkel-
sche Axiomensystem der Mengenlehre zugrunde, und zwar meist ohne
Auswahlaxiom (die Anwendung des Auswahlaxioms wird jeweils hervor-
gehoben). Wir gebrauchen folgende Bezeichnungen und Definitionen:

1) W sei die Klasse aller Ordnungszahlen ; ist « eine Ordnungszahl, so
sei W («) die Menge aller Ordnungszahlen <a; A sei immer ein Anfangs-
stiick von W, das heiflt, eine Klasse von Ordnungszahlen mit der Eigen-
schaft : ae 4, <o —>pBeA (esistalso entweder A=W oder A=W («),
wobei « eine Ordnungszahl ist) ; ein solches Anfangsstiick A heile requ-
lir, wenn entweder 4 = W oder 4 = W (A), wobei A eine regulire
Limeszahl > w ist.

2) Wir betrachten hier fast ausschlieBlich solche Funktionen (Folgen)
von Ordnungszahlen, deren Argumentbereiche Anfangsstiicke 4 von
W sind, und deren Wertbereiche ebenfalls aus lauter Ordnungszahlen
bestehen. Im Fall A4 = W(«) heille die Funktion vom Typ «. Eine
Funktion f heile monoton, wenn f(&,) < f(&,) fiir beliebige Argumente
&, & mit & < &,, wachsend, wenn f(&,)<f(&,) fiir solche Argumente,

stetig, wenn f(A) = lim f(£) fiir jedes Limeszahlargument A. Wir defi-
§<A
nieren die Iterationen f* (fir n < w) einer Funktion f durch f°(¢) = &,

fr (&) = f(f"(8).

3) Eine wachsende und stetige Funktion, deren Argumentbereich eine
Klasse A ist, heilt eine Normalfunktion. Eine Normalfunktion, deren
Wertbereich eine Teilklasse des Argumentbereiches ist, soll eine wvolle
Normalfunktion heilen. Ist ¢ eine Normalfunktion, so heilen die Ord-
nungszahlen &, fir die ¢ (&) = & gilt, die kritischen Zahlen von ¢. Diese
bilden wieder eine Normalfunktion, die sogenannte Ableitung ¢’ von
¢ [2]. Jede volle Normalfunktion mit regulirem Argumentbereich hat
als Ableitung eine volle Normalfunktion mit demselben Argument-
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bereich?!); ist ¢ eine Normalfunktion vom Typ A, wobei A eine mit
o konfinale Limeszahl ist, so kann es vorkommen, dal ¢ keine kritischen
Zahlen hat. Ferner gilt : Ist & eine kritische Zahl einer Normalfunktion
@, so ist lim ¢"(& 4 1) die nédchstgroBere kritische Zahl von ¢, sofern

n<w
alle Iterationen ¢"(£ + 1) existieren und ihr Limes im Argument-

bereich von ¢ liegt ; die erste kritische Zahl von ¢ ist lim ¢*(0), sofern
analoge Bedingungen erfiillt sind [1]. ma

4) Unter einer regressiven Funktion verstehen wir eine Funktion f mit
f(0) =0 und f(&§)<¢ fiur £>0. Ist 4 ein regulires Anfangsstiick von
W und K eine mit A dhnliche Teilklasse von 4, und ist auf K eine
regressive Funktion f definiert, so hat sie einen Wert 7, so daf} die Glei-
chung f(&) = n eine mit 4 dhnliche Klasse von Losungen & hat [3].

5) Ist f eine monotone Funktion mit dem Argumentbereich 4, so
heiBe die Funktion 6 mit (&) = — f(&) 4 f(& + 1)?) fir (§4+1)ed
die Differenzenfunktion (Differenzenfolge) von f. Ist K eine Teilklasse
einer Klasse 4, so dafl die Differenzenfunktion der wachsenden Funk-
tion mit dem Wertbereich K jede Zahl von A schlieBlich endgiiltig iiber-
schreitet, so heile K eine gelichtete Teilklasse von A [4].

6) Eine Funktion f von zwei Variablen, die jedem geordneten Paar
(¢, B) von Ordnungszahlen eine Ordnungszahl f(«, ) eindeutig zu-
ordnet, heifle eine arithmetische Operation, wenn fir «>1 und f>1
gilt : f(a, B) ist fiir festes o eine Normalfunktion von f# und fiir festes g
eine monotone Funktion von o mit f(a, §)>a«. Zum Beispiel sind die
elementaren arithmetischen Operationen « 4+ 8, «-f und of solche
Funktionen. Man nennt eine Ordnungszahl & eine Hauptzahl beziiglich
der arithmetischen Operation f, wenn es eine Ordnungszahl o, gibt mit
f(a, &) = & fiir alle o mit oy < a<&. Man kann in analoger Weise wie
in [5] zeigen, dal alle Hauptzahlen >2 Limeszahlen sind (sogenannte
eigentliche Hauptzahlen), daB die Hauptzahlen von f eine Normalfunk-
tion mit dem Argumentbereich W bilden, daB alle eigentlichen Haupt-
zahlen additive Hauptzahlen sind (das heilit, von f(«, f) = « + ), und
daB diese additiven Hauptzahlen die Zahlen w¢ sind.

2. Kritische Zahlen und Hauptzahlen

Wir beweisen nun folgende Sitze iiber kritische Zahlen und Haupt-
zahlen :
Satz 1. Die mit w konfinalen additiven Hauptzahlen sind genau die

1) In {1] und [2] werden nur solche Normalfunktionen betrachtet.
%) Subtraktion von links!
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Ordnungszahlen, die man als Limes einer wachsenden Folge {a,}, .o
vom Typ w darstellen kann, wobei folgende Bedingungen erfiillt sind :

(1) &g = O’

(2) die Differenzenfolge {6,}, .., von {« ist monoton.

ntn<o

Beweis. a) Ist A eine mit « konfinale additive Hauptzahl, so gibt es
eine solche Folge {«,},_,: Im Fall 4 = w*' setze man o, = w®-n;
also wird 4, = w® fir alle n<w. Im Fall 4 = «® wobei z eine
Limeszahl ist, existiert eine wachsende Folge {z,}, ., mit lim z, = z.
Man setze dann ay = 0, «,,,; = ©**; es wird §, = 0. "<

b) Ist 4 = lim «,, wobei {«,},., eine Folge mit den Bedingungen
n<w

(1) und (2) ist, und ist 4 keine mit w konfinale additive Hauptzahl, so
ist 4 iiberhaupt keine additive Hauptzahl; 4, sei nun die groBte addi-
tive Hauptzahl <4 und «, das erste Glied der Folge {u,},.., mit
ay, =4,; esist ng 21, o, <4, und 4, _, = 4,, also 4 = 4, -w.
Dies ist aber unmoglich, weil A4,-w die nichstgrofere additive Haupt-
zahl iiber 4, ist.

Satz 2. Damit zu einer Limeszahl 4 eine volle Normalfunktion vom
Typ A4 existiert, die keine kritischen Zahlen hat, ist notwendig und hin-
reichend, dafl A eine mit w konfinale additive Hauptzahl ist.

Beweis. a) Ist A eine mit w konfinale additive Hauptzahl, so existiert
nach Satz 1 eine wachsende Folge {a,}, ., mit dem Limes 4, die den
Bedingungen (1) und (2) geniigt. Wir setzen

0)=1,
(o, + ) =0a,,+7n fir 0=S=n<w und O0<n = — o, + o4 -

¢ 18t eine volle Normalfunktion vom Typ 4, die keine kritischen Zahlen
hat.

b) Ist { eine solche Normalfunktion, so sei o, = ("(0); {x}ncw
ist dann eine wachsende Folge mit lim o, = A, die die Bedingungen

nw
(1) und (2) erfiillt, denn ihre Differenzen sind
60 = C(O) s
2 0, = — £(0) + &2(0) = £(0) = 6, ,

0, = — £2(0) + £%(0) = — £(0) + &3(0) = ¢, ,

Uusw.

Satz 3. Damit zu einer vollen Normalfunktion ¢ mit regulirem Argu-
mentbereich eine ebensolche Normalfunktion @ existiert mit @' = ¢,
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ist notwendig und hinreichend, dafl folgende Bedingungen erfiillt sind :

(3) ¢@(0) ist entweder O oder eine mit w konfinale additive Hauptzahl,

(4) die Differenzenfunktion von ¢ hat als Werte nur entweder 1 oder
mit w konfinale additive Hauptzahlen.

Bewezis. a) Die Bedingungen sind notwendig : Ist @ eine volle Normal-
funktion mit regulirem Argumentbereich, so ist
@' (0) = lim @*(0) .

ng<w
Ist @(0) = 0, so ist auch @'(0) = 0. Ist @(0)>0, so ist die Folge
{@"(0)}, . wachsend, und sie erfiillt die Bedingungen (1) und (2).

Also ist @'(0) eine mit o konfinale additive Hauptzahl. — Fir ein
beliebiges Argument & sei nun 4, = — @'(§) + @' (& + 1). Esist
D&+ 1) =limdV(D' (&) + 1) .
n<w

Ist A;>1, soist @' (&)+1<D'(£4-1), also die Folge {@(D'(&)+1) }, <0
wachsend, also 4 ¢ eine Limeszahl. Setzen wir

B(P' (&) +n) =P (§) + L) fir 1=<y<de, CO)=1,

so ist {(n) eine volle Normalfunktion vom Typ 4, die keine kritischen
Zahlen hat, also ist nach Satz 2 4; eine mit w konfinale additive Haupt
zahl. — @’ erfiillt also die Bedingungen (3) und (4).

b) Die Bedingungen sind hinreichend : Es sei ¢ eine gegebene Normal-
funktion mit den Bedingungen (3) und (4). Wir setzen

Ade= —@&) + @&+ 1) .

Nach dem Auswahlaxiom gibt es eine Funktion, die jedem A4,>1 eine
wachsende Folge mit dem Limes 4; zuordnet, und daraus folgt nach
dem Beweis von Satz 1 und 2 die Existenz einer Funktion, die jedem
A;>1 eine volle Normalfunktion () vom Typ 4, ohne kritische
Zahlen zuordnet. Wir setzen

D(p(8) =@ (&)
D(p(8) +n) = @(8) + Leln) fur 1 =q9<dg.
Ist @(0)>0, so existiert nach Satz 2 eine volle Normalfunktion { vom

Typ ¢(0) ohne kritische Zahlen, und wir setzen @(n) = {(n) fir
7 <@ (0). — Fiir die dadurch definierte Normalfunktion @ gilt @' (&)=¢(§).

Satz 4. Zu jeder arithmetischen Operation f(x, ) li8t sich eine
Normalfunktion ¥ (§) effektiv bilden, deren kritische Zahlen genau die
eigentlichen Hauptzahlen von f sind.
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Beweis. Es sei (&) = f(&,§). Fir £>1 ist diese Funktion wach-
send. Wir definieren die Normalfunktion ¥ so, dafl V(&) = (&) fir &
1.LArt >1; fir £ <1 sei W(&) =1+ &. Somit ist ¥ (&) eine Normal-
funktion, die keine endlichen kritischen Zahlen hat. Ist £ eine eigent-
liche Hauptzahl von f, so ist & eine Limeszahl mit f(«, &) = & fir
l<a<é, also f(a,a)=wp(x)<&, also & =Y =Ilimy(a) <&,
also ¥ (&)=¢&, das heiB3t, £ ist eine kritische Zahl von ¥. <8

Ist umgekehrt & eine kritische Zahl von ¥, so ist & eine Limeszahl;
denn wére & 1. Art, so wire Y (&) = (&) >§&. Also ist

§=Y(§) = lim f(«, o) .
Fir 1 <o <& ist also et

EZf(o, &) =1limf(d, o) <lim f(a, a) = &,

o< a<é

also f(a', &) = &; das heil}t, £ ist eine eigentliche Hauptzahl von f.

Satz 5. Damit die Werte einer Normalfunktion y mit dem Argument-
bereich W genau die eigentlichen Hauptzahlen einer arithmetischen
Operation sein koénnen, ist notwendig und hinreichend, daf} fiir jede
Zahl & 1. Art (einschlieBlich & = 0) (&) eine mit w konfinale additive
Hauptzahl ist.

Beweis. a) Die Bedingung ist notwendig: Ist f(«, f) eine arithme-
tische Operation, so gibt es nach Satz 4 eine Normalfunktion ¥, deren
kritische Zahlen genau die eigentlichen Hauptzahlen von f sind. Da
ferner jede eigentliche Hauptzahl von f eine additive Hauptzahl ist, gilt
fir V' die Bedingung von Satz 5.

b) Die Bedingung ist hinreichend : Aus der Bedingung von Satz 5
folgt, daB fiir ¥ die Bedingungen (3) und (4) erfiillt sind, woraus unter
Anwendung des Awuswahlaxioms nach Satz 3 folgt, dafl eine Normal-
funktion ¥ mit ¥’ = y existiert.

Wir setzen nun f(«, f) = a + ¥(f). Diese Funktion ist eine arithme-
tische Operation. Die Hauptzahlen von f sind genau die Werte von v ;
denn fiir a<y(£&) ist

Ha, 9 (8) = a+ ¥(p(&) = a + p(&) =y() ,

weil alle Werte von o additive Hauptzahlen sind; dagegen ist fiir
B<y(0) oder (&) <f<yp(&+ 1) wegen ¥(§)>f

fla, ) =a+¥(P)>a+p =4 .
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3. Die zweite Zahlklasse und das Axiom der Hauptfolgen

Wir definieren die Klasse Z, (Vereinigung der ersten und zweiten
Zahlklasse) wie folgt : Eine Ordnungszahl « gehort dann und nur dann
zu Z,, wenn entweder o = 0, oder «>0 und a und alle g mit 0 <f <«
entweder Nachfolgerzahlen oder Limites von wachsenden Folgen vom
Typ w sind. Z, ist also ein reguldres Anfangsstiick von W. Aus dem
Auswahlaxiom folgt, daBl Z, die Klasse der Ordnungszahlen « mit

o < R;3) ist. Ohne Auswahlaxiom kann dies nicht abgeleitet werden
(wahrscheinlich ist sogar die Annahme Z, = W relativ zu den iibrigen
Axiomen widerspruchsfrei); es folgt aber, wie auch die Ungleichung

R, < 2%  aus einem viel schwicheren Axiom (A), das wir das Axiom
der Hauptfolgen nennen [6]:

(A) Es gibt eine Funktion, die jeder Limeszahl 1 ¢Z, eindeutig eine
wachsende Folge vom Typ w (die Hauptfolge von A) mit dem Limes A
zuordnet 4).

Wir stellen nun einige dquivalente Formulierungen dieses Axioms zu-
sammen :

(A,) Es gibt eine Funktion, die jeder additiven Hauptzahl A4 ¢Z,
eindeutig eine wachsende Folge vom Typ « zuordnet mit dem
Limes 4, die die Bedingungen (1) und (2) erfiillt.

(A,;) Es gibt eine Funktion, die jeder Ordnungszahl «¢Z, eine ein-
deutige Abzéhlung der Zahlen &<« zuordnet (das heiflt, die
jedem «eZ, eine eindeutige Wohlordnung von W(«a) im Ord-
nungstypus o, oder von W (w) im Ordnungstypus « zuordnet).

(A;) Es gibt eine Funktion, die jeder Limeszahl A ¢Z, eindeutig eine

regressive Funktion f vom Typ A mit lim f(£) = A zuordnet.
E<
(A,) Es gibt eine Funktion, die jeder additiven Hauptzahl 4 % 1 von

Z, eindeutig eine volle Normalfunktion vom Typ 4 zuordnet, die
keine kritischen Zahlen hat.

(A;) Es gibt eine Funktion, die jeder vollen Normalfunktion ¢ mit dem
Argumentbereich Z,, die die Bedingungen (3) und (4) erfiillt, ein-
deutig eine volle Normalfunktion @ mit dem Argumentbereich Z,
zuordnet mit @' = ¢.

(Ag) Z, ist die Vereinigung von abzihlbar vielen gelichteten, mit Z,
dhnlichen Teilklassen von Z,.

3) & bedeutet die Machtigkeit von W (x).
4) Der Ausdruck ,,Hauptfolge* stammt von Finsler [7]; Denjoy [8] verwendet den
Ausdruck ,,kanonische Folge‘‘; Verf. in [1] den Ausdruck ,,ausgezeichnete Folge‘‘.
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(A;) Es gibt eine Funktion, die jeder Limeszahl 1 ¢ Z, eindeutig eine
,,Darstellung von A auf der Geraden‘ zuordnet ®).

Wir beweisen nun die Aquivalenz dieser Axiome :

(A) > (A,): Nach dem Beweis von Satz 1.

(A;) > (A): Es gelte (A,). Zum Beweis von (4) hat man also noch
den Limeszahlen von Z,, die keine additiven Hauptzahlen sind, Haupt-
folgen zuzuordnen: Es sei A eine solche Zahl, und allen Limeszahlen
< A seien Hauptfolgen zugeordnet. Dann ordnen wir 1 eine Hauptfolge
zu, indem wir A in additive Hauptzahlen zerlegen ; diese Zerlegung hat
mehr als ein Glied ; ist das letzte Glied ¢, so sei 4 = o + p. p ist eine
Limeszahl <. Ist {p,},.., die Hauptfolge von g, so sei {6 4+ 0,}n<w
die Hauptfolge von 4.

(A) <> (A,) : Nach Finsler [7].

(A) = (A;): Nach Neumer [3].

(Az) > (A): Es sei f(£) eine regressive Funktion, deren Typ eine

Limeszahl A eZ, ist, mit lim f(§) = 4, und zu jedem &<A1 sei g(£)
§<A
das erste Argument 7>¢ mit f(&')>¢é fir n < & <A. Setzt man

y = lim g*(0), so ist 0<y < 4, weil ¢g"(0)<A fiir alle n<w. Wire

n<w

y<A, so wire f(&§) =y fir y < &<, also f(y) =y, Widerspruch.
Also ist y = A. Die Folge {9"(0)},., kann also als Hauptfolge von
A definiert werden.

(A,) <> (A,): Nach dem Beweis von Satz 2.

(Ay) = (A;): Nach dem Beweis von Satz 3.

(Ag) = (A,): Ist A eine additive Hauptzahl von Z,, so setzen wir
p(&) = 4 + &; dies ist eine volle Normalfunktion mit den Bedingungen
von Satz 3. Nach (A;) existiert also eine volle Normalfunktion @ mit
D' = ¢, alsoist @' (0) = ¢(0) = A. {P(&)};, ist also eine volle Nor-
malfunktion vom Typ 4 ohne kritische Zahlen.

(A,) <> (Ag) : Nach Sierpinski [4].
(A;) — (A;): Nach Hausdorft [9].

(A;) = (A;): Wir ordnen jeder reellen Zahl z (einschliefllich oo) ein-
deutig eine wachsende Folge {z,},_, von reellen Zahlen zu mit

lim z, = «, indem wir zum Beispiel setzen x, =n, wenn 2z =oo,
n->oe

x, =« — 27", wenn x<oo. Ist A eine Limeszahl von Z,, so gibt es

8) Unter einer ,,Darstellung einer Ordnungszahl o auf der Geraden‘‘ verstehen wir eine
wachsende Folge vom Typ « von reellen Zahlen.
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nach (A,) eine Folge L = {&,},., von reellen Zahlen, die eine Dar-
stellung von A auf der Geraden ist. Es sei x die obere Grenze von L, und
{%,}, <» die nach der obigen Definition zugehorige Folge reeller Zahlen.
Dann sei 4, die kleinste Zahl » mit &, = z,. Die Zahlen 4, bilden eine

monotone Folge vom Typ w mit lim 4, = 4; durch Streichen gewisser
n<w

Glieder erhédlt man eine wachsende Folge, die man als Hauptfolge von 4
nehmen kann.

Bemerkung. Das Axiom der Hauptfolgen ist nicht erfiillbar, wenn man
die folgende scheinbar naheliegende Nebenbedingung hinzufiigt :

Ist {4,},<» eine Hauptfolge, und ist £ eine Limeszahl mit1, <& <1,
fiir ein 7 < w und mit zugehoriger Hauptfolge {£,},_,, sosoll & = 4,
sein.

Beweis. Annahme, es existiere eine Funktion, die jeder Limeszahl
A eZ, eine Hauptfolge {4,},., zuordnet, wobei die obige Nebenbedin-
gung erfiillt sei. Dann ist die Funktion f(4) = 4,, definiert fiir alle
Limeszahlen 1 € Z,, regressiv ; also existiert eine Zahl ¢, so daf} fiir eine
wachsende Folge {ag};c; von Limeszahlen f(xz) =1y gilt. Es sei
n=1lima;, also neZ,; {N,},cn sei die Hauptfolge von #. Es sei n,

f<w
die kleinste Zahl n mit #,>y, n, die kleinste Zahl » mit «,>7, und

n, die kleinste Zahl n mit %, >«, . Also ist f(x, ) =y <7, im Wider-
spruch zur Voraussetzung f(o, ) = 7a,—1 = 2y, -
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