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Sur la division de formes et de courants
par une forme linéaire

par GEORGES DE RHAM, Lausanne

Dédié o Monsieur Heinz Hopf pour son soixantiéme anniversaire

n

1. Considérons une forme linéaire w = 2 y,X; en n indéterminées
1

X,,...,X,, dont les coefficients y, appartiennent & un anneau commu-
tatif 4, et des formes extérieures «, f,... en les mémes indéterminées,
dont les coefficients appartiennent & un 4-module M . Un produit tel que
w A« est alors bien déterminé, c’est une forme extérieure dont les coef-
ficients appartiennent & M. Pour que « soit divisible par w, c’est-a-dire
pour qu’il existe une forme g (a coefficients dans M) telle que x = w A B,
il est évidemment nécessaire que w Ax = 0. Cette condition est aussi
suffisante lorsque w est susceptible de faire partie d’'une base des formes
linéairesen X,,..., X, & coefficients dans A4 : il suffit de le vérifier pour
w = X,, ce qui est immédiat et bien connu. Je me propose d’indiquer
ici un cas plus général ou cette condition est encore suffisante, et j’en
ferai une application & la théorie des formes différentielles et des cou-
rants.

Disons que o jouit de la propriété (P), si, pour tout entier £k > 0 et
< n, pour un élément quelconque a de M, le fait que y,, ,a soit une
combinaison linéaire de y,,...,y, & coefficients dans M entraine que
a est lui-méme une telle combinaison. En désignant par (y,,...,¥:)
le sous-A-module de M formé par toutes les combinaisons linéaires de
Yis--.> Y & coefficients dans M, cela signifie que ¥, @ € (y1,..., Y
entraine a e (y,,...,y:), et en particulier (pour k= 0), y,a =0
entraine a = 0. Nous établirons alors la proposition suivante :

I. 8i w jouit de la propriété (P), pour qu'une forme o de degré q <mn
soit divisible par w, il suffit que wAx = 0.

Pour abréger 1’écriture, il sera commode d’utiliser la notion d’adjointe
* o & une forme « par rapport & X} 4.4 X2, de sorte que

f1=XA .. . AX,, 2X;=X A .. A X, , *(XAX)=XA...AX,, etc.
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Les expressions générales d’une forme « de degré n — 1 et d’une forme
p de degré n — 2 sont alors

x=2X2a;*X,, B=X2b,;+«X,ANX;,)=42b,x(X,;ANX)),
i i<j %,
ol a;e M, b,; = — b;; ¢ M. Par un calcul immédiat, on a

woANo=2ya;x1, owAB=2yb,;+xX,.
g i,]
Ces formules montrent que, pour ¢ = n — 1, la proposition I se réduit
a la suivante: si les éléments a, de M (1= 1,...,n) satisfont &

n

2 y.a;, = 0 et sila propriété (P) est vérifiée, il existe des éléments b, ; de M
1 n
(t,7=1,...,n) qui satisfont aux relations b;; + b;; =0, a;, = 2 y,b,;.

7=1
Cette derniere proposition est évidente pour » = 1: les hypothéses
entrainent alors en effet a, = 0 et il suffit de prendre b,;, = 0. Procé-
dant par récurrence, supposons qu’elle est vraie pour n—1 aulienden. La
n

relation X' y,a,=0, vérifiée par hypothése, entraine y,a, € (¥1,. .., Yn_1),
1

d’ol, en vertu de (P), a, € (Yy,..., Y,—1)- 1l existe donc des éléments

b,; de M (j=1,...,n—1) tels que a, =Ely,bnj, d’oli, en substituant
dans la relation précédente,ibz—,’lyi (a@; + yn;):) = 0. En vertu de I’hypo-
thése de récurrence, il existe ;T(;rs des éléments b;;de M (2,j=1,...,n—1)
tels que b,,+b,;;=0, ai—}—ynbni:t‘.'ly,.b“, et en posant encore b,,=—b,,,,
b,, = 0, on satisfait & toutes lglconditions requises.

Pour établir I lorsque ¢ <» — 1, procédons encore par récurrence.
Posant &« = &, + a, A X,, ® = o, + ¥,X,, les formes «,, x; et w, ne
contenant pas X,,, on a

wAx = o, Ao + [0, Axg + (— 1)y, 1A X, .

Comme wAox =0, on a aussi w,; Ax; = 0; par suite, en vertu de ce
qu’on vient d’établir si ¢ = n — 2 et en vertu de ’hypothése de récur-
rence si ¢ <n — 2, il existe une forme f,, ne contenant pas X,, telle
que o; = w; AP,

Mais w Ax = 0 entraine aussi w, Axy + (— 1)%y,x; = 0, c’est-a-
dire w, A [xg + (— 1)?9,8,1=0. Si ¢>1, en vertu de 'hypothése
de récurrence, il existe une forme f8,, ne contenant pas X,, telle que
0, A By = &g + (— 1)?y,B,, et en posant B =, + B AX,, il vient
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oAB= o, ABy+ (— 1)y i AN X, + 01 AB A X, = oy + 0 A X =0
Si ¢ =1, «,et f, sont de degré zéro, la relation w,[x, + (— 1)?y,B,]=0
implique y,[x; + (— 1)?y,8,] = 0, d’ou, en vertu de (P),

%+ (— 1)y, =0, oay=y,p;,
o = &y -+ 0"2Xn = wlﬂl -+ ynﬂan = wﬂl ’

ce qui achéve la démonstration.

Dans le cas ol le degré de « est égal & n, on a toujours wAx =0,
mais « n’est pas toujours divisible par w. Des formules données plus
haut, on déduit immédiatement que, pour que la forme a % 1 soit divi-
sible par o, il faut et il suffit que a € (y,,..., ¥,).

Remarque. Si I’'on dispose d’une opération associant & tout élément
@€ (Yy,...,Y;) un systéme déterminé d’éléments a,,...,a, de M tel
k

que a = X y,a;, la démonstration ci-dessus donne un procédé permet-
1

tant de construire, pour toute forme « divisible par w, une forme déter-
minée f satisfaisant & « = w A B.

2. Appliquons ce qui précede aux formes différentielles dans R",
en posant X, =dx,,..., X, =dz,. Supposons que les coefficients
Yir+ -+ Yn e @0 = 2 y,dx; forment un systéme de coordonnées dans R™
et ne s’annulent simultanément qu’au seul point O, et prenons pour A
I’ensemble des fonctions C° et pour M I’ensemble des fonctions C* &
support compact dans R". '

Choisissons une fonction p(¢) d’une variable, C*, nulle pour || >1
et égale 4 1 pour || < 1. A toute fonction a(y,,..., y,) nous pouvons
associer les fonctions ¢, (: = 1,...,n) définies par

(Y15 - Yn) = (1)

a(0,...,0,4;,...,9n) —0W)aO,...,0, Yirq1,. . s Yn)
Y.

=0(¥1) ...0¥n)
On a les identités

k
a(Yyse s Yn) — (Y1) - c0r) a0, .., 0, Ypps, .-, ¥,) = 2 yia; . (2)
. i=1

Il est clair que a,e M si aeM. Les fonctions de (y,,...,y,) sont
celles qui s’annulent pour y, =...= y, = 0, et pour une telle fonction
k

Pidentité ci-dessus se réduit & a = 2 y,a,. Ainsi la propriété (P) est
i=1
vérifiée, et nous avons un procédé qui, en vertu de la remarque faite plus
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haut, fournit une opération, qu’on désignera par P*, qui associe & toute
forme « de degré g > 0 divisible par w une forme déterminée P*x de
degré q — 1 satisfaisant & w A P*x = «.

Cette opération P* est linéaire, parce que les a; dépendent linéaire-
ment de a. Nous allons étendre sa définition & toutes les formes. Tout
d’abord, si &« = a * 1 est de degré =, il suffit de poser

n
1

En introduisant la distribution de Dirac d définie par 6[ax 1]=a (0, ..., 0)
et posant o = o(y;)...0(y,) * 1, lidentité (2) donne, pour k = n,

o =wAP*x+ d[x]o . (3)

La condition pour que w divise « peut alors s’écrire d[x] = 0.
Si le degré de « est égal & zéro, nous poserons P*x = 0. Enfin, si ce
degré est compris entre zéro et n, nous poserons

P*¥x = P¥[oo — P¥(wAw)],

le second membre de cette relation étant déja défini puisque les formes
oA« et &« — P*(w Ax) sont divisibles par w.
Cette forme f =& — P*(wA«x) étant divisible par o satisfait &
=wAP*fg, dou
6 =wAP*«x+ P(owAx) . (4)

L’opération P* ainsi définie est une application linéaire continue de
Pespace vectoriel de toutes les formes C* a support compact en lui-méme.
L’opération duale P change tout courant!) 7' en un courant P7' défini
par PT[x] = T[P*x]. Les relations (3) et (4) entrainent, par dualité,

si T est de degré zéro, 7T = P(Tw)+ T[o]d , (5)
si T est de degré >0, T =P(TAw)+ (PT)\Nw . (6)

On en déduit : les distributions T qui satisfont a T w = 0 sont les mul-
tiples de la distribution de Dirac 6, et tout courant T de degré > 0 qui
satisfait ¢ T N\ w = 0 est divisible par . Ce dernier résultat ne pouvait
pas se déduire immédiatement de I, car en prenant pour M I’ensemble
des distributions, la propriété (P) n’est pas vérifiée, puisque y, 7' = 0
n’entraine pas 7' = 0.

1) L. Schwartz, Théorie des distributions, I, Paris 1950. — G. de Rham and K. Ko-
daira, Harmonic Integrals. The Institute for Advanced Study, Princeton 1950.
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Considérons plus généralement, dans une variété C* a n dimensions V,
une forme différentielle w de degré 1, C*, ne s’annulant qu’en des points
1s0lés en chacun desquels le jacobien de ses coefficients par rapport aux
coordonnées locales est différent de zéro. Si une forme x, C* dans V, est
localement divisible par w, elle est globalement divisible par w ; car on
peut alors trouver un recouvrement ouvert {U;} localement fini de V
et des formes g, telles que « = wA B, dans U, ; si 1=2 ¢, est une parti-
tion de 'unité, ol ¢, est une fonction C* & support dans U,, la forme
p =2 @B, est C* dans V et satisfait & « = w Af. De méme, un cou-
rant localement divisible par o est aussi globalement divisible par .
Cela étant, les résultats ci-dessus entrainent immédiatement le suivant :

Pour qu’une forme o de degré q, C* dans V, soit divisible par w, il faut
et il suffit, 58 g <m, que w Ax = 0; st q =n, il faut et il suffit que «
s'annule en tous les points ou w s'annule. Pour qu'un courant T de degré
> 0 soit divistble par w, il faut et il suffit que w AT = 0; les distribu-
tions T qui satisfont & T w = 0 sont les combinaisons linéaires des distri-
butions de Dirac relatives aux zéros de w.

3. Soit G le plus grand groupe linéaire connexe qui laisse invariante
la forme quadratique

n
u=2X¢ga, (6, = + 1) .
i=1
Pour qu'une distribution 7' soit tnvariante relativement & G, il faut et il
suffit que d7 Adu = 0; cela résulte de ce que

ol les X, sont les symboles de transformations infinitésimales qui en-

n
gendrent G. La forme différentielle du = X ¢;22,dx; satisfaisant aux
1

conditions imposées & @ au début du n° 2, il en résulte que, pour toute
distribution invariante T, il existe ume distribution S, déterminée & un
multiple prés de &, qui satisfait ¢ dT = Sdu. Cette distribution S,
" invariante puisque dS Adu = 0, sera appelée dérivée de 7' par rapport

& u et notée S = g—g . Réciproquement, la condition d’invariance de §

étant en méme temps la condition pour que Sdu soit une différentielle
exacte, pour toute distribution invariante § il existe une distribution 7',
définie & une constante prés, qui satisfait & d7' = Sdu, et qui est néces-
sairement invariante,
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n 62
Posons =Y

Xeigy - De la relation, valable pour tout entier £>1,
1 1
O*(@T) = 2 OFT + 2ke, o (OFT)

on déduit, en remplagant 7' par 8, tenant compte de z,;6 = 0, multi-
pliant par ¢;2dx; et sommant, du [1*8 + 4kd((0%18) = 0, d’ou, pour
tout entier £ > 0,

d 1

— Mk — — = kH
du 0 Y T

avec une constante arbitraire C'. On en déduit, en désignant par Q([J)
un polynome arbitraire en [] & coefficients constants de degré < p,

ar . 1 ]
¢ ("‘T

du? = p!

s+ @os.

’

Par suite, la dérivée p-ieme d’une distribution invariante 7' est

arT
dur
déterminée & une distribution prés de la forme Q([1)4.

Cette notion de dérivée par rapport & u permet de répondre & une
question concernant la détermination de toutes les distributions inva-
riantes relativement a G'.

Il est aisé de déterminer les distributions invariantes dans R" — O,
comme l’a fait M. Methée?) danslecas ol v = — a3 —...— 22_, + 22;
en désignant par D, le domaine (¥ <0 ou % >0 et z,> 0), par D,
le domaine (¥ <0 ou u >0 et z,<0), par f, la restriction & D, de
Papplication f de B® dans R qui envoie le point (,, ..., x,) sur le point
de R d’abcisse & = u, & chaque paire (7',, T',) 'de distributions dans R
satisfaisant & la condition de compatibilité 7', = T, pour & < 0 cor-
respond une distribution invariante 7' dans R"—0 définie par T'=f; T
dans D, (+ =1, 2), et 'on obtient ainsi toutes les distributions inva-
riantes dans R" — O. Si la signature de u est (a,b) avec a>1 et
b > 1, on voit de méme que les distributions invariantes 7' dans R"—O
correspondent aux distributions 7', dans R par T = f; T,, f, étant la
restriction de f & R*—O. Enfin,si a=b=1, n =2, u =22 — 22,
il faut considérer les quatre domaines D,(x; + z; > 0), Dy(x; — 25 > 0),
Dy(z, + 2,<0) et D,(x; — x,<0); & chaque systeme de quatre
distributions 7'; dans R satisfaisant aux conditions de compatibilité

%) P. D. Methée, Sur les distributions invariantes dans le groupe des rota-
tions de Lorentz, Comment. Math. Helv. 28, p. 2256—269, § 4.
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T.=Ty, et Ty=1T, pour £>0, Ty=T, et T,=T, pour £<0,
correspond une distribution invariante 7' dans R*— O, définie par
T = fiT; dans D, (f, étant la restriction de f & D,), et I'on obtient ainsi
toutes les distributions invariantes dans R?*— O.

Ainsi, dans tous les cas ol u est indéfinie, les distributions invariantes
dans R"— O sont associées aux distributions dans R ou aux systémes
de deux ou quatre distributions dans R satisfaisant & certaines condi-
tions de compatibilité.

D’autre part, les distributions invariantes dont le support se réduit
au point O sont les combinaisons linéaires des [1*é (k= 0,1,...)3).
Si une distribution invariante dans R"— O peut étre prolongée en une
distribution invariante dans R", le prolongement sera donc déterminé &
une combinaison linéaire prés des []*d. La question se pose alors de
savoir si ce prolongement est toujours possible. Nous allons montrer
qu’il en est bien ainsi : si la forme quadratique u est indéfinie, toute distri-
bution invariante dans R"— O peut étre prolongée en une distribution in-
variante dans R™. ir8

Pour cela, remarquons qu’en vertu des définitions ci-dessus, si 7' = Tup

et si {T',} et {S,;} sont les systémes associés & T'et S,ona 7T, = % .
Les T, étant donnés, en vertu d'un théoréme connu de la théorie des
distributions 4), pour p assez grand, dans un voisinage du point & = 0,
les 8; seront égales & des fonctions continues. Alors, dans le voisinage
correspondant du céne u = 0, 8 sera égale & une fonction continue qui

se prolonge en O par continuité, et de ce prolongement de S dans R"

D
résulte par la formule 7' = g&g— un prolongement de 7' dans R", déter-
miné 4 une combinaison linéaire pres des ¥ (k= 0,1,...,p — 1).

Si la forme quadratique u est définie positive, les distributions inva-
riantes 7' dans R"— O correspondent, par la formule 7T = fi7T,, aux
distributions 7', dans la demi-droite &> 0 de R. Si T, peut étre pro-
longée dans R, on voit comme ci-dessus que 7' peut étre prolongée dans
R". Mais il peut arriver que 7, ne puisse pas étre prolongée dans R,

1
comme par exemple 7, = exp.—, et alors T'ne peut pas étre prolongée
dans R".-

(Recu le 20 avril 1954)

8) Cf. P. D. Methée. loc. cit., § 3. 4) L. Schwartz, loc. cit. p. 85.
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