Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 28 (1954)

Artikel: Complete families of periodic solutions of differential equations.
Autor: Lefschetz, Solomon

DOl: https://doi.org/10.5169/seals-22629

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-22629
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Complete families of periodic solutions
of differential equations

by SorLomoN LEFscHETZ, Princeton (N. J.)

To my friend Heinz Hopf on his sixtieth birthday

1. The following question has been investigated at length by Poin-
caré especially in connection with his research on the problem of three

bodies : — Consider a real differential system
dy .
d—t_y(y"u’t) (1.1)

where y is an n-vector and the components of Y are holomorphic at
¥y =10, u =0, and continuous and periodic with period 2z in 7T'. Sup-
pose that for 4 = 0 there is known a solution & (¢) with period 2z in ¢.
Does there exist a solution &(f; u) with period 2z in ¢, holomorphic in
uabout 4 =0 and —£(¢) as p — 0. Poincaré proceeds in this way :
— He considers the solution &(f) + « + z(x;t; ) with the initial
value £(0) + x for ¢t = 0. In particular z is holomorphic in z and u at
=0, w=0 and has period 2x in {. Furthermore z(x; 0; u) = 0.
Expressing then the periodicity of the solution there follows a system

2(x;2m;u) =0 . (1.2)

If this system has a real solution z(u) which — 0 with u, there is defined
a periodic solution &(¢; u) of the desired type. Everything comes down
to the determination of the real solutions of a real system (1.2) which
actually depend on u. This problem was only solved by Poincaré in
specially simple cases. We propose to give a complete solution of the
problem. It will rest upon a rather simple application of Kronecker’s
method of elimination.

2. Before proceeding let us recall a well known terminology. Let
f(w) = f(uy,...,u, be a real or complex function of the indicated
variables holomorphic at the origin. We call f a unit if f(u) #0, a
non-unst otherwise. If

f=u{—l—fl(uz,...,up)ug"l—}—u--{—fq(uz,...,u,,) ,

341



where the f, are non-units, then f is referred to as a special polynomial
in u,. Units are written K.

3. Returning to our problem let us write (1.2) in the general and
explicit form

th(:vl,...,xn,/,t)-——'—’o, h=1,2,...,n1. (3.1)

In point of fact here » = n,. However we shall not need to take ad-
vantage of this fact and it will make our argument clearer not to assume
it. We suppose that the X, are real non-units and we shall determine
all the suitable families of solutions then select the real families among
these.

Since we are only interested in solutions depending on u, if X,, is
divisible say by u* we cross this factor out and continue to call the quo-
tient X,,. Thus X,,(x;0) = 0. We may now apply a real linear trans-
formation to the xz, and dispose of the situation so that in X, the variable
z, appears to the power z7"* where m,>0 is the lowest degree of any
term in the z, in X,,. The Weierstrass preparation theorem yields then

X = X;hE(x;l‘)

where X), is a special polynomial in z, (in the system =z, x,,..., u)
of degree m, in that variable. Notice that its coefficients will all be real
since their determination never involves any irrationality. To simplify
matters we may therefore suppose that in (3.1) the X,, are already
special polynomials in x,.

The X,, may have a common factor D,(z,,..., z,, ). It is readily
shown to be likewise a special polynomial in z; and with quotients
X,,/D, = X},. Take any irreducible factor D} of D,. Both Df and
X7}, are again, up to unit-factors, special polynomials in z,. Then D} = 0
represents an irreducible (» — 1)-dimensional family of solutions depend-
ing on u.

Consider now the system

XX =0, h=1,2...,n. (3.2)

Following Kronecker introduce two linear combinations with arbitrary

parameters
U:-“Zuhxrh, V=2’Uh :lkh’

and form the resultant R(U,V) as to x;,. We will have

R=XW,(u,v)X3.(23,...,%,, 1),
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where the W, are monomials in the u, and v,. A n. a. s. c. in order that
the system (3.2) possess a solution in z, is that

Xog(xa, .., 2y, ) =0, k=1,2,...,0,. (3.3)

This system is wholly analogous to (3.1) but with one variable less. We
reason then with (3.2) as with (3.1), and so on, and the argument mani-
festly terminates.

The ultimate result may be described as follows: — There may exist
for each k <n and each u sufficiently small a certain number of n — %
dimensional families of solutions, each represented in suitable coordi-
nates by a system

Xh(xh,...,xn,‘u):(), h=1,2,...,k, (3-4)

where X, is a polynomial in z, with non-unit non-leading coefficients,
and X is special in z;. Furthermore X, is irreducible as a polynomial in
z,, and the .X,, h>k, are irreducible in a similar sense.

One may even proceed further. Let d, be the degree of X, in z, and
let d =d,d,...d,. Choose k real constants c,,...,c, such that the d
values of ¢,z; +---+ c¢,x;, are distinct. Upon making the change of
we will have in place of (3.4) a system in which the equation 2 (h<k)
will be of degree one in z,. Hence (3.4) assumes the form

X (xg,.o..,2,,u)=0,
% (s ns M (3.5)
Ao(Tpiase-es Ty BTy — Ap(Zgs oo, Ty p) = 0

where X, may in fact be taken to be a real special polynomial in x, and
the A, are non-units and real.

4. Passing now to the problem of the reality of the solutions we must
distinguish three types of solutions or points.

I. The points where the Jacobian matrix J of the left-hand sides in
(3.5) is of maximum rank k at the same time as A4, % 0. These are the
ordinary points. If M is their set and P ¢ M then there is a neighbor-
hood U of P in M which is a complex analytical cell of real dimension
2(n — k + 1). This follows at once from the fact that about P one may
express the coordinates and u as power series in n — k + 1 of them.

II. The points where J is of rank <k. These are the singular points
of M and we denote their set by S.
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III. The points where 4, = 0 are exceptional points and we denote
their set by X.

Each of the three types may yield real points. If X, = 0 has a real
solution in x;, for xz,.,,...,x,, 4 arbitrary real and small then the
system (3.5) represents a continuous family of real periodic solutions,
of dimension » — k for each small real x. This will certainly occur if
X, is of odd degree in z,.

Regarding the singular points let Z,(x;u), j=1,2,...,v be the
minors of order » — k + 1 of J. The set S is then defined by the system

X, =0, Axy,—A4,=0, Z,=0. (4.1)

This may be subjected to the same treatment as (3.4). It will yield a
finite number of families of complex dimension <n — k + 1 whose
real points are to be found.
For the exceptional points the argument is the same save that (4.1)
is replaced by
X, =0, Ay,=A4,=---=4,_,=0. (4.2)

It is clear from the preceding argument that the complete determina-
tion of all real periodic solutions may be accomplished in a finite number
of steps.

5. As a mild application let us determine the families of periodic
solution of period 2z of the system

dd‘:l = — %3 + ug,(x,, x,,8int, cost, u) ,

(lda;2 == xl + ,’l’gZ(xl, xg, Sint, COS t, lu,)

(5.1)

where the g, are polynomials in the indicated variables. If we set x =
Z, + 1%y, g =g, + tg, then (5.1) assumes the form

dw y P — oo it p—1it
Ei——zx—,ug(x,x,e , e % u)

with g still a polynomial. To simplify matters we shall assume that g does
not contain x so that the system to be treated is '

98 iz = pglw, e e, ) (5.2)

with g a polynomial in the indicated variables. This system has recently
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been discussed by Friedrichs (Symposium on non-linear circuit analysis,
Brooklyn Polytechnic Institute).

We are then looking for solutions z(¢, u) of period 2 of (5.2) which
as p — 0 tend to a solution of the first approximation

“Et* —xr = . (5.3)
Let & be the initial value of x so that (5.3) has the general solution
£ett and (5.2) a general solution of the form

x=~Ee' + pud,(€0) +- - . (5.4)

The substitution of (5.4) in (5.2) yields a simple recurrent system for the
A4, together with A4,(&,0) = 0. As a consequence the periodicity con-
dition assumes the general form

Fo(§) +pul (&) +---=0 (6.5)

where the F, are polynomials and # 0. If &(u) is a solution and
£(0) = &,, then &, must be a root of the equation

Fo(§)=0. (5.6)
Let &, be a root of order p. We have then from the preparation theorem

Fo(§) + uFy(8) +---
= {(£ — &P + L) (E — &P+ -+ ()} E(E — &, p) ,

where the f,(1) are non-units. Hence the solution of (5.5) for &(u) such
that &(0) = &,, reduces to that of

(& — &) + [L(p)(§ — )Pt +---=0. (5.7)

The required solutions may be obtained in a systematic manner by the
Puiseux process. In the present case there will be s so-called circular
systems each consisting of ¢ conjugate sets

E— &= W' EW'Y), r>0. (56.8)

The values &(u) defined by (5.8) correspond to a single periodic family
z (£(u), t) such that z(£(u),0)=§& and X'q = p. Thus we have ob-
tained a complete solution of our problem.
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