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Riume mit Mittelbildungen

von B. EckmMANN, Ziirich
Herrn Heinz Hopf in Verehrung und Freundschaft
zum 60. Geburtstag gewrdmet
§ 1. Einleitung

1.1. Unter einem Mittel von » Argumenten in einem topologischen
Raume R - kurz ,,n-Mittel in R genannt — verstehen wir eine stetige

Funktion M, welche jedem System von n Punkten z,,...,z,¢R
einen Punkt M(x,, ..., x,) ¢ R zuordnet und fiir welche gilt:
(1) M(xy, ..., x,) ist symmetrischin z,, ..., z,, d.h. bleibt unge-

dndert bei allen Permutationen von z,, ..., z,.
(2) M(z,...,x) =« fir alle z¢R.

Ein 1-Mittel in R ist die Identitdt von R; im folgenden sei stets n > 2
angenommen. In den vorliegenden Zeilen werden notwendige fopologische
Bedingungen fiir die Existenz eines n-Mittels in R aufgestellt. Es wird sich
zeigen, dal} diese eine starke Einschrdnkung bedeutet; mit anderen Wor-
ten, daf} in sehr groBlen Klassen von Réaumen fiir kein n > 2 ein n-Mittel
existiert. Ein Raum R, in welchem es fiir ein n > 2 ein n-Mittel gibt, soll
kurz ein ,, M, -Raum* genannt werden.

1.2. Beispiele von n-Mitteln:

(a) R sei ein Intervall der reellen Zahlgeraden, M (x,, ..., x,) einer
der klassischen Mittelwerte (arithmetisches, geometrisches Mittel usw.)
der reellen Zahlen z,, ..., z,.

(b) R sei eine konvexe Punktmenge in einem KEuklidischen Raum,
M(x,,...,x,) der Schwerpunkt von =z,,...,2,¢R.

(¢) R sei ein Gebiet der komplexen Zahlenebene; eine Funktion M von
%y, ..., x, €« B mit komplexen Werten, die R angehoren, mit den Eigen-
schaften (1), (2), und welche in x,, ..., %, komplex-analytisch ist,
heiflt ein analytisches Mittel in E.

(d) R sei eine topologische Abelsche Gruppe (additiv geschrieben),
in welcher # — nxz(x ¢ R) ein Automorphismus?) ist; das arithmetische

1) Im algebraischen und topologischen Sinne.
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Mittel n'(z, + --- + z,) ist ein »-Mittel in R. — Beispiel: Das
n-adische Solenoid, vgl. 4.3.

Der Begriff ,,n-Mittel in R*‘ stammt von G. Aumann ?), welcher weitere
Beispiele und Zusatzbedingungen iiber (1) und (2) hinaus untersucht und
spezielle Fille der im folgenden zu besprechenden topologischen Bedin-
gungen angegeben hat. Insbesondere hat er die Aufgabe behandelt, unter
den n-Mitteln auf der Zahlgeraden oder in der komplexen Ebene die klas-
sischen Mittel durch weitere Forderungen zu charakterisieren; diese
Untersuchungen werden hier nicht beriihrt.

1.3. Unsere Resultate betreffen die Homotopiegruppen =, (R),r > 1,
und die ganzzahligen singulidren Homologiegruppen H,.(R),r > 1, des
Raumes R. Zur kiirzern Formulierung sagen wir, eine Abelsche Gruppe G
habe die Eigenschaft a,, wenn z ->nz, x ¢eG, ein Automorphismus von G
ist. Wir werden zeigen: In etnem M - Raum R ist die Fundamentalgruppe
7, (R) Abelsch, und alle genannten Gruppen =, (R) und H,(R) besitzen die
Eigenschaft a,.

Hieraus ist fiir viele Rdume R leicht zu ersehen, daB es in ihnen fiir be-
stimmte n > 2 oder sogar fiir alle n > 2 kein n-Mittel geben kann. Denn
die Eigenschaft a,, in einer Abelschen Gruppe @ impliziert (vgl. § 3), daB3
die Ordnung eines jeden Elementes von G gleich 0 oder zu » teilerfremd ist,
und wenn G direkte Summe zyklischer Gruppen ist, dafl keine Elemente
der Ordnung 0 auftreten. Es ist leicht, Beispiele von Rdumen R anzuge-
ben, in welchen einzelne Homotopiegruppen diese Bedingungen nicht er-
fiillen. Ebenso fiir die Homologiegruppen H, (R); setzep wir noch voraus,
daB die H,(R) von endlich vielen Elementen erzeugt sind (z. B. dafl R ein
endliches Polyeder ist), so folgt aus der Existenz eines n-Mittels in R: In
den Dimensionen r > 1 sind alle Bettischen Zahlen = 0 und alle Torstons-
koeffizienten zu n teilerfremd. — Unter geeigneten topologischen Voraus-
setzungen tiber R ergibt sich ferner (s. § 4): Gibt es tn R fiir alle n > 2
ein n-Mittel, so ist R in sich zusammenziehbar.

1.4. Ein n-Mittel in R léBt sich auch auffassen als eine stetige Abbil-
dung des Cartesischen Produkts P =R, X ... X R, von n Exem-
plaren R, = R in den Raum R; die Eigenschaften (1) und (2) lassen sich
dann so formulieren: D sei die Abbildung D(x) =2 X ... X x,z € R,
von Rin P; D(R) = 4 c P heiit die Diagonale von P. (2) besagt, dal
M D die identische Abbildung von R aufsich ist. (1) bedeutet, daBl Punkte
von P, die auseinander durch Permutation der » Komponenten =z, ¢ R,,

%) Vgl. [1], [2]. — Zahlen in eckiger Klammer verweisen auf das Literaturverzeichnis
am Schlull der Arbeit.
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1+ =1, ..., n hervorgehen, bei der Abbildung M dasselbe Bild haben.
Diese Permutationen bilden eine Gruppe I" von Hom6éomorphismen von
P; identifiziert man #dquivalente Punkte, so erhilt man das symme-
trische Produkt S von n Faktoren R, = R. Da I' die Diagonale A
punktweise festliBt, darf man A als Teilmenge von S betrachten. Man
kann somit M auch auffassen als Abbildung von S in R, derart dap M D
die Identitit von R ist. In diesem Sinne ist die Frage, ob es in R ein
n-Mittel gibt, eine Erweiterungsaufgabe: Die Abbildung D-! von A4 auf
R soll zu einer Abbildung M von ganz S in R erweitert werden. Ist z. B.
R in sich zusammenziehbar, so ist die Erweiterung trivialerweise mog-
lich: In einem zusammenziehbaren Raum gibt es fiir jedes n etn n- Mittel.

Ebenso elementar sind die folgenden Aussagen iiber n-Mittel3): R sei
ein M, -Raum; jede Zusammenhangskomponente von R, jeder Retrakt
von R und die universelle Uberlagerung von R sind selbst M ,-Rdume.

1.5. In § 2 der vorliegenden Arbeit werden die Homotopiegruppen
eines M -Raumes R untersucht; ein n-Mittel in R induziert ein ,,homo-
morphes n-Mittel in jeder Homotopiegruppe von R. § 3 handelt von
Mittelbildungen in Gruppen, mit Anwendung auf die Homotopiegruppen
eines M, -Raumes. In § 4 wird der Fall behandelt, dal R fiir jedes n > 2
ein n-Mittel besitzt. — Fiir die singuliren Homologiegruppen eines M-
Raumes R (§ 5) werden andere Methoden angewendet als fiir die Homo-
topiegruppen, das Ergebnis lautet jedoch gleich?).

§ 2. Homotopiegruppen eines M -Raumes

2.1. Fiir zwei Rdume 7 und R bezeichne R” den Raum?) aller stetigen
Abbildungen von 7' in R. Eine Abbildung F' von R in einen Raum §
bewirkt eine Abbildung von R in 87, die ebenfalls mit F bezeichnet sei:
Man definiert, fiir f ¢ RT, F(f) = g ¢ ST durch g(t) = F(f(t)),teT.

Ist P das Cartesische Produkt R, X ... X R, von Rdumen R;, so
kann man P7? in kanonischer Weise darstellen als Cartesisches Produkt
PT = RT x ... x RT; ist F eine Abbildung von P in R, so laf}t sich
die induzierte Abbildung von PT in RT also auffassen als Abbildung von
RT x ... x RT in RT: fir f,eRT,i=1,...,n ist F(fy,...,f,)
= g e RT gegeben durch g(t) = F(f,(t), ..., f,(t)),teT.

8) vgl. [1].

4; M?t I-[Iil]fe der Methoden von Serre [6] konnte auf Grund allgemeiner Beziehungen von
den Homotopie- auf die singuléren Homologiegruppen geschlossen werden; die direkte Be-
handlung der Homologiegruppen (§ 5) ist aber so einfach, da8 wir diese vorziehen.

8) In der iiblichen (,,kompakt-offenen’’) Topologie.
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Sind insbesondere alle R, = R,i=1,...,n, und ist F = M ein
n-Mittel in R — d. h. eine Abbildung von P in R mit den Eigenschaften
(1) und (2) —, so gelten (1) und (2) auch fiir die induzierte Abbildung von
Rl x ... x RY in R”:

Satz 1. Ein n-Mittel M in R induziert ein n-Mittel tm Raum RT der
Abbildungen von T in R. — Dies gilt auch dann, wenn man die Elemente
f € RT durch die Bedingung einschriinkt, daB fiir eine gewisse Teilmenge
T, c T stets f(T,) ein vorgegebener Punkt p» von R sein soll.

2.2. Es sei nun 2(R) der Raum der geschlossenen Wege in R mit An-
fangs- und Endpunkt p, wo p ein festgewdhlter Punkt von Rist; d. h. T
sei die reelle Einheitsstrecke 0 <<¢ <1, und Q(R) die Teilmenge von
R7 bestehend aus denjenigen Abbildungen f von 7' in R, bei welchen
f(0) = f(1) = p ist. In Q(R) ist in iiblicher Weise eine Operation er-
kldrt, die wir mit 4 bezeichnen: w + o' (w, o' € 2(R)) ist definiert
durch (0 4+ o')(t) = 0 (2¢) fir 0 <<t <L, =0’ (2t —1) fir I <<t <1,
Sie ist i. A. nicht assoziativ, kommutativ usw.; ¢ bezeichne den Weg
o (T) = p. Fir jede Abbildung ¥ von R in § ist die induzierte Abbildung
von £2(R) in 2(S) offenbar homomorph beziiglich dieser Operation.

In einem Cartesischen Produkt P = R, x ... X R, ist

Q(P)=Q(R,) X ... X 2(R,),

und die Operation + 148t sich komponentenweise ausfiithren. Eine Abbil-
dung ¥ von P in R induziert eine Abbildung von 2(R,) X ... X (R,)
in Q(R) —wo 2(R,) beziiglich p, ¢ R, und 2 (R) beziiglich ¥ (p,, ..., p,) € R
genommen sei —, und es gilt fir w;, 0, ¢ 2(R,),t=1,...,7n

Flo,+ o), ..., 0, + o)) =F(o, ..., w,) +F(ol, ..., o).

Handelt es sich bei F insbesondere um ein n-Mittel M in R, so hat also
das gemif Satz 1 in 2 (R), beziiglich p € R, induzierte n-Mittel M auller
(1) und (2) die Homomorphieeigenschaft

Mo, + o1, ..., 0, + ;) = M(wy, ..., w,) + Mo, ..., ©,) (3)
fiir alle w,, w; e Q(R); wir nennen es ein homomorphes n-Mittel.

2.3. Die durch Wege zusammenhéingenden Komponenten von 2 (R) -
d. h. die Homotopieklassen geschlossener Wege in R mit festem Anfangs-
und Endpunkt p — bilden beziiglich der Operation - eine Gruppe, die
Fundamentalgruppe =, (R) in p; sie ist i. A. nicht Abelsch, und ihr Neu-
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tralelement 0 ist die Klasse, welche ¢ enthilt. Zum homomorphen
n-Mittel M in Q(R) gehort offenbar ein ebensolches in 7, (R). Es ergibt
sich somit:

Satz 2. Ein n-Mittel in R induziert ein homomorphes n-Mittel in der
Fundamentalgruppe =, (R) (bezogen auf einen beliebigen Punkt p ¢ R).

Unter einer allgemeinen Homotopiegruppe I1(R) von R versteht man
die Fundamentalgruppe s, (RT) eines Abbildungsraumes R?, in einem
vorgegebenen Punkt f, ¢ RT. Aus den Sitzen 1 und 2 folgt unmittelbar

Satz 2'. Ein n-Mittel in R induziert ein homomorphes n-Mittel in jeder
Homotopiegruppe I1 (R) von R.

Dies gilt insbesondere fiir die Hurewicz’schen Homotopiegruppen =, (R),
r > 2, da diese bekanntlich als Fundamentalgruppen von Abbildungs-
riumen RT(7T = Sphire S*1) aufgefaBt werden kann. — Um aus Satz 2
und 2’ weitere Folgerungen ziehen zu koénnen, untersuchen wir im nich-
sten Abschnitt den Begriff des homomorphen n-Mittels in einer Gruppe.

§ 3. Mittelbildung in Gruppen

3.1. @ sei eine beliebige, additiv geschriebene Gruppe, M ein homo-
morphes n-Mittel in G,n > 2, also eine Funktion M («x,, ..., ,) von
n Variablen x ¢ @ mit Werten in G, welche (1) symmetrischin z,,...,z,
ist, (2) M(x, ..., x) = x erfillt fir alle zeG, (3) homomorph ist in
allen Variablen:

M, +2,...,2, +2)) =M@y, ..., %,) + M, ..., 2,), 2, G.

"™

(Mit anderen Worten: M ist ein Homomorphismus der direkten Summe
von n» Exemplaren G in G.)

Wir setzen u(x)= M(z,0,...,0)=M(0,z,...,0)=...=M(0,0,...,2),
xeG. Aus (3) folgt, dafl u ein Homomorphismus von G in sich ist.
Ferner gilt fir x,y G

w(x) + uly) = M(=,0, ...,0)+ M(0,y,0,...,0) = M(z,¥,0,...,0),
also wegen der Symmetrieeigenschaft (1)
p(x) + p(y) = ply) + p(2),
d.h. u(@) c G ist Abelsch.
3.2. Aus (2) folgt fiir jedes x G
= M(z,z, ..., 2)=M,0,...,00+---+M(0,0,...,x)=n-pu(x)=p(n).
Somit ist G = u(G@) eine Abelsche Gruppe. Die Zuordnung = —nzx
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ist also ein Endomorphismus von G; wegen nu(x) = u(nz) = z fiir alle

x € G ist sie sogar ein Automorphismus, und u ist der inverse Automor-
phismus z - nlx.
Fir M(«,, ..., z,) erhilt man dann

M(z,,...,z,)=M(x,0,...,0)4- -4+ M(O0,...,0,z,)=u(x,)+ - - - + u(zx,)
=p(2y - - -+ x,) =02+ - -+ xy),
also das ,,arithmetische Mittel ‘.

Satz 3. In einer Gruppe G gibt es dann und nur dann ein homomorphes
n-Mittel M, wenn G Abelsch und x —>nx,x G, ein Automorphismus
von @ ist. In diesem Falle gibt es nur ein n-Mittel, namlich

Mz, ..., 2,)=n"Yay + -+ + x,).

3.3. Die Abelschen Gruppen, in denen x — nx ein Automorphismus
ist, sollen niher untersucht werden; wie in § 1 bezeichnen wir diese
Eigenschaft mit a,, und es sei stets n > 2.

@ habe die Eigenschaft qa,, und « ¢G@ sei von der Ordnung %k > 0.
Ist (n, k) der groflte gemeinsame Teiler von » und &, und

k=Fkn,k),n=n(n,k),

also nk' = kn', soist k'(nx) =n'kx = 0; da nx auch die Ordnung %
hat, ist k Teiler von k', somit (n, k) = 1:

Satz 4. Wenn die Abelsche Gruppe G die Eigenschaft a, hat, dann ist die
Ordnung eivnes jeden Klementes von G entweder 0 oder zu n teilerfremd.

Die Umkehrung hievon gilt offenbar nicht, wie die unendliche zyklische
Gruppe zeigt. Sie gilt jedoch fiir Torsionsgruppen, d. h. fiir Gruppen
ohne Elemente der Ordnung 0.

Satz 4'. Ist die Ordnung eines jeden Elementes der Abelschen Gruppe G
zu n teilerfremd, so hat Q die Eigenschaft a, .

Beweis. Zu jedem Element z ¢G gibt es eine ganze Zahl v, derart,
daBl vz = x ist; ist ndmlich k¢ die Ordnung von z, so gibt es wegen
(k,n) = 1 zwei ganze Zahlen », v mit uk + vn =1, also

ukx + vnr =vnxr = zx.

Es ist somit nG@ = @, und aus nx = 0 folgt * = vnr = 0. -

In einer direkten Summe gilt die Eigenschaft a, dann und nur dann,
wenn sie in jedem Summanden gilt. Eine Abelsche Gruppe mit der Eigen-
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schaft a, (fir ein » > 2) enthilt also keinen direkten Summanden, der
unendlich zyklisch ist; sie kann also sicher nicht frei sein. — Fiir direkte
Summen zyklischer Gruppen (z. B. Abelsche Gruppen mit endlich vielen
Erzeugenden) ist, ebenso wie fiir Torsionsgruppen, die Eigenschaft a,

dquivalent damit, daB die Ordnung eines jeden Elementes zu n teiler-
fremd ist.

3.4. In Verbindung mit den Ergebnissen von § 2 erhalten wir nun
Begingungen fiir die Existenz von n-Mitteln in einem Raume R; sie
betreffen die Homotopiegruppen /7 (R) von R (vgl. 2.3):

Satz b. Gibt es tm Raume R ein n-Mittel, so ist jede Homotopiegruppe
II(R) Abelsch, und o — na, a e II(R), ist ein Automorphismus von II(R).
Die Ordnung eines jeden Elementes von II1(R) ist also 0 oder zu m teiler-

fremd, und II(R) enthdilt keinen direkten Summanden, welcher unendlich
zyklisch 1st.

Dies gilt insbesondere fiir die Fundamentalgruppe =, (R) und fiir die
Hurewicz’schen Homotopiegruppen =, (R),r > 2. Auf Grund der
Kenntnis dieser Gruppen lassen sich viele Beispiele von Réumen an-
geben, in welchen es fiir kein n > 2 ein n-Mittel gibt; wir erwédhnen
hier nur
a) die p-dimensionale Sphire S? (,(S?) ist unendlich zyklisch),
b) die geschlossenen Flichen @ vom Geschlecht g > 1 (7, (®P) ist nicht

Abelsch).

Satz 6 148t sich auch auf die Torus-Homotopiegruppen®) eines M, -Rau-
mes R anwenden; es ergibt sich u. a., dafl diese Abelsch sind. Dies be-
deutet fiir die Homotopiegruppen =, (R),r > 1: ein M ,-Raum R ist ein-
fach in allen Dimensionen r > 1 (im Sinne von Eilenberg®)), und alle
Whiteheadprodukte®) zwischen den Elementen der x,(R) sind 0.

§ 4. Riume mit n-Mitteln fiir alle n

4.1. Wir nehmen an, es gebe im Raume R fiir jedes n > 2 ein n-Mit-
tel. IT(R) sei eine Homotopiegruppe von R (vgl. 2.3); sie ist Abelsch und
hat die Eigenschaft a,,7n =2,3,.... Ist aelI(R) ein Element der
Ordnung % >0, somuB kzu » = 2,3, ... teilerfremd, also = 1 sein,
d.h. esist « = 0. Alle Elemente # 0 von G haben also die Ordnung 0;
eine solche Gruppe heillt torsionsfres.

%) Siehe Fox [4].
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Satz 6. Gibt es in R fur jedes n = 2 ein n-Mittel, so stnd alle Homo-
topiegruppen 11 (R) torsionsfreie Abelsche Gruppen mit der Eigenschaft a,
fur alle n.

Unendlich zyklische direkte Summanden koénnen in einer solchen
Gruppe nicht auftreten. Ist von der Homotopiegruppe /7 (R) des Raumes
R zum vorneherein bekannt, dall sie eine direkte Summe zyklischer
Gruppen sein mul3, so ist also nur I7(R) = 0 moglich (z. B. wenn I7(R)
von endlich vielen Elementen erzeugt wird).

4.2. Satz 6'. R ser ein zusammenhdngendes endliches Polyeder. Dann
und nur dann gibt es in R fir jedes n ein n-Mittel, wenn R in sich auf einen
Punkt zusammenziehbar ist.

Beweis. Die ganzzahligen singuldren Homologiegruppen H,(R) sind
von endlich vielen Elementen erzeugt. Aus der Existenz der n-Mittel
folgt, dafl =, (R) Abelsch ist, also = H,(R), somit von endlich vielen
Elementen erzeugt; nach 4.1 ist also =, (R) = 0. Hieraus folgt aber
7y (R) >~ H,(R), also von endlich vielen Elementen erzeugt, also eben-
falls = 0. Durch Induktion folgt =,(R) = 0 fiir alle » >> 1; nach dem
Satz von Hurewicz [5] bedeutet dies, dafl R zusammenziehbar ist. —
Umgekehrt existieren in einem zusammenziehbaren Raum n-Mittel fiir
alle n (vgl. 1.4).

Ein einfaches Beispiel (4.3) zeigt, dafl i. A. aus der Existenz eines
n-Mittels in R fiir ein bestimmtes n noch nicht die Zusammenziehbarkeit
von R folgt. Jedoch bleibt hier die Frage offen, ob dies fiir spezielle
Réaume R (etwa diejenigen von Satz 6') der Fall ist; ebenso, ob fiir gewisse
Klassen von Raumen aus der Existenz eines n-Mittels fiir ein bestimmtes
n diejenige fiir alle andern » folgt, und auch ob die Aussage von Satz 6
fiir allgemeinere Rédume als die dort genannten gilt.

4.3. Beispiel eines n-Mittels in einem nicht-zusammenziehbaren Raum :
n > 2 sei beliebig vorgegeben, R der Raum des n-adischen Solenoids
2, ; dieses kann definiert werden als kompakte Charakterengruppe mod. 1
der diskreten additiven Gruppe A4, aller n-albriiche. R ist nicht zusam-

menziehbar (da gewisse éech-Homologiegruppen von R # 0 sind?)).
Jedes Element 4 eZ2, ist durch » teilbar. Aus ny = 0, folgt
x(na) = 0 fir alle a e 4,, also,da nd, = A4, ist, y(a) = 0 fir alle
aed,, d.h. y = 0. Somit hat 2, die Eigenschaft a,, und gemifl 1.2
liefert das arithmetische Mittel von n Elementen ein n-Mittel in X, .

") Vgl. Eilenberg-Steenrod : Foundations of Algebraic Topology, (Princeton
1952) p. 296.
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§ 5. Homologiegruppen eines M ,-Raumes

5.1. Es handelt sich im folgenden durchwegs um die singulire Homo-
logietheorie. H,(R) sei die p-te Homologiegruppe des Raumes R, mit
ganzzahligen Koeffizienten. Wir erinnern zuniichst an einige bekannte
Eigenschaften der Homologiegruppen Cartesischer Produkte, die wir
nachher benotigen.

5.1.1. Fir ein Cartesisches Produkt R x @ zweier Rdume R, @ gilt die
Isomorphie

H, (R x @)

1

2 H.(R)®H, Q)+ 2 H(R)xH,(Q)

r+8=p r+8=p-—1

fir p>0; dabei handelt es sich um direkte Summen, und 4 ® B be-
zeichnet das Tensorprodukt der Abelschen Gruppen A und B, 4 x B deren
Torsionsprodukt (letzteres 148t sich so definieren®): Es sei B=F/F,, wo F'
eine freie Abelsche Gruppe ist. 4 x B ist isomorph zum Kern des natiir-
lichen Homomorphismus von 4 ® F, in 4 ® F. Man kann zeigen, dafl
A x B keine Elemente der Ordnung 0 enthilt). Fiir unsere Zwecke wird
die folgende Zerlegung von H (R X ) geniigen:

H,(R x Q) =~ H,(R) ® H,(Q) + Hy(R)  H,(Q) + H,,

wo H , eine direkte Summe von Tensor- und Torsionsprodukten gewisser
H,(R),H,(Q) mit r <p,s <p ist; fiir p=1 ist I}l = 0. Auflerdem
brauchen wir noch Einzelheiten iiber die Art, wie diese Zerlegung von
H (R x Q) explizite hergestellt werden kann.

5.1.2. Es bezeichne H, (bzw. H,) die Untergruppe von H,(R x @),
deren Elemente durch Cartesische Produktzyklen ¢, X ¢, eines p-Zyklus
¢, in R und eines 0-Zyklus ¢, in @ (bzw. ¢, X ¢,, ¢, in B, ¢, in ) repra-
sentiert werden koénnen; sind z, e H,(E) und 2,¢ H,(Q) die Homo-
logieklassen von ¢, und ¢,, so bezeichne z, x 2, diejenige von ¢, X ¢.
Dann ist H,(R x @) direkte Summe von H,, H, und einer weitern
Untergruppe H,,, und esist H, o~ H,(R) @ H,(Q), H, ~ Hy(R)QH,(Q),
also fi—p ~ ﬁ »

R und Q seien durch Wege zusammenhingend, also H,(R) und H,(Q)
unendlich zyklisch und H,', ~ H,(R), HZ ~ H,(Q); bezeichnet 2, die
durch einen Punkt von @ reprisentierte Homologieklasse ¢ Hy(Q), so
ist die Zuordnung =z, - 2, X 2,2, < H,(R), ein Isomorphismus von
H,(R) auf H', und analog it sich der Isomorphismus H,(Q) = H,

p’

8) Vgl [3].
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erhalten. Die Elemente von Fp sind dadurch charakterisiert, daB sie sich
durch Cartesische Produkte von lauter Zyklen?) in R der Dimensionen
< p représentieren lassen.

5.1.3. Durch Iteration erhiilt man fiir das Cartesische Produkt
P=R X R, X ... X R, von n Rdumen R;, die durch Wege zusam-
menhiéingend sind, eine Zerlegung von H, (P) in eine direkte Summe von
Untergruppen

H,(P)=HP+ ... +H"+ H,;

~

dabei ist Hgf) ~ H,(R;), und -I?z, ~ H,, wo H » €ine direkte Summe von
n-fachen Tensor- und Torsionsprodukten gewisser Gruppen H,(R,),r<p,
ist. Mit 2§ bezeichnen wir die Homologieklasse aus H,(R,), die durch
einen Punkt z;e¢ R;,j=1,...,n reprisentiert wird; die Zuordnung
20 = 20 X ..o XA x D x 2TV x ... X 2” ist ein Isomorphis-
mus I; von H,(R;) auf H’. Die Elemente von H, sind analog charak-
terisiert wie in 5.1.2; fiir p =1 ist H, = 0.

5.2. Es seien nun in P alle R, = R, und D bezeichne wie in 1.4 die
Diagonalabbildung von R in P, gegeben durch D(x) = (z,z, ..., ),
xe R; D(R) = 4 c P ist die Diagonale von P. D induziert einen Homo-
morphismus D, von H,(R) in H,(P); entsprechend der Zerlegung in
5.1.3 zerfiallt D,z ,z, e H(R), eindeutig in eine Summe

*®p1 ©p
Dyz, =Dz, + ... + D,z, + Dz, ,
wo D, ein Homomorphismus von H,(R) in H?,i=1,...,2,D

von H,(R) in H, ist.

Unterwirft man die n Komponenten z, e B eines jeden Punktes
(zy, ..., x,) von P einer bestimmten Permutation, so erhilt man eine
topologische Abbildung 7' von P auf sich, welche 4 punktweise festldBt.
Offenbar bildet 7, die Gruppen X H{ und H, in sich ab. Wegen

i

TD =D ist TyDyz, = Dyz,,2,¢ H,(R), also
Ty (X D;z,) + Ty Dz, = X D;z, + Dz,
i ‘
somit T, (X D;z,) = X D;z,. Da dies fiir jede Permutation T gilt, folgt
@ i

leicht, da-alle I;!D;z, e H,(R),i =1, ...,n, einander gleich sind;
wir setzen I;! D;z, = Jz, und erhalten

— (-1 (i+1 (n)
Dz, =20 x ... X200 X Jz, x 28t x ... x 2V

%) und ganzzahlige Zyklen mod m.
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5.3. M seiein n-Mittel in R, also eine Abbildungvon P = Rx... X R
in B mit den Eigenschaften (1) und (2) (vgl. 1.3). Wir betrachten, fiir
z, e H,(R), My Dyz, = M, (XD;z,) + M, Dz. Reprisentiert man in der

obigen Darstellung von D;z, alle 2{" durch denselben Punkt von R und
beriicksichtigt man die Symmetrieeigenschaft (1), so folgt, daB alle
M, D;z, einander gleich sind. Esist also M, D, z, = nM, Dz, + M, Dz.
Aus (2) folgt ferner M, Dz, =z,.

Es gibt also zwei Endomorphismen o und v von H,(R), derart daf fir
alle z, e H,(R) gilt 2, = noz, + 77,
dabei ist = M, D, wo D ein Homomorphismus von H,(R) in H, ist.

Fir p=1 ist H, =0, also 7= 0; es gibt also einen Endomor-
phismus o, derart da noz, = z; ist fir alle 2, e H,(R). Hieraus folgt
wie in 3.2, daf3 H,(R) die Eigenschaft a, hat: 2z, —mnz, ist ein Auto-
morphismus von H, (R).

Um durch Induktion beziiglich p weiter schliefen zu kénnen, benstigen
wir ein Lemma beziiglich der Eigenschaft qa,.

5.4. Lemma. A und B seien zwei Abelsche Gruppen. Mit 4 hat auch
(a) ihr Tensorprodukt A ® B und (b) ihr Torsionsprodukt A4 x B die
Eigenschaft q,,.

Beweis. (a) Ist a ein Automorphismus von 4,s0ist o ® ¢ (¢ = Iden-
titdt von B) ein Automorphismus von 4 ® B; wegen

(na) @b =n(a Qb)

fiir alle aeA,be B, ist also a ® b > n(a ® b) ein Automorphismus
von A ® B. — Es folgt insbesondere, dafl die Ordnung von a @ b
(@ e A, b eB) entweder 0 oder zu n teilerfremd ist.

(b) Ax B ist Untergruppe von A ® Fy, (vgl.5.1) und hat keine
Elemente der Ordnung 0; die Ordnung eines jeden Elementes von A4 x B
ist also zu » teilerfremd, woraus nach Satz 5 (3.3) die Eigenschaft
a, folgt.

5.5. Wir gehen nun zuriick zum M ,-Raum R. Essei p > 2, und es sei
schon gezeigt, daB alle H,(R),0 <s <p, die Eigenschaft a, haben;
da Hp einer direkten Summe von Tensor- und Torsionsprodukten von H,,
8 < p, isomorph ist (wobei fiir mindestens einen Faktor s > 0 ist), hat
auf Grund des Lemmas H, die Eigenschaft a,. Setzen wir nun fir

Zp EH,,(R) ‘uzp — O'Zp _+_ M* (n—l"D'zp) ,
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so ist u ein Endomorphismus von H,(R), fir welchen nach 5.3 gilt:
nuz, = unz, = noz, + My, Dz, = noz, + 12, = 2

Somit hat H,(R) die Eigenschaft a,,.

P *

Satz 8. R sei ein durch Wege zusammenhingender Raum. Wenn es in
R ein n-Mittel gibt, so ist in allen Dimensionen p > 0 die Zuordnung
z, —>nz, ein Automorphismus von H,(R). Die Ordnungen aller Homo-
logieklassen sind also O oder zu n teilerfremd; ist H,(R) direkte Summe
zyklischer Gruppen, so sind alle Ordnungen zu n teilerfremd (die Bettischen
Zahlen also = 0, die Torsionskoeffizienten zu n teilerfremd).

Dies sind, insbesondere fiir endliche Polyeder oder Réume von dem-
selben Homologiecharakter, sehr starke Bedingungen, die die Existenz
eines n-Mittels nur in seltenen Fillen zulassen.
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