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On mappings into group-like spaces
by GEORGE W. WHITEHEAD

Dedicated to H. Hopf on his 60™ birthday

1. Introduction. Let G' be a space with continuous multiplication
and inversion, which satisfies the group axioms up to homotopy. Then
the homotopy classes of maps of any space X into ¢ form a group
(X ; G). We shall first show that, under reasonable hypotheses on X,
G, the group #(X ;) is nilpotent ; an upper bound for the class of nil-
potency is ¢ — 1, where ¢ is the Lusternik-Schnirelmann category
of X.

In particular, if X is the product of k spheres, #(X ;@) has class
=< k; an explicit central chain for #(X ;G) can be constructed in this
case; the successive factor groups are direct products of homotopy
groups of G. In particular, =(S? x8?;@) is a central extension of
Tpre(@) by 7,(G) X7, (G), which is semi-split in the sense that each of
the groups =#,(¢), =,(G) can be lifted to a subgroup of =(S8? x8§?; Q).
The group extension is then completely described by the commutators
of elements of #,(G) with elements of z (). These provide a bilinear
map (x,f) = <{x, B> of n,(G)x=n,(G) into =, ,(G). This map has been
used by Samelson [3].

In the group =(8? x8?xS7; (@A) the iterated commutators provide a
trilinear map (x, B, y) — {«, (B, y)>> of the product

72, (@) X0, (G) X, (@)

into #,,,,,(@). Now if I'" is a group, the iterated commutators satisfy
a “Jacobi congruence”” modulo the fourth member of the descending
central series of I'; since (8P xS?x87; @) is nilpotent of class < 3,
this congruence reduces to an identity. From this fact we deduce a
Jacobi identity for the operation <{«, 8.

Suppose that G is the space of loops in a space X ; then

7, (F) ~ 7,1 (X) .

By this isomorphism the commutator mapping is transformed, except
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for sign, into the Whitehead product. Thus the above results provide
another proof that the Whitehead products satisfy a Jacoby identity1).

2. Nilpotency of n(X;@). Let X be a separable metric locally
contractible space. A subset 4 of X is said to be categorical if and only if
there 1s an open set U > A such that U is contractible in X. A covering
of X by sets 4, is said to be categorical if and only if each of the sets 4,
is categorical. The category cat X of X is the least of the cardinal numbers
of the categorical coverings of X .

Let G be a space, ee@, and let u: (GG, (e,e))—>(G,e),
v: (G, e) - (G, e) be maps. We say that G is an H*-space with respect to
e, u, ¢ if and only if the following conditions are satisfied :

2.1) The maps (z,y,2) >pu(x,u(y,2)) and (z,y,2) >u (u(z, y),2)
of G xXG x@G into G are homotopic rel. (e, e, e) ;

2.2) The maps = — u(x,e) and x — u(e, ) of G into G are homo-
topic rel. e to the identity map ;

2.3) The maps « — u(z,i(x)) and & — u (i(x), ©) of G into G are
homotopic rel. e to the constant map.

Hereafter we abbreviate u(x,y) to x-y and ¢(x) to x=.

Let @: G xG — G be the commutator map, defined by

D(x,y) = (xy)(z1y™) ,
and let G~ G be the subset G xe vex@ of G xG. Then from 2.1 to
2.3 we conclude easily :

2.4) The map @ |G v G is homotopic rel. (e, e) to the constant map.
Let X be a space, Ac X, and let @ be an H*-space. If f,g: (X, 4) —
(@, e) are maps, we define f-g: (X, 4) - (G,e) by

(f-9)(x) = f(%)-g(x) .

This operation preserves the relation of homotopy, and therefore induces
an operation in the set = (X, 4;G) of homotopy classes of maps of
(X, A) into (@,e). It is easily verified that =(X, 4 ;@) is a group
under this operation. Moreover, if A: (Y, B) - (X, 4) is a map, then
composition with A induces a homomorphism

h:n(X,4;3) >=n(Y, B;0) ;

1) Proofs of the Jacobi identity for the Whitehead product have been obtained recently
by Hilton and by Massey-Uehara (to appear in Ann. of Math.). The author believes the
present proof to be more elementary. The author is informed by Uehara that proofs have
also been found by Nakaoka and by Toda.
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the homomorphism induced by a composite map ko% is the composi-
tion hok in the opposite order.
We further have :

2.5) If §is an n-sphere, z ¢S, then =(S, z; Q) = =, (G).

2.6) Let (X', a) be the pair obtained from (X, 4) by collapsing A
to a point, j:(X,A)—>(X',a) the identification map. Then
J:a(X',a;0) ~n(X, 4;q).

The proof of 2.5 is similar to the proof in the case where @ is a topolo-

gical group [1]; 2.6 follows from standard properties of identification
spaces.

Lemma2.7. Let (X;A4,,...,4,) bean
mn+1)—ad, A=A4,v...v4A

n °

Suppose that there are retractions ¢,: X - A, (i =1,...,n) such that
0:;(A,)c A, for all ©, j. Suppose further that either (X;A4,,..., 4,) 1s
triangulable or X is separable metric and G is an ANR?2). Then, if
j:Xc (X, A), the homomorphism j:n(X,A4;G) »>=n(X;Q) is an iso-
morphism into.

Proof. We must show that, if f,, f,: X -G are homotopic maps
with f,(4) = f;(4) = e, then f, and f, are homotopic rel. 4. Let
B, = A4,v...vA,; then it suffices to show that f,~ f, rel. B, implies

fo=~f, rel. B,,,. Let F:XxI —G be a homotopy of f, to f, rel.
B,, and define F,: X xI -G by

Fi(x,t) =F(x,t)-Flo, (), t]7 .

Then « ¢ B, implies g,,,(x) ¢ B,, and therefore F,(z,t) =e-e 1 =c¢e;
and zed, , implies g, ,(x) = . Thus z e B,,, implies that F,(z,t)
= F(x,t)-F(x,t)"*. Furthermore, if t=0 or1l, F,(x,t) = f,(x)-e

It follows from 2.3 that F,| B,,,x[I is homotopic rel B, xI to
the constant map. It follows from 2.2 that F,| X xI is homotopic

rel A><I to the map (x,t) —f,(z). Let C = XxIo v B, . xI; then
F,| C is homotopic to the map F,:C — G such that

Fy(z,t) = f(d)  (zeX,tel);
Fy(x,t)=e (€ € Bryy) .

3) In the weak sense.
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By the homotopy extension theorem, F, has an extension F’: X xI -G ;
F' is a homotopy of f, to f, rel. B,,,.

Let I' be a group. We recall that the descending central series of I is
the sequence of subgroups defined inductively by

Zo=I; Z,=|[IZ,;] for >0,

and that I' is nilpotent if and only if there is a ¢ such that Z, = {1};
the least such c is called the class of I'. A central chain of length k of I
is a sequence

I'=rIy>.---oI, = {1}

of subgroups such that [I, I',]lcI;,, (¢=0,...,k —1). I has a
central chain of length k if and only if I' is nilpotent of class < k.

We further recall [6, pp. 60—63]:
2.8) [a,bc]=]a,b] [a,c] (modZ,),
2'9) [(L, [b, O]]'[b, [C, a’]]'[c’ [d, b]] =1 (mOdZ3)

Theorem 2.10. Let X be a separable metric locally contractible space,
G a 0-connected H*-space. Suppose that X has finite category c, and that
etther a) X s triangulable or b) G is an ANR. Then the group n(X ;@)
18 nelpotent of class < c¢ — 1.

To prove Theorem 2.10, we recall from [2, p. 336] that X has a closed
categorical covering 4,,..., 4,. If X is triangulable we may assume
that the sets A, are all subcomplexes of a certain simplicial decomposi-
tion of X . Theorem 2.10 will then follow from

Lemma 2.11. Let I'; be the set of all homotopy classes of maps
f: X -G such that f|A,v---v A, s tnessential (t=0,...,c—1)
Then the I} form a central chain for =(X ; @).

Proof. Clearly the I'; form a decreasing sequence of subgroups of
I'=n(X;Q); I'j = I since A4, is contractible in X, and I',_, = {1}
since A, v---vA,= X. It remains to prove that [I', I';_,]c I';.

Let fexel, geBfel; ,; then f|A,,, is inessential since 4,,, is
contractible in X, and g¢g| 4, v---v A4, is inessential by hypothesis.
Hence we may assume f(4,,,) =¢(4,v---v4;)=-ce. Define

h:X -G by h=do(fxg), ie.,

h(z) = @ (f(2),9(x)) ;

then he[x,f]. Now if xed,v---vAd,,, then (f(x),9(x))eG+G;
it follows from 2.4 that h| A, v --v A4,,, isinessential,i. e., [x, 8] e I'}.
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Corollary 2.12. If X has finite dimension n, then n(X ;@) is mil-
potent of class < n.
Forcat X <1 4 dim X [2,(5.4)].

Corollary 2.13. If X is the product of k spheres, then n(X ;@) is nil-
potent of class < k.

Forcat X =k 4 1 [2, p. 350].

The following variant of Lemma 2.11 will be more appropriate in
what follows 3).

Lemma 2.14. Let X be a CW-complex [5] and let
Ayc---cd, =X

be subcomplexes such that, if E is any cell of A;, then EcAi_l. Let T,
be the set of all homotopy classes of maps f: X —G such that f| A, is
wnessentral. Then Iy, ..., I', is a central chain for =(X ; Q).

Proof. Let fexel =n(X;{d), geBel;,,. For each cell K, of
A;, let z) be an interior point of ). Then we can find closed cells

FycInt ) such that z) e Int F, and E » is a deformation retract of

E, — F,; it follows that 4, , is a deformation retract of
Q= L}\JE/\—F/\VAiq
and the set P, = {x,} is a deformation retract of P = gJF A- Since

G is 0-connected, f| P,, and therefore also f| P, is inessential. Since
g| A, is inessential, it follows that g | is inessential. Hence we
may assume f(P) = g(@) = e. The remainder of the proof follows the
pattern of Lemma 2.11.

3. The case X = 8™ x ... x 8. We now examine in more detail
the case X = 8™ x ... x8". We first make some conventions about
orientation. Let I? be the unit cube in Euclidean p-space ; we orient I?

by choosing the generator w, of H (17, jp) represented by the identity
map of I? (we are using cubical singular homology theory as in [4]). Let

x, be a fixed point of S? and choose a fixed map vy, : (I?, I?) — (8?7, x,)

3) The hypotheses of Lemma 2.14 imply that cat X < k + 1, so that #(X; Q) is
nilpotent of class = k. The conclusion follows formally from Lemma 2.11 and the follo-
wing statement, which is easily proved by induction on k: there are closed categorical sub-
sets By,..., B;, of X such A; is a deformation retract of Byw...Bv, (¢ =0,...,k).
However, it seemed simpler to proved Lemma 2. 14 directly. Actually, only Lemma 2.14
is used in what follows; we state Theorem 2.10 because it seems to give the most natural

upper bound for the class of nilpotency.
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which maps the interior of I? topologically onto S? — z,; we then
orient S? by requiring that y, have degree 1. Next we make the natural
identification of I™x...x I"™ with [™*---*" and then orient
8™ X .- X8"% by requiring that v =y, X --- Xy, have degree 1.

Let X =8"x...x8"%. We take S; = 8" with the CW-decom-
position consisting of the 0-cell e¢; = z,, and the n,-cell S, —e,. The
product of these C'W-decompositions gives a CW-decomposition of X.
Let 4, be the set of all = ¢ X such that z, # ¢; for at most ¢ values
of 4 ; thus

Ay =¢,X--- Xe, ,

A, =81 XegX - X e rvey X Xe_ X8,

4, =8, x---x8, =X .

The A, clearly satisfy the hypotheses of Lemma 2.14.
For each subset &« of {1,...,k}, let S, ={xeX|z,=c¢, for
1§ «}, |o|=the cardinal of «, n(x) = 2Zn,-8, is homeomorphic
1€Q
with I78;, and we orient S, by requiring that the natural homeo-
T€x
morphism (the one preserving the order of the coordinates) be orienta-
tion-preserving. Finally, let p,: (S, Sy~ Aoj_1) = (87, €,4)) be
an orientation-preserving map which is topological on S, — 4,4, _;.
Let ¢q,: X — 8, be the natural retraction: g¢,(x) is the point y
such that y, = «, if 1ex and y, =e¢, if 1¢ x. Then f # « implies
98(Sy) = Sy. We may therefore apply Lemma 2.7 to obtain :

Lemma 3.1. Letj: Xc(X,A,). Then j:n(X,4,;G) ~ I.
Theorem 3.2. The group I';_,|I'; is isomorphic with the direct product
I ﬂn(a)(G) )
where « ranges over all i-elementa subsets of {1,...,k}.
Proof. Let j,:(Sy, Sy~ 4;)c(X, 4,,). Then
JiaX, A, ;@) ~ iy jo: n(X, 4, 456G) >7(8y, Sy~ 4,45 G)

and  p, : 7,0 (G) ~ (S, 8y~ 415 G); hence we may define 7, :
iy > m,(@) by n,=pg' j.j? The homomorphisms 7, then
define a homomorphism #: [ ; -4 = I n,,(G). Clearly I',c

o
Kernel 5. Conversely, if fey e Kerneln, then, for each &, f|S, is
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inessential rel. S, ~ 4, ,; hence f| A4, is inessential. Therefore % in-
duces an isomorphism » of I';_,/I'; into 4.

To show that 7 is onto, define 3,: X — 8™ by 4, = p,oq,. Since
qa can be factored through (X, 4, ,), it follows that i,:=7,,(G) —

‘__1 NOW

Ta® by = Py  0Ju0 0 Gy Py ;

since g, is a retraction, j,ojlogq, is the identity. Hence 7,01, is the
identity. If « #pf, then ¢,(Sg)c8S,~Sgc4,, and therefore
Jgojtoq, = 0; thus

nBOia =p;1°jﬂ°j—1°qa°pa =0.
It follows that # is onto, and that the i, are isomorphisms into.

4. Commutator relations. In this section we write =

for
Ni1,y...,0k
n . nk . . s . s .
m(8"X---x8"%;@). Let i,:n,—>m,, By i Mg > Ty g b0t Tprg > T g

be the isomorphisms into of § 3. Then i, , maps =,,, isomorphically
onto I}, and if xex,, fem,, we have [i,(x),i3(f)]el). Hence we
may define

(e, B> =iy [‘1(0‘) i(B)] € mpiq -
Lemma 4.1. (a) {x,f> = (—1P"1B,x>; (b) <(x,B> depends

bilinearly on o, 8.

Proof. Let t: 8?2 x8? - 8?x8? be the map which interchanges the
coordinates. In virtue of our conventions about orientation, ¢ has degree
(— 1)»?. Furthermore, ¢ induces a map t': SP-? — 8P+? of the same
degree. We verify easily that i,0t=1,, 450 =1,, and ¢, 50t =
t' 04, ;. Furthermore t'(u) = (— 1)*»%u for % em,,,. Hence

B, 0> = i3[i;(B), ()] = t'~ it [i1(B), ia(x)]
= (— 1)Peig3[ti, (B), tia(x)]
= (— 1)»? ‘—1[‘2 (B), i1 (x)]
= (— 1)pe-1 l1,2['1 (x), E:(B)]
= (— 1P 1 <a, ) .

Now if xem,, B,y en,, we have, by 2.8,

[iy (&), i (B-7)] = [§, (%), i3(B) i ()]
= [i,(x), i5(8)]- [iy (), ia(y)]  (mod Ty) .

But I'; = {1} and i, ,is a homomorphism. Hence right linearity holds.
Left linearity follows from right linearity and part (a).
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Consider now the group x, , , and the isomorphisms into
5L ITy > Ty gy bW Ty e, byl >W, ., and E a g7y 00, >
Tyqr- Lhe latter is an isomorphism onto I'. If x en,, Bem,, v em,,
then [i,(«x), [i3(B), &(y)]] e I';, and we have:

Lemma 4.2. (o, B, 7)) =i ,[i:(x), [a(B), ()]
Proof. We have, by definition,

o, KB, ¥>> = ipaldy (o), dady 5l (B), 82 (1)1
Let f: 8?2 x8¢x8" — 87 x8%r be the map given by

]‘(IE, Y, z) = (x, 291,2(2’/, z)) .

The maps p, ;of and p, 55 of (8?7 x89%x87, 4,) into (SP++r, 2 ...,
both preserve orientation. Hence

f° i1,z =f°P1,2 = P1,2,3 = i1,2,3 .

On the other hand, 430 f =4, 3 and 4,0 f =14,. Let A be the projection
of 87x8*x8" on 8?x87. Then i, 0h=14,3, t,0h=1,, and
tg0 h = i;. Thus

i1,2,3<0" G Zfi1,2<0‘, B,y
= fliy (%), iy (81 (B), i (7)]]
= [fiy (), fiaig 581 (B), E2(¥)]]
= [i;(x), &5, 7 3[8:(B), E2(»)]]
= [i,(x), h[i,(B), i2(¥)]]
= [i)(x), [Ri (B), hix(y)]]
= [i;(x), [E2(B), i5(»)]] -

Lemma 4.3. If xem,, fem,, yemn,, then

i13,3[82(B), [i5(y), i (0)]] = (— 1P (B, <y, 00D 5
11,2,3[13( )’ ["1( ), 2(5)]] = (""’ 1)r(p+Q) <7’, <0" /3>> *

Proof. Let g: 8Px87x8" - 8?x8"x8? be the map given by
g(x,9y,2) = (y,z,x). Then g induces g': SP+r — Sp+a+r: g and ¢’
have the same degree (— 1)?(¢+7, and 4, 309 = g 0¢y,53, 4,09 = iy,
1309 = 13, 1309 = i,. Hence

i1,2,3 {("“ 1)ple+n) (B, Ly, o)} “g‘1 2,3 B <¥> %))
= g[i.(B), [E:(p), i5(x)]1]
= [gi1(B), (8ia(¥), 8 (x)]]
= [i5(B), [Es(p), 81 (x)]] -
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The other statement is proved similarly.

Theorem 4.4. If xen,, fen,, yen,, then

oo, B, ¥>) + (= )P0 (B, Ky, ap) + (— 1)/PH0 (y, Lo, f) =0 .

Proof. Let o' =i (x), p' =1iy(B), ¥ =iy(y). Since [,= {1}, we
have, by 2.9,
1= [“’> [ﬂ,: yl]] [ﬂ,: [’}": ‘x’]]' [7’, [‘xl: aBI]]

and therefore

0= 7:1—,5,3[0"» [ﬂ,> 7"]]‘[[3', [7’,5 “I]]' [y’a [0‘13 ﬂ,]]
= <fxa <ﬂ’ 7’>> =+ (— 1)p(q+r) <ﬂ’ <7’ 0‘>> + (— 1)r(p+q) <‘V’ <0‘, 18>> :

Now suppose that X is a space, x ¢ X, and that ¢ is the path-compo-
nent of the constant map in the space of loops in X based at . Then we
have a natural isomorphism 7 :=x,.,(X) ~ xn,(G) for each 7n>0.
Furthermore, if xen, ,(X), fem,(X), and if [x,f]em,, 1 (X) is
their Whitehead product, we have [3]:

T([x,B]) = (= 1)? T (x), T(B)> - (4.5)
From 4.5 and Theorem 4.4 we then obtain :

Theorem 4.6. If xen, (X), Bem,,(X), yenm (X), then
(—1)r® W [, [B, 1] + (— D2V, [y, «]] 4 (— 1) [y, [«,8]] = 0.
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