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Algebras of cohomologically finite dimension
by SAMUEL EILENBERG ?)

Dedicated to Heinz Hopf on his 60 annversary

1. Introduction and results

Let A be an algebra over a field K with (A : K)<oco. The dimension
of A (in the cohomology sense) is defined as the highest integer » for
which the cohomology group H"(A, A) is non zero for some two-sided
A-module 4. If no such integer exists, then dim A =oo. Algebras of
dimension zero are known to be those which are separable. A very inter-
esting characterization of algebras of dimension n has been given recently
by Ikeda, Nagao and Nakayama [4]. The purpose of this paper is to
give a new treatment of the results of [4] within the framework of the
Cartan-Eilenberg theory [1]. There result considerable simplifications of
the proofs, and partly also a sharpening of the results. Relative cohomo-
logy and other ad hoc constructions used in [4] are eliminated.

Let A be a left A-module. The dimension of A4 (notation: 1. dim, 4)
is defined as the least integer n for which there exists an exact sequence

0->X,—>...>X,>4->0

where the left A-modules X,,..., X, are projective. If no such sequence
exists for any n, then 1.dim, 4 =oc. The left global dimension of A is

L.gl.dim A =sup l.dim, 4

for all left A-modules A. Using the functors Ext, the condition
l.dim, A <n is equivalent with Ext%*1(4,C) = 0 for all left A-mo-
dules C, while the condition l.gl.dim A4 <# is equivalent with
Ext?tl= 0.

As for two-sided A-modules A4, the standard procedure will be to
convert them into left modules over the algebra A¢ = A4 @ A* where
A* is the algebra opposite to A and where @ stands for the tensor pro-
duct over K. Then (by definition)

1) Work done under contract AF-18 (600)-562.
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H™(A, A) = Ext” (A, 4)
dim A4 = 1. dime A .

We shall denote by N the radical of A and write I'= A/N.
With these preliminaries, the main results may be stated.

Theorem I. dim 4 =1.gl. dim 2 = 1.dim, I", where Q = A4 ® I'*.
Theorem II. If I'is separable, then dim A =1.dim, I

Theorem III. If dim A <oco then I'is separable.

Note that if K has characteristic zero or is algebraically closed, then
I', being semi-simple, always is separable. Further, the separability of I"
is equivalent with dim I'= 0 and also is equivalent with the semi-
simplicity of I' ® I'* (see [1], Ch. IX, prop. 7.9 and 7.10).

An immediate consequence of Theorem III is the following result of
Hochschild ([3], p. 946):

so that

Corollary 1. If A is semi-simple but inseparable then dim A4 =co.
Combining Theorems II and III yields:

Corollary 2. In order that dim A = n(n<oo) it is necessary and
sufficient that the following conditions hold :

(1) I'is separable.

(2) lLdim, I'=mn.

If 1.dim, I'>0 then the exact sequence 0 > N - A4 - I'— 0 im-
plies ([1], Ch. VI, prop. 2.3) that

lL.dim, I"=1+1.dim, N .
Thus for n>0, condition (2) may be replaced by
(2" l.LdmN =n—1.

The characterization given by Ikeda-Nagao-Nakayama in [4] (for
n>0) utilizes conditions (1) and (2’), except that condition (2') is stated
in a more explicit but also more involved form, which however is equi-
valent. For a proof of this equivalence we refer the reader to Eilenberg-
Tkeda-Nakayama [2] where several questions related to this paper are
discussed.

Sections 2 and 3 contain a sequence of propositions leading to proofs
of Theorem I and II. The technique of proofs fully conforms to the
system developed in [1]. It should be noted that the results of sections 2
and 3 are obtained under weaker hypotheses than stated above. Indeed,
the assumption that (A :K)<oco is dropped and K need not be a field.
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This added generality is abandoned in sections 4, 5 and 6 devoted to the
proof of Theorem III.

2. Preliminaries

We shall consider algebras A over a commutative ring K. We shall
have the oppurtunity to discuss K-modules, left A-modules, right
A-modules and two-sided A-modules. It will always be assumed that K
and 4 have unit elements, and that these unit elements act as the iden-
tity on all modules.

For each left ideal I in A we set =/ and ["=I[]""! for n >0. We say
that [ is nilpotent if ¥ = 0 for some integer k.

Proposition 3. Let A be a left A-module such that Ext}(4,C) =0
for each left A-module C with IC = 0. Iflis nilpotent, then Ext(4,C)
= 0 for all left A-modules C,i.e. l.dim, 4 <n.

Proof. For each integer > 0 consider the exact sequence
0> C->UC 100 -0 .
Since [(I*C[I'*1C) = 0 it follows that
Exth (4, 'O/ C) =0
and therefore the homomorphism
Exth (4, Ii+1C) - Ext" (4, I:0)

induced by inclusion I‘+'Ccl‘C, is an epimorphism. Since [°C = (C
and ¥C = 0 for k sufficiently large, it follows that Ext) (4, C) = 0.

In the sequel we shall use the following proposition established in
[1] (Ch. IX, prop. 4.3).

Proposition 4. Let A and I" be K-algebras where K is a commutative
ring. If A is K-projective and I is semi-simple then we have the natural
isomorphism

H"(A4, Homp (B, 0)) ~ Ext g r«(B, C)

for any left A- and right I™modules B and C.
We shall need some corollaries (also derived in [1], Ch. IX, § 7). First
taking I'= K we obtain

Corollary. 5. If A is a K-algebra with K semi-simple then
l.gl.dim A4 <dim 4 .
Taking I' = A and noting the inequality

dim 4 =gl.dim 4 ® A*
we obtain
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Corollary 6. If the K-algebra A is K-projective and semi-simple then
gl.dm 4 ® A* =dim 4 .
Finally combining these two corollaries we obtain

Corollary 7. 1If Ais a K-algebra with K semi-simple, then dim A4 = 0
if and only if 4 @ A* is semi-simple.

3. Proofs of Theorems I and I1

In this section we shall consider an algebra A over a commutative
ring K. In A a two sided ideal ! will be given with I' = A/l. Every left
I'module 4 will be regarded also as a left A-module with [4 = 0.
Similarly for right and two-sided modules.

Proposition 8. If A is K-projective and I'is semi-simple then
H"(A, C) ~ Extyg p«(I, C)

for every left A- and right I-module C.

This follows directly from Proposition 4 by taking B = I" and ob-
serving that C is isomorphic with Homp ([, (') as a left A- and right
I'-module.

Proposition 9. If A is K-projective and I is semi-simple then
l. dimg I" <1l.gl. dim 2 <dim 4 , Q=AQI*.
If further [ is nilpotent, then equalities hold.

Proof. The first part is an immediate consequence of Proposition 4.
To prove the second half assume 1. dimg, I'<<n. Then, by Proposition 8,
Hn(A,C) = 0 for each 2-module C. Since the sequence

ARQF - A QA > AQT*—0

is exact and [ is nilpotent, it follows that the kernel of the mapping

A@QA* > A ® I'* = Q is nilpotent. Thus Proposition 3 implies that

H"(A,C) = 0 for all two sided A-modules C,i.e. dim A<n.
Theorem I is an immediate consequence of Proposition 9.

Proposition 10. If I' is K-projective and I' ® I'* is semi-simple,
then
Ext} o r«(B, 0) ~ Homp®p*(Tor;‘,(I’, B), 0)

for any left A- and right I-module B and any two-sided /-module C.
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Proof. We first note the abvious natural isomorphism
Hom, g r«(B, C) ~ Hompgrs(I' ®, B, 0)

Now let X be a A4 ® I'™*-projective resolution of B. Replacing B by X
and passing to homology we obtain

H" (HOIIIA®P*(.X, 0)) ~ H" (Homrl@r*(r ®A B, C)) .

The left hand side is Ext} g r«(B, C). To calculate the right hand side
we first observe that since I" ® I™ is semi-simple, the functor Homp g r«
is exact. Therefore

H"(Hompgr(I' ®,4 B, C)) ~ Hompgr«(H,(I' ®, B), C) .

Further, since I'is K-projective, 4 ® I'* is A-projective. Consequently
X is also a A-projective resolution of B and thus H,(I' ®, B) =
Tor4(I", B). This completes the proof.

Proposition 11. If A and I' are K-projective and I' and I' ® I'*
are semi-simple then

H"(A, C) ~ Homp g p«(Tory (I, '), 0)

for every two sided I~module C'.

This follows directly from Proposition 8 and Proposition 10 with
B=T.

Let y denote the smallest integer » such that Tor4 (I, I') = 0. If
no such integer exists then y =oo.

Proposition 12. If K and I' ® I'* are semi-simple and [ is nilpotent
then
dim A =1lLdim, I'=1y .

Proof. The inequality
y =l dim, I

holds without any assumptions. Since K is semi-simple, Corollary 5 im-
plies
* lL.dim, I' < dim 4 .

To prove the inequality
dmA4d <y

assume y<<oco and set » =y -+ 1; then Tors (I, I')= 0. Next ob-
serve that the semi-simplicity of I' @ I'* implies dim I'= 0 and
therefore, by Corollary 5, implies the semi-simplicity of I'. Thus the
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conditions of Proposition 11 are satisfied and we have H"(A,C) =0
for all two sided I-modules C'. Now we utilize the exact sequence

QA+ A QW > A QA>T QI'* -0 .

Since [ is nilpotent, it follows that the kernel of 4 ® A* - I' ® I'* is

nilpotent. Thus Proposition 3 implies that H"(A,C) = 0 for all two

sided A-modules C. Hence dim A< and the proof is complete.
Theorem II is an immediate consequence of Proposition 12.

4. Idempotents

From now on we assume that A is an algebra over a field K with
(A: K)<oco. We denote by N the radical of A, set I'= A/N, and
denote by ¢:A4 — I' the natural factorization homomorphism. All
A-modules will be assumed to be finitely generated.

We shall be concerned with primitive idempotents in. 4. For any two
such primitive idempotents e and f the following four conditions are
equivalent :

(1.1) the left A-modules Ae and Af are isomorphic,

(r.1) the right A-modules eA and fA are isomorphic,

(1.2) the left I''modules I'(pe) and I'(¢f) are isomorphic,
(r.2

r.2) the right I-modules (pe)l’ and (¢f)I" are isomorphic.

For the equivalence (1.1)<= (1.2) see Artin-Nesbitt-Thrall, Rings
with Minimum Conditions, p.99. Analogously (r.1x=)(r.2). There
remains the equivalence (r. 1)<=(r.2), or what amounts to the same,
the equivalence (1.1)<=>(1.2) for A semi-simple. In this case either
(1.1) or (1.2) signify that e and f are in the same simple component of 4.

The primitive idempotents e¢ and f in A are said to be isomorphic if
either of the four conditions listed above is satisfied. A set consisting of
one idempotent out of each isomorphism class will be called a maximal
set (abbreviated for ‘“maximal set of non-isomorphic primitive idem-

potents”).

A decomposition of unity is a sequence e,, ..., e, of mutally ortho-
gonal primitive idempotents such that e, +---4¢, = 1.

Proposition 13. Each decomposition of unity e;,..., e, contains a
maximal set.

Proposition 14. If e,,..., e, is a maximal set then each projective
left A-module is a direct sum of modules isomorphic with Ae;.

We prove both propositions jointly. First let e,,..., e, be a decom-
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position of unity. Then A = Ae, 4----+ Ae, is a representation of A
as a direct sum of indecomposable left A-modules. Consequently every
free A-module F is a direct sum of modules isomorphic with Ae,. From
the Krull-Remak-Schmidt theorem it then follows the same for each
direct summand of ', i. e. for each projective left 4-module.

In particular, for each primitive idempotent f, the left A-module Af is
indecomposable and therefore isomorphic with Ae, for some 7 = 1,..., n.
It follows that e,,..., e, contains a maximal set. Further for this maxi-
mal set the conclusion of Proposition 14 holds. Therefore Proposition 14
holds in general.

Remark. Proposition 14 was established only for finitely generated
projective left A-modules, and will be used in the sequel in this form
only. However, the conclusion is valid for arbitrary projective left
A-modules as was ingenieously proved by Nagao-Nakayama [5].

Proposition 16. The map ¢: A — I' maps the set of primitive idem-
potents in A onto the set of primitive idempotents of I" and establishes
a 1 — 1 correspondence between the isomorphisms classes of primitive
idempotents in A and in I

Proof. It is known that the image in I' of a primitive idempotent in
A is primitive and that each primitive idempotent in I is the image of
an idempotent in A, which must be primitive. The statement concer-
ning isomorphism classes follows from the equivalence (1.1)<=>(1.2).

Proposition 16. Let A’ and A" be algebras such that I and I'" are

direct products of full matrix algebras over K. If ej,...,¢, and

‘s €m
€,...,e, are maximal sets in A4’ and A" respectively, then the set
{e; ®¢€j}, i=1,...,m, j=1,...,n, is a maximal set in the algebra

A=4 Q A".

Proof. Consider the algebra I'= I"® I'" and the map ¢: A4 - I
given by ¢ = ¢’ ® ¢”. Then I' is again a direct product of full matrix
algebras and therefore is semi-simple. Since the kernel of ¢ is nilpotent,
it follows that I" may be regarded as the quotient of A by its radical. It
follows from Proposition 15 that we may restrict ourselves to the case
A'=1", A"=1T", A= TI. By applying the direct product decompo-
sitions of A’ and A” we further reduce the proof to the case when A’ and
A" are full matrix algebras. Maximal sets in A’ and A" are then given by
single primitive idempotents ¢’ and e” which may be chosen to be matrices
with one unit on the diagonal and zeros elsewhere. Then A is again a full
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matrix algebra and e = e¢’® ¢” has a similar form. Thus e is primitive
and therefore is a maximal set for A.

5. Cartan matrices

Let A4 be a left A’- and right A”-module where A’ and A” are K-alge-

/

v 5 / .
bras. Given maximal sets e;,..., ¢, and ef,..., e, in A’ and A" respec-

tively we consider the m by n matrix M (A4) of integers

a; = (e Ae;’ : K)
The isomorphism

/ " / "

shows that the matrix does not change if the idempotents are replaced

by isomorphic idempotents. Of course a change in the order of the idem-

potents e (or €]) interchanges the rows (or columns) of the matrix. To

eliminate this ambiguity it is appropriate the regard the matrix M (A4)

as indexed by the pairs of isomorphism classes of primitive idempotents.
In particular an algebra A may be regarded as a two-sided A-module

and this leads to the square matrix M (A) called the Cartan matriz of A.
We have the following obvious proposition :

Proposition 17. If A = A, + A4, is the direct product of algebras
A, and 4, then

M) 0
M(A)zl .

M (4,)

If A is a simple algebra, then all primitive idempotents are isomorphic
and thus a maximal set consists of one element e. The matrix M (A) has
then order 1 (and indeed consists of the integer (A : K)/n? where n is
the length of a decomposition of unity in A). It is further well known
that (e Ae: K) =1 if and only if A is a full matrix algebra over K.
This yields

Proposition 18. If A is semi-simple then M (A) is diagonal. Further
(assuming A semi-simple) M (A) is the unit matrix if and only if 4 is

isomorphic with the direct product of full matrix algebrus over K.

Prbposition 19. If 0 -4’ > A - A" =0 is an exact sequence of
left A’- and right A”-modules then M (4) — M (4’) + M (A4").
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This follows readily from the exactness of the sequences
0>e A'e" >e Ae” >e' A"e" -0
for any idempotents e’ e A’, e" € A".

Proposition 20. Let A’ and A” be algebras such that I and I are
direct products of full matrix algebras. If 4 is a left A’- and right A"-
module such that

l.dimQA<00, Q.—:A’@A”*,‘
then
M(A)=M(A')D" = D" M(A")

where D’ and D" are integral matrices.

Proof. Let l.dimg A =n» with 0<n<oco. Then there exists an
exact sequence 0 —>B—>X >4 >0 with X Q-projective and
l.dimgB = n — 1. By the preceding proposition

M(4) = M(X) — M(B) .

Thus if the conclusion applies to X and B it also applies to 4. This
reduces the proof to the case n = 0 i.e. to the case when 4 is Q-pro-
jective.

Let e,...,e,e A and ¢,...,e, e A” be maximal sets in A’ and
A”. Then, by Proposition 16, {e; @ ¢;*}, ¢ =1,...,m, j=1,...,n,
is a maximal set in £, and therefore, by Proposition 14, A4 is isomorphic
with a direct sum of modules of the form Q(e, ® e,*). Thus we may
assume that A4 is one of these modules. Then

A= (A @ A™*)(e,Qe)*) = A e, Q- A"* e, *
or if we prefer to regard 4 as a left A’- and right 4"-module

A=Ne e A" .
Consequently

(e;Ae] : K)=(e; A e,Q e, A" ¢} : K)
= (e; A’ e, : K)(e, A" €] : K)
= .;:(e; A’ €2 K) by, (e A" €] : K)

== f(eg A e, : K) b, (e A" €] : K) .
Thus M(A) = M(A’)D" = D'M(A"), where D' and D" are the ma-
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trices of integers
di; = (e; A" €, : K) 8,;, dl;=08,(e) A" ¢} : K) .

The proof is now complete.

6. Proof of Theorem III

Let L be the algebraic closure of the field K. For a K-algebra A, we
denote by A, the ring A®y; L regarded as an L-algebra; thus A, is
the algebra obtained by extension of the ground field. It is known (see
[1], Ch.IX, prop. 7.2) that dim A = dim A4;. Theorem III now
follows from the following two propositions

Proposition 21. If dim 4 <oco then det M(4;)= 4 1.

Proposition 22. If det M(A;) = +1 then I'= A/N is separable.

This last proposition was established by Ikeda, Nagao and Nakayama
([4], Lemma 6). No cohomology theory is involved in the proof which
will not be reproduced here.

As for Proposition 21, since dim 4 = dim A4;, we may assume that
K is algebraically closed. Then I' is a direct product of full matrix alge-
bras. By Theorem I

dim A4 =1.dimyI" , Q=A4Ax I'* .

Therefore, if dim A <oco then by Proposition 20
M(I'y= M(A)D

where D is a matrix of integers. Here M (I”) is the matrix of I’ regarded
as a left A- and right Imodule. However, in view of Proposition 15, this
matrix coincides with the Cartan matrix of I" and therefore is the unit
matrix I. Thus M (A)D = I and the proof is complete.
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