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On Isothermic Coordinates

By Su1NG-sHEN CHERN, PHILIP HARTMAN and AUREL WINTNER

Dedicated to Professor H. Hopf on his 60th birthday

It has recently been shown ([7], pp. 686—687) thatif S: X = X (u, v),
where X = (z, y,2), is a (small piece of a) surface of class C* and if
n = 3, then a local parametrization X = X (U, V) of § can be chosen
with the properties that X (U, V) is of class C" and that the element
of arc-length ds? = |dX|* has the conformal normal form

ds* = y(AU? +dV?)  (y=y(U,V)>0) . (1)

In other words, in dealing with surfaces of class C*, where n = 3, there
is no loss of differentiability when (1) is assumed. It remained undecided
whether or not the same is true if » = 2, an important case which,
because of a low degree of differentiability, leads to peculiar difficulties.

It will be shown in this paper that these difficulties can be overcome
and that, just as loc. cit., the theorem holds also if the given

ds? = g, du? + 2¢;,dudv + gaydv? (2)

is not embedded as | dX |* on a surface § of class (2, but has coefficients
of class C'! and possesses a continuous curvature.

The theorem to be proved is as follows:

(*) On the domain w2 ++ v2 <12, let the coefficients g, of the positive
definite metric (2) be functions g, (u,v) of class C* and such that (2)
possesses a continuous curvature K = K(u,v). Then there exist map-
PINgs

u=u(U,V), v=vU,VT), (3)

of class C! and of mon-vanishing Jacobian, which transform (2) into the
normal form (1), and every mapping (3) with these properties is of class
C?, so that y(U, V) is of class C.

It is understood that curvature for a metric (2) with coefficients of
class O! is meant in the sense of Weyl ([6], pp. 42—44). This can be ex-
plained in the notation of H. Cartan ([1], p. 60) as follows:

301



A Pfaffian form w = Pdu + @Qdv with continuous coefficients P (u, v),
@ (u,v) on a simply connected domain D is called regular if there exists
a continuous function f(u,v) on D with the property that

[ o= ff f(u, v)dudv (4)
J B

holds for every domain B bounded by a piecewise smooth Jordan curve
J in D. (For example, if P and @ are of class C?, then w is regular and
f=Q, — P,.) When w is regular, the identity (4) will be abbreviated as

dow = fdu Adv , (5)

and f will be called the density of the Pfaffian form w, relative to duAdv .
If w,= P,du + Q,dv and w, = P,du + @,dv are two Pfaffian forms,
the symbol w; A w, is understood to be (P,Q, — P,Q,)dudv (so that
du A\ dv = dudv) .

If the coefficients in (2) are of class C, then (2) can be written as
the sum of the squares of two Pfaffian forms,

ds? = o} + o? , (6)

each having coefficients of class C!. Furthermore, there is a unique
Pfaffian form w,, with continuous coefficients satisfying

dw; = w3 \ 0y, dwy = Wy N\ Wy - (7)

If the coefficients of (2) are of class (2, then those of w,, w, can be
chosen of class (%2 and those of w,, become of class C'. In this case, w,,
is regular and Riemann’s definition of the curvature K = K(u,v) of
(2) is

dw,, = — Ko, \ w, . (8)

If the coefficients of (2) are only of class C', then w,, need not be
regular. Following Weyl, (2) is said to possess a continuous curvature K
if w;, is regular, in which case K is defined by (8).

Remark. It follows from (*) that (1) has a continuous curvature and
that the relation corresponding to (8) is

f?"l(YVdU — ypdV) = j}}f 2KydUdV (9)
J

where K as a function of (U, V) is K(u(U, V), v(U, V)). For conse-
"quences of the relation (9), see [7]. '

Even without the assumption that (2) has a continuous curvature,
there exist mappings (3) transforming (2) into the conformal form (1)
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and such that the mapping functions (3) have first order partial deri-
vatives satisfying a Holder condition of every index less than 1 (Lichten-
stein [5]). Since the mappings transforming the conformal form (1)
into another conformal form ds? = y,(dUZ+ dV2) are of the form
U + ¢V = F(Z,), where F is an analytic function of Z, = U,4 iV,,
it follows that every mapping (3) taking (2) into the form (1) has the
property that the first order partial derivatives of the functions (3)
satisfy a Holder condition. This fact will not be used below.

(*) states that the additional assumption of the existence of a contin-
uous curvature K = K(u,v) implies that the assertion of Holder
continuity for the first order partial derivatives can be improved to the
assertion of the existence and continuity of second order partial deriva-
tives. It is known ([3], p. 265) that the assertion of (*) becomes false if
the assumption concerning the existence of a continuous curvature is
omitted.

The truth of (*) was implied by Weyl but was not proved thus far;
cf. [6], pp. 49—50 and [7], p. 685, footnote.

Proof of (*). Let (3) be a mapping of class C* transforming (2) into (1).
It is sufficient to show that 9 in (1) is of class C1. For, according to [2],
p- 222, any mapping of class C' which transforms a metric (2) with
coefficients of class C! into another metric with the same property must
be of class C2. (A simplified proof of this general fact, depending on the
methods of this paper, will be given elsewhere. For the case when one
of the metrics is of the conformal form (2), as in (*), see [7], pp. 681 —682).

Introduce the complex-valued Pfaffian form

¢ = w; + 10, . (10)
Then (6) becomes
ds? = @@ . (11)
It also follows from (10) that ¢ A ¢ = — 2w, A w,, while (7) and (8)
become
dp = —twp A @ (12)
and
doy, = —3iKgANp . (13)

The form w,,, with the additional condition that it is real-valued, is
uniquely determined by (12).
After the change of parameters (3), it follows from (11) that ¢g becomes
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the right side of (2). Hence it is readily verified that there exists a contin-
uous (complex-valued) function « = (U, V) satisfying

o = y(7# 0) (14)
and
@ :ocdw, Where w = U + %V ’ (15)

and U = U(u,v), V= V(u,v) is the mapping inverse to (3).

In the (u, v)-coordinates, the coefficients of ¢ are of class C, so that
@ is regular. Since the definition of a regular Pfaffian form shows that
regularity is preserved under transformations of class C!, it follows that
¢ =x(U, V)(@U 4 2dV) 1is regular. Let the continuous function
= 1(U, V) be defined by

dp = tadw A dw (16)

or, equivalently, by de = 2¢tadU A dV ; so that 7 is (2¢«)~! times the
density of ¢, relative to dU A dV .
Since (16) can be written as

dp = 1dW \ ¢ = (vdw — Tdw) A ¢ ,

where tdw — Tdw is a purely imaginary form, the remark following (13)
shows that
—twy, = TdWw — Tdw . (17)

Since regularity is preserved under C'-mappings, the assumption of (*)
that (2) has a continuous curvature (that is, that w,, is regular in (u, v)-
coordinates) implies that (17) is a regular form (in dU, dV).

Let the density of the form (17), relative to dU AdV, be —2ik(U,V).
Since the coefficients of (17) are purely imaginary, k is a real-valued con-
tinuous function and

d(vdB — Tdw) = —kdw A dw . (18)

It has been shown by H. Cartan ([1], pp. 62—63) that a Pfaffian form
o is regular on a simply connected domain D if and only if there exists a
sequence of Pfaffian forms w?!, w?,... which have smooth coefficients
on D and which approximate w in the sense that, as n— oo, the coeffi-
cients and the densities of w” tend to those of w uniformly on every
compact subset of D . [The sufficiency of this condition for the regularity
of w is clear. The necessity is proved by defining ™ to be the form whose
coefficients are the convolutions of the corresponding coefficients of w
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with a smooth, non-negative function f(U, V) which vanishes outside
the circle U? 4 V2 = 1/n? and which satisfies ({f*dUdV = 1. It fol-
lows from Fubini’s theorem that the density of w” is the convolution of
f«U, V) with the density of w .]

This theorem of H. Cartan implies that if ¢ = «dw is regular and has
the density 2¢7x, then the form fdw, where

p=logx , (19)
is regular and has the density 2¢7. Thus

d(fdw) = tdw A dw . (20)

Since 8 + E——- log aox = log v, by (14) and (19), the proof of (*) will

be complete if it is shown that the real part of g is of class C1. To this
end, let

where a, b, g, h are real-valued (continuous) functions. Then (20) means

that
d(@adU — bdV) = hdU A dV , d(bdU 4+ adV) = gdU A dV (22)

and (18) means that
d(hdU + gdV) = kdU A AV . (23)
Thus (*) is contained in the following lemma:

Lemma. Let a(U, V), b(U, V) be real-valued continuous functions on
U2 4 V2 < R? with the properties that the Pfaffian forms adU — bdV,
bdU + adV are regular and that, if h(U, V), g(U, V) are the respective
densities relative to dU N\ dV, the form hdU + gdV s regular. Then
a, b are of class C.

Proof. If n is a sufficiently large integer, let f»(U, V) be a non-
negative, smooth (say, of class C?) function satisfying {{ f«U,V)dUdV =
1 and vanishing outside the circle U2 4 V2 = 1/n?, and let a®, b*, g*,
h™, k", respectively, denote the convolutions of a, b, ¢, h, k with f*; for
example,

ar(U, V)= ([a(U + =,V + y) f*(z, y)dzdy .

Thus a», b™, g» h", k* are smooth (say, of class C?) functions on
U2+ V2< (R — 1/n)?, and tend, as n— o, toa, b, g, b, k uniformly
on every compact subset of U2 4 V2 < R2.
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According to (22), (23) and H. Cartan’s proof of his approximation
theorem, outlined above,

ay—by=g", by+ap=—N", gy—hp=Fk". (24)
These relations show that a» satisfies Poisson’s equation
ayy + apy=k". (25)

It follows at once that a(U, V) is of class C1. In fact, if Q(U, V; x, y)
is the Green function belonging to the Laplace equation on the circle D (¢):
U? 4+ V2 < (R — ¢£)?, then, in this circle, a”(U, V) is the sum of

fQU,V; z, y)k*(x, y)dzedy

D(e)
and of the harmonic function p*(U, V) which assumes the same bound-

ary values as a®(U, V). By the uniformity of the limit processes
a®—>a and k*—k on U+ V2 < (R — ¢€)?,

a(U,V)=pWU,V)+[JGU,V; x,y) k(z, y)dzdy , (26)

D)
where p(U, V) is the harmonic function which assumes the same bound-
ary values as a(U, V). The C'-character of a(U, V) in D(¢) is im-
plied by (26) and the continuity of k . In fact, the logarithmic potential
of a continuous density is always of class C' (but not necessarily of
class C?).

The fact that b(U, V) is of class C* (and has the partial derivatives
by = —ap—h,by =ay — g) follows from (22), and also from (24).
This completes the proof of the Lemma and of (*).

Appendix

In view of that particular case of (*) which concerns the first funda-
mental form of surfaces S: X = X (u,v) of class C?, it is natural to
raise the question whether or not a surface 8: X = X (u, v) of class C!
always has a parametrization X = X (U, V) of class C' in which its
first fundaniental form has the conformal normal form (1). It turns out
that the answer is in the negative.

It is known ([3], p. 262) that there exist positive definite metrics (2)
with continuous coefficients for which no mapping (3) of class C, with
a non-vanishing Jacobian, transforms (2) into (1). What is at stake is
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to show that there exists a metric which has this property and is, at the
same time, the fundamental form of a surface X = X (u, v) of class C.

This can be concluded by considering (at r = 0) suitable C'-surfaces
S of revolution,

S : z——-z(x,y):jrf(r)dr, r= (22 + 42 =0, (27)

where, on some interval 0 <<r <{a, the function f(r) is continuous and
such that

f(r)= 0 accordingas r=0 . (28)

A suitable choice of f(r) proves to be (—logr)% (if 0<r<1), a
choice of f made by Lavrentieff ([4], p. 420) for a similar purpose.

Consider first the parametrization of S in terms of polar coordinates
(r,0). This is not an admissible parametrization (at r = 0), since the
resulting element of arc-length

ds? = (1 + f2(r)) dr? 4 r2d6? = r2(r2(1 + f2) dr? + d06?) (29)
is not positive definite (at » = 0). Let ¢ = p(r) be the function

0= o) = exp(— fri(1 + PU)kdr), (O<r=a), (30)

sothat do/o = — r~1(1 + f2) dr and ds® = r2~2(dp® + 02d0%) . If new
parameters are defined by

u = p(r)cos 0, v=p(r)sinf , (31)
then du? + dv? = dp? + 0*d6?, and so (29) becomes
ds? = r*e 2 (dw? + dv?), o=rg(r) . (32)

This is a “conformal’’ form, but the factor r2p—2 may not be continuous
and positive at r = 0.

Since p(r) is an increasing function of r for 0 <r < a, the trans-
formation (z, y) = (r cos 6, rsin 0) - (u, v) is one-to-one. In addition,
this transformation is of class C' with a non-vanishing Jacobian for
x% 4 y? £ 0 (and /or u? 4 % 3£ 0) .

Suppose that there exists a mapping

of class C! with non-vanishing Jacobian on some circle z? + y2 < €2,
with the property that the element of arc-length on § has the conformal
normal form

ds? = y(dU? +- dV?) (y =2, V) (34)
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and that, without loss of generality, U(0,0) = V(0,0) = 0. Then
there exists on some circle u? -+ v? < §2 a mapping

U=U(u,v), V=7"V(u,v) (35)

with the property that (35) is of class (!, has non-vanishing Jacobian
for w? 4 v? £ 0 and the inverse of (35) transforms (32) into (34) for
u?+0v2#0. Hence U(u,v)+ 1V(u,v) = W(w) is a continuous
(single-valued) function of w = u + ¢v on the circle |w| < d and is
regular on the punctured circle 0 < |w| < d. Consequently, W (w) is
regular on the circle |w| <dé and y = r2p=2|dW /dw|~2 for |w| # 0,
where o = |w| and where r = r(p) is the function inverse to (30).
Since W (w) (=5 0) is regular at ¢ = 0, there exist an integer m = 0
and a constant ¢ > 0 such that o|dW /dw| ~ co™! as p = |w|—>0.
Hence, ‘

r =1r(g) ~ (0, 0)co™! as p—>0 . (36)

It follows that no neighborhood of the point («x, y) = (0,0) of S
has a (''-parametrization in which the element of arc-length has the form
(34) if the inverse function r = r(p) of (30) fails to satisfy (36) for some
constant (0, 0)c > 0 and some integer m = 0. This is the case, for
example, if

f(r) = (—log )%, (37)

since log(1l/¢) = Const. + log r* + }loglogr! 4+ 0o(1) as r— 0, by
(30) and (37). Hence Cp ~r/(— log r)z as r— 0, where C is a positive
constant. Consequently, r ~ Cp(— log p)} as ¢o— 0, and so (36) cannot
hold.

On the Cl-surface S of Lavrentieff (loc. cit.), defined by (27) and (37),
the element of arc-length in terms of its Cartesian parameters (x, y) is

ds*=(1—a?/R)da?—2(xy/R)dxdy+(1—y?/R)dy? where R=r2logr. (38)

It is curious that the example given in [3], pp. 269—279 of a (non-em-
bedded) continuous ds? which cannot be conformalized is very close to
(38), namely, '

' ds? = da? + (1 + x/2R)dy? ,

where R = r2logr, as in (38).
It is worth mentioning that the surface S defined by (27) and (37) is

strictly convex, since (37) is an increasing function of r.
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