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Sui sistemi di forme quadratiche
nel campo reale

di BEN1AMINO SEGRE, Roma

Dedicato a H. Hopf, in occasione del suo 60° compleanno

1. Nel lungo e fruttifero periodo dacché & sorta, la geometria algebrica
si & occupata soltanto sporadicamente, e quasi sempre in modo piuttosto
frammentario, delle questioni concernenti gli enti algebrici considerati
nel campo reale. 1 noti risultati relativi alle curve algebriche reali (dovuti
a von Staudt, Harnack, Klein, Hilbert, Brusotti, ecc.) e quelli sulle
superficie algebriche reali (dovuti principalmente a Comessatti) mostrano
infatti gia l'estrema difficoltd di teorie generali nel campo algebrico
reale, e come non di rado problemi particolari, in apparenza assai semplici,
possano nel fatto dimostrarsi tutt’altro che agevoli e ricchi d’impre-
visto1).

Notevoli risultati di algebra reale furono ottenuti qualche tempo
addietro da H. Hopf [5, 6] ed E. Stiefel [14], con riposti mezzi topologici
non del tutto consoni alla natura delle questioni trattate. Lo stesso Hopf
ha ripetutamente segnalato l'interesse di ritrovare quei risultati per via
algebrica, cid che fu parzialmente fatto da F. Behrend [2]; tuttavia
restavano aperte diverse questioni in tale ordine d’idee, segnatamente
quella riferentesi ad un bel risultato di Hopf sulle algebre reali ([5],
nn. 3, 6), relativamente al quale il medesimo A. recentemente dichiarava
(in [7], p. 91): ,,Ich glaube auch nicht, dafl das Herz eines Algebraikers
beruhigt wird durch den topologisch-metamathematischen Beweis des
Satzes liber die kommutativen Divisions-Algebren.”

Nel presente lavoro, che sono lieto di dedicare all’illustre Collega ed
amico Heinz Hopf, pervengo al suo risultato suaccennato quale parti-
colarissimo. corollario di un teorema — ottenuto nel n. 4 — concernente
gli spazi lineari reali giacenti sulle quadriche di un sistema lineare asse-

1) Un classico esempio in proposito viene offerto dallo studio delle superficie cubiche nel
campo reale, per il quale cfr. per esempio B. Segre [10], cap. III; per un esempio recente
di altro tipo, cfr. B. Segre [11].

(Qui ed in seguito, i numeri entro parentesi quadre rinviano alla bibliografia posta alla
fine del lavoro.)
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gnato. Il procedimento con cui dimostro tale teorema ha carattere alge-
brico-geometrico, e si svolge nel campo reale poggiando essenzialmente
sulle quattro ovvie proprieta che seguono.

a) Se una varietd algebrica Vg & reale (rappresentabile cioé con un
sistema di equazioni algebriche a coefficienti reali) e varia con continuita
in uno spazio proiettivo reale, §,, contenendo sempre qualche S, reale,
di questa stessa proprieta gode ogni posizione limite di V.

b) Una qualunque Vg algebrica reale d’ordine dispari di S,, incontra
ogmt S,_s reale di S, in qualche punto reale.

c) Sia W una porzione ¢§-dimensionale — luogo di punti semplici
reali — di una Vj algebrica di §,, tale che il contorno di quella appar-
tenga ad una sottovarieta algebrica, U, di V. Allora un §,_g reale, che
vari con continuitd in 8, senza mai incontrare la U, ha a comune con
W un numero di punti il quale — ove sia finito e tale che ciascuno di
questi punti si computi in esso con la propria molteplicitd d’intersezione
— risulta sempre pari o sempre dispar:.

d) Una V5 algebrica a punti reali, che sia non singolare, di dimensione
0 > 2 e linearmente connessa, st conserva connessa quando da essa si
asportino i punti di una qualunque sotto-varietd algebrica di dimensione
<6 — 2.

Rileviamo che la proprieta a) si estende facilmente al caso in cui Vg,
S,, S, siano definiti (anzicheé sul campo reale) su si un qualunque corpo
commutativo, sostituendo alla nozione di limite quella di specializzazione.
La b) si estende poi dal campo reale ad un qualunque campo realmente
chiuso (nel senso di Artin e Schreier [1]), com’e stato indicato da F. Beh-
rend ([2], p. 15). E probabile che anche le c), d) possano venir estese ai
campi realmente chiusi, definendo una ,,porzione’’ W di Vg come la tota-
lita dei punti di Vg le cui coordinate soddisfino ad opportune disugua-
glianze algebriche e procedendo in modo consimile a quello tenuto
sull’argomento da W. Habicht [3, 4]; in tal caso un’analoga estensione
seguirebbe senz’altro per i vari risultati del presente lavoro. Qui pero
non ci occupiamo di siffatte estensioni; osserviamo soltanto che la b)
discende dalla ¢), e che nella d) & essenziale supporre Vg priva di punti
multipli, come risulta da F. Severi e B. Segre [13].

2. 1l teorema annunciato nel n. 1 risolve — per un’infinita di valori
di n, 4 (ma non per tutti) — il

Problema I. — Assegnati gli interi n, 6 soddisfacents alle
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determinare il massimo intero o = g(n, 8) tale che ogni sistema lineare
oo® di quadriche reali di S, contenga qualche quadrica su cui giaccia (almeno)
un 8, reale.

La risoluzione completa di questo problema equivarrebbe manifesta-
mente a quella del

Problema II. — Assegnati gli interi n, o, ove
n>=1, 0<o<n—1,

determinare il minimo intero 6 = 6(n, ), tale che ognt sistema lineare
oo® di quadriche reali di S, contenga qualche quadrica su cuti giaccia un S,
reale.

Nel caso particolare in cui ¢ = n — 1, il problema II pud porsi sotto
forma piti semplice nel modo seguente. Osserviamo che una quadrica di
S, che contenga un S, ; si spezza necessariamente in due iperpiani
(distinti o coincidenti) di S,,, e viceversa ; e che una quadrica-luogo cosi
spezzata & apolare a tutte e sole le quadriche-inviluppo di S, rispetto
a cui quei due iperpiani risultino fra loro coniugati. Se dunque sosti-
tuiamo al sistema lineare oo® cui si riferisce il problema II quello oo ad
esso apolare, ove

d(n) =%nm+3) —d(m,n—1)—1, (1)

e se poi applichiamo il principio di dualitd in 8,, vediamo che — per
o = n — 1 — il problema II equivale al

Problema III. — Determinare il massimo intero d = d(n) tale che —
in corrispondenza ad ogni sistema lineare oo di quadriche reali di S, —
esista in S, almeno una coppia di punti reali mutuamente convugate rispetto
a ciascuna quadrica del sistema.

In base alla suddetta definizione di d(n), mentre deve esistere in §,,
qualche sistema lineare oo?*! di quadriche reali non aventi a comune
nessuna coppia di punti coniugati reali, analoga proprietd non deve aver
luogo per alcun sistema lineare meno ampio. In altri termini,

N+ 1) =d(n) + 2 (2)

rappresenta precisamente il massimo numero di forme bilineari sim-
metriche a coefficienti reali, in due serie di n 4+ 1 wvariabili, formanti
assieme un sistema definito, tale cioé che I’annullarsi delle forme nel
campo reale implichi ’annullarsi di tutte le variabili in una almeno delle
due serie. Il problema di determinare N (r), coincidente cosi sostanzial-
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mente col i)roblema I11, fu gia posto da H. Hopf ([5], n. 1), che lo risolse
in tre casi :

N@2 =2, N@B =5, N@4) =6.

Dal presente lavoro risultera (n. 5), fra I’'altro, che & d(2k) = 2k+1 — 1

per ogni h intero positivo, il che porge la soluzione del problema di Hopf
in un’infinitd di casi, mediante la formula :

N@+)=2H41  (>1), (3)

che subito segue dalla (2). Poiche N (r) ¢ funzione mai decrescente di 7
(n. 3), cosi la (3) implica che debba essere N (r)>r per r >3 ; e questo
risultato equivale appunto a quello di Hopf sulle algebre reali, a cui ab-
biamo alluso nel n. 1.

3. Rileviamo ora alcune limitaziont intercedents fra i caratteri n, o, 4,

fra loro legati nel modo specificato nei problemi I e II (n. 2). Risulta
anzitutto :

320 —n+ 120 —n+2)<dn,0) <3+ 1+2), (4)

ove per la validita della limitazione inferiore si suppone che sia 2p > n.
Invero il primo membro esprime allora il numero delle condizioni
algebricamente indipendenti che occorre imporre ad una quadrica
di 8, — nel campo complesso — affinche essa contenga qualche
Se, e cioé sia (almeno) 29 — n + 1 volte specializzata (ossia abbia un
83, doppio). Percio, se denotiamo quel numero con 4 -+ 1, esistono
in S, sistemi lineari co* di quadriche reali nessuna delle quali contiene
degli S, reali, anzi neppure complessi, onde dev’essere d(n, p)>A4,
ossia appunto 6 > 4 4+ 1. La limitazione superiore per ¢ si ha poi su-
bito notando che (p 4+ 1)(p + 2)/2 esprime il numero delle condizioni
lineari indipendenti che vengono imposte ad una quadrica dal passaggio
per un S, assegnato ; esse sono reali se S, e la quadrica lo sono, e possono
ovviamente venire soddisfatte da una quadrica di un qualunque sistema
lineare la cui dimensione raggiunga almeno quel numero.
Risulta inoltre :

Sn+1,04+1) <d(m, 0 +n+2. (5)

Infatti, posto &' = d(n,g) +n + 2, ed assegnato in §,,; un qua-
lunque sistema lineare oo® di quadriche reali, X, si scelgano generica-
mente in S,,,; un punto O ed un iperpiano S, reali, e si consideri il sistema,
lineare segato su S, dalle quadriche di 2’ che passano doppiamente per
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0. Quest’ultimo sistema ha dimensione §' — (n + 2) = d(n, p), e con-
tiene quindi una quadrica su cui giace qualche S, reale; il cono proiet-
tante tale quadrica da O risulta manifestamente una quadrica di X2 su
cui giace qualche S, , reale, onde segue che dev’essere appunto

dn+1,0+1) <0 .

Nel caso ¢ = n — 1 le (4), (5), avuto riguardo alle (1), (2), forniscono
rispettivamente le limitazioni r < N(r) <2r — 1, N(r 4+ 1) = N(r).

Aggiungasi che dalla (5), procedendo per induzione rispetto all’intero
positivo A, si ricava in modo ovvio la limitazione

d(n,0) > d(n+h,o+h) —nh—h(h+3) . (6)

Supponiamo dapprima che esista un % per cui d(n + h, o + k) rag-
giunga il piu grande valore compatibile con le (4), ossia

on+h,o+h)=3(+h+1e+hr+2); (7)
allora la (6) porge per d(n, ¢) la limitazione inferiore
om,e) Z3(e+ e+ 2) —h(n—o) . (8)

La (8) appare non banale qualora & possa venire scelto [intero positivo,
in guisa che valga la (7), e] cosi piccolo da renderne il secondo membro
non negativo ; essa in tal caso risulta piu forte della limitazione (4) dello
stesso senso, non appena si abbia

h<i(Bop—mn -+ 3). (9)

Supponiamo da ultimo che, per un’opportuna scelta di n e g, d(n,p)
raggiunga il pilt piccolo valore compatibile con le (4), ossia

o(n,0) =42 —n+1)(2¢ —n+2) . (10)
In tal caso la (6) porge la

(n+h, g+h) <} (o+h+1)(o+h+2)—}(n—0)(Be—n—2h+3); (11)

e questa limitazione superiore per d(n+ h, o + k) & piu forte di quella
dello stesso senso fornita dalle (4), per tutti i valori interi positivi di A
soddisfacenti alla (9).

4. Ci proponiamo ora di dare una condizione aritmetica per n e g,
sufficiente per la validitd della (10). Vedremo poi, nel n. 5, che tale con-
dizione non é illusoria in quanto esistono anzi infinit valoridi n e ¢ che
la soddisfano.
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Allo scopo di poter enunciare brevemente il risultato che abbiamo in
vista, introduciamo i simboli :

r =20 —mn-+1, (12)
6, =3%r(r+1 , (13)
or2!...(r—1! (m4+1!(n+3)!...(n47)!

= TR .. (@-1)1 (nr D)1 (norF-3)1 ... n1 PO7 7 dispari,  (14)
. 0!2!...(r-2)! (n+2)! (n+4)! ... (n+7r)! .

o = e )1+ 3) ! ... (2r=0)! (nr 1) (nrL3)1. .. (n1)] pe”Pa(rl‘é)

ove, come di consueto, 0! = 1. La condizione a cui abbiamo alluso

viene allora espressa dal

Teorema. — La (10) certamente sussiste, e cioé st ha 6(n, o) = 6,, per
tutti 1 valori inters di n e o, soddisfacenti alle [n/2] < p<mn, in corri-
spondenza ai quali Uintero x, , definito dalle formule precedenti risulti
dispari.

A questo teorema si puo dare forma geometricamente pili espressiva,
utile anche ai fini della dimostrazione, ricorrendo alla seguente nota
rappresentazione. Le quadriche-luogo reali di S, sono tutte date dal-
I'equazione

2

=0 j

(%] % 7

I tas

ove le x denotano coordinate omogenee di punto in S,, al variare dei
coefficienti @ nel campo reale. I coefficienti a distinti sono in numero di
v + 1, dove, per abbreviare, si ponga

v=14%nn 4+ 3) , (16)

e possono quindi venir assunti come coordinate omogenee di punto in un
S, reale.
In tale spazio 8, conviene considerare n varieta algebriche irriducibili :

O, OB D™

dove la @ — denominata una varieta di Veronese di indici (r, n)2) —
¢ il luogo dei punti di S, che corrispondono a quadriche di S, r volte
specializzate (r = 1, 2,...,n). Pertanto la varieta ®(" si rappresenta
analiticamente annullando tutti i minori d’ordine »n — r 4+ 2 della

1) Cfr. B. Segre [8], [9j; nel primo di questi due lavori sono stabilite — fra I’altro — le
proprieta delle @ che enunciamo nel presente capoverso.
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matrice simmetrica || a;; ||, e — tenuto conto delle (13), (16) — essa
ha la dimensione

Opn=7v—0, . (17)
La varieta @™ risulta priva di punti multipli, ed ha lordine », , = 2"
(espresso dunque da un numero pari, per ogni valore di »). Invece, se
1I<r<<n —1, la varietda @") ammette @™+ come luogo dei propri
punts multiple [e precisamente, @™ passa per @("+1) con la molteplicita
27, contenendo ogni punto di @©® (r <s << n) che (se s<n) non stia su
@+ con esatta molteplicitd », , ;]; inoltre l'ordine di una tale @(r)
uguaglia il numero x, , fornito dalle (14), (15).

Notiamo ora che, in virti della (12), le ipotesi ammesse nel teorema
per n e g implicano che sia 1 <7 <{» — 1. Un punto « (reale o com-
plesso) di @', che non stia su @("+1), rappresenta una quadrica a di S,
specializzata r volte — e non di pilt — tale quindi che, nel campo com-
plesso, gli spazi lineari massimi giacenti su essa hanno esatta dimen-
sione g ; e viceversa.

Se « & reale, tale & anche la quadrica a, sicché 1'S,_; doppio di questa
risulta reale. Per cio che concerne gli spazi reali massimi di @, si hanno
invece ¢ —r + 2=mn — p+ 1 diverse possibilitd, in quanto & noto
elementarmente che la loro dimensione puo assumere uno qualunque dei
valori r —1, r,...,0 (a seconda dell'indice d’inerzia della forma
quadratica figurante a primo membro nell’equazione di a). Ciascuno
degli » — ¢ + 1 sistemi di quadriche reali r volte specializzate di S,
contenenti spazi reali massimi di una fissata di quelle dimensioni, viene
mutato transitivamente in sé dal gruppo continuo delle omografie reali
non degeneri di §,, ed & quindi connesso ed omogeneo. Pertanto :

Nel campo reale il luogo D' — DD ottenuto da D7 con l'aspor-
tarne 1 puntt multipli, sv spezza in n — ¢ + 1 porzioni connesse omogenee
fra loro disgiunte, ciascuna di dimensione o, ,,.

Riferiamoci in particolare alla porzione, Q(7, rappresentativa delle
quadriche reali di S, r volte specializzate che contengono degli S, real:.
Essa é una varieta topologica aperta, il cui contorno, ©'™, appartiene
per cio che precede alla varieta algebrica @(7+1). In virtu delle (17), (13),
quest’ultima ha la dimensione

t'sr+1,n =V — %(T + 1)(')‘ + 2) = 6r,n - (T + 1) < 67‘,1; e 2 (18)

Inoltre, in forza del n. 1, a), ciascun punto di @" — quale posizione
limite (giacente su @("+1)) di un punto di (" — rappresenta una qua-
drica reale di S, (specializzata pit di r volte) su cui giace qualche S,
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reale. Viceversa, si dimostra senza difficoltd che — se vale la (12) —
una qualunque quadrica reale di S, specializzata pii di r volte e conte-
nente qualche §, reale puo ottenersi come limite di una quadrica reale
di 8, specializzata esattamente r volte e contenente degli S, reali. Per-

tanto la chiusura Q" = Q) 4+ O della varieta topologica Q7 (di
dimensione 9, ,) € il luogo dei punti di S, che rappresentano quadriche
reali div S, contenenti qualche S, reale.

Avuto riguardo alla (4) ed alla definizione di d(n, g) (n. 2), il teorema
da stabilire equivale conseguentemente a mostrare che :

Nelle vpotest specificate in quel teorema, la suddetta Q" vien incontrata
tn qualche punto (reale) da ogni spazio lineare reale div S, avente dimen-
sione 6, =v — 6, , (complementare a quella, 6, ,, di (7). In altri ter-
mini, ognt S5 reale di 8, che non incontri @', inconira necessariamente
Q) 4n qualche punto reale.

Per dimostrare questa proposizione, incominciamo con l’osservare che
gli 85, reali di §, possono venir assimilati ai punti reali di una varieta
Grassmanniana, (f,, la quale é reale, priva di punti multipli, ed ha
dimensione

0=+ 1) —08)=(+1)8,>2.

L’insieme degli S5, (reali o complessi) di S, che — nel campo complesso —
si appoggiano in qualche punto alla @("+1) si rappresenta su G, con una
varieta algebrica di dimensione 6,6, , 4+ d,., ,; € questa dimensione
risulta <<w — 2, in base alle (18).

Poiché, come s’¢ detto, @™ é luogo di punti reali giacenti su @(m+1),
cosi — in forza del n. 1, d) — l'insieme degli S, reali di S, che non si
appoggiano a @'" risulta connesso. Avuto riguardo al n. 1, c), la seconda
forma dell’ultimo enunciato seguira tosto ove si provi che :

E possibile scegliere in S, un S 5, reale privo di punti a comune con Pr+1)
ed incontrante D7 tn un numero finito di punti, in modo che quells fra tali
puniti che cadono su QT (contati con le rispettive molteplicita) risultino in
numero dispars.

Fissiamo all’'uopo un qualunque S,_, reale di S, (di dimensione
0o—7r=mn—p—12>0); e, nel sistema lineare oco’~%-e¢ di tutte le
quadriche che lo contengono, consideriamo un generico sistema lineare
reale oo (il che & certamente possibile, essendo 4, <<» —4,_,). Diciamo
2’ quest’ultimo sistema lineare, ed S5, la sua imagine in S,. B subito visto
che — nel campo complesso — X contiene soltanto un numero finito di
quadriche almeno r volte specializzate, e che nessuna di queste & pit di
r volte specializzata. Una siffatta quadrica di 2" é quindi esattamente r
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volte specializzata, eppertanto — se reale — ammette un S,_; doppio
reale ; questo e poi sghembo con §,_,, per la genericitd con cui fu scelto
2, sicché lo spazio congiungente S,_; ed S,_, risulta reale, di dimensione
o, e situato per intero sulla quadrica suddetta. In §,, cio fornisce che

Lo spazio S, reale (rappresentativo di X') non incontra @7V ; ogni punto
reale comune ad esso ed a D" giace su Q7).

In virtu dell’ipotesi del teorema enunciato in principio relativa a
%y n, 12 varietd @” & di ordine dispari. Pertanto (n. 1, ¢), il numero
complessivo delle intersezioni reali di @7 ed S risulta dispari; e tale &
percio anche — come richiesto — il numero delle intersezioni reali di
Q" ed S , in quanto questo numero coincide con quello, in forza dell’ul-
tima proposizione. Il teorema suddetto & cosi dimostrato.

5. Allo scopo di poter esprimere piu esplicitamente in funzione di r
ed » la condizione — figurante nel teorema del n. 4 — che il numero
%, , 8ia dispari, introduciamo le seguenti notazioni. Se m & un qualunque
numero naturale, denotiamo con {m}, l’esponente della massima po-
tenza del 2 che divide tale numero, e con (m), la somma delle cifre (0
od 1) del numero stesso scritto nella numerazione a base 2. Si tratta
allora di esplicitare la

{#r,nja =0 . (19)

A tal fine osserviamo che, per ogni m >0, si ha

{m!l}y =m — (m),;?)

la stessa relazione vale anzi ovviamente anche per m = 0. Poiché — sia
nella (14) che nella (15) — la somma degli interi i cui fattoriali compaiono
a numeratore uguaglia I’analoga somma relativa al denominatore, cosi
la (19), per r = 2s + 1 dispar:, diventa :

8

Z[(20)g+ (0 + 2 + 1)y — (28 + 20 + 1)y — (n — 25 + 23),] =0, (20)

i=0
e per r = 2s part essa puo scriversi nella forma :

8—1

E [(20)y+ (14 26+ 2)g— (25 + 2+ 1)y — (n— 25+ 2i+ 1),]=0. (21)

=0

3) Questo risultato trovasi gia in F. Behrend [2], p. 16. Esso si ottiene subito osservando
che & {m!}, = [m/2] + {[m/2]!}, e quindi:

{m!}y = [m[2] + [m[4] + [m/8] + .« - -.
Pit generalmente, qualunque sia p > 2 e con ovvia estensione dei simboli, si vede che &
{m}p = [m[p] + [m[p*] + [m[p®] +----,

eppertanto: (p—1) - mlp =m— (m)p .
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Notiamo ora che, se & e k denotano due interi positivi arbitrari, posto

§=2r1__1, n = 2" 4 (b — 1) 2~+1
risulta :
(n+2@+1)2 :(k—_l)2+(27’)2+2 per i:O:I:\"'aS:
(28 +2v 4+ 1), = (20 — 2)y + 2 per 1=1,2,...,8,
(n — 28 + 22)y = (b — 1)y + (2¢ + 2), per +1=20,1,...,s

Poicheé si ha inoltre (2s),=h —1, (2s+ 1),=5h, (2s+ 2), =1,
(0); = 0, cosi la (20) rimane soddisfatta dalle precedenti posizioni, e
la (19) sussiste ove si definiscano s, n nel modo indicato e si prenda
r =28+ 1.

Del pari, assunto

§ = 21 n=2r} for1 __1
per ¢t =0,1,...,8 — 1 risulta:

(n + 20 4 2); = (k) + (29); + 2,
(2s 4+ 20 + 1), = (29), + 2,
(n — 28 + 21 + 1), = (k)y + (27), ,

sicché la (21) rimane soddisfatta, e la (19) sussiste ove si definiscano s, »
nel modo indicato e si prenda r = 2s.

Dall’analisi precedente, tenuto anche conto della (12) e del teorema
del n. 4, si ottiene in particolare che :

L'uguaglianza (10) sussiste per tutts ¢ valori di n e p espressi dalle

n =24 (k — 1) 21 o=k2 — 1, (22)
oppure dalle
=20+ o/ 1 o=(k-+1)20—1, (23)

comunque st scelgano glv tnters positivi h e k.
Se ad esempio assumiamo k = 1, le (22) porgono :

n =2k o=2"—1,

e la (10) — per un siffatto valore di » — si riduce a d(n,n — 1) =
=mn(n — 1)/2. La (1) allora fornisce d(2*)=d(n)=2n —1=2+1_1,;
e questo & il risultato che, alla fine del n. 2, ci ha condotto alla rela-
zione (3), da cui poi discende — come ivi si & detto — il teorema di Hopf
sulle algebre reali (citato nel n. 1). Per altre applicazioni e deduzioni in
analogo ordine d’idee, cfr. B. Segre [12].
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6. Osserviamo che, per s =0, la (20) si riduce alla (n 4 1), =
= (n);+1; questa é soddisfatta sempre e solo che » sia un numero pars,
2m, ed allora la r = 2s 4+ 1 e la (12) porgono

n=2m , § =20, F=1, o=m

[il caso in cui m = 2k — 1 sia dispari rientra nelle (22), ove vi si faccia

= 1]. La validitd della (20) per r = 2s 4+ 1 implica, come s’¢ visto,
la (10); sicché — per ogni m intero positivo — risulta 6(2m,m) =1,
ossia, con le notazioni del problema I (n. 2),

e(2m,1)=m . (24)
Pertanto :

In uno spazio 8,,,, di dimensione pari 2m, ogni fascio di quadriche reals
contiene sempre qualche quadrica (necessariamente specializzata) su cus
giace qualche S, reale.

Questo risultato era gia stato ottenuto con calcoli diretti da E. G. To-
gliatts [15], n. 14, limitatamente ai fasci generali di quadriche.

Un altro caso particolare di validita della (10) viene fornito dalle (23)
quando vi si assuma h = 1, il che porge:

n=4k+1, o=2k+1, r=2, 0=26,=3,

e quindi, con le notazioni del n. 2,

o4k +1,3)=2k+1 . (25)
Pertanto :

In uno spazio S, la cui dimensione sia della forma n = 4k 4+ 1 (con k
intero positivo), ogni sistema lineare oo® di quadriche reali contiene sempre
qualche quadrica (specializzata almeno due volte) su cui giace un Sy y
reale.

7. Faremo, terminando, alcune osservazioni complementari concer-
nenti la funzione ¢ = g(n, d) che compare nel problema I (n. 2), con
speciale riguardo al caso in cui g, n e § soddisfino alla (10). Rileviamo
anzitutto che risulta sempre :

e(n +1,98) =¢(n,9d) . (26)

Ed invero, un sistema lineare di quadriche reali di S, ,; di dimensione
6 <3$n(n+ 3) —1, comunque assegnato, sega su di un generico S,
reale di S, , un sistema lineare di quadriche reali, ancora di dimensione §.
Per definizione di ¢ = g(n, 8), v’é qualche quadrica di quest’ultimo
sistema su cui giace un S, reale; una quadrica siffatta é sezione di §,
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con una quadrica del sistema assegnato in S, ,,: e poiché quest’ultima
quadrica viene a contenere quell’S,, ne consegue la (26).

Dimostreremo che :

Se © numer: ¢, n e § soddisfanno alla (10), nella (26) deve sussistere tl
segno dv uguaghanza.

Notiamo all’'uopo che, in forza delle (12), (13), la (10) si scrive sempli-
cemente J = J,. Ne consegue che, nel campo complesso, e quindi anche
a fortiori nel campo reale, un generico sistema lineare oo® di quadriche di
S,., ove m > mn, non contiene quadriche pil che r volte specializzate.
D’altro canto, se nella (26) valesse il segno di disuguaglianza, ogni
sistema lineare oco® di quadriche reali di S, ,, dovrebbe contenere almeno
una quadrica passante per qualche S, reale; l'indice di specializza-
zione di una quadrica siffatta non potrebbe quindi essere inferiore a

20+1) —(m4+1)F+1=r+1,

in contrasto con cio che precede. Questa contraddizione prova I’asserto.
Come semplice applicazione del risultato testé stabilito, notiamo che
dalle (24), (25) discendono le uguaglianze :

o@@m +1,1)=m , o(4k +2,3) =2k + 1,

di ovvio significato geometrico (n. 2).
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