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Sui sistemi di forme quadratiche
nel campo reale

di Beniamhsto Segre, Roma

Dedicato a H. Hopf, in occasione del suo 60° compleanno

1. Nel lungo e fruttifero periodo dacchè è sorta, la geometria algebrica
si è occupata soltanto sporadieamente, e quasi sempre in modo piuttosto
frammentario, délie questioni concernenti gli enti algebrici considerati
nel campo reale. I noti risultati relativi aile curve algebriche reali (dovuti
a von Staudt, Harnaek, Klein, Hilbert, Brusotti, ecc.) e quelli sulle
superficie algebriche reali (dovuti principalmente a Comessatti) mostrano
infatti già l'estrema difficoltà di teorie generali nel campo algebrico
reale, e corne non di rado problemi particolari, in apparenza assai semplici,
possano nel fatto dimostrarsi tutt'altro che agevoli e ricchi d'impre-
visto1).

Notevoli risultati di algebra reale furono ottenuti quaiche tempo
addietro da H. Hopf [5, 6] ed E. Stiefel [14], con riposti mezzi topologici
non del tutto consoni alla natura délie questioni trattate. Lo stesso Hopf
ha ripetutamente segnalato l'intéresse di ritrovare quei risultati per via
algebrica, ciô che fu parzialmente fatto da F. Behrend [2] ; tuttavia
restavano aperte diverse questioni in taie ordine d'idée, segnatamente
quella riferentesi ad un bel risultato di Hopf sulle algèbre reali ([5],
nn. 3, 6), relativamente al quale il medesimo A. recentemente dichiarava
(in [7], p. 91) : ,,Ich glaube auch nicht, daB das Herz eines Algebraikers
beruhigt wird durch den topologisch-metamathematischen Beweis des
Satzes liber die kommutativen Divisions-Algebren."

Nel présente lavoro, che sono lieto di dedicare aU'illustre Collega ed
amico Heinz Hopf, pervengo al suo risultato suaccennato quale parti-
colarissimo corollario di un teorema — ottenuto nel n. 4 — concernente
gli spazi lineari reali giacenti sulle quadriche di un sistema lineare asse-

*) Un classico esempio in proposito viene offerto dallo studio délie superficie cubiche nel
campo reale, per il quale cfr. per esempio B. Segre [10], cap. III; per un esempio récente
di altro tipo, cfr. B. Segre [11].

Qui ed in seguito, i numeri entro parentesi quadre rinviano alla bibliografia posta alla
fine del lavoro.)
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gnato. Il procedimento con cui dimostro taie teorema ha carattere alge-
brico-geometrico, e si svolge nel campo reale poggiando essenzialmente
sulle quattro ovvie proprietà che seguono.

a) Se una varietà algebrica Fg è reale (rappresentabile cioè con un
sistema di equazioni algebriche a coefficienti reali) e varia con continuità
in uno spazio proiettivo reale, Sv, contenendo sempre qualche 8Q reale,
di questa stessa proprietà gode ogni posizione limite di Fg.

b) Una qualunque F§ algebrica reale d'ordine dispari di Sv, incontra
ogni Sv_8 reale di Sv in qualche punto reale.

c) Sia W una porzione <5-dimensionale — luogo di punti semplici
reali — di una Fg algebrica di 8V, taie che il contorno di quella appar-
tenga ad una sottovarietà algebrica, U, di Fg. Allora un Sv_$ reale, che
vari con continuità in 8V senza mai incontrare la U, ha a comune con
W un numéro di punti il quale — ove sia finito e taie che ciascuno di
questi punti si computi in esso con la propria molteplicità d'intersezione
— risulta sempre pari o sempre dispari.

d) Una F§ algebrica a punti reali, che sia non singolare, di dimensione
ô ^ 2 e linearmente connessa, si conserva connessa quando da essa si

asportino i punti di una qualunque sotto-varietà algebrica di dimensione

< ô — 2.
Rileviamo che la proprietà a) si estende facilmente al caso in cui F§,

8V, SQ siano definiti (anzichè sul campo reale) su si un qualunque corpo
commutativo, sostituendo alla nozione di limite quella di specializzazione.
La b) si estende poi dal campo reale ad un qualunque campo realmente
chiuso (nel senso di Artin e Schreier [1]), com'è stato indicato da F. Beh-
rend ([2], p. 15). È probabile che anche le c), d) possano venir estese ai
campi realmente chiusi, definendo una ,,porzione" W di Fg corne la tota-
lità dei punti di Fg le cui coordinate soddisfino ad opportune disugua-
glianze algebriche e procedendo in modo consimile a quello tenuto
sulPargomento da W. Habicht [3, 4] ; in tal caso un'analoga estensione

seguirebbe senz'altro per i vari risultati del présente lavoro. Qui perô
non ci occupiamo di siffatte estensioni ; osserviamo soltanto che la b)
discende dalla c), e che nella d) è essenziale supporre Fg priva di punti
multipli, corne risulta da F. Severi e B. Segre [13].

2. Il teorema annunciato nel n. 1 risolve — per un'infinità di valori
di n, ô (ma non per tutti) — il

Problema I. — Assegnati gli interi n, ô soddisfacenti aile

n^ 1 0 <(5 ^in(n + 3) - 1
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determinare il massimo intero q g(n, ô) taie che ogni sistema lineare
oos di quadriche reali di 8n contenga qualche quadrica su cui giaccia (almeno)
un 8Q reale.

La risoluzione compléta di questo problema equivarrebbe manifesta-
mente a quella del

Problema II. — Assegnati gli interi n, q, ove

n^l 0 < g <n — 1

determinare il minimo intero ô ô(n, q), taie che ogni sistema lineare
oo8 di quadriche reali di Sn contenga qualche quadrica su cui giaccia un 86
reale.

Nel caso particolare in cui q n — 1, il problema II puô porsi sotto
forma più semplice nel modo seguente. Osserviamo che una quadrica di
8n che contenga un $„_! si spezza neeessariamente in due iperpiani
(distinti o coincidenti) di 8n, e viceversa ; e che una quadrica-luogo cosi

spezzata è apolare a tutte e sole le quadriche-inviluppo di 8n rispetto
a cui quei due iperpiani risultino fra loro coniugati. Se dunque sosti-
tuiamo al sistema lineare oo8 cui si riferisce il problema II quello ood ad
esso apolare, ove

d(n) in(n + 3) - ô(n,n- 1) - 1 (1)

e se poi applichiamo il principio di dualità in Sni vediamo che — per
q n — 1 — il problema II équivale al

Problema III. — Determinare il massimo intero d d(n) taie che —

in corrispondenza ad ogni sistema lineare ood di quadriche reali di 8n —

esista in 8n almeno una coppia di punti reali mutuamente coniugati rispetto
a ciascuna quadrica del sistema.

In base alla suddetta definizione di d(n), mentre deve esistere in Sn

qualche sistema lineare oo^*1 di quadriche reali non aventi a comune
nessuna coppia di punti coniugati reali, analoga propriété non deve aver
luogo per alcun sistema lineare meno ampio. In altri termini,

N(n + 1) d(n) + 2 (2)

rappresenta precisamente il massimo numéro di forme bilineari sim-
metriche a coefficienti reali, in due série di n + 1 variabili, formanti
assieme un sistema definito, taie cioè che Fannullarsi délie forme nel

campo reale implichi l'annullarsi di tutte le variabili in una almeno délie
due série. Il problema di determinare N(r), coïncidente cosi sostanzial-
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mente col problema III, fu già posto da H. Hopf ([5], n. 1), che lo risolse
in tre casi :

N(2) 2 N(3) 5 N(4) 6

Dal présente lavoro risulterà (n. 5), fra Faltro, che è d(2h) 2h+1 — 1

per ogni h intero positivo, il che porge la soluzione del problema di Hopf
in un'infinità di casi, mediante la formula :

N(2h + 1) 2h+* +1 {h > 1) (3)

che subito segue dalla (2). Poichè N(r) è funzione mai decrescente di r
(n. 3), cosi la (3) implica che debba essere N(r)>r per r ^ 3 ; e questo
risultato équivale appunto a quello di Hopf sulle algèbre reali, a cui ab-
biamo alluso nel n. 1.

3. Rileviamo ora alcune limitazioni intercedenti fra i caratteri n, q, ô,
fra loro legati nel modo specificato nei problemi I e II (n. 2). Risulta
anzitutto :

j(2e - n + 1)(2q - n + 2) < ô(n, q) < i(e + l)(g + 2) (4)

ove per la validità délia limitazione inferiore si suppone che sia 2q^ n.
Invero il primo membro esprime allora il numéro délie condizioni
algebricamente indipendenti che occorre imporre ad una quadrica
di Sn — nel campo complesso — affinchè essa contenga qualche
8Q, e cioè sia (almeno) 2 q — n + 1 volte specializzata (ossia abbia un
S2Q_n doppio). Pereiô, se denotiamo quel numéro con A + 1? esistono
in Sn sistemi lineari oox di quadriche reali nessuna délie quali contiene
degli SQ reali, anzi neppure complessi, onde dev'essere ô (n, q) > A,

ossia appunto ô ^ X + 1. La limitazione superiore per ô si ha poi
subito notando che (q + 1)(@ + 2)/2 esprime il numéro délie condizioni
lineari indipendenti che vengono imposte ad una quadrica dal passaggio

per un 8Q assegnato ; esse sono reali se SQ e la quadrica lo sono, e possono
ovviamente venire soddisfatte da una quadrica di un qualunque sistema
lineare la cui dimensione raggiunga almeno quel numéro.

Risulta inoltre :

d{n+ l,e + l) <à(n,Q) + n + 2 (5)

Infatti, posto ôr ô(n, q) + n + 2, ed assegnato in 8n+1 un
qualunque sistema lineare oo8' di quadriche reali, 2\ si scelgano generiea-
mente in 8n+1 un punto 0 ed un iperpiano Sn reali, e si consideri il sistema
lineare segato su 8n dalle quadriche di S che passano doppiamente per
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0. Quest'ultimo sistema ha dimensione à' — (n + 2) ô(n, g), e con-
tiene quindi una quadrica su cui giace qualche 8Q reale ; il cono proiet-
tante taie quadrica da 0 risulta manifestamente una quadrica di Z su
cui giace qualche 8Q+1 reale, onde segue che dev'essere appunto

ô(n+ 1, g+1)^0'
Nel caso g n — 1 le (4), (5), avuto riguardo aile (1), (2), forniscono

rispettivamente le limitazioni r ^ N(r) ^ 2r — 1, N(r + 1) ^ N(r).
Aggiungasi che dalla (5), procedendo per induzione rispetto aU'intero

positivo h, si ricava in modo ovvio la limitazione

ô(n, g) > ô(n + h, g + h) — nh — \ h(h + 3) (6)

Supponiamo dapprima che esista un h per cui ô (n + h, g + h) rag-
giunga il più grande valore compatibile con le (4), ossia

ô(n + h, g + h) \ (g + h + l)(g + h + 2) ; (7)

allora la (6) porge per ô(n, g) la limitazione inferiore

2) - h(n - g) (8)

La (8) appare non banale qualora h possa venire scelto [intero positivo,
in guisa che valga la (7), e] cosi piccolo da renderne il secondo membro
non negativo ; essa in tal caso risulta più forte délia limitazione (4) dello
stesso senso, non appena si abbia

h<^(3g-n + 3) (9)

Supponiamo da ultimo che, per un'opportuna scelta di n e g, ô (n, g)

raggiunga il più piccolo valore compatibile con le (4), ossia

ô(n, g) i(2e - n + l)(2e - n + 2) (10)

In tal caso la (6) porge la

(11)

e questa limitazione superiore per <3 (n + h, g + h) è più forte di quella
dello stesso senso fornita dalle (4), per tutti i valori interi positivi di h
soddisfacenti alla (9).

4. Ci proponiamo ora di dare una condizione aritmetica per n e g,
sufficiente per la validità délia (10). Vedremo poi, nel n. 5, che taie
condizione non è illusoria in quanto esistono anzi infiniti valori di n e g che

la soddisfano.
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Allô scopo di poter enunciare brevemente il risultato che abbiamo in
vista, introduciamo i simboli :

r =2Q-n+ 1 (12)

ôr ir(r+l)
\.. .(n+r)\

,n \m • ;, «^ .% per r dispari, (14)
...(2r—1)! (n-r+l)\ (n-r+3) n\ r r ' v ;

Q!2! (r-2)! {n+2)\ (n+4) (n+r)l
(r+3) {2r-l)

*

{n-r+i)\{n-r+3)\...(n-l)\
ove, corne di consueto, 0 1. La condizione a cui abbiamo alluso
viene allora espressa dal

Teorema. — La (10) certamente sussiste, e cioè si ha ô(n, g) ôr, per
tutti i valori interi di n e q, soddisfacenti aile [n/2] ^ @<n, in corri-
spondenza ai quali Vintero Kr^n definito dalle formule precedenti risulti
dispari.

A questo teorema si puô dare forma geometricamente più espressiva,
utile anche ai fini délia dimostrazione, ricorrendo alla seguente nota
rappresentazione. Le quadriche-luogo reali di Sn sono tutte date dal-
l'equazione n n

E S at9 xlx? 0 (al9 an)

ove le x denotano coordinate omogenee di punto in Sn, al variare dei
coefficients a nel campo reale. I coefficienti a distinti sono in numéro di
v + 19 dove, per abbreviare, si ponga

r Jn(w + 3) (16)

e possono quindi venir assunti corne coordinate omogenee di punto in un
Sv reale.

In taie spazio Sv conviene considerare n varietà algebriche irriducibili :

dove la &{r) — denominata una varietà di Veronese di indici (r, n)2) —
è il luogo dei punti di Sv che corrispondono a quadriche di Sn r volte
specializzate (r 1, 2,..., w). Pertanto la varietà 0(r) si rappresenta
analiticamente annullando tutti i minori d'ordine n — r -f- 2 délia

a) Cfr. B. Segre [8], [9]; nel primo di questi due lavori sono stabilité - fra l'altro - le
propriété délie 0 che enunciamo nel présente capoverso.
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matrice simmetrica || a^ ||, e — tenuto conto délie (13), (16) — essa
ha la dimensione

ôrtn=v-ôr (17)

La varietà 0{n) risulta priva di punti multipli, ed ha Vordine xn n
2n

(espresso dunque da un numéro pari, per ogni valore di n). Inveee, se

l^r ^n — l, la varietà 0{r) ammette &(r+u corne luogo dei propri
punti multipli [e precisamente, &{r) passa per 0<r+1> con la molteplicità
2r, eontenendo ogni punto di 0{8) (r<s ^.n) che (se s<n) non stia su
0(8+i) con esatta molteplicità xr> 8_x] ; inoltre Vordine di una taie 0{r)
uguaglia il numéro xTtn fornito dalle (14), (15).

Notiamo ora che, in virtù délia (12), le ipotesi ammesse nel teorema
per n e q implicano che sia 1 ^ r ^ n — 1. Un punto oc (reale o com-
plesso) di 0(r), che non stia su $<r+1>, rappresenta una quadrica a di 8n
specializzata r volte — e non di più — taie quindi che, nel campo com-
plesso, gli spazi lineari massimi giacenti su essa hanno esatta dimensione

q ; e viceversa.
Se oc è reale, taie è anche la quadrica a, sicchè VSr_1 doppio di questa

risulta reale. Per ciô che concerne gli spazi reali massimi di a, si hanno
invece q — r -{- 2 n — q + 1 diverse possibilità, in quanto è noto
elementarmente che la loro dimensione puô assumere uno qualunque dei
valori r — 1, r,...,Q (a seconda delFindice d'inerzia délia forma
quadratica figurante a primo membro nell'equazione di a). Ciascuno

degli n — q -\- l sistemi di quadriche reali r volte specializzate di Sn
contenenti spazi reali massimi di una fissata di quelle dimensioni, viene
mutato transitivamente in se dal gruppo continuo délie omografie reali
non degeneri di Sn, ed è quindi connesso ed omogeneo. Pertanto :

Nel campo reale il luogo 0ir) — $<r+1>, ottenuto da 0{r) con Vaspor-
tarne i punti multipli, si spezza in n — q + 1 porzioni connesse omogenee

fra loro disgiunte, ciascuna di dimensione ôrn.
Riferiamoci in particolare alla porzione, Û{r), rappresentativa délie

quadriche reali di Sn r volte specializzate che contengono degli SQ reali,
Essa è una varietà topologica aperta, il cui contorno, &{r), appartiene
per ciô che précède alla varietà algebrica $<r+x>. In virtù délie (17), (13),
quest'ultimp, ha la dimensione

<W,« v - \(r + l)(r + 2) ôr,n - (r + 1) < ôr>n - 2 (18)

Inoltre, in forza dei n. 1, a), ciascun punto di 0{r) — quale posizione
limite (giacente su 0<r+x>) di un punto di Q{r) — rappresenta una
quadrica reale di Sn (specializzata più di r volte) su cui giace qualohe 8e
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reale. Viceversa, si dimostra senza difficoltà che — se vale la (12) —

una qualunque quadrica reale di 8n specializzata più di r volte e conte-
nente qualche 8e reale puo ottenersi corne limite di una quadrica reale
di Sn specializzata esattamente r volte e contenente degli SQ reali. Per-

tanto la chiusura Q{r) D{r) -\- 0{r) délia varietà topohgica Q{r) (di
dimensione ôrn) è il luogo dei punti di Sv che rappresentano quadriche
reali di 8n contenenti qualche SQ reale.

Avuto riguardo alla (4) ed alla definizione di ô(n, q) (n. 2), il teorema
da stabilire équivale conseguentemente a mostrare che :

Nette ipotesi specificate in quel teorema, la suddetta Q{r) vien incontrata
in qualche punto (reale) da ogni spazio lineare reale di 8V avente dimensione

ôr v — ôr n (complementare a quella, ôrn, di Q{r)). In altri ter-
mini, ogni S$r reale di Sv, che non incontri &{r), incontra necessariamente
Qir) in qualche punto reale.

Per dimostrare questa proposizione, incominciamo con Fosservare che

gli S$r reali di Sv possono venir assimilati ai punti reali di una varietà
Grassmanniana, 6W, la quale è reale, priva di punti multipli, ed ha
dimensione

a* (ôr + l)0> - ôr) (ôr + 1) ôr>n > 2

L'insieme degli 8$r (reali o complessi) di 8V che — nel campo complesso —

si appoggiano in qualche punto alla <p<r+1>, si rappresenta su Gw con una
varietà algebrica di dimensione ôrôr n + <5r+1 n; e questa dimensione
risulta <co — 2, in base aile (18).

Poichè, corne s'è detto, 0{r) è luogo di punti reali giacenti su 0<*•+!>,

cosi — in forza del n. 1, d) — l'insieme degli 8$r reali di 8V che non si

appoggiano a @(r) risulta connesso. Avuto riguardo al n. 1, c), la seconda
forma delFultimo enunciato seguirà tosto ove si provi che :

È possibile scegliere in Sv un $§r reale privo di punti acomunecon <2>(r+1)

ed incontrante 0{r) in un numéro finito di punti, in modo che quelli fra tali
punti che cadono su i2(r) (contati con le rispettive molteplicita) risultino in
numéro dispari.

Fissiamo alFuopo un qualunque 8Q_r reale di Sn (di dimensione

q — r n — q — 1^0); e, nel sistema lineare oov~sw-e di tutte le

quadriche che lo contengono, consideriamo un generico sistema lineare
reale oo8r (il che è certamente possibile, essendo ôr<v — ôn_Q). Diciamo
S quest'ultimo sistema lineare, ed #§f la sua imagine in Sv. È subito visto
che — nel campo complesso — S contiene soltanto un numéro finito di
quadriche almeno r volte specializzate, e che nessuna di queste è più di
r volte specializzata. Una siffatta quadrica di E è quindi esattamente r

295



volte specializzata, eppertanto — se reale — ammette un /Sr_x doppio
reale ; questo è poi sghembo con SQ_r, per la genericità con cui fu scelto
27, sicchè lo spazio congiungente >Srr_1 ed SQ__r risulta reale, di dimensione

q, e situato per intero sulla quadrica suddetta. In 8V, ciô fomisce che
Lo spazio 8$r reale (rappresentativo di 27) non incontra $<r+1> ; ogni punto

reale comune ad esso ed a &ir) giace su Q{r).
In virtù dell'ipotesi del teorema enuneiato in principio relativa a

tfr>n, la varietà &{r) è di ordine dispari. Pertanto (n. 1, c), il numéro
complessivo délie intersezioni reali di 0(r) ed S$r risulta dispari; e taie è

perciô anche — corne richiesto — il numéro délie intersezioni reali di
Q(r) ed $§r, in quanto questo numéro coincide con quello, in forza dell'ul-
tima proposizione. Il teorema suddetto è cosi dimostrato.

5. Allô scopo di poter esprimere più esplicitamente in funzione di r
ed n la condizione — figurante nel teorema del n. 4 — che il numéro
xrn sia dispari, introduciamo le seguenti notazioni. Se m è un qualunque
numéro naturale, denotiamo con {ra}2 l'esponente délia massima po-
tenza del 2 che divide taie numéro, e con (m)2 la somma délie cifre (0
od 1) del numéro stesso scritto nella numerazione a base 2. Si tratta
allora di esplicitare la

K«}. 0 (19)

A tal fine osserviamo che, per ogni m > 0, si ha

{m!}2 m — (m)2;3)

la stessa relazione vale anzi ovviamente anche per m 0. Poichè — sia
nella (14) che nella (15) — la somma degli interi i cui fattoriali compaiono
a numeratore uguaglia Fanaloga somma relativa al denominatore, cosi
la (19), per r 2s + 1 dispari, diventa :

'i)i + (*> + %i + 1)2 — (2s + 2i + l)2 — (n — 2s-\- 2i)2] 0 (20)
1=0

e per r 2 s pari essa puô scriversi nella forma :

27 [(2i)2 + (n+2i + 2)2~(2s + 2i+l)2-(n~2s + 2i+l)2] 0. (21)
i=o

8) Questo rifeultato trovasi già in F. Behrend [2], p. 16. Esso si ottiene subito osservando
che è {m! }2 [m/2] + {[m/2]! }2 e quindi:

{ml }2 [m/2] + [m/4] + [m/8] +
Più generalmente, qualunque sia p >- 2 e con ovvia estensione dei simboli, si vede che è

{ml}p - [m/p] + [m/p»] + [m/p3] +
eppertanto : (p—l).{m \}p m — (m)p
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Notiamo ora che, se h e k denotano due interi positivi arbitrari, posto

s 2h~1 — 1 n 2* + (Jb — 1)

risulta :

(n + 2» +
(2s + 2i -

(» — 2s 4

¦1).

f 1).

-2»).

{k-
(2»-

(*-

-i)iH
-2)i
- 1)2 4

-(2
+ 2

- (2'

»).-¦f 2

¦2),

per i 0, 1,..., s,

per i 1,2,...,5
per i 0, 1,. s

Poichè si ha inoltre (2s)2 h — 1, (2s + 1)2 h, (2s + 2)2 1,

(0)2 0, cosi la (20) rimane soddisfatta dalle precedenti posizioni, e
la (19) sussiste ove si definiscano s, n nel modo indicato e si prenda
r 2s + 1.

Del pari, assunto

s 2*-1 n 2h + fc 2^+! — 1

per i 0,l,...,$¦— 1 risulta :

(n + 2* + 2)2 (fc)a + (2i)2 + 2

(25 + 2t + 1)2 (2i)2 + 2

(w - 25 + 2i + 1)2 (fc)a + (2i)a

sicchè la (21) rimane soddisfatta, e la (19) sussiste ove si definiscano s, n
nel modo indicato e si prenda r 2s.

Dall'analisi précédente, tenuto anche conto délia (12) e del teorema
del n. 4, si ottiene in particolare che :

UugwLglianza (10) sussiste per tutti i valori di n e q espressi dalle

n 2h + (k - 1) 2h+1 g k 2h - 1 (22)

oppure dalle

n 2h + k 2h+1 - 1 q (k + 1) 2h — 1 (23)

comunque si scelgano gli interi positivi h e k.
Se ad esempio assumiamo k 1, le (22) porgono :

e la (10) — per un siffatto valore di n — si riduce a ô(n, n — 1)

n{n — l)/2. La (1) allora fornisce d(2h) d(n) 2n — l 2h+1 — 1 ;

e questo è il risultato che, alla fine del n. 2, ci ha condotto alla rela-
zione (3), da cui poi discende — corne ivi si è detto — il teorema di Hopf
sulle algèbre reali (citato nel n. 1). Per altre applicazioni e deduzioni in
analogo ordine d'idée, cfr. B. Segre [12],
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6. Osserviamo che, per s 0, la (20) si riduce alla (n + 1)2

(n)2 + 1 ; questa è soddisfatta sempre e solo che n sia un numéro pari,
2m, ed allora la r 2s + 1 e la (12) porgono

n 2m s 0 r 1 q m

[il caso in cui m — 2 k — 1 sia dispari rientra nelle (22), ove vi si faccia
h 1]. La validità délia (20) per r 2s + 1 implica, corne s'è visto,
la (10) ; sicchè — per ogni m intero positivo — risulta à {2m, m) 1,
ossia, con le notazioni del problema I (n. 2),

q(2m, 1) m (24)
Pertanto :

In uno spazioS2m, di dimensione pari 2m, ogni fascio di quadriche reali
contiene sempre qualche quadrica (necessariamente specializzata) su cui
giace qualche Sm reale.

Questo risultato era già stato ottenuto con calcoli diretti da E. G. To-
gliatti [15], n. 14, limitatamente ai fasci generali di quadriche.

Un altro caso particolare di validità délia (10) viene fornito dalle (23)
quando vi si assuma h 1, il che porge :

n 4tlc+ 1 g 2fc + 1 r 2 ô ôr 3

e quindi, con le notazioni del n. 2,

1, 3) 2k + 1 (25)
Pertanto :

In uno spazio Sn la cui dimensione sia délia forma n 4& + 1 (con k
intero positivo), ogni sistema lineare oo3 di quadriche reali contiene sempre
qualche quadrica (specializzata almeno due volte) su cui giace un 82jc+i
reale.

7. Faremo, terminando, alcune osservazioni complementari concer-
nenti la funzione q q(n, à) che compare nel problema I (n. 2), con
spéciale riguardo al caso in cui q, n e ô soddisfino alla (10). Rileviamo
anzitutto che risulta sempre :

Q(n+l,â)^Q(n,d) (26)

Ed invero, un sistema lineare di quadriche reali di Sn+1 di dimensione
à ^ \n(n + 3) — 1, comunque assegnato, sega su di un generico 8n
reale di Sn+1 un sistema lineare di quadriche reali, ancora di dimensione ô.
Per definizione di q q(n, ô), v'è qualche quadrica di quest'ultimo
sistema su cui giace un 8Q reale; una quadrica siffatta è sezione di 8n
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con una quadrica del sistema assegnato in Sn+1 : e poichè quest'ultima
quadrica viene a contenere quell'$e, ne consegue la (26).

Dimostreremo che :

Se i numeri q, n e ô soddisfanno alla (10), nella (26) deve sussistere il
segno di ugwaglianza.

Notiamo alFuopo che, in forza délie (12), (13), la (10) si scrive sempli-
cemente ô ôr. Ne consegue che, nel campo complesso, e quindi anche
a fortiori nel campo reale, un generico sistema lineare oos di quadriche di
8m, ove m ^ n, non contiene quadriche più che r volte specializzate.
D'altro canto, se nella (26) valesse il segno di disuguaglianza, ogni
sistema lineare oo8 di quadriche reali di 8n+1 dovrebbe contenere almeno

una quadrica passante per qualche SQ+1 reale ; l'indice di specializza-
zione di una quadrica siffatta non potrebbe quindi essere inferiore a

2(g+ l)~(n+ l)+ l r+ 1

in contrasto con ciô che précède. Questa contraddizione prova Fasserto.
Corne semplice applicazione del risultato teste stabilito, notiamo che

dalle (24), (25) discendono le uguaglianze :

Q(2m + 1, 1) m q{U + 2, 3) 2k + 1

di ovvio significato geometrico (n. 2).
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