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Groups and spaces of loops
by H. SAMELSON ?)
For Professor H. Hopf on his sixtieth birthday

1. It has become customary to call H-structure an object consisting
of a space X and a multiplication x in X with homotopy-unit, i. e. a
(continuous) map u of the cartesian product X xX into X, such that
for a certain point z, of X the two maps [, , r, of X into itself, defined
by x — u(zy, x), resp. x — u(x, x,) (left and right translation by z,)
are homotopic to the identity (cf. [8]; essentially this concept — the
I'manifold — appeared in [5]). There are two large well known classes
of H-spaces: topological groups, and spaces of loops (with fixed base
point) in topological spaces (cf. [8] for the definition of the latter). It is
our purpose to show that in a certain sense and to a certain extent the
first category is contained in the second. We then give proofs, suggested
by this situation, for two propositions. First, we give an answer to the
question, raised by Eilenberg, whether the map (z,y) > xyx-1y-1,
where x and y run through the quaternions of norm 1, is homotopic to
a constant map ; the answer is that it is not. (We note that a different
and somewhat simpler proof for the same fact has been found indepen-
dently by G. W. Whitehead.) The second application concerns a special
fact about Pontryagin-multiplication in Eilenberg-MacLane spaces.

2. The structures mentioned above possess a further operation, namely
an inversion, i. e. a map o: X — X such that the map = — u(z, o(x))
is homotopic to a constant map ; for groups this is the ordinary inverse,
for loop spaces this is the map obtained by reversing the loops, i. e. by
replacing the parameter ¢ by 1 — ¢. (We often write zy or z-y instead
of u(x,y) and x—! instead of o(x).)

If (X,u) and (X', u’) are two H-structures, then a map f: X — X'
is an H-homomorphism, if the diagram

XxXx-t%Hx
lrxs s
X x x4t xv

1) The work on this note was supported by a grant from the National Science Foundation.
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is homotopy-commutative, i. e. if the two possible maps of X x X into
X' are homotopic. If the structures have an inversion, one requires that
in addition the diagram

XX

lros

XI__OL> XI

be homotopy-commutative. We call a map g: ¥ - Y’ a weak homo-
topy equivalence, if g induces isomorphisms of all the homotopy groups
of Y and Y’ ; as well known, ¢ induces then also isomorphisms of all the
(singular) homology groups of Y and Y’ (one proves this by introducing
the mapping cylinder C of g, and noticing that because of the vanishing
of the relative homotopy groups of C mod Y one can construct a chain
deformation from C to Y which shows that the relative homology groups
vanish ; this is a simple case of Hurewicz’s isomorphism theorem ; cf.
also the theorem of J. H. C. Whitehead [12], Theorem 1). If ¥ and Y’
are sufficiently cell-complex-like, such a map is a homotopy equivalence.
The following lemma is easily proved by the same technique.

Lemma 1. Ifg: Y — Y’ is a weak homotopy equivalence, and if
h: P —Y is a map of a finite polyhedron P into Y, then % is homo-
topic to a constant map, if and only if g oA is.

We recall (cf. e. g. [1]) that a principal bundle for a topological group
G is a space E, on which G operates without fixed points (we write tke
operation as x-g or zg, for x € £, g (@), and which satisfies an addi-
tional continuity assumption : the map of £ xX@ into E x K, defined by
(x,9) = (x, xg) is a homeomorphism into, or equivalently, g is a con-
tinuous function of the pair (x, xg). Denoting by B the base space of
the decomposition of ¥ into the orbits under @, and by p the projection
of E onto B, we shall require also that p is a fiber map in the sense of
Serre, i. e. that the covering homotopy theorem holds for finite poly-
hedra (cf. [8]).

A principal bundle will here be called universal if it is contractible
over itself to a point. The base space of a universal bundle is called a
classifying space for G. It is well known that e. g. all compact Lie groups
admit universal bundles [1]; as a matter of fact, in this case the uni-
versal bundles can be constructed such that they and the corresponding
classifying spaces are locally finite polyhedra.

We also recall Serre’s basic observation [5]: If X is a 0-connected
space, z, a point of X, then the space of all paths (continuous maps of
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the unit interval I = [0, 1] into X), which end at x,, is a fiber space
over X relative to the projection p(w) = w(0) for any w: I — X. The
whole space is contractible ; the typical fiber is the space A (X) of loops
in X, based at z,.

3. We can now state our result.

Theorem I. If the group G admits a universal bundle E, with base
space B and projection p, then, corresponding to the contraction of E , there
exists an H-homomorphism, which is also a weak homotopy equivalence, of
G into the space A(B) of loops in B.

For the proof we first establish the existence of a weak homotopy
equivalence in a somewhat more general situation, and show later that
in the case of Theorem I this map is an H-homomorphism.

Proposition I: Let L be a fiber space in the sense of Serre, with base
M, projection ¢, typical fiber F ; suppose L is contractible to a point.
Then there exists a map f of F into A (M) (space of loops in M) which
is a weak homotopy equivalence ; and a fiber map % of L into the space
Z of paths in M, ending at some point b,, which induces f in the fiber
and the identity in the base, and which induces an isomorphism of the
spectral sequences of L and Z from ¥, on.

That the homotopy groups of F' and A (M) are isomorphic, follows
immediately from consideration of the homotopy sequences of the pairs
(L, F) and (Z, A(M)) (with the usual identification of the relative groups
of the pair and the absolute groups of the base space M, cf. [10], p. 90),
since L and Z are contractible ; the interest of the proposition lies in the
existence of the map f.

Proof. Let k: LxI — L be the contraction, let ¢, be the point,
into which L is contracted, and set b, = p(a,). Denote by Y (resp. Z)
the space of all paths in L (resp. M), which end at a, (resp. b,) ; let p be
the projection of Z onto M. In well known fashion (cf. [8], p. 474) k
induces a map k: L —Y, by k(x)() = k(x,t) for any zeL and
t € I. Composition with g yields a map A: L —Z, defined by & (z)(t)
= q ok(x,t). The map % is a fiber map relative to ¢, p and the identity
of M: poh(x)=gq(x); indeed, p oh(z)=h(z)(0)=gq ok(x,0)
= q(z), since k(x,0) = x. In particular, the fiber F, through a, is
mapped into A (M). Let h, denote the associated map of the homotopy
sequence of (L, F,) into that of (Z, A(M)).

Since % induces the identity map of M, h, is the identity map of
w, (M) (for all » > 0). The spaces L and Z are contractible, and so have
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vanishing homotopy groups. It follows now from the five-lemma ([4],
p. 16), that A, induces an isomorphism between x,(¥,) and m, (A(M)).
This proves the weak equivalence of F, and A (M), with f being the
restriction of % to F,, considered as a map into A(M). The map % is
therefore a fiber map of L into Z, which induces the identity of the base,
and maps the homology groups of the fibers isomorphically ; it is well
known that % induces then an isomorphism of the spectral sequences
from E, on.

4. We now turn to the situation of Theorem I. We identify G with
the fiber of £ through a, (the point toward which ¥ is contracted by the
contraction k) by sending the element g of ¢ into a,g. Applying propo-
sition I, we have the map f of ¢ into A (B), which is a weak homotopy
equivalence ; explicitly f is given by f(g9)(f) = p ok(asg,t). We now
show that f is an H-homomorphism.

Let g and g’ be any two elements of (. The assignment ¢ — k(a,g,t)-¢g’,
for t eI, represents a path in £ from a,-¢g-g° to a,-g’. We use this to

construct a map w, ,, of the boundary I of the unit-square I*= I xI
into & as follows :

@, for t =1, 0<u<1
ao-g-9’ for t =0,0<u<1
w, o, u) = k(a,-g-9',t) for v=0,0<t <1
k(ay,g, 2t)-g’ for u=1,0<t <1
k(agg’, 2t —1) for u=1,1 <t <1

One checks that the mapping is well defined, and that the assignment
9,9t u) >w, ,(t,u), for g, g’ eG, (t,u)e fz, is a continuous map
of G xG xI? into K. We extend this to a map @ of G xG xI? into £ :
for each (g, ¢’), we map the center (1, 1) of /2 into a,, and we map the

segment from any (¢, %) in I* to (1, %) in the obvious fashion on the
path, described by the point w, (¢, ) under the contraction k. In
po® = ¥ we have then a map of G XG xI? into B. From this we get
a map p of G xG x7I into A(B) by defining (g, g’, u) to be the path
given by w(g,g’, u)(t) = ¥(g,9', ¢, u); using therelation p(a-g) = p(a)
for all ae B, geG@ (expressing the fact that the orbits of £ under ¢
are the fibers of p) one sees that actually (g, ¢, u)(0) = p(g, g, »)(1)
= b,. We can consider y as a homotopy between y, and y,, defined by
(9,9") >w(g,9',0), resp. w(g,9,1). Returning to the definition of y,
one sees that w,(g,g’) is identical with f(g-¢g’), where f is the map
G — A(B) constructed above. On the other hand v, (g, 9") is f(g9)-f(g'),
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the product in A (B) of f(g) and f(g9’). The last three sentences imply
that the diagram

GxG@ ——> @
rxr s
A(B)x A(B) — A(B)

is homotopy-commutative, so that f is H-homomorphic with respect to
multiplication.

5. Inversion can be treated similarly. For any ¢ ¢ G we construct
a map v, of I? into X by

ao fOI‘ t = 1,0__<_.u£1
. aog—l fOI‘ t :O’OSUSI
?)g(t, u)-— k(aog-—l’t) for u=0,0<t <1

k(agg,1 —t)-g7t for u=1,0<t <1

Again this is a well defined, continuous map of G xI* into E, which, by
means of the contraction of £, can be extended to a continuous map of
G xI* into E. The composition with p can be regarded as a map of
G xI into A(B) by considering ¢ as the loop-parameter, and also as a
homotopy of G into A(B). The two end maps of the homotopy, for
u =0, resp. 1, are nothing else but the maps g —f(g~?), resp.
g — f(g)™!, and so f is shown to be homotopy-homomorphic with respect
to the inversion in G and A (B). This finishes the proof of Theorem I.

6. Let @ denote the (multiplicative) group of quaternions of norm
one (also known as SU(2), Sp(1), Spin(3)) ; it is homeomorphic with the
3-sphere S;.

Theorem II. Themapx: Q@ XQ — Q, defined by »(x, y) = xyx~1y,
18 not homotopic to a constant.

The theorem can be given another form which is easily seen to be equi-
valent.

Theorem II'. The two maps 0,, 0,: @ XQ —Q, defined by 0,(x, y)
= zy, 0,(xy) = yx, are not homotopic to each other ; Q is not homotopy-
abelian.

Proof. Let E be a universal bundle for @ ; it can be constructed as
locally finite polyhedron by letting @ operate in the usual manner on the
spheres S, ,, the unit spheres in quaternion k-space, and joining each
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sphere to the next by means of the mapping cylinder of the inclusion
map. The corresponding classifying space @, is essentially the infinite
quaternion projective space. It follows from known properties of finite
quaternion projective spaces or from the Gysin-sequence [8], that the
homology groups of @ are infinite cyclic in dimensions 4n, and zero
otherwise. It is clear that the projection p: K — @, maps the sphere
S;, contained in £ as described, via the ,,Hopf map‘ y into a 4-sphere
S, contained in @ ; the inclusion z: S,c@), induces an isomorphism of
the homotopy and homology groups of 8, and @, in dimension 4.

7. By Theorem I we have a H-homomorphic weak homotopy equi-
valence f of @ into A(Q,). Define d: Q@ xQ — A(Q,.) by d(x,y) =
(f(x)-f(y)) - (f(x)*-f(y)~*). Since f is H-homomorphic, the two maps
fox and d of Q@ xQ into A(Q,) are homotopic. By lemma 1 of § 2,
f ox is homotopic to a constant if and only if » is. It is therefore sufficient
for the proof of Theorem IT to show that d is not homotopic to zero.

Let T denote the basic isomorphism between =, (@, ) and =, ,(4(@,))
(this is 9 op~1, cf. [7]). If x is the generator of =,(Q,), represented by
the inclusion map of S, in @ (cf. § 6), then 7'x is represented (up to
sign) by the map f of @ = 8; into A4(Q,), since f represents a generator
of 73(A(Q,)). If [x,«] is the Whitehead product of &« with itself, then
T[x,x] can be represented as follows (cf. [7]): There exists a map d’,
homotopic to d, of S;x8; into A(Q,), such that the subset S;v S,
(in the usual notation, cf. [7]) is carried into the point e, (the ,,constant‘
loop) ; let s denote the standard map of (8, I 8) (I% = 6-cell, I¢ its boun-
dary) onto (S;XS;, S3v S;); then 7T[«x,x] is represented, up to sign,
by the map d’ os: (I8, ﬁ) — (4(Q), €o)-

8. Actually one can take for d’ any map homotopic to d, which maps
S;v S; into e,, as the following lemma shows. S, denotes the r-sphere.

Lemma 2. Suppose g,, g, are two maps of 8, xS, (p,q > 1) into
A(X), the space of loops of a space X, based at z,; suppose that
go(S,~ 8,) = g,(8,~ 8,) = e, (constant loop); and suppose that g,
and g, are homotopic. Then there exists a homotopy g, between g, and
9., such that g,(S,v S,) = ¢, for 0 <t <1.

Proof. Let g, be the given homotopy. Let (a, b) be the point common
to S, and S, in 8,vS,. We recall that the maps x — x-x~1, resp.
x-e, are homotopic to zero, resp. to the identity, with e, stationary
throughout the homotopy. An application of Borsuk’s homotopy exten-
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sion theorem shows that the map defined by

(CL', Y, t) —> G (x> y)gt (a’5 b)_l

is homotopic to a homotopy ¢’, which agrees with g¢,, resp. g, for ¢ = 0,
resp. 1, and sends (a, b) into ¢, for all . We define a new homotopy g” by

gi (@, y) = g, (=, b) (g (2, 9) g (@, 9)7) .

This map in turn is homotopic to a homotopy ¢g”, which agrees with
e (90" €o), TESP. €9-(g1-€o) for ¢ = 0, resp. 1, and sends S§,+v 8, %I into
e, (if f is any map into A(X), then f-e, means the map z — f(x)-e,;
similarly for e,-f) : On a xS,xIg" is clearly homotopic to the constant
map, with a xS, xI and axbxI staying at e, during the homotopy ;
similarly for S, xb x[I; now one applies again the homotopy extension
theorem. The lemma is now proved by ,removing‘ the left and right

factors e, in g and g;’ in a similar fashion.

9. Lemma 2 of § 8 implies that the map d completely determines the
element 7' [x,x] (cf. § 7), and in particular that d is homotopic to zero
if and only if 7'[x,«] is. Since 7 is an isomorphism this reduces the
problem to the question whether the element [x,«] of x,(Q.) is zero
or not.

We recall some facts : 7, (S,) is isomorphic to the direct sum Z + Z,,
(Z = integers, Z, = integers mod 7). The Hopf map » can be taken as
a generator of Z. If 7, is the generator of x,(S,), represented by the
identity map of S,, then [¢,, 7] has Hopf invariant 42 (say -+ 2, with
suitable orientations), and [i,, ¢,] — 2y is a generator of the subgroup
Zy, of 7,(S,), as shown by Serre [9], p. 503, and Toda [11], Theorem
4.1 [this is of course the central fact in the proof of Theorem II].

On the other hand, the first non-vanishing relative homology group of
@, mod S, occurs in dimension 8, and is infinite cyclic, as is clear from
the structure of the homology groups of ¢, and S, ; the same holds then
in homotopy, by the theorem of Hurewicz. From the homotopy sequence
of (@.,8,) it follows then that the kernel of the injection ¢, : @, (S,)
— 7, (Q,) is cyclic, as image of an infinite cyclic group. But this kernel
contains the Hopf map v, since y, as mentioned in § 6, can be factored
through the contractible space . It is clear then that the kernel of ¢, :
77 (S,) = 7, (@) is the infinite cyclic group generated by y, and that it
therefore does not contain the element [7,,4,]; in fact the image of
[4,7,] is an element of order 12. But the image of [4,,4,] under 7, is
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of course the element [«,x], which is therefore shown to be not zero;
Theorem II is proved.

A similar question can be raised concerning the Cayley numbers : Are
they homotopy-abelian, and are they homotopy-associative? Presumably
the answer to both questions is no.

10. For the second application of Theorem 1 let K(Z,n) be the
Eilenberg-MacLane space for Z and =, i.e. a space X (which can be
taken as a complex) for which =,(X) ~Z, and all other homotopy
groups vanish (cf. [3], [9]). As well known, one can take the space
A(K(Z,n)) as K(Z,n — 1), and so all spaces K(Z,n) are H-spaces
(with an inversion). This induces a multiplication in the homology group
of K(Z,n), the Pontryagin multiplication (cf. [2]). It is also well known
that in the loop space A(Y) of an H-space Y Pontryagin multiplication
is anticommutative, i.e. a*b=(—1)yb*a, for aeH, (A(Y)),
beH,(A(Y)); * denotes the Pontryagin product. [The reason for this
is that in the case at hand the multiplication in A(Y) is homotopy-
commutative ; the proof is essentially the same as the proof for the com-
mutativity of the fundamental group of a group: For two arbitrary
loops f, g in Y, based at the H-unit y,, define a map F;, of the unit

square /2 into Y by Pt u) = f(t)-g(u)
g\ |

By considering the two parts of I2 from (0,0) to (1, 1) and introducing
an obvious reparametrization, one gets a homotopy @, of A(Y)x A(Y)
into A(Y), such that Dy(f,9) = f-yooyo-g and Di(f,9) = Yo-g of- Yo
(here o is the product in A(Y)). Left and right translations by y, being
homotopic to the identity, one gets finally a homotopy between the two
maps, defined by (f,g) — fog, resp. g of. We assume here that y, is
idempotent and stationary under the homotopies.]

11. Let now n =2k — 1 be odd, and let z be the generator of
H, (K(Z,n);Z). Anticommutativity implies that 2zxz = 0. Our pur-
pose is to show that actually zxz = 0.

Proof: Let U (k) denote the unitary group in k variables. It is known
that the homology groups of U (k) are torsion free, and that the cohomo-
logy ring is a Grassmann algebra, generated by n primitive elements
@yy...,Q, with dima, = 2¢ — 1 (cf. [1] for the concepts and facts
involved). It follows from this that the Pontryagin ring of U (r) also is
a Grassmann algebra generated by elements z,,...,2;, with dimz; =
2¢ — 1, which are dual to the a, in the sense that KI(a;,z;) = ¢

R |
(if dima; = dimz;) (cf. [6]). In particular, we have z;x2z, = 0.

ij
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Now let Ey,, and By, be the universal and the classifying space
of U (k). According to Borel [1] the elements a; are transgressive in
Ey ), in fact they are a basis for the subgroup of transgressive elements
of H*(U (k)), and H*(By,) is a polynomial ring over Z in variables
Y15+ -+ Yi, With dim y, = 2¢, and where y,; is obtained from a,; by
transgression. According to Theorem I, U (k) and the space A = A (By,)
have isomorphic cohomology and Pontryagin rings; we denote by a;
and z; the elements corresponding to a; and z; ; the a; are generators of
the group of primitive elements of H*(A), and also of the group of
transgressive elements as one sees from proposition I, § 3.

13. We use the cocycle y, to construct a mapping F of By, into
K(Z, 2k), such that the basic class v of H*(K(Z, 2k)) maps into y,
under F*; it is one of the basic properties of the K(Z,n) that such a
map exists and is unique up to homotopy. F induces a map of the space
of paths in By, into the space of paths in K(Z, 2k). This map is a
fiber map ; it induces a map f of the loop space A into the loop space
A(K(Z,2k)) = K(Z,2k — 1), and induces a map of the spectral se-
quences. Let v be the generator of H**-1(K(Z, 2k — 1)); it is primitive
and transgressive, and its transgression element is . Under f* it maps
into a primitive and transgressive element, which therefore is a multiple
of a;. But since u maps into y, under F*, it is clear that f*(v) must
be a; itself. It follows from the invariance of Kronecker index that
f« () =2z (= the generator of H,, ,(K(Z,2k — 1)). The map f,
being induced by F, is multiplicative, and f, is a homomorphism with
respect to Pontryagin multiplication. We have therefore

zxz = fy (2 %%) = f4(0) =0,
q.e.d.

Institute for Advanced Study
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