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Relativquadratische Zahlkorper, deren
Klassenzahl durch eine vorgegebene
ungerade Primzahl teilbar ist

von Max Gur, Ziirich

Herrn Paul Finsler zum sechzigsten Geburtstage gewidmet

Es bedeute p eine beliebige ungerade Primzahl und ¢ die p-te Ein-

2
heitswurzel ¢ = e? . Es sei ferner k ein algebraischer Zahlkérper von
endlichem Grade, der { enthilt, und in welchem wenigstens ein p tei-
lendes Primideal p von k den absoluten Grad 1 hat. Dies ist jedenfalls fiir
den Korper der p-ten Einheitswurzeln der Fall, denn fiir A=1— ¢ ist in
diesem Korper p = (1)?~!, wo das Primideal (1) vom 1. Grade ist.

In der vorliegenden Arbeit beweisen wir den

Satz: Es gibt unter den beiden iiber ¥ gemachten Voraussetzungen unend-
lich viele in bezug auf k relativquadratische Zahlkérper K, deren Klassen-
zahl durch p teilbar ist.

Wir werden jedoch wesentlich nicht nur zeigen, dal unendlich viele
solche Korper K existieren, sondern geben in jedem Falle explizite eine
algebraische Zahl vom Relativgrade 2p in bezug auf k an, deren Adjunk-
tion zu K ein Stiick des Hilbertschen Klassenkorpers von K liefert, das
in bezug auf K den Relativgrad p hat.

Ein Polynom heille normiert, wenn der Koeffizient der hochsten
Potenz gleich 1 ist.

Es sei z eine freie Variable und

1
x=1z-+ - (1)
Ist dann 7 eine beliebige natiirliche Zahl, so ist identisch in z:
Pt =G, (),
wo @G, (x) ein wohlbestimmtes, normiertes, ganzrationalzahliges Polynom
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vom Grade n in x ist, dessen Koeffizienten uns hier iibrigens nicht weiter
interessieren. Es ist also, um moglichst klar zu sein:

2 —J,——i-:Gl(x)::x,
z2+——!—=G(x)=x2—2
22 2 ’

1
z"'—}——z?:Ga(x) = 2% — Bg
usf.

Setzt man z =1, so wird « = 2, und man erkennt, daB fiir jede
natiirliche Zahl »:

2=G,2). (2)

Wir beweisen zunéchst folgenden

Hilfssatz: Fir n =3 und £t =1,2,...,n — 1 gilt die Formel:
G(2) _(n—{—k~—l)_(n+k——l>

k—ND!n \ 2k—1 n—k (3)
Beweis: Es ist gemill (1):
@ 4 1 _#—1
dz R
al dz 22
S0 de 22 —1"°

Folglich ist fiir n = 3:

Guz) G o® dJ1/, 1 1 [, 1 dz
n  on—2 zdz[_n—<z —1——217)—%_2(2 2+z"—2>]'dx

1 1 22
= zn‘l zn+1 2" ? + zn——l] zz 1
i 1 22
=3 = 1) + g @ — 1)] o

1
= 21 + pory e G’n—-l(x) ,

also
G () . Q,_5(x)

n @ on—2

+ Gn—l (.’L‘) .
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Mithin wird fir k=1,2,...,2 — 1, falls unter G©(z) =@, (x)
verstanden wird:
G(:)(x) G(k) a()

(k 1)
- P + G (>) .
Es folgt
P a() G‘,{‘)‘(x) (k—1
n— — - )
n—2 n— 4 + G’ (@)
usf. ...
Falls n ungerade, ist schliellich
AP (z) G"k)(x) + Gz

3

Daher ist fiir ungerades n, wie sich durch Addition dieser n
chungen ergibt

G0 ()
n

Falls n gerade ist, ist schlieBlich:
@) _ P (w)

—1 ,
3 Glei-

=GP (2) +{G75"(2) + G20 (2) + G0 (@) + - + GV (@),

i + G¢V ()
(k)
und G 2(x) = GFV(z) .

Folglich ist fiir gerades n, wie sich durch Addition dieser — Glexchungen
ergibt:

G (2) (k—1) (k—1) (k—1) (k~1)
- ={¢P@) + P @) + 0P @) + ... +6F V(@)
Insbesondere ist mithin fiir ungerades n:
' n—3
M (2 T2
DB _ope+ 3 60, 0
und fiir gerades n: ,,_2
G2 T
D= S, ). @

r=

Wir beweisen die Formel (3) fir £ = 1. Ist n ungerade, so ist gemdf
(4) und (2):

n—3

/

G’;fz)._.l-{-zz_.l-;- — 1 9o—n.
r=0
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Ist n gerade, so ist gemdf (5) und (2):

, n—2

G, (2 2
n(2) v 2—2."
n r=0 2

Die Formel (3) ist mithin richtig fir £ = 1.

Fiir festgehaltenes » nehmen wir an, die Formel (3) sei richtig fiir £, wo
1 <k =n — 2 ist, und zeigen, da@ sie richtig ist fir £ + 1.

Fiir ungerades n wird gemiB (4), da G¢+9(2) = 0 ist:

T n—3 n——2]
——————-Ggﬁ ') — v G 2 S 2
n ) n—1—2r( ): — n—l—Zr( )
r=0 r=0

Fiir gerades n wird geméaf} (5):

o 5]

no

e

thk—)—l—Zr (2) .

I
=

Mithin ist fiir jedes » = 3 nach Induktionsvoraussetzung:

n—2
ngk+1)(2) —_g‘~] n+k—2—2r

n

—2
:k'["\i: (n+k_1~2r)—~k('n+k—2——2r)

r=0 k 2k — 1
__k'[i;_:z— 2(n+k—1—2r__n+k—2-—2r
- M:Lo ‘ 2k 2k — 1

n—2
_{—]n+k—1-—2r n+k—2—2r
—e AT T

n—kin+k—s n-+k
=k! —
"“‘231( 2k ) k'(2k+1>’

womit unser Hilfssatz bewiesen ist.
Insbesondere folgt fiir jede ungerade Primzahl p:

Gi»’“)(2)___p_(p+k—l>__g<p+k—l

=% sk—1 )=\ p—z >,k=1,2,...,p—1. (8)

Da G, (x) ein normiertes ganzrationalzahliges Polynom p-ten Grades ist,
sind die GroBen (6) ganz rational.
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Wir wenden uns zum Beweise des Hauptsatzes.
Es sei y eine beliebige ganze Zahl von k, die zu 2p teilerfremd und qua-
dratischer Rest mod. p ist:

y =¢*5£ 0 (mod.p), (7)

wo ¢ ganz rational ist, und wir betrachten das normierte Polynom vom
ungeraden Primzahlgrade p

G, (x) — Mwy — 2, (8)

dessen Koeffizienten ganze Zahlen von k sind. Wir setzen

x =24 A%y
und zur Abkiirzung:
1 GP(Q)
ty =9+ % Jrswwn ¥ —7- (9)

Beachten wir, daBl G (2) = 2 gemil (2), so sehen wir, dafl

G, (x) — AWy — 2 =G (24 (x — 2)) — A2y — 2 =
S

=@ =2+ 3 (e — 2 — Ay = 9f(y).
Da p = — A?-1¢ ist, wo ¢ eine Einheit des Korpers der p-ten Ein-

heitswurzeln ist, fiir welche

¢ = 1(mod. (1)),
so folgt aus (6):
Die auf den linken Seiten der folgenden vier Kongruenzen stehenden
Zahlen sind ganze Zahlen des Korpers der p-ten Einheitswurzeln und

p+3

1. fir k=p—1,p—2,..., 5 ist:
G"‘)(2)
2. fir k= p—;— 1 ist
(p+1)
= — 2(mod. (A
ey =D
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3. fir k=21 , p—3 , oee, 2 ist:

2 2
P (2)
4. Fir k=1 ist:
G, (2)
iji%iijﬁ-zf I(HKXL(l)).

Mithin wird gemiB (9) und (7)

p+1 r—1

fy)=y? -2y ® +y—ct=y(y® —1)2—c® (mod.p). (10)

Das Polynom f(y) hat mod. p weder einen Linearfaktor noch ein mod. p
irreduzibles Polynom 2. Grades als Faktor. Denn betrachtet man die
Kongruenz (10) als eine Gleichung im Galoisfeld G'F (p?), wobei dann ¢
eine von 0 verschiedene Grofe des Unterkérpers GF (p), d.h. des
Primkorpers der Charakteristik p ist, so besitzt das Polynom (10) im
GF (p?) keinen Linearfaktor. In der Tat folgt aus

daB y gleich dem Quadrat eines Elementes des GF (p?) sein muB,
y =n? # 0, und dann folgt

NPl —1)=n? —n=4c.

Wendet man auf die letzte Gleichung den von der Identitéit verschiedenen
Automorphismus des GF (p?) an, so folgt

W —P=n—nP=+c,

und die Addition der beiden letzten Gleichungen fiihrt zum Widerspruch,
dal ¢ = 0 sein miifite.
Eine beliebige Nullstelle der Gleichung

Q,(z) — APy — 2 =10 (11)

legt daher einen Korper fest, der in bezug auf & mindestens vom dritten
Relativgrad ist.

Es sei jetzt y ein Produkt von endlich vielen voneinander verschie-
denen rationalen ungeraden Primzahlen, das zur Koérperdiskriminanten
von k teilerfremd und quadratischer Rest mod. p ist. Insbesondere darf
das Produkt auch aus nur einem einzigen Faktor bestehen.
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Wir setzen in der Gleichung (11) die GroBle z =z + — . Dadurch geht
sie iiber in die Gleichung

22 — (J2Py 4 2) 22 + 1 =0, (12)
Setzt man
P =y, (13)
so wird
u? —(A%Py +2)u+1=0. (14)

Die Diskriminante D dieser Gleichung ist
D = A%ry.(A%Py + 4).

D ist keine Quadratzahl von k. Denn jedes Primideal von k, welches ein
Teiler des Hauptideales (D) von £ ist, miilte in einer geraden Potenz in
(D) als Faktor enthalten sein. Das ist aber nicht moglich, denn y ist zu
A??y 4 4 teilerfremd, und jeder Primidealteiler der ganzen rationalen
Zahl y ist in k£ unverzweigt. Mithin ist der Relativgrad von K = k(u)
in bezug auf k gleich 2. Ubrigens ist die Relativdiskriminante von K
in bezug auf &k zu p teilerfremd. Denn K kann aus k auch erhalten werden
durch Adjunktion von v, wo

Fir w =14 A?v geht aber (14) iiber in die Gleichung
V2 — APyv —y=0.
v ist mithin algebraisch ganz, und die Diskriminante dieser Gleichung ist

D
y(2Py + 4) = o,
also zu p teilerfremd.
Ist z, eine willkiirlich aber fest gewdhlte Nullstelle der Gleichung (12),
so werden alle 2p Nullstellen von (12) durch die 2p algebraischen Ein-
heiten

r1-t
2y =012y, 2, = z.
1

t=1,2,...,p,

gegeben und gemiB (13) und (14) hangen sowohl K wie K (z,) = K (?)
nicht ab von der Wahl von 2,. Die p Nullstellen des Polynoms (11)
werden gegeben durch

1 1—t
Ty = 24 +?=Ct_lzl+ -

t 1

,0=1,2,...,p.
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Der Korper K (z,) hat in bezug auf K den Relativgrad p oder den Relativ-
grad 1. Aber das letztere ist nicht moglich, denn sonst hiitte z, in bezug
auf k den Relativgrad 2. Mithin miilte auch

1
Ty =2y +—

Z1
in bezug auf k den Relativgrad 2 oder 1 haben. Aber oben haben wir ge-
zeigt, dafl z, in bezug auf ¥ mindestens vom dritten Relativgrade ist.
Gemil} (13) und (14) gilt fiir die algebraische Einheit z,:

¥ =} (A2Py 4+ 2 + VD),
also
2l = 1 = 1?7 (mod. (2)?),

und daher?) ist K(z,) ein Unterkorper des Hilbertschen (absoluten)
Klassenkorpers von K, der in bezug auf K den Relativgrad p hat. Folglich
ist die Klassenzahl von K durch p teilbar.

Hat man durch geeignete Wahl von y,,y,, ..., ¥, so schon s vonein-
ander verschiedene in bezug auf k relativquadratische Korper

K,,K,,.. . K,,

deren Klassenzahl je durch p teilbar ist, konstruiert — fiir s = 1 ist dies ja
der Fall — so hat man y,, , nur so zu wihlen, daf} diein y,, , aufgehende
oder aufgehenden ungeraden rationalen Primzahlen zur Diskriminanten
von k, zu y,,ys, ...,y, und zu APy, | 4, APy, + 4, ... AWy + 4
(bzw. den absoluten Normen dieser s Zahlen, genommen im Korper der
p-ten Einheitswurzeln) teilerfremd sind, und y,,, quadratischer Rest
mod. p ist. Dann ist K, , ein von den Korpern K,, K,, ... K, ver-
schiedener Korper mit den verlangten Eigenschaften. Es gibt mithin
unendlich viele solche Korper K.

(Eingegangen den 5. April 1954)

1) Vgl. z. B. Hecke, Erich: Vorlesungen iiber die Theorie der algebraischen
Zahlen, Leipzig 1923, § 39, p. 148-154.
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