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Relativquadratische Zahlkôrper, deren
Klassenzahl durch eine vorgegebene

ungerade Prhnzahl teilbar ist
von Max Gut, Zurich

Herrn Paul Finsler zum sechzigsten Oeburtstage gewidmet

Es bedeute p eine beliebige ungerade Primzahl und f die p-te Ein-

heitswurzel £ e v Es sei ferner k ein algebraischer Zahlkôrper von
endlichem Grade, der f enthâlt, und in welchem wenigstens ein p tei-
lendes Primideal p von k den absoluten Grad 1 hat. Dies ist jedenfalls fur
den Kôrper der p-ten Einheitswurzeln der Fall, denn fur X 1 — f ist in
diesem Kôrper p (A)13"1, wo das Primideal (A) vom 1. Grade ist.

In der vorliegenden Arbeit beweisen wir den

Satz: Es gibt unter den beiden uber k gemachten Voraussetzungen unend-
lich viele in bezug auf k relativquadratische Zahlkôrper K, deren Klassenzahl

durch p teilbar ist.
Wir werden jedoch wesentlich nicht nur zeigen, daB unendlich viele

solche Kôrper K existieren, sondern geben in jedem Falle explizite eine

algebraische Zahl vom Relativgrade 2p in bezug auf k an, deren Adjunk-
tion zu K ein Stûck des Hilbertschen Klassenkôrpers von K liefert, das
in bezug auf K den Relativgrad p hat.

Ein Polynom heifie normiert, wenn der Koeffizient der hôchsten
Potenz gleich 1 ist.

Es sei z eine freie Variable und

z

Ist dann n eine beliebige natiirliche Zahl, so ist identisch in z :

wo On(x) ein wohlbestimmtes, normiertes, ganzrationalzahliges Polynom
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vom Grade n in x ist, dessen Koeffizienten uns hier iibrigens nicht weiter
interessieren. Es ist also, um môglichst klar zu sein:

z H Gx(x) x
z

* + z* " °*{X) ~ X* SX

usf.
Setzt man z 1, so wird a; 2, und man erkennt, daB fur jede

naturliche Zahl n :

(1 /O\ /O\— \jTn \£) yZi)

Wir beweisen zunâchst folgenden

Hilfssatz: Fur n ^ 3 und fc=l,2,...,w — 1 gilt die Formel:

'n + k — l\ (n 4- k —¦ 1

(k - l)\n \ 2k - 1 / \ n - fc

Beweis: Es ist gemàB (1):

dx
_

1

_
^2 — 1

___ _____ ^ 9

dz z2
also -j— —^ —

Folglich ist fur n ^ 3 :

a'n{x) o'^x) _ d r i / i \ i_
7i n — 2 d^l_^\ a;n/ n —

2n+i

also

n n — 2 w'~1
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Mithin wird fur k 1, 2, n — 1, fallsunter
verstanden wird:

Es folgt

usf
Faite n ungerade, ist schlieBlich

1

Daher ist fur ungerades n, wie sich durch Addition dieser —-— Glei-
chungen ergibt

Falls n gerade ist, ist sehlieBlich:

Und

<>(*) _ ^ ^_1)(

72»

FolgKch ist fur gerades n, wie sich durch Addition dieser — Gleichungen
ergibt:

Insbesondere ist mithin fur ungerades n :

und fur gerades n :

n-3

- flp» (2) + i: ogr/» » (2) (4)
0

n_2

Wir beweisen die Formel (3) fur k 1. Ist % ungerade, so ist gemàB
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Ist n gerade, so ist gemàB (5) und (2) :

£n r=0

Die Formel (3) ist mithin richtig fur k — 1.

Fur festgehaltenes n nehmen wir an, die Formel (3) sei richtig fur &, wo
1 5^ k ^n — 2 ist, und zeigen, da8 sie richtig ist fur k -f- 1.

Fur ungerades n wird gemâB (4), da 6r^+1)(2) 0 ist:
n—3 2i

J

Fur gévades n wird gemâB (5) :

2* n-l-2r\)

Mithin ist fur jedes n ^ 3 nach Induktionsvoraussetzung :

(*-!>! 2 (n-l-2r)( ^ __ x

(n + k — 1 — 2r) — & /?? + k — 2 — 2r

f-0

ifc \ 2Jfc — 1

n + k — 1 — 2r\ (n + k — 2 — 2r
2k / \ 2k -1

M + & — 2 — 2r
2*

womit unser Hilfssatz bewiesen ist.
Insbesondere folgt fur jede ungerade Primzahl p :

k\ " & \ 2fc - 1 j ~ & \ p - k

Da ©^(a;) ein normiertes ganzrationalzahliges Polynom p-ten Grades ist,
sind die GrôBen (6) ganz rational.
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Wir wenden uns zum Beweise des Hauptsatzes.
Es sei y eine beliebige ganze Zahl von k, die zu2p teilerfremd und qua-

dratischer Rest mod. p ist :

yEEc2^0 (mod.p), (7)

wo c ganz rational ist, und wir betrachten das normierte Polynom vom
ungeraden Primzahlgrade p

Gp(x) - X**y - 2 (8)

dessen Koeffizienten ganze Zahlen von k sind. Wir setzen

x 2 + X*y
und zur Abkiirzung :

i O(k)(2)

Beachten wir, da8 Op(2) 2 gemàB (2), so sehen wir, daB

2 Qv{2 +(x - 2)) - X^y - 2

i G(k)(2)

Ba p — Xv~xe ist, wo s eine Einheit des Kôrpers der ^-ten Ein-
heitswurzeln ist, fur welche

6= l(mod.(A)),
so folgt aus (6):

Die auf den linken Seiten der folgenden vier Kongruenzen stehenden
Zahlen sind ganze Zahlen des Kôrpers der p-ten Einheitswurzeln und

1. fur k p — l,p — 29..-, P~t3 ist:

Gik)(2)

2. fur k= Pt l ist:
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3. fur t^-LZLl.-P^!,... ,2 ist:

4. Fur h 1 ist:

Mithin wird gemaB (9) und (7)

f{y) y* -2y 2 + y~-c2 y(y 2 - i)« - c» (mod.p). (10)

Das Polynom /(«/) hat mod. p weder einen Linearfaktor noch ein mod. p
irreduzibles Polynom 2. Grades als Faktor. Denn betrachtet man die
Kongruenz (10) als eine Gleichung im Galoisfeld GF(p2), wobei dann c
eine von 0 verschiedene GrôBe des Unterkôrpers GF(p), d. h. des

Primkôrpers der Charakteristik p ist, so besitzt das Polynom (10) im
OF(pz) keinen Linearfaktor. In der Tat folgt aus

y(y~-l)* c*,

daB y gleich dem Quadrat eines Elementes des OF(p2) sein muB,

y y2 ^ 0, und dann folgt

Tjir)»-1 — 1) *f — tj ±c.
Wendet man auf die letzte Gleichung den von der Identitât verschiedenen
Automorphismus des OF(p2) an, so folgt

rffl — rjP fj —rf -j- c

und die Addition der beiden letzten Gleichungen fiihrt zum Widerspruch,
daB c 0 sein muBte.

Eine beliebige Nullstelle der Gleichung

O9(x) - I2*y - 2 0 (11)

legt daher einen Kôrper fest, der in bezug auf k mindestens vom dritten
Relativgrad ist.

Es sei jetzt y ein Produkt von endlich vielen voneinander verschiedenen

rationalen ungeraden Primzahlen, das zur Kôrperdiskriminanten
von k teilerfremd und quadratischer Rest mod. p ist. Insbesondere darf
das Produkt auch aus nur einem einzigen Faktor bestehen.
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Wir setzen in der Gleichung (11) die GrôBe x — z -\ Dadurch geht
sie iiber in die Gleichung

Z2P __ (tfpy + 2)zP+l 0. (12)
Setzt man

z? u, (13)
so wird

u2 — 0?vy _|_ 2) u + 1 0 (14)

Die Diskriminante D dieser Gleichung ist

PPy + 4)

D ist keine Quadratzahl von k. Denn jedes Primideal von k, welches ein
Teiler des Hauptideales (D) von k ist, miiBte in einer geraden Potenz in
(D) als Faktor enthalten sein. Das ist aber nicht môglich, denn y ist zu
%ivy _|_ 4 teilerfremd, und jeder Primidealteiler der ganzen rationalen
Zahl y ist in k unverzweigt. Mithin ist der Relativgrad von K k(u)
in bezug auf k gleich 2. Ûbrigens ist die Relativdiskriminante von K
in bezug auf k zu p teilerfremd. Denn K kann aus k auch erhalten werden
durch Adjunktion von v, wo

u— 1

Fur u 1 + iPv geht aber (14) liber in die Gleichung

v2 — Xpyv — y 0

v ist mithin algebraisch ganz, und die Diskriminante dieser Gleichung ist

also zu p teilerfremd.
Ist z1 eine willkiirlich aber fest gewàhlte Nullstelle der Gleichung (12),

so werden aile 2p Nullstellen von (12) durch die 2p algebraischen Ein-
heiten

gegeben und gemâB (13) und (14) hangen sowohl K wie K(zt) K(z)
nicht ab von der Wahl von zx. Die p Nullstellen des Polynoms (11)
werden gegeben durch

Xt==Zt + ± çt-Hi + ç^±91 19 2,..., p.zf zx
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Der Kôrper K (zj hat in bezug auf K den Relativgrad p oder den Relativ-
grad 1. Aber das letztere ist nicht môglich, denn sonst hàtte zx in bezug
auf k den Relativgrad 2. Mithin miiBte auch

in bezug auf k den Relativgrad 2 oder 1 haben. Aber oben haben wir ge-
zeigt, daB xx in bezug auf k mindestens vom dritten Relativgrade ist.

GemâB (13) und (14) gilt fur die algebraische Einheit zx\

also

z\ 1 lp (mod. (A)*),

und daher1) ist K(z1) ein Unterkôrper des Hilbertschen (absoluten)
Klassenkôrpers von K, der in bezug auf K den Relativgrad p hat. Folglich
ist die Klassenzahl von K durch p teilbar.

Hat man durch geeignete Wahl von y1,y2, • • • ys so schon s vonein-
ander verschiedene in bezug auf k relativquadratische Kôrper

deren Klassenzahl je durch p teilbar ist, konstruiert - fur s 1 ist dies ja
derFall - so hat man ys+1 nur so zuwàhlen, daB die in ys+1 aufgehende
oder aufgehenden ungeraden rationalen Primzahlen zur Diskriminanten
von k9 zu y1>ya, ...,ya und zu X^7l + 4, A2*>y2 + 4, A2^s+ 4
(bzw. den absoluten Normen dieser s Zahlen, genommen im Kôrper der
p-ten Einheitswurzeln) teilerfremd sind, und ys+1 quadratischer Rest
mod. p ist. Dann ist Ks+1 ein von den Kôrpern if1? K2, Ks ver-
schiedener Kôrper mit den verlangten Eigenschaften. Es gibt mithin
unendlich viele solche Kôrper /£s.

(Eingegangen den 5. April 1954)

1) Vgl. z. B. Hecke, Erich: Vorlesungen iiber die Théorie der algebraischen
Zahlen, Leipzig 1923, § 39, p. 148-154.
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