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Sur les distributions invariantes
dans le groupe des rotations de Lorentz

Par Pierre-Denis Methée, Lausanne

Introduction

A l'origine de ce travail se trouve le problème suivant, qui s'est posé à

l'occasion de la Thèse de M. D. Rivier1): déterminer, dans l'espace à n
dimensions ^(n ^ 3), toutes les distributions (au sens de M. L.Schwartz)
qui sont invariantes dans le groupe G des rotations propres de Lorentz
et qui satisfont à l'équation des ondes Q5P + J;!r O ou ô0, k étant
une constante quelconque (éventuellement nulle), et ô0 désignant la
distribution de Dirac relative au point O centre des rotations de Lorentz et
origine des coordonnées. La difficulté essentielle de ce problème réside en
ceci que, pour n ^ 4, il existe des fonctions invariantes solutions usuelles
de l'équation T + k T 0 qui ne sont pas sommables dans un voi-

sinage du cône u — t2 — J£ x\ 0 et qui, par conséquent, ne défi¬
ni

nissent immédiatement des distributions que dans les trois domaines

u ^é= 0 et non dans l'espace entier.
Le travail tel qu'il se présente ici est conçu d'un point de vue un peu

plus large que ne l'exigerait la seule résolution du problème énoncé.

Quelques propriétés des distributions invariantes par G, en généra],
sont d'abord établies, dont voici la plus importante : on peut associer à

toute distribution invariante définie dans Rn — O (espace privé de

l'origine) un couple de distributions sur la droite Ou, et réciproquement.
Des distributions invariantes particulières sont ensuite examinées:

celles qui ont pour support l'hyperboloïde u e(s < 0) ou une nappe de

l'hyperboloïde u e (e > 0) De cette étude il ressort notamment que
ces distributions, considérées comme fonctions de la variable e, admettent
toutes un développement asymptotique, au voisinage de e 0, de forme

*) D. Rivier: Une méthode d'élimination des infinités en théorie des
champs quantifiés. Application au moment magnétique du neutron. (Helvetica
Phys. Acta, XXII (1949), p. 265-318).
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simple. Cela permet alors aisément, en s'inspirant de la méthode utilisée

par M. J. Hadamard2) pour définir la «partie finie» d'une intégrale
divergente, de prolonger de façon invariante dans Rn, que n soit pair ou qu'il
soit impair, les distributions égales, pour u ¥= 0, à certaines fonctions
de u non sommables au voisinage de u 0.

Parmi ces fonctions figurent précisément celles qui interviennent dans
le problème indiqué plus haut, lequel peut ainsi être résolu. La solution
générale invariante de l'équation {JT + JcT 0 o\xà0 est donnée
explicitement. Elle dépend de trois constantes arbitraires.

Je ne puis terminer sans préciser que c'est M. G. de Rham, mon maître,
qui m'a proposé le sujet de ce travail. J'ai bénéficié constamment de ses

critiques et de ses conseils. Ses directives pour la présentation finale des

résultats m'ont été particulièrement précieuses. C'est un devoir pour moi,
dont je m'acquitte ici avec joie, d'assurer M. 6. de Rham de ma vive
reconnaissance.

§ 1. Rappel des notions de distribution et de courant3)

Dans l'espace à n dimensions Rn, un courant de degré n — p est une
fonctionnelle linéaire T[<p], définie sur l'espace vectoriel des formes
différentielles extérieures q? de degré p dont les coefficients sont des fonctions
indéfiniment différentiables nulles hors d'un ensemble compact, et qui
est continue dans le sens suivant : si <p -> 0 de manière que chaque
coefficient de <p reste nul hors d'un compact fixe et que chacune de ses dérivées
tende uniformément vers zéro, alors T [ç>] -» 0.

On dit qu'une forme <p est C°° si ses coefficients sont des fonctions
indéfiniment différentiables. La forme <p est dite nulle en un point si tous ses

coefficients s'annulent en ce point. Le support de cp est le plus petit
ensemble fermé en dehors duquel q> est nulle. L'ensemble de toutes les

formes C00 à support compact sera désigné par 9.
Le courant T est dit nul dans un ensemble ouvert D si T[cp] 0

pour toute forme <p c 0 à support dans l'ensemble D. Le plus petit
ensemble fermé dans le complémentaire duquel le courant T est nul est
appelé le support de T. La définition de la fonctionnelle T[(p] s'étend
d'une manière naturelle à toutes les formes C°° dont le support coupe

2) J. Hadamard: Le problème de Cauchy et les équations aux dérivées
partielles linéaires hyperboliques, p. 184-230. (Paris, Hermann, 1932.)

8) Cf. L. Schwartz; Théorie des distributions, tomes I et II (Actualités Sci. Ind.,
fasc. 1091 et 1122; Paris, 1950 et 1951);

Q. de Rham et K. Kodaira .'Harmonie Intégrais (Lecture delivered at the Institute
for Advanced Study, Princeton, 1950).
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celui de T suivant un compact ; si <p est une telle forme, on peut, en effet,
la décomposer en la somme <p <px + ç>2 de deux formes C°°, dont la
première q>x a un support compact et la seconde cp2 a un support qui ne
rencontre pas celui de T, et l'on pose T[<p2] 0 et T[cp] T[cp^\ ;

la valeur ainsi obtenue ne dépend pas de la décomposition choisie.
On dit que le courant T est égal à la forme oc, de même degré n — p

que T, si

quelle que soit la forme y e 9 de degré p.
Le produit extérieur T A oc du courant T par une forme O00 est le

courant défini par l'égalité

la différentielle dT du courant T, de degré n — p, est le courant défini
par

dT[<p] (— l)»-»+

enfin, les dérivées partielles de T par rapport aux coordonnées x{ dans Rn
sont les courants définis par

dT¦«--*[£]•
où ~~- est la forme que l'on déduit de q> en remplaçant chacun de ses

coefficients par sa dérivée partielle par rapport à ^. De ces définitions
il suit que

Si fj, est une application C00 de Bm dans Rn, qui applique le point y de
Rm sur le point x fxy de .R™, à chaque forme 9?(#) dans Rn correspond
une forme [i*<p(y) dans Rm, appelée image transposée de q> par //, qu'on
obtient en remplaçant, dans l'expression de q>(x), les coordonnées de x
par leurs expressions en fonction des coordonnées de y. Cette opération
jouit des propriétés exprimées par les relations

d{i*<p p* dq>, ^*(<ft A 9^2) iW*9?i A l**<p% î

de plus, le support de fjb*(p est contenu dans l'image réciproque /j,-1 K
du support K de <p.
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Si T est un courant dans R™, dont le support coupe l'image réciproque
fi-1 K de tout compact K c R" suivant un compact, l'image juT de T
par fi est le courant défini dans Rn par la relation /uT[q)] T[/A*<p].

Dans R*1, les courants de degré n ne sont pas autre chose que les
distributions de L. Schwartz. Mais à tout courant de degré 0 est associé un
courant de degré n, son produit par la forme dxx A • • • A dxn qu'on
écrira simplement dxx... dxn lorsque aucune confusion ne sera possible,
et qui représente l'élément de volume dans Rn. Un courant de degré 0

représente donc aussi une distribution. Dans la suite, nous éviterons de
confondre les courants de degré 0 et les courants de degré n, et nous
réserverons le nom de distribution aux courants de degré 0.

§ 2. Condition d'invariance d'une distribution dans les rotations de Lorentz

On appelle rotation de Lorentz de l'espace Rn toute transformation
linéaire homogène

n

»!=I%^ (t l,...,n)

qui laisse invariante la forme quadratique

n-l
u x\ - E A

t=l

et dont le déterminant | aik | est égal à + 1.

/n-l \yt
Nous poserons xn t et r J£ x\ \ de sorte que u t2 — r2

\<-i /
Le domaine défini dans Rn par t > 0 et u > 0, appelé intérieur du
cône futur, sera désigné par Qt. L'intérieur du cône passé, défini par t < 0

et u > 0, sera désigné par Qz, et le domaine extérieur à ces deux cônes,
défini par u < 0, sera désigné par jQ2.

Toute rotation de Lorentz laisse Q2 invariant, tandis que Q1 et Qz

sont ou bien invariants ou bien permutés. Dans le premier cas, on dit que
la rotation est propre ; dans le second cas, elle est dite impropre.

Nous appellerons distribution invariante toute distribution T telle que
XT T pour toute rotation propre X.

Si T est invariante et si Xx et A2 sont deux rotations impropres, on a
X^T X2T, car A2 A^1 est une rotation propre. Nous dirons que T est

symétrique si XXT T et antisymétrique si XxT — T. Toute
distribution invariante se laisse décomposer, d'une manière unique, en la
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somme d'une distribution symétrique et d'une distribution antisymétrique

:

T

Les rotations propres forment, on le sait, un groupe de Lie connexe G

dont les transformations infinitésimales sont des combinaisons linéaires
des suivantes :

On en déduit que la distribution T est invariante si elle satisfait aux
conditions

et dans ce cas seulement.

dT n~1 dT n~1
Comme dT —^~-dt + JE ^—dxt et \du tdt — J£ x0 dxQ

on a

\dT Adu= Z(XtT)dxtAdt+ E(Xt,T)dx%/\dx,.

Par suite, la condition nécessaire et suffisante pour que la distribution T
soit invariante est que dT /\du 0.

§ 3. Les distributions invariantes de support O

Pour commencer la recherche des distributions invariantes, nous allons
déterminer celles dont le support se réduit au point O, centre des rotations
de Lorentz.

La distribution de Dirac ô0, définie par

ô0 [(fix^ xn) dxx... dxn] ç>(0,..., 0)

est évidemment invariante. D'autre part, l'opérateur différentiel Q,
dit dalembertien,

32 n-i 32

étant invariant, si T est invariante, T l'est aussi. Par suite, les
distributions k ô0 (Je 0, 1,... et leurs combinaisons linéaires sont des

distributions invariantes de support O. Ce sont les seules :
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Théorème L Toute distribution invariante dont le support se réduit au
point O est égale à une combinaison linéaire de dalembertiens itérés de ô0.

En effet, d'après un théorème connu1), toute distribution de support O

est égale à une combinaison linéaire de dérivées de <50,

où P désigne un polynôme de dérivation. Pour que cette distribution
soit invariante, il faut et il suffit que le polynôme associé

soit invariant. Supposons qu'il en soit ainsi. Comme il existe une rotation
propre amenant le point (xt, 0,..., 0) sur le point (— xlf 0,..., 0),
on a P(xlf 0,..., 0) P(— xx, 0,..., 0), de sorte que P(xt, 0,..., 0)
est égal à un polynôme en x\, soit P(xl9 0,..., 0) Q(— x\). Le
polynôme P{xx,..., xn_1, t) — Q{u) est alors invariant et nul sur l'axe
Ox1. Comme tout point de Q2 peut être amené sur un point de Oxt par
une rotation propre, ce polynôme est identiquement nul et T Q ô0.
C. Q. F. D.

Ce théorème entraîne que toute distribution invariante dont le support
se réduit au point 0 est symétrique.

§4, Les distributions invariantes dans Rn — O

Nous allons chercher maintenant les distributions invariantes T définies
seulement dans Rn —O, c'est-à-dire telles que T[<p] n'est défini que
pour les formes <p e Q de degré n dont le support ne contient pas O.

Désignons par / l'application de Rn sur la droite R, qui applique le point
x (xl9..., xn_1} t) de Rn sur le point fx de R d'abscisse

n-l
u t% - J£ x\

Désignons encore par /+ la restriction de / au domaine C Qz, extérieur
du cône passé, et par /_ sa restriction à Cû1, extérieur du cône futur.

Les images réciproques /-1 u0, /+1 u0 et fz1 uQ d'un point de R
d'abscisse négative u0 < 0 sont toutes trois identiques à l'hyperboloïde
à une nappe contenu dans Q2 et d'équation u uQ. Si u0 > 0, l'hyperboloïde

u uQ est à deux nappes, l'une contenue dans Q1 qui forme
f^}u09 l'autre contenue dans Ûz qui forme /I1^, la réunion des deux

4) L.Schwartz: Théorie des distributions, tome I, p. 99.
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formant f~xu0. Enfin, si ti0 0, f+x0 est la surface du cône futur
privée du sommet 0, fZ10 est la surface du cône passé privée de 0 et
/-1 0 est la surface totale des deux cônes y compris le point 0.

Quel que soit uQ, chacun des ensembles f^1 u0 et fZ1 u0 est invariant
par le groupe 0 des rotations propres et transformé transitivement par ce

groupe. Par suite, toute fonction 0(x) définie dans Rn — O et
invariante par O est constante sur chacun de ces ensembles. Soit 0+(u) sa
valeur sur f+xu et 0~(u) sa valeur sur fzlu. On a

0 /* 0+ dans CU3 0 /* 0~ dans C~QX, (4.1)

et il est clair que
0+(u) 0-(u) pour u <0 (4.2)

Réciproquement, à toute paire 0^,0- de fonctions définies dans R et
satisfaisant à (4.2) correspond une fonction 0 invariante dans Rn — O
définie par (4.1).

Nous allons établir une proposition analogue pour les distributions.
Si T est un courant de degré n à support compact dans CQ3, alors,

d'après la définition du § 1, f+T est un courant de degré 1 dans R qui
satisfait à f+T[y>] T[f^xp\, où xp est une fonction (700 quelconque à

support compact dans R. Pour toute rotation propre X, comme /+ A /+,
on a f+XT f+T. Considérons, en particulier, le cas où T est une forme
oc, et supposons d'abord que le support de <x soit contenu dans le domaine
D de JR*1 défini par t > 0. En prenant le système de coordonnées formé

par #!,..., #n_i, u, ce domaine D est défini par l'inégalité r2 + u > 0,
et, si a a(x±,..., xn_x, %) da^... dxn__1 du, on a

f+<x[ip] <%[/* v>] J a(a?i, • • • 5 av-i, w) y M ^... d^n^ du
d'où

f+<x A (u) du avec JL (w) J a (xx,..., xn_t, w) dxx... d«n-1, (4.3)

formule qui montre que, si (x est O00 à support compact dans D, alors
f+oc est G°°.

Ce dernier résultat s'étend au cas où <x est une forme C00 à support
compact contenu dans C Q3. En effet, on sait que les transformés XD de
D par toutes les rotations propres X recouvrent complètement C Qz En
vertu du théorème de Borel-Lebesgue, le support de oc est contenu dans
la réunion U X{D d'un nombre fini de tels transformés. En utilisant
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une partition de l'unité subordonnée à ce recouvrement, on peut
remplacer a par une somme de formes at qui sont C00 et dont chacune a son

support contenu dans le transformé AtD d'indice correspondant. Alors
/+ « .£ /+ «< J£ /+ A^1 ai es^ ^°° en vertu de ce qui précède, car

i
Xj^i Af a* est O00 à support compact dans 2).

En écrivant <x (i /\du, où /S est une forme C00 à support compact
dans CQ3, on a

f+* du S p (4.4)

l'intégrale étant étendue à la surface f^}u (hyperboloïde ou nappe
d'hyperboloïde ou de cône) convenablement orientée.

D'une manière tout à fait analogue, si fi est encore une forme e 9 de

degré n — 1 à support dans C i23, on voit que /+/? est la fonction G°°

dans R définie par

Si (} est divisible par du, on a /+ /? 0. D'autre part, (4.4) et (4.5)
montrent que /+(/? A du) (/+/?) d^.

Ces remarques permettent d'étendre la définition de l'opération /*.
La relation /+ <x [y)] <x [/* ^], qui peut aussi s'écrire

conduit, en effet, à poser, pour toute distribution S dans R,

La fonctionnelle linéaire /*$[&] définie ainsi pour toute forme oc

de degré n à support dans C Qz est une distribution dans CQ3, qui est
invariante parce que /+ A"1 /+ et (A-1)* /* /* ou A/*= /* pour
toute rotation propre A.

De même, si /? est une forme de 3 de degré n — 1 à support dans

CU3, la relation f+fi[y>du] PlfXiydu)], qui peut aussi s'écrire

f+(ipdu) [fi] (— l)71-1^dw) [/+/?], conduit à poser, pour tout courant
U de degré 1 dans R,

et la fonctionnelle linéaire /* U [($] définie ainsi est un courant de degré 1

dans CQz qui est invariant.
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L'opération /* ainsi prolongée est encore permutable avec d,

f*dS d (/* S), et l'on a /* (S du) (/* 8) du

en désignant, comme nous l'avons fait, par le même symbole du les
différentielles dans R et dans Rn, de sorte que du f+du.

Grâce à cette opération, à toute distribution 8 dans R correspond une
distribution invariante /* S dans CQ3. Nous allons montrer maintenant
que, réciproquement, à toute distribution T invariante dans CQZ
correspond une distribution S dans R, et une seule, telle que T /* $.

Soit c (xt,..., #n-1, u) une fonction C°°, dont le support est contenu
dans D (le domaine défini par t > 0 ou r2 -\- u > 0) et coupe l'image
réciproque f^1 K de tout compact K c R suivant un compact, telle que

J c (xx,..., xn_1, ij) d#x... dxn_1 1 quel que soit u

Il est aisé de construire une telle fonction. Supposons-la choisie une fois

pour toutes et posons

y c(x1,... xn_1} u) dxx... dxn_x.

Si y) xp(u) est une fonction C°° à support compact dans R, la forme

y A /* (f du), de degré n, est C°° à support compact dans D, et l'on a

wdu (4.6)

Par suite, pour toute distribution S dans R, il vient

d'où
f+(f*+SAy) ; (4.7)

ainsi /S est complètement déterminée par la connaissance de /* 8.
Si T est une distribution invariante donnée dans CQZ, il ne peut donc

y avoir d'autre distribution 8 dans R satisfaisant à /* $ T que celle
donnée par S f+(T /\y). Montrons que cette distribution 8 satisfait
effectivement à la condition requise, c'est-à-dire que la distribution
^o /* ^ — T est nulle. Comme To est visiblement invariante, il suffit
de prouver que To [a] 0 pour toute forme oc eQ de degré n à support
dans D. On a

ce qu'on peut écrire TQ [oc] T [j8] en posant
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Y h ft f+<* — <* — P — bfa,..., xn_x, u) dxx... dxn_x du

De la relation (4.6) appliquée à ipdu /+ac, on tire f+ft 0, donc

J 6 (a^,..., xn__x, u) dxx... dxn_x 0 quel que soit w

Or, d'après une proposition connue5), cette relation entraîne que la forme
b (xx,..., xn_x, u) dxx... dxn_x, u étant pris comme un paramètre, est la
différentielle d'une forme pt de degré n — 2 à support compact contenu
dans D. En considérant u comme une variable, on peut, par suite, écrire

b(xti..., xn_l9 u) dxt... dxn_x d& — du f\ -^-,
d'où résulte /? d (& A dw) ; il vient, par conséquent,

T0[x] rptft A A*)] - dTtft A du] (- l)»-1 dî7 A dw [/y

ce qui est bien nul, puisque, T étant invariante, on a dT f\du 0.
Des considérations analogues sont évidemment valables pour les

distributions invariantes dans CQX. On peut alors énoncer le théorème
suivant6), qui résume les résultats obtenus:

Théorème 2. A toute distribution T invariante dans Rn — 0 correspond
une paire de distributions {T+, T~) dans R, qui coïncident sur la demi-
droite u < 0, telles que

T t%T+ dans GQZ et T f*T- dans CQ.

Réciproquement, toute paire de distributions dans R qui coïncident sur la
demi-droite u < 0 définit une distribution T invariante dans Rn — 0.

La distribution T sera symétrique si T+ T~, antisymétrique si

T+ —T~. Dans le dernier cas, elle s'annule dans Q2.
Le support de T+ et celui de T" sont contenus dans l'image par / du

support de T.
Remarquons encore que la forme y de degré n — 1, qui permet

5) C'est un cas particulier du "deuxième théorème de de Rham", facile à démontrer
directement. Il se ramène par exemple au lemme 2 du chapitre 3 de la thèse de cet auteur:
Sur l'Analysis situs des variétés à n dimensions (<T. Math. Pures Appl., 1931,

p. 115-200).
6) Le principe de la démonstration de ce théorème m'a été communiqué par M. de Rham.
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d'exprimer T+ par T+ f+(T /\y), jouit des propriétés suivantes,
qui seules sont essentielles: elle est C00, son support est contenu dans
GQ3 et coupe l'image réciproque f^1 K de tout compact K czR suivant
un compact, enfin f+y 1

Démontrons maintenant la proposition suivante, utile pour les calculs
à venir :

Si (T+, T~) est la paire associée à la distribution invariante T, la paire
associée à UT est (DT+, DT~), où

du Jdu

L'opérateur différentiel D et son adjoint D* [4tu^—h 8 — 2n) -=-* \ du ] du
sont définis pour toute distribution dans R. Si U1= U du est un
courant de degré 1 dans R, U étant une distribution, on conviendra de définir
DU1 et D* Ux en posant DU1 (DU) du et D* Ux (D* U) du. De
même, si T To dxx...dxn est un courant de degré n dans Rn,TQ
étant une distribution, nous définirons T en posant

UT (aTf>)dx1...dxn

Si xp est une fonction C°° dans R, un calcul simple donne

Par suite, pour un courant T de degré n à support compact dans

on a /+ Q T[xp] T[U /* y] TUt Dw\ /+ T[Dxp\ Mais, D*
étant adjoint à D, on peut écrire, pour tout courant Ut de degré 1 dans R,
les relations D*Ut[y)] Ux[Dxp\ et DUx[y>] C/JD*^]. H en résulte

que /+î7[Dy] D*/+îT[^], donc que /+ D T[^] i>*/+ î7^], soit

f+DT D*f+T. (4.9)

Cette relation est vraie, en particulier, pour î7 a, forme C00 à

support compact dans CTÎ%. Il vient alors, pour toute distribution U dans

RiDftU [oc] U [UD oc] U [D*/+«] /î #tf [«]> ou

DftU flDU. (4.10)

Cette relation et celle qu'on obtiendrait de façon semblable en
envisageant l'opération /* entraînent la proposition énoncée.

Si le support de la distribution U, dans R, ne contient pas le point
m 0, la distribution /*U, définie dans Cl)z, peut être prolongée
dans Rn, en la posant égale à zéro dans un voisinage de ~QZ. De même,
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/* U se prolonge dans Rn en une distribution nulle dans un voisinage de

Qx et /* U se prolonge en une distribution nulle dans un voisinage du
cône u 0. Chaque fois que le support de U ne contiendra pas le point
u 0, nous conviendrons que /* U, /* U et f*U sont ainsi prolongées
dans Rn. Ce seront alors des distributions invariantes dans Rn, à supports
contenus dans Qx U £2, i23 U Q2 et Qx (J O2 U O3 respectivement.

§ 5. Les distributions H*, HT* et J£\
Nous noterons H£, s étant > 0 et k entier ^ 0, la distribution

invariante associée à la paire (ô^, 0) où ô^ est la dérivée ]jème de la
distribution de Dirac ôe relative au point u e sur la droite Ou,
autrement dit la distribution telle que d^[ip(u) du] (— \)k ip^k)(e)

Cette distribution H\ /* à(k) est définie non seulement dans Rn — O,
mais encore dans Rn, grâce à la convention de la fin du § 4.

Soit alors T une distribution invariante dont le support est /+*£,
c'est-à-dire la nappe supérieure (t > 0) de Fhyperboloïde u e (e > 0),
et soit (T+, T-) la paire de distributions associées sur Ou. Il est clair que
T~ 0 et que, en vertu de la relation qui lie les supports de T et de T+,
le support de T+ se réduit au point u e. D'après le théorème déjà
cité de M. L. Schwartz, T+ est une combinaison linéaire des ô(k) ; donc T
est une combinaison linéaire des H\. Ainsi, toute distribution invariante
de support f^1 e est une combinaison linéaire des H\

Comme -=- ô{k) — <5(/+1), on a, en considérant Hk comme une

fonction de e :

d
dekHe — (— lr^oT He - (5-1)

De la proposition de la fin du § 4, il résulte que la distribution H\
est associée à la paire (Dôf^O). Or, sachant que ude eôe et

+ mâ^1* £<5(em), on trouve facilement que

> + 2(» - 2jfc - 4) (5</+1) (5.2)

On en déduit l'égalité
• nHl=4eHke+z + 2(n - 2k - 4) Hhe+1, (5.3)

qu'on peut aussi écrire, en utilisant (5.1),
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Considérons la transformée de H\ par une rotation impropre de Lorentz
et désignons-la par H\. C'est la distribution invariante associée à la paire
(0, ^eA))î son support est /l1^, c'est-à-dire la nappe inférieure (t < 0)
de l'hyperboloïde u e (e > 0). Un raisonnement analogue à celui
tenu plus haut montre que toute distribution invariante de support fz}e
est une combinaison linéaire des H\. Les formules qui précèdent restent
valables après substitution de H à H

Soit maintenant e un nombre négatif. Nous noterons 3V\ la distribution
invariante correspondant à la paire {ô^\ô^). Elle a pour support
f~x e, soit Fhyperboloïde à une nappe u e (e < 0). On est amené à
la conclusion que toute distribution invariante de support f~l e est une
combinaison linéaire des 3f\ et que les formules (5.1) à (5.4) subsistent
lorsqu'on y remplace H par 3f.

§ 6. Les parties infinies de H* et de

et les distributions Hk Hk et

Nous dirons que deux fonctions de e, définies pour e > 0, ont la même

partie infinie si leur différence tend vers une limite finie lorsque e -> 0.
Considérons les fonctions ex log^ e, où /z est un entier ^0 et X un

nombre réel ou complexe dont la partie réelle est ^ 0, la valeur A 0

étant exclue si jbt 0. Lorsque e -> 0, une fonction de ce type ne tend
pas vers une limite finie, et l'on sait, de plus, qu'il n'y a aucune combinaison

linéaire (non identiquement nulle) de telles fonctions qui puisse
tendre vers une limite finie. Il en résulte que, s'il existe une combinaison
linéaire de ces fonctions, soit I(e), ayant la même partie infinie qu'une
fonction donnée g (e), cette combinaison est unique. Nous dirons alors que
I(e) est la partie infinie de g(e). Nous poserons

€->0

L'opération représentée par le symbole Pf (lequel est une abréviation de

«valeur limite pour e -> 0 de la partie finie de ») généralise l'opération
lim et s'y réduit chaque fois que cette dernière a un sens, c'est-à-dire

lorsque la partie infinie de g(e) existe et est égale à zéro.
Le cas d'une fonction définie pour e < 0 se ramène naturellement au

précédent.
Nous appliquerons aussi ces définitions à des fonctions dont la valeur

est une distribution, en particulier à iZf et à 3f\
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Comme ô€ -> ô et que ô£)->ôik) lorsque £->0 (ô désignant la
distribution de Dirac relative au point u 0 de Ou), H% tend, dans
Rn — O, vers la distribution invariante associée à la paire (ôik),0).
Mais la définition de cette dernière distribution ne s'étend pas immédiatement

à Rny parce que le point 0 adhère au support de ladite distribution,
et il se trouve, comme nous le verrons, que, pour k ^ \(n — 2), et que
n soit pair ou impair, H% ne converge pas dans R11 quand e -> 0 La même
conclusion sera valable pour 3£\ dans le cas n pair. Nous montrerons alors

que H\ et 3ff\ ont des parties infinies bien déterminées, qui sont des
combinaisons linéaires, ayant des distributions pour coefficients, de fonctions
ex log** | e | Les distributions

Hk PfH* et 3fk Pf3Fek

seront alors des distributions invariantes définies dans Rn et associées

respectivement aux paires (ôik), 0) et (ôik), ô{kï)
Nous allons, pour commencer, nous occuper des distributions H*.
Dans toute la suite de ce travail, q> désignera exclusivement une fonction

C°° à support compact dans Rn, et oc sera la forme oc y dxx... dxn.
Un ensemble de telles formes oc est dit borné dans Q si7) les supports de

toutes ces formes sont contenus dans un même compact K de Rn et s'il
existe une suite croissante de nombres positifs lp(p 1,2,...) telle
que les dérivées d'ordre < p de q> soient en valeur absolue < lp.

Dans l'intérieur du cône futur, Qx, on peut substituer à xl9..., xn__x

les coordonnées polaires, formées de r et de n — 2 variables angulaires,
et à t la variable u t2 — r2. En désignant par dco l'élément d'aire de la
sphère à n — 2 dimensions de rayon unité, on obtient

d'où

dx* dxn t rn-% dcodr dt1 *

oc =- q>(x1,..., &„_!, t) dxx dav-i dt — <p rn~% dco dr du

Si ip (u) est une fonction C°° à support compact contenu dans la demi-
droite u > 0, on a

/+ « fo(*)] « [/* ^] /|^rn~2 da>dr

7) L.Schwartz: Théorie des distributions, tome I, p. 70.
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Cela montre que, dans la demi-droite u > 0, la forme /+ <x est donnée par

f+oc du l ~- rn~2 dco dr

Désignons par &(r2, t) la valeur moyenne de y sur la sphère à n — 2

n-l
dimensions S(r,t) d'équation J£ x%% r2 (r constante, £ constante),

et par #n_2 l'aire de 8(1, t), II vient, pour tt > 0,

où t doit être remplacé par Vr2 + ^ avant l'intégration.

Par définition même de H* on a lïf [oc] /* «<*>[«]

donc

Comme -5— -^r— -z— il vient, par un calcul facile,
ou Ai ot

2t dt

où les a^J^ sont des coefficients numériques ; en particulier,

«<*> (- l)fc3.5...(2ifc- 1). (6.2)
On obtient alors

0

Si h < ^(n — 2), toutes les intégrales figurant dans cette expression
sont absolument convergentes pour e 0 (la limite supérieure 00 ne
peut jamais entraîner de divergence, car 0 est à support compact et
s'annule donc pour r assez grand). De plus, la convergence de cette expression

pour e -> 0 est uniforme par rapport à a sur tout ensemble borné
dans 9. Par suite, pour k<\(n — 2), la distribution Hl converge
quand e -> 0 vers tme distribution déterminée, qu'on désignera par Hk.
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C'est une distribution invariante associée à la paire (ô{k), 0), définie
dans Bn et non seulement dans Bn — 0

Si Je > \(n —- 2), les intégrales se trouvant dans (6.3) ne sont en
général pas toutes convergentes pour e 0, mais nous allons montrer
qu'elles possèdent des parties infinies déterminées.

Posons

o(r2,t2)=%[0(r2,t) + 0(r2,-t)] et 0x(r\ t2) ± [0(r2 ,t) - 0(r2, -1) ]

Les fonctions 0Q(x, y) et 0x(x, y) ainsi définies pour x > 0 et y ^ 0,
et qui sont évidemment C00 pour # ^ 0 et y > 0 peuvent être
prolongées pour a: < 0 et y < 0 de manière à être fonctions C°° de x et de y
quelles que soient les valeurs de ces variables8). Remplaçons alors 0 par
& 0Q -\- t0t dans le second membre de (6.1). H\ [a] se présente
comme la somme de deux termes. Comme 0t{r29 r2 + u) est fonction C°°

de r2 et de u, le second terme a une limite finie lorsque e -> 0. Par
conséquent, H\ [oc] admet la même partie infinie que le premier terme,
c'est-à-dire l'expression obtenue en substituant 0Q à 0 dans le second

membre de (6.1), ou, ce qui revient au même, dans le second membre
de (6.3).

d0
0o(r2, t2) étant fonction C00 de r2 et de t2, les fonctions -^ pour i

1 3**0
pair et - pour i impair sont C°° en r2 et en t2. Cela entraîne que

chacune des intégrales figurant au second membre de (6.3), où l'on a

remplacé 0 par 0O, se réduit à la forme

s-
rn—

0

où n — 2 + d 2k + 1 — i si i est pair, w — 2 + d 2& — i si i
est impair, et où F(x, y) est une fonction O00 à support compact. Notons

que d et n seront toujours de parité différente. Nous aurons alors besoin
du lemme suivant.

Lemme. Soient a un nombre réel > 0, m et d des entiers ^ 0 et

F(z, y) une fonction (700 de x et de y. La fonction
a

rm dr
~m+d

8) Cf., par exemple, JET. Whitney : "Differentiable even functions", Duke Math.
J., 10 (1943), p. 159.
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a une partie infinie de la forme

l-d 3

Q±(e) aAs
2 + <V_2 e

2 2 2

si d est pair,

Pd-i(e) b^e 2 + 6^.3 * 2 + • • • + W e + b0 log e

2 2 2

si d est impair.

Les coefficients a$ et bi ne dépendent ni de e, ni de a, et Von a, en particulier :

pour d pair > 1 a

pour d impair > 1 bdl F(O,O)j-
qmdq

ïm+d

pour d 1, 60 =-1^(0,0).
Démonstration. On écrira, par raison de commodité, J(e) J(m,d,F)

pour marquer que J(e) dépend de m, de d et de F.
Remarquons d'abord que la partie infinie de J (s) est indépendante de a,

pourvu que l'on ait a > 0. Si r2~d F(r2, r2 -f- e) est borné pour r > 1,

en particulier si F est à support compact, on pourra prendre aussi a oo.
Si d 0, il n'y a rien à démontrer, J(e) ayant alors une limite finie

lorsque e -> 0.
Si d 1, on peut écrire, pour m ^ 2,

a

J(m, l,F) =—î f
1 wt ty

l-m
e) *

et une intégration par parties mène à l'égalité

J(m,l,F) J(m- 2,1,F) +
les termes non écrits ayant une limite finie pour e -> 0. On en déduit que
J(m,l,F) a la même partie infinie que J(0, 1, F) si m est pair, ou que
•7(1, 1, F) si m est impair. Or, on peut poser

J(0, 1,JP) e) dlog(r

J(l, 1, F) ]F(r\ r*+e)d logVr* + e ;
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en transformant ces expressions à Faide d'une intégration par parties,
on voit aisément que chacune d'elles a une partie infinie qui se réduit à
— ^F (0, 0) log e, d'où résulte l'affirmation du lemme pour d 1.

Si d > 1, on pose

et1(,y)
y

Ces fonctions Fx et F2 sont O00 et l'on a

F(x9 y) J(0, 0) + y Ft(x, y) + x F2(x).

En substituant le second membre de cette égalité à F(x, y) dans

J(m,d,F), il vient

J(m,d, J) 1^(0,0) J(m, d, 1) + J(m, d — 2,1^) + J(m + 2,d - 2, J2)

Or, on a, pour a oo et en posant r Ve g

de sorte que, en raisonnant par récurrence relativement à d, on déduit
immédiatement de la formule ci-dessus le lemme énoncé.

En tenant compte du fait noté plus haut que les intégrales figurant au
second membre de (6.3), où l'on a remplacé 0 par <P0, se réduisent à la
forme (6.4), avec d 2k + S — * — n pour i pair et d=2&+2—i—n
pour i impair, il résulte immédiatement de ce lemme que,

pour Je ^ ^ (n — 2), iï* [<%] possède une partie infinie de la forme
P n_ 2 («) si w est pair et Q n__ 3 (e) #i n e^ impair.

II suffira pour la suite de calculer effectivement les parties infinies de

He 2 [oc] (pour n pair) et de He 2 [<x] (pour n impair). Dans ces deux

cas, le seul terme du second membre de (6.3), où &0 a été substitué à

0, qui diverge pour e 0 est celui qui correspond à i 0, les autres

termes ayant une partie infinie nulle. La partie infinie de He 2 [<x] est
donc la même que celle de
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n-2 n

(- 1) 2 2 * an_ta\ * / I 0o(r^, r* + e) ¦ ;

o ]/r2 + e

elle est égale, d'après le lemme (cas où m n — 2 et (2=1), à

(- 1)T2~T « _
aCr^

ce qui s'écrit aussi n_2

si l'on tient compte des égalités suivantes :

*q(0, 0) «P(0, 0) <p(0,..., 0) <50[«]

n n—2

«n-2
1 3 (n_3) (pour w pair), a\ * >= (- 1) * 3.5... (n -3)

n-1
(d'après (6.2)) Quant à JETe2 [a], sa partie infinie est celle de

n~l n-H /nl\

elle a pour valeur, en vertu du lemme (cas où m n — 2 et d 2),

n-l _n+l /n-l
2 2" * s_t£

ou encore

n-l
sachant que sn_2 / 07 (Pour w impair),

/n-l\ n-l
a\ 2 ;=(_i) 2 3.5...(n-2),

et enfin que l'intégrale en g ci-dessus est égale à —^
' *

Q

Si l'on considère € comme fixe et a comme variable, on voit que la partie
infinie de H%[o<] est une distribution, dont le support se réduit au point 0,
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car H* [oc] converge pour e -> 0 si le support de oc ne contient pas ce

point. La démonstration qui précède permet de constater aisément que,
pour e -> 0, la convergence de la différence entre iïf [oc] et sa partie
infinie est uniforme par rapport à oc sur tout ensemble borné dans 9.
Il en résulte que la limite Pf H\ de cette différence est une distribution.
Nous la noterons Hk. Nous pouvons alors énoncer ce qui suit:

La distribution iïf possède une partie infinie, qui se réduit à zéro si
k <-| (n — 2) et qui, pour k ^\ (n — 2), est de la forme P n-2(e)

si n est pair et Q n-z (e) si n est impair. Les coefficients de ces parties

infinies sont des distributions de support 0.

Pour n pair, la partie infinie de H6 2 est — 2-1 n 2 ô0 log e ; pour n

impair, la partie infinie de He2 est 2-1 n 2 ô0 e 2
•

Pour tout entier k > 0, Hk Pf H* est une distribution invariante
définie dans Bn, associée à la paire (ô{k), 0).

Considérons maintenant les distributions 3£\.
Dans le domaine Q2, défini par u < 0, nous utiliserons les mêmes

n — 2 variables angulaires que dans Qx, ainsi que u, mais nous
substituerons t hr. Comme u est négatif, r ^2 — u est réel quel que soit t

On a dr — dt et, par conséquent, on peut poser

/%/ - — /v» f /V» ^V» "^1 /"/ /Y> /T *¦>• /"F/" —'-'¦— ..X. #Vl "1 / f() /f /*«\ /F ^ fw fi§(X m \1 * # * > *^W 1 5 ^/ ^1 • • • ^*^tj 1 vuv Ht T V t 16 U'CU CvC' CtM/ •

Il vient, pour toute fonction ip{u) qui est C°° à support compact contenu
dans la demi-droite % < 0 :

foc[y){u)] — <% [f*y>] ^$ <P\/t2 — ^~3 dco dt y)(u) du ;

cela montre que, dans la demi-droite ^ < 0, la forme / a est donnée par
4- oo

n~3 ^/^ ^|J9?V//2 — un~Bdcodt ^-l^ i <P(r2,t)rn-*dt,
— 00

où (P est la valeur moyenne introduite précédemment et où r doit être
remplacé par Vt2 — u avant l'intégration.

Par définition même de ^*, on a 3f\Wi /* ô{ek)[oc] ô(ek)[foc],

d*où (e est négatif) :
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zî. J j_^0(<2_tt)<)l/^r^«-3J^ (6.5)

^ w est impair (n ^ 3), l'expression sous le signe somme est fonction
C00 de t et de e quel que soit e, donc J£\\oî\ tend, pour toute valeur
de k, vers une limite finie lorsque e -> 0

D'autre part, si l'on remplace &(r2, t) par sa partie paire en t, soit
0Q (r2, t2), dans le second membre de (6.5), celui-ci garde la même valeur.

dl
Or, pour n pair, en posant ^^(x, y) -^Q^x, y), on trouve

o
1=0

où les 6^ sont des coefficients numériques ; en particulier,

&</> (n - 3) (n - 5) (n - 1 - 2k) 2~k

Il vient, par suite, pour n pair
•4- oo

t=o J 1/V — e
—n+3+2/c —2t

Si k < -| (^ — 2), toutes ces intégrales convergent pour e 0, et la

partie infinie de 3F\\o<\ se réduit à zéro. Si & ^-| (w — 2), le lemme

ci-dessus (cas où m 0 et d est impair) montre que 3£\ [oc] a une partie
infinie de la forme P n-2 (— e)

Pour k ^ (n — 2), seul le terme correspondant à i 0 diverge
n-2

pour e 0, et, par conséquent, 3f * [a] a la même partie infinie que

/w-2\ +oo

n-2 A 2 ^ p <ft

^ J yt2 — e

en tenant compte de la parité de la fonction sous le signe somme, qui
permet de ramener l'intervalle d'intégration à (0, oo) et en appliquant
le lemme (cas où d 1 et m 0), on voit que cette partie infinie est
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ou encore, tous calculs faits,
n-2

— w 2 ioMlog (— e)

En résumé, nous pouvons dire ce qui suit:

La distribution 3f\ possède une partie infinie, qui se réduit à zéro si n est

impair ou si k < 4 (n — 2), et qui est de la forme Pu n-zl— e) si n

est pair et k ^ ^ (n — 2). Les coefficients de cette partie infinie sont des

distributions de support O. n_ 2 w_ 2

Pour n pair, la partie infinie de JfB 2 est — n 2
<50 log (— é).

Pow tout entier k ^ 0, J2?*fc P/ ^"f ^ une distribution invariante
définie dans Rn, associée à la paire (ô{k), ôik))

Considérons encore les transformées H* de H% et H k de lï* par une
rotation impropre de Lorentz X, par exemple la rotation

*' --*,*(=— x1? ^ *,(* 2, 3,..., n - 1)

On a H%[<x] AH%[(x]= H*[Â.* <x] Comme X permute les sphères

8(r, t) et 8(r, — t), la valeur moyenne de A* <p sur S(r,t) est égale
à la valeur moyenne de q> sur /S(r, — t), soit <£(r2, — £). On obtiendra
donc l'expression de H%[<x] en substituant &(r2,-~t) à &(r2,t) dans
le second membre de (6.1).

Il suit de là que les résultats obtenus pour Hf, en particulier ceux qui
sont relatifs à sa partie infinie, restent valables pour H\

En comparant les limites pour s 0 de H% [oc] et de Hl[<x], tirées
de l'égalité (6.1), et celle de Jf%\oi\, déduite de (6.5), limites qui
s'écrivent, respectivement,

¦* (t2 >
rn~~3 dr

on obtient la relation

Brn (Hl + ÏÏl- J^ie) 0, ou 3ZrQ^H° + 'Ho. (6.7)
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Formons maintenant la différence He 2 + He 2 — 3f_% : elle possède,
en vertu des résultats vus plus haut, une partie infinie nulle, donc elle
tend vers une limite finie lorsque e -» 0. Nous allons montrer que cette
limite est nulle, autrement dit que l'on a

n-2(n-2
n-2 n-2\ n-2 n-2

He* +57 -J?"_2J=0, d'où JF2 #2
e^° (6.8)

Partons des formules (6.1) et (6.5) et désignons par d(e) la différence
en question, au facteur (— 1)* 2-1 sn_2 près. Il vient

+ 00

ou encore, en faisant le changement de variable r |/£2 — u dans la
première intégrale après avoir constaté que le numérateur de la fraction
qui s'y trouve n'est autre que 2 &0(r2, t2), et en se souvenant qu'on peut
remplacer <P(r2,t) par &0(r2,t2) dans la seconde intégrale et, par
conséquent, ramener l'intervalle d'intégration à (0, 00) :

d(e) 2

Le premier crochet ne comprend, en fait, qu'un seul terme, celui qu'on
obtient en dérivant par rapport à u la fonction sous le signe somme
k -| (n — 2) fois : les autres termes contiennent, respectivement, les

dérivées d'ordre 1, 2,..., k — 1 \ (n — 4) de cette fonction à prendre
en t Vu, et sont alors nuls puisqu'ils possèdent tous au moins Vt2 — u
en facteur. Or, cette dérivée d'ordre k | (n — 2) de la fonction sous le

signe somme peut se mettre, en vertu de la formule (6.6), sous la forme

oh W(x, y) désigne une fonction O00 de x et de y à support compact.
Cela étant, la différence d(e) s'écrit
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expression qui tend bien vers zéro avec e.
On pouvait prévoir sans calcul que, quel que soit l'entier k ^ 0, les

distributions Jfk et Hk + H k sont égales dans Bn — 0, car elles ont
la même paire associée, à savoir (ô{k), ô{k)) Nous verrons au § 7, à
l'aide des résultats établis ci-dessus, qu'elles sont toujours égales dans Rn.

Envisageons, pour terminer, une distribution T invariante dont le
support est contenu dans la surface du cône u 0. Le support des

distributions T+ et T~ de la paire associée ne peut contenir d'autres
points que le point u 0, de sorte que la paire (5P+, T~) est égale à

une combinaison linéaire des paires (ôik), 0) et (0, ô{k)), (k 0,1,2,...).
Donc, dans Rn — O, T est égale à la même combinaison linéaire des

distributions Hk et "Hk associées à ces paires. Dans Bn, la différence entre
T et cette combinaison linéaire, si elle n'est pas nulle, est une distribution
de support O. Se reportant au théorème 1, on peut alors énoncer:

Théorème 3. Toute distribution invariante dont le support est contenu
dans la surface du cône u 0 est une combinaison linéaire des distributions
Hk,Hk et Okô0(k 0,l,2,...)

§ 7. Développements asymptotiques de H\ et de J^°
On sait9) que si la dérivée qièmG F{Q) (e) d'une fonction F(e) admet, dans

l'échelle des fonctions ex log^ e {X nombre réel ou complexe
quelconque, jbt nombre entier ^ 0), un développement asymptotique à la
précision o(l),F(e) admet dans cette même échelle un développement
asymptotique à la précision o(sQ), dont la dérivée d'ordre q est précisément

le développement de F{q)(e). Or, la dérivée gième de J3| qui est
égale, d'après (5.1), à (— l)Q Hl+k, admet, en vertu des résultats du § 6,

un développement asymptotique à la précision o(l). Donc iïf admet,
pour tout k entier ^ 0, un développement asymptotique à la précision
o(eQ), si grand que soit q, ce qu'on peut exprimer en disant que Hke

admet, dans Véchelle des fonctions ex log/* e, un développement asymptotique

9) N. Bourbaki: Eléments de mathématique, livre IV (Fonctions d'une variable
réelle), chapitre V, § 2 et § 3. (Actualités Sci. Ind., fasc. 1132; Paris, Hermann, 1951.)
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illimité. Le développement de H\ pouvant se déduire par dérivation de
celui de H%, il suffira d'établir ce dernier.

dq
Puisque H% (— I)q-j—Hl, l'ensemble des termes infinis pour e 0

du développement qui se déduit du développement de H% en dérivant q
fois ce dernier doit être égal, au facteur (— l)q près, à la partie infinie de

H\ déterminée au paragraphe précédent. Il en résulte immédiatement que
Ton peut écrire, en désignant par ~ le signe de l'égalité asymptotique :

J£ (Ah eh + Bh e 2 log e) si n est pair,

n-2 (7.1)
eh + Bh e

2 si n est impair.

De la même manière, on voit que J£% (e < 0) possède un développement
asymptotique de la forme

n-2

h=0
eh + £Bh e 2 log(— g)) si n est pair,

eh si n est impair.
(7.2)

Le développement de J¥\ se déduit encore par dérivation de celui de

en vertu de la formule Jf\ (- l)fc^^2 •

Les coefficients de ces développements sont des distributions
invariantes. Pour les déterminer, remarquons que l'on peut obtenir le développement

de Hl soit en appliquant l'opération aux coefficients du
développement de H%, soit, d'après (5.4), en effectuant l'opération

4e2 —- e
2

-— dans le développement de Hî. En identifiant les
de de

résultats trouvés, on parvient aux relations de récurrence suivantes:

pour n impair:

n
(7.3)
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pour n pair :

l)(h+2^AM si

i (7.4)

Pour n impair, les coefficients de Ah+1 et de Bh+1 dans les seconds
membres de (7.3) ne s'annulent jamais. Les distributions Ah et Bh sont
donc égales, à des facteurs numériques près, aux distributions D*^t0
et D* BQ respectivement.

Pour n pair, le seul coefficient numérique figurant dans les seconds
membres de (7.4) qui puisse s'annuler est celui de Ah+1 dans la seconde
formule. Il s'annule pour h | (n — 4), et cette formule devient alors

Q^n-4 (2n — 4) BQ • (7«5)
2

On constate que, à un facteur numérique près, Bh est égal à Qh Bo,

donc à D *+1 An- 4 > donc à D a Ao, puisque, pour h < ^ (n — 4), Ah
2

est proportionnel à DA Ao. Si h > ^ (w — 2), Ah est égal à une

combinaison linéaire de Q 2 An_ 2 et de D^ -^o •

2

En résumé, Ah et Bh s'expriment toujours à l'aide de dalembertiens
itérés de A 0 et de BQ si n est impair, de Ao et de An_ 2 si n est pair.

2
n-2

En considérant le développement asymptotique de He 2 qu'on déduit
de celui de H% (formule (7.1), n pair) par dérivation -| (n — 2) fois et

n-2
multiplication par (— 1) 2 on voit immédiatement que la partie

infinie de He* est égale à (—1) 2 (—-—) 2?0loge. De même, pour n
n-l

impair, on trouve que la partie infinie de He 2 est égale à

n-1 1

250



La comparaison de ces valeurs avec celles qui ont été déterminées au
§ 6 fournit Bo:

(-

2.3

n

l)*
n -

.5.

n—

n 2

- 2\

n-l

7...
2^
(»

n—1
|

2

-2)

ôo si n est pair,

si n- est impair.

(7.6)

Enfin, Hk Pf JET* n'étant pas autre chose que le terme indépendant
de e dans le développement asymptotique de H*, on obtient :

(— l)kk\Ak pour w impair, ounpairet k<\(n — 2)

#*
pour îî pair et k (n — 2)

(7.7)

77 résulte de là que la distribution Bh est toujours égale à un multiple de

(— 1)*
Cïhô0 et que la distribution Ah est égale à la distribution Hh, aug-

n-2
mentée d'un multiple die Q

A- -

ô0 si n est pair et h^^ (n — 2).

D'autre part, on voit qu'il n'y aurait pas de difficulté à écrire l'expression

du développement asymptotique de jGTf à l'aide des distributions
Hk et Dfc ô0 (Je 0, 1, 2,...). Il serait également aisé de calculer
maintenant la valeur précise des coefficients de la partie infinie de H\
pour tout h.

Ecrivons encore les relations de récurrence auxquelles satisfont les Hfc.
Elles découlent des formules (7.3) à (7.7):

(7.8)

où ck est un coefficient numérique, dont la valeur serait facile à déterminer

pour tout k. Notons simplement que l'on a

n-2
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Désignons maintenant par A h la transformée de Ah par une rotation
impropre de Lorentz. Il est clair que les formules (7.1) à (7.8) subsistent
lorsque l'on y remplace A par A et H par H

Des formules (7.8), pour les H et pour les H, on peut alors, compte
tenu du théorème 3, tirer les conclusions suivantes :

Pour n impair, il n'existe pas de distribution invariante T =£ 0 à support

contenu dans la surface du cône u 0 qui satisfasse à Vune des

équations Qî7 0 ou \JT ô0.

Pour n pair, au contraire, la distribution

n-4 n-4

satisfait à ï7 0, et toute distribution invariante à support contenu
dans la surface du cône u 0 qui est solution de cette équation est un multiple

de cette distribution. D'autre part, les distributions

2—n n—4 2 —n n—4

%7z~J~H~r et ^n~T"H~T~

satisfont à Véquation DT= ô0

Considérons, pour finir, les distributions 3¥h et C8h qui apparaissent
comme coefficients dans le développement (7.2) de J£\ La première des
relations (7.3), pour n impair, et les relations (7.4) et (7.5), pour n pair,
restent valables si l'on y remplace A et B par J^Tet C3\ les calculs à faire
sont semblables à ceux qui précèdent. De même, les formules (7.7)
sont encore vraies si l'on y substitue Jf, 3% et C3 à H, A et 1?

Il résulte alors de (7.7) pour k 0 et de (6.7) que

J/2 0 AQ -j" Aq

D'autre part, la méthode même qui a servi à établir (7.6) montre que,
pour n pair, n n_2

II suit alors de (7.7) pour k ^(n — 2) et de (6.8) que

2 ~i r ~lf
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Ces trois égalités suffisent, si Ton se souvient, d'une part, du fait,
remarqué plus haut, que Ah et Bh s'expriment toujours à l'aide de dalem-
bertiens itérés de AQ et de Bo ou de Ao et de An_2 d'autre part, de

2

l'identité des formules de récurrence relatives aux Ah, Ah et 5?h, ainsi
qu'aux Bh et £8h, pour entraîner les relations

3fh Ah + Âh £8h= 2Bh pour tout h ; (7.9)

on en déduit, compte tenu de (7.7), l'égalité

jjh _|_ Jffh pour tout h (7 10)

§ 8. Prolongement de distributions définies par certaines fonctions g(u)
non sommables au voisinage de u 0. Les distributions Sp, Sp et qSp

Soit gr (^) une fonction définie et continue pour u > 0. Nous nous

proposons de chercher une distribution, définie dans R, qui soit égale à

g (u) pour u > 0 et à 0 pour u < 0.

Désignons par I^(w) la fonction de Heaviside valant 1 si u > e

et 0 si u < s. Pour e > 0, la fonction I7^) <7(w) définit une distribution

dans R. Lorsque g(u) est sommable dans l'intervalle (0, 1), mais
dans ce cas seulement, cette distribution converge pour e -> 0 vers une
distribution lim Ye(u) g(u) qui répond à la question. Si cette limite

n'existe pas, il peut arriver que PfYe(u)g{u) existe, et alors cette
distribution résout le problème posé10).

Il en est, en particulier, toujours ainsi quand Pf g(e) existe. En effet,
g(e) ôe possède alors une partie infinie, que l'on obtient en multipliant la
partie infinie de g(e) par le développement asymptotique de ôe fourni
par la formule de Taylor

et en ne conservant de ce produit que les termes qui n'ont pas de limite

pour e -> 0. Il résulte alors de l'égalité -=- Ye (u) g(u) —g (e) ôe que
U/6

Ye(u) g(u) a aussi une partie infinie déterminée, donc que Pf Ye(u) g(u)
existe.

10) Cette méthode est celle de M. J. Hadamard. Cf. L. Schwartz: Théorie des
distributions, tome I, p. 38 et suivantes.
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Dans R* — 0, considérons la distribution invariante 0e associée à la
paire (Y€g,0). Le point 0 n'adhère pas à son support, qui est contenu
dans l'ensemble (u ^ e, t > 0), de sorte que la définition de Oe s'étend
à Rn. D'après la convention du § 4, cette distribution peut être notée

flTs9. On a

comme g (s) H% a une partie infinie, que l'on obtient en multipliant la
partie infinie de g(e) par le développement asymptotique (7.1) de Hl et
en ne conservant de ce produit que les termes qui n'ont pas de limite pour
e->0,Ge a aussi une partie infinie déterminée et, par conséquent,
Pf Oe Pf /* Ye g existe. C'est une distribution invariante, définie
dans Rn et non seulement dans Rn — 0, associée à la paire (Pf Y€gi0)t
Bien entendu, quand, en particulier, la fonction g(u) est sommable dans
l'intervalle (0, 1), on a simplement

PfOe[oc] Pf fl T£g [oc] <j g(u) (p(xl9..., xn_t, t) dx^.. dxn^ dt.

Un cas important pour la suite est celui où la fonction g (u) est égale à
v

u2 p étant un nombre quelconque. Nous désignerons par $f la distri-
ttbution f+Yeu2, et par Sp la distribution Pf8l> II serait aisé de

donner, dans chaque cas, l'expression détaillée de 8P. On a

p
[oc] f u2 q> dxx... dxn^t dt pour £%p > — 2[oc] f u2<p(

Les considérations précédentes s'étendent immédiatement à la
distribution G£ flYeg associée à la paire (0, Yeg). Nous poserons

Zi fl7eJ et X'

D'une manière analogue, si g(u) est définie et continue pour u < 0

et si Pfg(— s) existe, P/(l — Y_€)g existe aussi: c'est une
distribution définie dans R, égale à g(u) pour u < 0 et à 0 pour u > 0.
Soit £Lfi /*(1 — Y_e)g la distribution invariante définie dans Rn qui
est associée à la paire ((1 — Y_e) g, (1 — Y_e) g). On voit, comme plus
haut, que Pf £Le Pf /*(1 —ÏLfi)gr existe: c'est une distribution
invariante définie dans Rn, associée à la paire
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Elle s'écrit J g(u)q>dx1.. .dxn_xdt lorsque g(u) est sommable dans

l'intervalle (—1,0).
2.

Nous aurons à considérer le cas où g(u) — \ u \ 2. Nous noterons c5*f e
p

la distribution /*(1 — Y_€) | u\* et cS*> la distribution Pfc?*e(e>0).

Supposons maintenant que g(u) ait des dérivées première et seconde
continues pour u > 0, qui possèdent aussi des parties infinies
déterminées lorsque u -> 0. On trouve, par un calcul facile,

g" + [eg'{e)-g(e)]ôe + eg(e)ô'e
d'où

[(2ra — é)g(e) + 4e g' (e)] ôe + 4egr(e) ô'e (8.1)

formule qui permettra de calculer DPf(Yeg) Pf D(Yeg). En vertu
d'un résultat du § 4, la paire associée à Oe est (DYe g, 0). On a donc

Ge /*i; A7 + [(2n - 4) g(e) + 4e g'(e)] H°e + éeg(s) H\ (8.2)

d'où l'on pourra déduire PfGe Pf UG€ •

v_

Par exemple, en prenant g(u) u2 on obtient

Dg 2)(w + p — 2)u 2

d'où

nS* p(n + p-2) S?"2 + 2(n + p - 2) e¥#« + 4e 2 flj (8.3)

d'où encore

aS*> p(n + p-2)8*>-* + 2(n + p-2)Pfe2H°e + 4:Pfe 2 JîJ. (8.4)

Les mêmes formules valent pour Ge, H*, S* e^ &p •

D'une manière analogue, si gr(w) et ses dérivées première et seconde

sont continues pour u < 0 et ont des parties infinies déterminées lorsque
u -> 0, on parvient à l'égalité

(8.5)
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qui permettra de calculer DP/(1 — F_e) g Pf D{\ — Y_6) g On en
déduit immédiatement la formule

D^-* /*(l-r-e)2>0 + [(4-2n)p(-«) + ^^

(8.6)

grâce à laquelle on pourra trouver P/ 5_e P/ D^-g
p p-2

Par exemple, pour g(u) \u\2 il vient Dg= — p(n -{- p~2)\u\ 2

d'où

2 J^_!e

(8.7)
et enfin

p p+2

(8.8)

Nous allons tirer quelques conséquences de certaines des formules
précédentes.

Soit le un nombre entier positif quelconque. On déduit sans peine de

(8.4) la relation

it
W ^ffj, (8.9)

où d~^k est le coefficient

(P + 2) (P + *) • • • (P + 2*0 (* + P) (^ + P + 2) • • • (» + P + 2& - 2)

et où R^_1(e) et ^^^(e) représentent deux polynômes en s de degré
k — 1. Ce résultat n'a évidemment de sens que lorsque p ne prend pas
l'une des valeurs annulant d~^k

Désignons alors par E l'ensemble des nombres —2, — 4, — 6,...
et _^_7l__2,— n — 4,.... Sij? n'appartient pas à E, le coefficient
*^r,p,fc n'est jamais nul ; de plus, on constate que, dans ce cas, compte tenu

de la forme (7.1) des développements de H°e et de H\ — -j-H%, les
CLE

deuxième et troisième termes figurant au second membre de (8.6) sont
nuls. On a, par suite,

Sp dntVtk k Sv+2k si p E, quel que soit k entier > 0 (8.10)
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Si Ton considère oc comme fixe, mais p comme variable, 8P [oc] est une
fonction de p, qui est définie, comme on Fa vu plus haut, pour toute valeur
réelle ou complexe de cette variable. C'est même une fonction analytique
de p pour p $ E. Envisageons, en effet, la fonction

k étant un entier positif. Elle est définie pour l%p > — 2 — 2k, égale à

q*Sp+2k [<%], et c'est une fonction analytique de p. La fonction

est analytique dans le même domaine, sauf aux points qui appartiennent
à E ; elle admet pour prolongement dnpk+1lk+1(p)9 car ces deux
fonctions sont égales, d'après (8.10), dans la partie commune de leurs
domaines d'existence. L'ensemble des fonctions Ik(p), (k 1, 2, 3,...
définit donc une fonction I (p), qui est analytique, sauf pour les valeurs
peE, qu'elle admet pour pôles simples ou doubles; et I(p) est égale
à 8*> pour p $ E

Considérons maintenant les distributions Pf sp de M. Schwartz et
Zn+v de MM. Riesz et Schwartz11). Pfsp est une fonction de p, qui est

analytique, sauf pour une double infinité de valeurs singulières, qui sont
précisément les valeurs de l'ensemble E. Zn+P est défini par l'égalité

pour pfE, et par passage à la limite pour peE. On a

D Zx Zj_2 quel que soit l. (8.12)

Enfin, on sait que les distributions Zn_2 > Zn^,..., Zx, Z_x,... (pour n
impair) et Zn__2, Zn^,..., Z2 (pour n pair), qui sont invariantes, ont
pour support la surface du cône futur, et que ce sont les seules Z% à
posséder cette propriété.

Cherchons les relations existant entre ces distributions et nos
distributions BP et Hk

n) Cf. jD. Schwartz : Théorie des distributions, tome I, p. 50;
M.Riesz: L'intégrale de Riemann-Liouville et le problème de Cauchy

(Acta Math., 81 (1949), p. 1-223).
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De (8.11) et de (8.12), on tire immédiatement, pour p$E, l'égalité
Pfs*> dn>9tl DP/s^2; par conséquent, Pfs? satisfait à la même
formule (8.10) que Sp. Or, pour k assez grand, on peut écrire, toujours
pour p 4 E :

2ïu2 nk<pdx1...dxn_1dt=
fil

On a donc
SP pour p $ E (8.13)

II est clair que les distributions Zn_2 et H° doivent être proportionnelles.
Effectivement, de (8.12) où l'on pose l n et de (8.11) où l'on fait
p 0 on déduit que

S0

et, de (8.4) pour p 0, on conclut que 8° 2(n — 2) H°. Il vient
alors

n__1 ~ ^j Zn_% (8 _

On remarquera que Vensemble des distributions Zx ayant pour support
la surface du cône futur ne comprend pas, lorsque n est pair, toutes les distri-

n-2 n

butions invariantes ayant pour support ladite surface. En effet, H 2 H2,...
n-2

n'appartiennent pas à cet ensemble, puisque H 2 n'est pas un dalem-
bertien itéré deif0.

Pour terminer, calculons les valeurs de H S2~n \J~S2~n D <$2~n,

qui nous serviront dans le paragraphe suivant. On a, par application
directe de (8.4) et de (8.8):

4—« ê—n 4—n

Si n est impair, on déduit facilement de (7.1) que Pf s
2 H\ c'est-à-dire

le coefficient de e
2 dans le développement asymptotique de

est égal à — |- (n — 2) J50 ; il vient alors, en vertu de (7.6),

n+l w-1
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Remarquons qu'une solution particulière de l'équation [JT ô0, pour
n impair, est ainsi obtenue. Cette formule (8.15) est évidemment encore

4-n
vraie pour S2~n. D'autre part, on a Pfe 2 J^f1_e==O, comme le
montre immédiatement (7.2); d'où

(Ja-w __ o
9 pour n impair. (8.16)

Si n est pair, on déduit de (7.1) que Pf e
2 H\ vaut, cette fois-ci,

J(2 — n) An-ji — Bo ; par suite,
2

S2~n (4 — 2n) An-j — 4BQ pour n pair. (8.17)
2

Ce résultat, où l'on substitue Ah A, est valable pour 82~n. Enfin, on
conclut de (7.2), en tenant compte de (7.9), que

n

D <$2-n (— If [(4 — 2n) (An_2 + Âîn_2) — 8J50] pour n pair." ~*~ (8.18)

§ 9. Les solutions invariantes des équations DT=O et nT= ô0

On connaît déjà une solution invariante particulière de l'équation
T <50, aussi bien pour n impair, par (8.15), que pour n pair, par

(7.8). Il suffit donc de chercher la solution générale invariante de l'équation

D T 0. D'une proposition démontrée à la fin du § 4, il découle

que, si une distribution invariante T associée à la paire (T+, T~) est
solution de \JT Q, on doit avoir DT+ DT~ 0. Il convient
donc d'abord de déterminer toutes les distributions U dans R qui satisfont

à DU 0.
Cette équation étant régulière pour u ^ 0, toute distribution solution

est égale, dans chacune des demi-droites u> Q et u < 0, à une solution
2-n

usuelle12), laquelle est de la forme a + b \u\ 2 .11 en résulte qu'une
solution U s'écrira

2-n 2-n
U aPfYeu2 +bPf(l - Y_€)\u\ 2 + CYO +d + £ehd™,

car c'est là l'expression la plus générale d'une distribution égale, dans
2-n

u > 0 comme dans w<0, à une combinaison linéaire de | u \
2

et de 1.

12) L.Schwartz: Théorie des distributions, tome I, p. 127-130.
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En tenant compte de (8.1) pour g u * de (8.5) pour g | u\ %

et de (5.2) oit Ton pose e 0, il vient

4-n 4-n

+ 2(n-2)cô+ Z2
4-n 4-n

Si 7& est impair, les expressions Pfe2 ôfB et Pfe 2 dr_B sont nulles
toutes deux, le coefficient w — 2fc — 4 n'est jamais nul. Si n est pair
(n ^ 4), on a

Pfe2 ô'e~(-l)2Pfe2 y^-^
w — 2Jfc — 4 s'annule pour k | (n — 4). Dans les deux cas, DC7 est
une combinaison linéaire de dérivées de ô, qui ne peut être nulle que si le
coefficient de chaque dérivée est égal à zéro. On voit alors facilement que
la solution générale de Véquation DU 0 est une combinaison linéaire
arbitraire des trois distributions

%-n t-n
PfYeu2 Pf(l - Y_e) \u\ 2 1 pour n impair,

%-n /n-4\
Ye + 1 — F_e) u 2 ô^ 2 ' 1Pf(Ye + 1 — F_e) u 2 ô^ 2 ' 1 pour n pair

Les distributions T+ et T~ associées à une solution T de T 0 sont
des combinaisons linéaires des trois distributions (9.1). Comme T+ et T"
sont assujetties à être égales pour u < 0, d'après le théorème 2, la
paire (T+, T") doit être une combinaison linéaire des quatre paires
suivantes :

(PfY6u-îr, o), (o,p/re^),

F^)|^pT, P/(l-r_,)|tt|V),(i,i) pour n impair,

(àK 2 ^ 0) (0 dv 2 J) (1,1) pour n pair.
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Par conséquent, T est égale, dans Rn — 0, à une combinaison linéaire
des quatre distributions associées à ces paires, à savoir, d'après les
§ 7 et 8 :

£2-* ^ $2-n } ^2-n ^ i poiir n impair> |

— ?tz_! ÎLzi _*zi l (9 2)
#2-n + ^2-n + (_ i) « c?2-*1 £T 2 H 2 1 pour n pair.

Or, toutes ces distributions sont définies dans Rn. Dans Rn, 3F est alors
égale à une telle combinaison linéaire augmentée éventuellement d'une
distribution invariante de support 0. Il reste à voir quelles combinaisons
satisfont effectivement à l'équation O T 0. On sait, par les formules
(7.8) et (8.15) à (8.18), que, h et h' étant des constantes, on a

82~n D *S2~n h à0 D o5>2-n 0 pour n impair,

n (£2~n + ^2-w + (- if** <$2~n) o o

pour n pair.

De plus, il est clair que le dalembertien d'une distribution invariante de

support O, c'est-à-dire d'une combinaison linéaire de ?k ô0, ne peut
ni s'annuler, ni être égal à un multiple de ô0. On déduit alors facilement
de là les relations devant exister entre les coefficients des combinaisons
linéaires, et, partant, l'énoncé du

Théorème 4. La solution générale invariante de Véquation QT O est

a(S2~n — ~82~n) + b <S2~n + c sin est impair,

a(S2~n + S2~n + (- 1)V c?«-») + &(#^ - H~T~)+ c

si n est pair,

avec trois constantes arbitraires a,b,c.
Une solution particulière de Véquation T ô0 est l3)

n+l l-n
(—1)2 (2n) 2 3.5... (n — 4) 82~n si n est impair,

2-1 n 2 H 2 si n est pair.

Cet énoncé suppose n ^ 3; pour n 3, la solution particulière
s'écrit

18) Les formules (8.11) et (8.13), pour n impair, (7.8), (8.12) et (8.14), pour n pair,
montrent que cette distribution n'est autre que la distributionZ%, c'est-à-dire précisément
la solution particulière de O 2* $o donnée par M. Schwartz (Théorie des distributions,
tome I, p. 51, formule [II, 3; 34]).
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§ 10. L'équation des ondes amorties + *)T 0 ou ôo

La paire de distributions dans R associée à toute solution invariante
de l'équation + k) T 0 est formée de distributions satisfaisant
à l'équation (D + k) U 0, ou (Dn + k) U 0, en désignant par

Dn au lieu de D l'opérateur 4tu -=—- + 2 w -=—. Or, on a Dn -=- ^- Dn_2,

et, par suite, pour n impair,

w-1

Si donc F satisfait à l'équation (Dx + k) F 0 U (-=—) F satis-
\ du 1

fait à (Dn + k) U 0. Réciproquement, si U satisfait à cette dernière
équation et si Fo est une primitive d'ordre ^(n — 1) de (7, on a

w-1

-=—) (D1 + k) Fo 0 donc (Dt -f i) Fo est un polynôme de degré

<\(n — 1). Si fc ^0, on vérifie aisément qu'il existe un polynôme P
de degré < ^ (n — 1) tel que (Dx + k) P (Dt + k) Vo ; ainsi
F Fo — P satisfait à (Dx + k) V 0 et l'on a l'égalité

Un raisonnement analogue étant valable pour n pair, on a :

8i n est impair (ou pair) et k non nul, les solutions U de Véquation
(Dn + k) U 0 sont les dérivées d9ordre -|(n — 1) (ou ^(n — 2)) des

solutions V de Véquation (Dx + k) V 0 (cm (D2 + &) F 0)

Pour k 0, on verrait de même que toute solution U de la première
équation est, à une constante additive près, la dérivée d'ordre ^(n — 1)

(ou \(n — 2)) d'une solution F de la seconde équation, ce qui est en
accord avec les résultats du § 9.

Soit alors d'abord n impair : considérons l'équation (Dx + k) V 0.
On en connaît les solutions usuelles gx(u) cos Vku, fonction entière

i .1 / v ^ / v sin Vku
Â Pde u, et I u\2g2(u), ou g^u) =—==—est aussi une fonction entière

Vku
de ^. En raisonnant comme au § 9, on voit que F ne peut être qu'une
combinaison linéaire des quatre distributions

ci(«), To9iW J>*ft(tt), (i - r0) l«*
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augmentée éventuellement d'une distribution ayant l'origine (de R) comme
support, ce que l'on peut écrire

bPfYegi(u)

dPf(l-Y_e)\u\hg2(u)+

II est clair que la distribution gt (u) satisfait à (Dt + k) V 0 On
trouve ensuite, en utilisant (8.1) et (8.5), avec n 1 :

(A + k) Te9l(u) (- 29l(e)

(A+ *)3r««*fl'i(«) 46*^(6

-F_e) |«|*^(«)

ô'e

(10.2)

d'où se déduisent immédiatement les égalités

(A + k)PfYegi(u) - 2(5 (A + k) PfYeJg2(u)

(A + *) P/(l - F_J \u\*gt{u) 0

On a enfin, d'après (5.2),

(A + *) à{m) - 2(2m + 3) ô(m+1) + k ô^

Il résulte de là que la solution générale V de Véquation (D1 + k) V 0
est une combinaison linéaire arbitraire des trois distributions

PfYeu^g,(u) P/(l - Y_e)\u\ig2(u) gx{u)

En vertu de la remarque faite plus haut, la solution générale de l'équation

(Dn + k) U 0, pour n impair, est une combinaison linéaire
arbitraire des dérivées d'ordre ^(n — 1) de ces trois distributions, soit, les

opérations Pf et --=— étant permutables, des trois distributions

tt-1 n-1

• v'= p'(i
*•-(£¦)"¦*<•>•
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Cela étant, la paire associée à toute solution invariante T de l'équation
+ k) T 0 doit être une combinaison linéaire des quatre paires

suivantes :

(Ul90)t (Q,UX), (U2,U2), (U3,U3).

La méthode développée au début du § 8 montre que les distributions

(10.3)

invariantes et définies dans Rn, sont respectivement associées aux paires
(Ux, 0) et (U2, U%). La transformée Tx de Tx par une rotation impropre
de Lorentz est associée à (0, Ux), et la distribution égale à la fonction

n-l
\"T~) 9i(u) continue dans Rn est associée à (Uz, Uz).

Dans Rn, la distribution Test nécessairement une combinaison linéaire
de ces quatre distributions Tl9 5\, T% et Tz, augmentée éventuellement
d'une distribution invariante de support 0.

Voyons maintenant quelles sont les combinaisons linéaires qui satisfont
effectivement à + k) T 0. On a:

n-l 2l
', 2

Yeu g2(u)

n-JL 1_

Yev>2g*{u)

Or, d'après (10.1) et (10.2), on peut écrire

n-l 1 n-l

£ /n-l\ £ /n-hl\
àe g%(e)ôe +4e ^2(e) ôe

ce qui entraîne immédiatement

3_ n-l £ n-f 1
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On déduit sans difficulté de (7.1) que le premier terme du second membre
est nul, alors que le second vaut

n+l
a( u— n-2 n-4 1 -1

n-l
ou encore, d'après (7.6), n 2 ô0. Des calculs semblables valent pour 3\
Ainsi:

^ ^(n + k)T1 (D +tyT^Tz 2
<J0

D'une manière analogue, on obtient

JL w-l JJ n-f 1

(D + *) T2 4?/e^;h ^ ^_2e + 4P/ 62gr2(~ c) J? _» 0

Enfin, il est évident que + ^) ^3 0 Nous pouvons énoncer :

Théorème 6. Si n est impair (n ^ 3) et k ^ 0, ïa solution générale
invariante de Véquation (D + k) T 0 est, avec trois constantes
arbitraires a, 6, c,

T a(Tx -TJ + &T2 + cTs,

\ ef jP2 ^on^ définies par les formules (10.3) dans lesquelles

où Tx est la transformée de Tx par une rotation impropre de Lorentz et
n-l

d\~Foù Tz est la distribution égale à la fonction invariante (-=-) cosylcu.
\aul

l-n
Une solution particulière de Véquation (\3 + k)T ô0 est n 2 Tx

Il est possible aussi de définir Tx et T2 comme suit :

n-l

(10.4)

En effet, si A(w) est une fonction définie et suffisamment dérivable pour
u > 0, on tire de la formule
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-*««-*(£)
l'égalité

encore valable si l'on y remplace /* par /* et H par H ; de façon analogue,
si h(u) est définie et suffisamment dérivable pour u < 0, on trouve

(10.6)

Or, pour m \(n ~- 1) (n> impair), et h(u) u g2{u)i ou \u\ g2{u)
avec ^2(w) fonction entière, on voit immédiatement, d'après (7.1) et
(7.2), que l'opération Pf appliquée aux sommes figurant dans les seconds
membres de (10.5), ou de (10.6), donne zéro, ce qui justifie les définitions
(10.4).

On peut encore substituer à la fonction g%(u) son développement en
série de puissances de u et, par suite, exprimer les distributions Tx et T2

à l'aide des distributions Sp et cS'1', respectivement14).
Occupons-nous maintenant du cas n pair: nous devons considérer

l'équation (D2 + Je) F= 0. La fonction entière hx(u) JQ (\/ku), où Jo

est la fonction classique de Bessel, est une solution usuelle de cette équation

; on sait qu'il existe une autre solution usuelle de la forme

h2(u) hx(u) log\u\ + hz(u)

où hz(u) est une fonction entière. Le raisonnement déjà utilisé pour les

équations DU 0 et (Dt -\- Je) V 0 montre que V ne peut être,
ici, que de la forme

V= ah^u) + 6 Pf Yçh^u) + c Pf Teh2(u)

4) On obtient, pour T1 par exemple, par un calcul facile :

Vn " (—k)1 s2~n +

1-w
Sous cette forme, et compte tenu de (8.13), il est clair que n % Tt est la solution même
de Q + k) T do » pour n impair, que donne M. Schwartz (Théorie des distributions,
tome II, p. 35, formule (VI, 5; 29) où m — 1).
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La première de ces distributions satisfait évidemment à l'équation
(D2 + k) V 0 On trouve ensuite, en utilisant (8.1) et (8.5), avec

(D2 + k) Ye hx{u) 4e hfx (e) ôe + 4e \{e) ôf6

(D2 + k) Yeh2(u) 4^(8) ôe

+ éeQi^e) log e + h's(e)) ôe + 4e h,(e) àfE

(D2 + k)(l- Y_€) h2(u) - ±\ (- e) ô_e

(10.7)

d'où résultent aussitôt (sachant que /^(O) 1) les égalités

(D2 + k)Pf Ye\{u) 0,(D2 + k)Pf Yeh2(u) 4(5

On a encore, par (5.2),

(D2 + fc

(D2 + k)Pf(l - Y_€)h2(u) ~ 4(5

— 4(ra

II découle de ces résultats que les constantes c — d et em pour tout m
doivent être nulles, et, par conséquent, que la solution générale V de

Véquation (D2 + k) V 0 est une combinaison linéaire arbitraire des

trois distributions

Pf Yehx{u) Pf(Ye + 1 - Y_€) h2(u) h(u)

D'après la remarque du début du paragraphe, la solution générale de

l'équation (Dn + k) U 0 est alors une combinaison linéaire
arbitraire des trois distributions

tt-2
11 Ptl d \ 2

Y
n-2

Pf& {Ye -Y_e),

U3

En raisonnant comme dans le cas n impair, on conclut alors que, dans

Rn, toute solution invariante T de l'équation + k)T 0 est
nécessairement une combinaison linéaire (augmentée éventuellement d'une
distribution invariante de support O) des quatre distributions Tx,Tl9 T2

et T%, qui sont définies comme suit :
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(10.8)

2\ est la transformée de Tx par une rotation impropre de Lorentz, Tz
n— 2

est la distribution égale à la fonction (-7-) h(u) continue dans Rn.

Il reste à déterminer les combinaisons linéaires satisfaisant effectivement

à D + k) T 0. La méthode à suivre est la même que pour n
impair. On obtient d'abord:

n-2

On déduit aisément de (7.1) que le premier terme du second membre est

nul, alors que le second vaut 4(— 1)2(-^— 1)! BQ, ou encore, d'après
n-2 x '

(7.6), 2n ô0 Un calcul semblable est valable pour ï\ Par
conséquent:

^ !Lzl
(D + k)T1=(D+k)T1^27t2 ô0

On obtient encore

(D + &)Ta 4P/{e^(

+ eh2(e)(h] + H]]) + eK (- «) ^T+ «*•(- «)^4j 0

les termes non nuls se détruisant. Enfin, il est clair que + k) Tz 0

D'où l'énoncé :

Théorème 6. Si n est pair (n ^ 4) et k ^ 0, la solution générale
invariante de Véquation + k) T 0 es£, avec frws constantes
arbitraires a b c _^tîiîrj + ér + r

définies par Us formules (10.8) dcms lesquelles

Jo désignant la fonction classique de Bessely et h2(u) est une autre solution
linéairement distincte de Véquation (D2 + k) F= 0,
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où 5\ est la transformée de Tx par une rotation impropre de Lorentz et

où Tz est la distribution égale à la fonction invariante l-j-f J0(\^ku)

-i î=*
Une solution particulière de Véquation + k) T ô0 est 2 n 2 Tx

On peut chercher à transformer, comme on Fa fait pour n impair, les
formules de définition (10.8). Comme hx(u) est une fonction entière et que,
pour k <^(n — 2), Hg converge lorsque e -> 0 vers Hk, on a
immédiatement ^ n4_^ „_* ^^2 (n ~~âT 2 (/) 2

=2*i (0) fi ;

la formule (10.5) appliquée à A(w) A1(^), avec m \(n — 2),
mène alors à la nouvelle expression de î\ 16) :

n-2 n-4— —zr~ /tv n—4

Tt P/ /t Fe(^)
2

ht (u) + i^i0 (0)H
2

'
(10.9)

Pour T2, on doit utiliser les formules (10.5), pour /* et /*, et (10.6),
et, par suite, calculer l'expression

On trouve qu'elle est nulle, ce qui entraîne immédiatement l'égalité
n-2

a Pf f*(Ye + 1 - r_,)(A) *
*,(«) (10.10)

15) Si, de plus, on substitue à hx (u) son développement en série, on obtient l'expression

de Tx à l'aide des distributions S et H :

lié1 lsT-2 i\él r(2—£

On voit alors que 2 n; a 2^ est, compte tenu de (8.13) et de (8.14), la solution de

D -f- ty T — ôo pour n pair, donnée par M. Schwartz.
(Théorie des distributions, tome II, p. 35, formule (VI, 5; 29) où m 1)

(Reçu le 24 octobre 1953.)
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