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Sur les distributions invariantes

dans le groupe des rotations de Lorentz

Par PieErre-DENIS MeTHEE, Lausanne

Introduction

A Torigine de ce travail se trouve le probléme suivant, qui s’est posé a
Poccasion de la These de M. D. Rivier!): déterminer, dans 1’espace & n
dimensions R"(n > 3), toutesles distributions (ausens de M. L. Schwartz)
qui sont invariantes dans le groupe G des rotations propres de Lorentz
et qui satisfont & ’équation des ondes (17 + kT = 0 ou §,, k étant
une constante quelconque (éventuellement nulle), et J, désignant la dis-
tribution de Dirac relative au point O centre des rotations de Lorentz et
origine des coordonnées. La difficulté essentielle de ce probléme réside en
ceci que, pour n > 4, il existe des fonctions invariantes solutions usuelles

de 'équation (J T + kT = 0 qui ne sont pas sommables dans un voi-
n—1

sinage du céne u =112 — ¥ a2 = 0 et qui, par conséquent, ne défi-
i=1

nissent immédiatement des distributions que dans les trois domaines
u # 0 et non dans I’espace entier.

Le travail tel qu’il se présente ici est congu d’un point de vue un peu
plus large que ne l’exigerait la seule résolution du probléme énoncé.

Quelques propriétés des distributions invariantes par ¢/, en général,
sont d’abord établies, dont voici la plus importante: on peut associer &
toute distribution invariante définie dans R™ — O (espace privé de
Porigine) un couple de distributions sur la droite Ou, et réciproquement.

Des distributions invariantes particulieres sont ensuite examinées:
celles qui ont pour support I’hyperboloide w = ¢(¢ < 0) ou une nappe de
Phyperboloide # = (¢ > 0). De cette étude il ressort notamment que
ces distributions, considérées comme fonctions de la variable ¢, admettent
toutes un développement asymptotique, au voisinage de ¢ = 0, de forme

1) D. Rivier: Une méthode d’élimination des infinités en théorie des

champs quantifiés. Application au moment magnétique du neutron. (Helvetica
Phys. Acta, XXII (1949), p. 265-318).

15 Commentarii Mathematici Helvetici 225



simple. Cela permet alors aisément, en s’inspirant de la méthode utilisée
par M. J. Hadamard2) pour définir la «partie finie» d’une intégrale diver-
gente, de prolonger de fagon invariante dans R"®, que n soit pair ou qu’il
soit impair, les distributions égales, pour u # 0, & certaines fonctions
de u non sommables au voisinage de u = 0.

Parmi ces fonctions figurent précisément celles qui interviennent dans
le probléme indiqué plus haut, lequel peut ainsi étre résolu. La solution
générale invariante de I'équation (J7 + kT = 0 ou §, est donnée expli-
citement. Elle dépend de trois constantes arbitraires.

Je ne puis terminer sans préciser que ¢’est M. G. de Rham, mon maitre,
qui m’a proposé le sujet de ce travail. J’ai bénéficié constamment de ses
critiques et de ses conseils. Ses directives pour la présentation finale des
résultats m’ont été particuliérement précieuses. C’est un devoir pour moi,
dont je m’acquitte ici avec joie, d’assurer M. G. de Rham de ma vive
reconnaissance.

§ 1. Rappel des notions de distribution et de courant?)

Dans P'espace & n dimensions R®, un courant de degré n — p est une
fonctionnelle linéaire 7'[¢p], définie sur ’espace vectoriel des formes dif-
férentielles extérieures ¢ de degré p dont les coefficients sont des fonctions
indéfiniment différentiables nulles hors d’un ensemble compact, et qui
est continue dans le sens suivant: si ¢ — 0 de maniére que chaque coef-
ficient de @ reste nul hors d’un compact fixe et que chacune de ses dérivées
tende uniformément vers zéro, alors 7'[¢] — O.

On dit qu'une forme ¢ est C* si ses coefficients sont des fonctions in-
définiment différentiables. La forme @ est dite nulle en un point si tous ses
coefficients s’annulent en ce point. Le support de ¢ est le plus petit en-
semble fermé en dehors duquel ¢ est nulle. L’ensemble de toutes les
formes C* & support compact sera désigné par 9.

Le courant 7' est dit nul dans un ensemble ouvert D si T'[p] = 0
pour toute forme ¢ €D & support dans ’ensemble D. Le plus petit en-
semble fermé dans le complémentaire duquel le courant 7' est nul est
appelé le support de T'. La définition de la fonctionnelle 7'[¢] s’étend
d’'une maniére naturelle & toutes les formes C* dont le support coupe

%) J. Hadamard: Le probléme de Cauchy et les équations aux dérivées
partielles linéaires hyperboliques, p. 184-230. (Paris, Hermann, 1932.)

8) Cf. L. Schwartz: Théorie des distributions, tomes I et II (Actualités Sci. Ind.,
fasc. 1091 et 1122; Paris, 1950 et 1951);

G. de Rham et K. Kodaira: Harmonic Integrals (Lecture delivered at the Institute
for Advanced Study, Princeton, 1950).
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celui de 7' suivant un compact ; si ¢ est une telle forme, on peut, en effet,
la décomposer en la somme ¢ = ¢, + ¢, de deux formes C*, dont la
premiére ¢; a un support compact et la seconde ¢, a un support qui ne
rencontre pas celui de 7', et 'on pose T[p,] =0 et T[¢] = T|e.];
la valeur ainsi obtenue ne dépend pas de la décomposition choisie.

On dit que le courant T est égal & la forme «, de méme degré » — p
que 7, si

Tlgl =faAg,

quelle que soit la forme ¢ € 9 de degré p.
Le produit extérieur 7' A « du courant 7' par une forme C* est le
courant défini par I’égalité

TAaxlpl = T[x A9l ;

la différentielle d7' du courant 7', de degré n — p, est le courant défini
par
dT[¢] = (—1)»P+1 T'[dg] ;

enfin, les dérivées partielles de 7' par rapport aux coordonnées z, dans R"
sont les courants définis par

oT . op
1= —T| 5]

dp
ox;
coefficients par sa dérivée partielle par rapport & z,. De ces définitions
il suit que

ol est la forme qlue I’on déduit de ¢ en remplagant chacun de ses

oT
o,

1

AT = X dz; A

Si u est une application C* de R™ dans R™, qui applique le point y de
R™ gur le point = uy de R, & chaque forme ¢ (x) dans R” correspond
une forme p*@(y) dans R™, appelée image transposée de ¢ par u, qu’on
obtient en remplacant, dans I’expression de ¢(z), les coordonnées de z
par leurs expressions en fonction des coordonnées de y. Cette opération
jouit des propriétés exprimées par les relations

du*e = u*de , w*(p, A @) = u*e A p*es ;

de plus, le support de u*¢ est contenu dans I'image réciproque u-! K
du support K de ¢.
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Si T est un courant dans B™, dont le support coupe I'image réciproque
u-t K de tout compact K ¢ R" suivant un compact, I'image u7 de T
par u est le courant défini dans R™ par la relation u7'[¢p] = T[u*¢].

Dans R", les courants de degré n ne sont pas autre chose que les distri-
butions de L. Schwartz. Mais & tout courant de degré 0 est associé un
courant de degré », son produit par la forme dxz, A --- Adz,, qu'on
écrira simplement dx,...dx, lorsque aucune confusion ne sera possible,
et qui représente I’élément de volume dans R". Un courant de degré 0
représente donc aussi une distribution. Dans la suite, nous éviterons de
confondre les courants de degré O et les courants de degré =», et nous
réserverons le nom de distribution aux courants de degré 0.

§ 2. Condition d’invariance d’une distribution dans les rotations de Lorentz

On appelle rotation de Lorentz de 1’espace R™ toute transformation
linéaire homogéne

n
14 .
Ty = X Gy Ty ¢t=1,...,n)

k=1

qui laisse invariante la forme quadratique

n—1

u=a2 — 3 2%
i=1

et dont le déterminant | a,, | est égala + 1.
n—-1

%
Nous poserons =, =1 et r z( wf) , de sorte que u = * — r2.

i=1
Le domaine défini dans R” par ¢ >0 et w > 0, appelé intérieur du
cone futur, sera désigné par 2, . L’intérieur du cone passé, défini par ¢ < 0
et u > 0, sera désigné par ©;, et le domaine extérieur a ces deux cones,
défini par » < 0, sera désigné par 2,.

Toute rotation de Lorentz laisse £, invariant, tandis que 2, et £,
sont ou bien invariants ou bien permutés. Dans le premier cas, on dit que
la rotation est propre ; dans le second cas, elle est dite impropre.

Nous appellerons distribution invariante toute distribution 7' telle que
AT = T pour toute rotation propre A.

Si T est invariante et si 4, et i, sont deux rotations impropres, on a
MT = 2,T, car A, A;' est une rotation propre. Nous dirons que 7 est
syméirique si 4T = T et antisymétrique si A, T = — T. Toute distri-
bution invariante se laisse décomposer, d’'une maniére unique, en la
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somme d’une distribution symétrique et d’une distribution antisymé-
trique:
T=3(T+ 4T)+ 3T —47T).

Les rotations propres forment, on le sait, un groupe de Lie connexe ¢
dont les transformations infinitésimales sont des combinaisons linéaires
des suivantes:

J 0 0 0

Xi:xi’a'[‘i‘tE,Xn" i oz, i 3z,

(tg=1,...,n —1).

On en déduit que la distribution 7' est invariante si elle satisfait aux
conditions
XT=X,T=0 (@,j=1,...,n—1)

et dans ce cas seulement.

n—1 n—1
Comme dT.—?—T—dt—{—Z ade et Ydu=tdt — ¥ z;dx;,
i=1
on a

$dT Ndu = E(X Tydxe, ANdt + X (X,;T)dx; A\ de; .
<]
Par suite, la condition nécessaire et suffisante pour que la distribution T
sott tnvariante est que dT A\ du = 0.

§ 3. Les distributions invariantes de support O

Pour commencer la recherche des distributions invariantes, nous allons
déterminer celles dont le support se réduit au point O, centre des rotations
de Lorentz.

La distribution de Dirac §,, définie par

do [p(21,...,2,)dx,...d2x,] = ¢(0,...,0),

est évidemment invariante. D’autre part, I'opérateur différentiel [,
dit dalembertien,
2 n—-1 32

D=%p — 292"

étant invariant, si T est invariante, [ 7T ’est aussi. Par suite, les distri-

butions [* §,(k = 0,1,...) et leurs combinaisons linéaires sont des
distributions invariantes de support O. Ce sont les seules:
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Théoréme 1. Toute distribution invariante dont le support se réduit au
point O est égale @ une combinaison linéaire de dalembertiens itérés de J,,.

En effet, d’aprés un théoréme connu?), toute distribution de support O
est égale & une combinaison linéaire de dérivées de J,,

0 0 d
T:P(-éz;,...,-a—x—;::,, —a—t—)éo,

ol P désigne un polynéme de dérivation. Pour que cette distribution
goit invariante, il faut et il suffit que le polyndéme associé

P(x,...,z,4,1)
soit invariant. Supposons qu’il en soit ainsi. Comme il existe une rotation
propre amenant le point («,,0,...,0) sur le point (— z,,0,...,0),
ona P(z,0,...,0)= P(— 2,,0,...,0), desorte que P(x,,0,...,0)
est égal & un polyndme en 2%, soit P(z,,0,...,0)=@Q(— 7). Le
polynéme P(x,,..., 2, ,,t) — @(u) est alors invariant et nul sur ’axe

Oz,. Comme tout point de 2, peut étre amené sur un point de Oz, par
une rotation propre, ce polynéme est identiquement nulet 7' = @ () d,.
C.Q.F.D.

Ce théoréme entraine que toute distribution invariante dont le support
se réduit au point O est symétrique.

§ 4. Les distributions invariantes dans R" — O

Nous allons chercher maintenant les distributions invariantes 7' définies
seulement dans R™ — O, c’est-a-dire telles que 7'[¢] n’est défini que
pour les formes ¢ € D de degré n dont le support ne contient pas O.

Désignons par f ’application de R” sur la droite R, qui applique le point

&= (%;,..., %,_4,t) de R™sur le point fx de R d’abscisse
n—1
u=1t— 3 a}.
i=1

Désignons encore par f, la restriction de f au domaine C Q,, extérieur
du céne passé, et par f_ sa restriction & CQ,, extérieur du coéne futur.

Les images réciproques f-lu,,f;'u, et f-'u, d’un point de R
d’abscisse négative wu, < 0 sont toutes trois identiques & I’hyperboloide
4 une nappe contenu dans 2, et d’équation v = u,. Si u, > 0, I'hyper-
boloide # = u, est a deux nappes, 'une contenue dans £, qui forme
71 u,, 'autre contenue dans £, qui forme f~'w,, la réunion des deux

4) L. Schwartz: Théorie des distributions, tome I, p. 99.
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formant f-'u,. Enfin, si %, =0, f;'0 est la surface du cone futur
privée du sommet O, f~10 est la surface du cone passé privée de O et
f-1 0 est la surface totale des deux cdnes y compris le point O.

Quel que soit %,, chacun des ensembles f7'u, et f-'u, est invariant
par le groupe @ des rotations propres et transformé transitivement par ce
groupe. Par suite, toute fonction @(x) définie dans R" — O et inva-
riante par @ est constante sur chacun de ces ensembles. Soit @+(u) sa
valeur sur f;lu et @ (u) sa valeur sur f~'4. Ona

&= frdt dans CR,, ®=f*d" dans CQ,, (4.1)

et il est clair que '
Ot(u) =D (u) pour u <O . (4.2)

Réciproquement, a toute paire @+, @- de fonctions définies dans R et
satisfaisant & (4.2) correspond une fonction @ invariante dans R"® — O
définie par (4.1).

Nous allons établir une proposition analogue pour les distributions.

Si T est un courant de degré n 4 support compact dans C£,, alors,
d’apres la définition du § 1, f, 7' est un courant de degré 1 dans R qui
satisfait & f, T'[y] = T[fy], ou p est une fonction O quelconque &
support compact dans R. Pour toute rotation propre 4, comme f 1 = f_,
ona f, AT = f,T. Considérons, en particulier, le cas ou 7' est une forme
«, et supposons d’abord que le support de « soit contenu dans le domaine
D de R défini par ¢ > 0. En prenant le systéme de coordonnées formé
par z;,...,%,_;, %, ce domaine D est défini par 'inégalité r2 + u > 0,
et,sl « =a(x,,..., %, ,u)dx,...dzx, ;du, on a

frolpl=olfivl=fa(x,..., 2y, u)p(u)de,...dr,  du,
d’out

fro = A(u)du avec A(w)=[a(x,,..., 2,4, u)de,...dz,,, (4.3)

formule qui montre que, st x est C* & support compact dans D, alors
fro est O .

Ce dernier résultat s’étend au cas ou « est une forme C* & support
compact contenu dans C Q,. En effet, on sait que les transformés AD de
D par toutes les rotations propres A recouvrent complétement ¢ Q, . En
vertu du théoréme de Borel-Lebesgue, le support de « est contenu dans
la réunion U A, D d’un nombre fini de tels transformés. En utilisant

L
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une partition de 'unité subordonnée a ce recouvrement, on peut rem-
placer & par une somme de formes «; qui sont C” et dont chacune a son
support contenu dans le transformé A, D d’indice correspondant. Alors
fro=Xfro;= X f, 27 ; est C* en vertu de ce qui précéde, car
? ]

A7lx; = Al &, est C* & support compact dans D.

En écrivant « = 8 A du, ou B est une forme C” & support compact
dans CQ,, on a

fra=du | B, (4.4)
i;l u

Pintégrale étant étendue & la surface f;'w (hyperboloide ou nappe
d’hyperboloide ou de céne) convenablement orientée.

D’une manieére tout & fait analogue, si g est encore une forme €2 de

degré n — 1 & support dans C'£,, on voit que f,f est la fonction O
dans R définie par

f+8= [ 8. (4.5)
-1
1w
Si B est divisible par du, on a f, f = 0. D’autre part, (4.4) et (4.5)
montrent que f, (8 A du) = (f,.B) du.
Ces remarques permettent d’étendre la définition de Uopération f7.
La relation f, a[yp] = «[f>vy], qui peut aussi s’écrire

frvle]l = plfy o],

conduit, en effet, & poser, pour toute distribution S dans R,
f18[6] = S[f+o] .

La fonctionnelle linéaire f¥ S[«] définie ainsi pour toute forme « €9
de degré n & support dans C' R, est une distribution dans CQ,, qui est
invariante parce que f, A-'=f, et (A-)*f¥ =fT ou Aff=f¥ pour
toute rotation propre A.

De méme, si B est une forme de 9 de degré n — 1 & support dans
CQ,, la relation f, B[y du] = B[f (pdu)], qui peut aussi s’écrire
13 du) [B] = (— 1)*2(y du) [f, B], conduit & poser, pour tout courant
U de degré 1 dans R,

ffUBl = (=12 U[f, A1,

et la fonctionnelle linéaire fT U [B] définie ainsi est un courant de degré 1
dans O£, qui est invariant.
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L’opération f_’:‘_ ainsi prolongée est encore permutable avec d,
frdS=d(* 8), etlona fI(Sdu)= (fF8)du,

en désignant, comme nous I’avons fait, par le méme symbole du les diffé-
rentielles dans R et dans R", de sorte que du = f} du.

Grace & cette opération, a toute distribution S dans R correspond une
distribution invariante f} S dans C'2,. Nous allons montrer maintenant
que, réciproquement, & toute distribution 7T invariante dans C'Q, cor-
respond une distribution S dans R, et une seule, telle que 7' = f* 8.

Soit ¢(x,,..., &, ;, %) une fonction C*, dont le support est contenu
dans D (le domaine défini par ¢ > 0 ou 72 4+ u > 0) et coupe l'image
réciproque ;'K de tout compact K c R suivant un compact, telle que

Je@,. ..., 2,4, u)da,...do, ;=1 quel que soit u .

I1 est aisé de construire une telle fonction. Supposons-la choisie une fois
pour toutes et posons

y=0c(@y, .0, Xpq,u)da,...dx, ;.

Si p = y(u) est une fonction C* & support compact dans R, la forme
A j_"; pdu), de degré n, est C* & support compact dans D, et 'on a

]‘+{y/\f_’t(y)du)}:wdu . (4.6)

Par suite, pour toute distribution S dans R, il vient

; Slydu]l =58y Afs(wdu)] = LS Ay [fi(pdu)],
‘ou

S =f(fL8AY); (4.7)

ainsi S est complétement déterminée par la connaissance de [ S.

Si T est une distribution invariante donnée dans CQ,, il ne peut donc
y avoir d’autre distribution S dans R satisfaisant & ff8 = T que celle
donnée par S = f (T A y). Montrons que cette distribution § satisfait
effectivement & la condition requise, c’est-a-dire que la distribution
Ty = {18 — T est nulle. Comme 7}, est visiblement invariante, il suffit
de prouver que 7;[x] = 0 pour toute forme « € 2 de degré n & support
dans D. On a

Tyla] =8[fso]l = T[] = Tly Afi fro — o],

ce qu’'on peut écrire T[] = T[] en posant
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YAf L foa—a=B8=0b(m,..., %, ,,u)dx,...dz,  du.
De la relation (4.6) appliquée & pdu = f x, on tire f_ 8= 0, donc
fo(@,..., 2,4, u)de,...dx, ;=0  quel que soit u .

Or, d’apreés une proposition connue?®), cette relation entraine que la forme
b(ay,...,%,4,u)dx,...dx,_,, u étant pris comme un parametre, est la
différentielle d'une forme S, de degré » — 2 a support compact contenu
dans D. En considérant v comme une variable, on peut, par suite, écrire

)

by, ..., Tyy, u)dy ... da, , = df;, — du A aﬁl ’

d’ol résulte § = d (B, A du); il vient, par conséquent,
T[] = T[d (B A du)] = — dT [ Adu] = (— 1" dT Adu[B],

ce qui est bien nul, puisque, 7' étant invariante, on a d7 Adu = 0.

Des considérations analogues sont évidemment valables pour les distri-
butions invariantes dans '@2,. On peut alors énoncer le théoréme sui-
vant®), qui résume les résultats obtenus:

Théoréme 2. A4 toute distribution T invariante dans R™ — O correspond
une paire de distributions (T, T-) dans R, qui coincident sur la dem:-
droite uw < 0, telles que

T=f*T+ dans CQ, e¢¢ T =f*T- dans CD,.

Réciproquement, toute paire de distributions dans R qui coincident sur la
demi-droite u <0 définit une distribution T invariante dans R™ — O.

La distribution 7' sera symétrique si 7't = T'-, antisymétrique si
T+ = — T-. Dans le dernier cas, elle s’annule dans £,.

Le support de 7't et celui de 7'- sont contenus dans 'image par f du
support de 7'.

Remarquons encore que la forme y de degré = — 1, qui permet

5) C’est un cas particulier du “’deuxiéme théoréme de de Rham*, facile & démontrer
directement. I1 se rameéne par exemple au lemme 2 du chapitre 3 de la thése de cet auteur:
Sur 1’Analysis situs des variétés & n dimensions (J. Math. Pures Appl., 1931,
p. 115-200).

%) Le principe de la démonstration de ce théoréme m’a été communiqué par M. de Rham.
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d’exprimer T+ par T+ = f (T Ay), jouit des propriétés suivantes,
qui seules sont essentielles: elle est C*, son support est contenu dans
C'Q, et coupe 'image réciproque f7' K de tout compact K — R suivant
un compact, enfin f .y =1.

Démontrons maintenant la proposition suivante, utile pour les calculs
4 venir:

St (T+, T-) est la paire associée d la distribution invariante T, la 'pazre
assoctée a (1T est (DT+, DT-), ou

d

D:( +2n>du

L’opérateur différentiel D et son adjoint D* = (4u 3% + 8 — 2n> c_l%

sont définis pour toute distribution dans R. Si U; = U du est un cou-
rant de degré 1 dans R, U étant une distribution, on conviendra de définir
DU, et D*U, en posant DU, = (DU)du et D*U, = (D*U)du. De
méme, si 7' = T,dx,...dzx, est un courant de degré » dans R",7,
étant une distribution, nous définirons [(J7' en posant

OrT=(OT,dx,...dx,

Si p est une fonction C* dans R, un calcul simple donne
fiDy=0Ofiy. (4.8)

Par suite, pour un courant 7' de degré n 4 support compact dans C Q;,
on a f, OT[y]=T[Of* p]= T[f* Dyl =f, T[Dy]. Mais, D*
étant adjoint & D, on peut écrire, pour tout courant U, de degré 1 dans R,
les relations D*U,[y] = U,[Dy] et DU,[y] = U,[D*y]. 1l en résulte
que f,T[Dy]=D*f, T[yp], donc que f, OT[p] = D*},T[y], soit

f, OT = D*f T . (4.9)

Cette relation est vraie, en particulier, pour 7' = «, forme C'* & sup-
port compact dans CQ,. Il vient alors, pour toute distribution U dans
R:OfiUlsl=Ulf, Ool = U[D*fya] = fi DU [4], ou

OffU=fDU. (4.10)

Cette relation et celle qu’'on obtiendrait de fagon semblable en envi-
sageant l'opération f* entrainent la proposition énoncée.

Si le support de la distribution U, dans R, ne contient pas le point
u =0, la distribution fI U, définie dans C'Q,, peut étre prolongée
dans R”, en la posant égale & zéro dans un voisinage de Q,. De méme,
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{* U se prolonge dans R” en une distribution nulle dans un voisinage de
0Q, et f*U se prolonge en une distribution nulle dans un voisinage du
cone u = 0. Chaque fois que le support de U ne contiendra pas le point
u = 0, nous conviendrons que fLU,f* U et f*U sont ainsi prolongées
dans R". Ce seront alors des distributions invariantes dans R®, & supports
contenus dans 2, U £2,, 2, U2, et 2, U2, U L2, respectivement.

§ 5. Les distributions H%, H* et #*

Nous noterons HEF, ¢ étant > 0 et k entier > 0, la distribution
invariante associée & la paire (6", 0), ol 6% est la dérivée K™ de la
distribution de Dirac 4, relative au point w = ¢ sur la droite Ou,
autrement dit la distribution telle que 6 [w(u) du] = (— 1)* p® () .
Cette distribution HE = f7 6% est définie non seulement dans R — O,
mais encore dans R", grace & la convention de la fin du § 4.

Soit alors 7 une distribution invariante dont le support est fle,
c’est-a-dire la nappe supérieure (¢ > 0) de I’hyperboloide u = &(¢ > 0),
et soit (7', T'-) la paire de distributions associées sur Ou. Il est clair que
T- = 0 et que, en vertu de la relation qui lie les supports de 7" et de 7',
le support de 7'+ se réduit au point % = e¢. D’apres le théoréme déja
cité de M. L. Schwartz, T+ est une combinaison linéaire des 6{¥ ; donc 7'
est une combinaison linéaire des HY. Ainsi, toute distribution invariante
de support [7'e est une combinaison linéaire des H .

d .
Comme 78—6‘8” = — 6%*D | on a, en considérant H* comme une
fonction de ¢:
d H* k+1 k k d* 0
de s:""‘Hs ’ He:(""l) dek Hs- (5.1)

De la proposition de la fin du § 4, il résulte que la distribution (] H%
est associée & la paire (DO¥,0). Or, sachant que ud, = ¢d, et
ud™ 4 m ™D = £6™, on trouve facilement que

DO® = 4¢6F+D | 2(n — 2k — 4) 6¢FD | (5.2)
On en déduit 1’égalité
O H* = 4¢ H**? + 2(n — 2k — 4) HXHY (5.3)

qu’on peut aussi écrire, en utilisant (5.1),

n

OH =42 TFL S g (5.4)

de © de ¢
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Considérons la transformée de H? par une rotation impropre de Lorentz
et désignons-la par HY. C’est la distribution invariante associée & la paire
(0, %) ; son support est f~le, c’est-d-dire la nappe inférieure (¢ < 0)
de I'hyperboloide % = e(¢ > 0). Un raisonnement analogue & celui
tenu plus haut montre que toute distribution invariante de support f~'e
est une combinaison linéaire des HY. Les formules qui précédent restent
valables aprés substitution de H 3 H .

Soit maintenant ¢ un nombre négatif. Nous noterons #? la distribution
invariante correspondant 3 la paire (6%, 6{). Elle a pour support
fle, soit ’hyperboloide & une nappe u = e(¢ < 0). On est amené &
la conclusion que toute distribution invariante de support {1 ¢ est une com-
binaison lindaire des ¥ et que les formules (5.1) & (5.4) subsistent lors-
qu’'on y remplace H par 7# .

§ 6. Les parties infinies de H* et de ‘Z*,
et les distributions H* , H* et F#*

Nous dirons que deux fonctions de ¢, définies pour ¢ >0, ont la méme
partie infinie si leur différence tend vers une limite finie lorsque ¢—0.

Considérons les fonctions & logt &, olt u est un entier >0 et 4 un
nombre réel ou complexe dont la partie réelle est << 0, la valeur 4 = 0
étant exclue si 4 = 0. Lorsque ¢ — 0, une fonction de ce type ne tend
pas vers une limite finie, et ’on sait, de plus, qu’il n’y a aucune combi-
naison linéaire (non identiquement nulle) de telles fonctions qui puisse
tendre vers une limite finie. Il en résulte que, s’il existe une combinaison
linéaire de ces fonctions, soit I (¢), ayant la méme partie infinie qu’une
fonction donnée g (¢), cette combinaison est unique. Nous dirons alors que
1 (¢) est la partie infinie de g(¢). Nous poserons

Pfg(e) = lim (g(e) — I(g)) .
€>0
L’opération représentée par le symbole Pf (lequel est une abréviation de
«valeur limite pour ¢ — 0 de la partie finie de . . .») généralise I’opération

lim , et s’y réduit chaque fois que cette derniére a un sens, c’est-a-dire
€->0

lorsque la partie infinie de g (¢) existe et est égale & zéro.

Le cas d’une fonction définie pour ¢ < 0 se ramene naturellement au
précédent.

Nous appliquerons aussi ces définitions & des fonctions dont la valeur
est une distribution, en particulier & HY et & F¥ .
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Comme &, > &8 et que 6% — §® lorsque ¢ -0 (J désignant la
distribution de Dirac relative au point w = 0 de Ou), H* tend, dans
R™ — O, vers la distribution invariante associée & la paire (8%, 0).
Mais la définition de cette derniére distribution ne s’étend pas immédiate-
ment a R, parce que le point O adhére au support de ladite distribution,
et il se trouve, comme nous le verrons, que, pour k£ > }(n — 2), et que
n soit pair ou impair, HX ne converge pas dans R* quand ¢ — 0. La méme
conclusion sera valable pour ¥ dans le cas n pair. Nous montrerons alors
que HY et ¥ ont des parties infinies bien déterminées, qui sont des com-
binaisons linéaires, ayant des distributions pour coefficients, de fonctions
¢*logt | e| . Les distributions

H*=PfH: et FH*= PfH#}

seront alors des distributions invariantes définies dans R™ et associées
respectivement aux paires (6%, 0) et (¥, §0) .

Nous allons, pour commencer, nous occuper des distributions H¥.

Dans toute la suite de ce travail, ¢ désignera exclusivement une fonc-
tion C* & support compact dans B, et « sera la forme &« = ¢ dxz, .. .dx,.

Un ensemble de telles formes « est dit borné dans D si?) les supports de
toutes ces formes sont contenus dans un méme compact K de R™ et s’il
existe une suite croissante de nombres positifs 1, (p =1,2,...) telle
que les dérivées d’ordre < p de ¢ soient en valeur absolue < [,,.

Dans l'intérieur du céne futur, Q,, on peut substituer & «,,...,z,,
les coordonnées polaires, formées de r et de n — 2 variables angulaires,
et &t la variable » = 2 — 2. En désignant par dw 1’élément d’aire de la
sphére & n — 2 dimensions de rayon unité, on obtient

du du

Ce2Vrrtu 2t

dz,...dzx, ; = r"?*dodr , dt
o= @(Ly,..0, Tpq,t)de,...dx,_,dt =—?%—t—q9r"—2 dodrdu .

Si y(u) est une fonction C* & support compact contenu dans la demi-
droite w > 0, on a

fralp@] =a[ff 9] = |52 dodr y(u)du.
2

") L. Schwartz: Théorie des distributions, tome I, p. 70.
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Cela montre que, dans la demi-droite » > 0, la forme f, « est donnée par
£ 0 = du‘f——f”-2 do dr .

Désignons par @(r2,t) la valeur moyenne de ¢ sur la sphére & n — 2
n-—1
dimensions S(r,t) d’équation ¥ 22 = r2 (r = constante, { = constante),
=1
et par s,_, l'aire de S(1,¢). Il vient, pour u > 0,

o n—2
foo=du Sn-2 fq)(rz,t)r dr ,
2 t
0

ol ¢ doit &tre remplacé par Vr2 4 u avant I'intégration.

Par définition méme de HY, on a H:[a] = {1 0P [a] = 6P [f, o],
donc

B[] == i ’”2 )| pne2 g 6.1
clx] = au’“ r r. (6.1)
0 u=¢€
Comme o _19 il vient, par un calcul facile
ou 2t ot '’ ’ ’

ok d(r2,t) (1 9\k d(r2,t) 1 éa‘k)t@' ' D(r2, t)
ouk ¢t \2t ot t 0 2kpkel & o’

olt les a® sont des coefficients numériques ; en particulier,

a®) = (—1)*¥38.5...(2k — 1). (6.2)
On obtient alors

(—=1)Fs, , 2 ® dD(r2, Vr2 4 ¢) =2 dr

2"+1 =0 ", ot | ZE PR

Hi[a] = . (6.3)

Si £ <3(n — 2), toutes les intégrales figurant dans cette expression
sont absolument convergentes pour ¢ = 0 (la limite supérieure oo ne
peut jamais entrainer de divergence, car @ est a support compact et
s’annule donc pour r assez grand). De plus, la convergence de cette expres-
sion pour ¢ — 0 est uniforme par rapport & « sur tout ensemble borné
dans 9 . Par suite, pour k< 3(n — 2), la distribution H k converge
quand & —> 0 vers une distribution déterminée, qu’on désignera par H*.
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C’est une distribution invariante associée & la paire (6®,0), définie
dans R et non seulement dans R™ — O .

Si k> 3(n — 2), les intégrales se trouvant dans (6.3) ne sont en
général pas toutes convergentes pour ¢ = 0, mais nous allons montrer
qu’elles possédent des parties infinies déterminées.

Posons

Dy (r2, 12) = 1 [D(r2, 1) + D(r2, —t)] et D (r? t2)-——1?[¢(r2,t)-—-(15(r2,——t)].

Les fonctions @, (z, y) et &,(x, y) ainsi définies pour z >0 et y >0
et qui sont évidemment C” pour >0 et y > 0, peuvent étre pro-
longées pour x < 0 et y < 0 de maniére a étre fonctions C* de x et de y
quelles que soient les valeurs de ces variables®). Remplagons alors @ par
® = @, +t P, dans le second membre de (6.1). HE [«x] se présente
comme la somme de deux termes. Comme @, (r2, 2 + u) est fonction C*
de 72 et de u, le second terme a une limite finie lorsque ¢ — 0. Par con-
séquent, HY [x] admet la méme partie infinie que le premier terme,
c’est-a-dire 'expression obtenue en substituant @, & @ dans le second
membre de (6.1), ou, ce qui revient au méme, dans le second membre
de (6.3).

D, (r*, ¢*) étant fonction C* de r* et de #?, les fonctions a;t?“ pour %
® pour ¢ impair sont C*° en 72 et en 2. Cela entraine que

air et l
P t o

chacune des intégrales figurant au second membre de (6.3), ou 'on a
remplacé @ par @, se réduit a la forme

=2 dr

fF(r2,r2+e) Vi gnerd (6.4)
0

oh n—24+d=2k-+1—1¢ sitest pair, n —2+d=2k—1¢ sit
est impair, et o F (x, y) est une fonction C* & support compact. Notons
que d et » seront toujours de parité différente. Nous aurons alors besoin
du lemme suivant.

Lemme. Soient a un nmombre réel >0, m et d des entiers >0 et
F(x, y) une fonction C* de x et de y. La fonction
rmdr

'l/7,2 + 8m+d

J (&) =fF('r2,r2 + ¢)

8) Cf., par exemple, H. Whitney : " Differentiable even functions*, Duke Math.
J., 10 (1943), p. 159.
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a une partie infinie de la forme

1-4 i -3
Q.d“(.e)::ais2 +a;_,e? + - +a,e° std est pair,
2 2 2
1-d 3—d _
Pﬂ:j(s) bi_le —}—bd 382 + -+ b e +byloge
2 2 T2

st d est imparr.
Les coefficients a; et b; ne dépendent ni de e, ni de a, et U'on a, en particulier :
pour d parr >1, a,
B o™ do
— F(0, 0) f ,
pour d impawr >1, b, | Vot + 1™

2
—1F(0,0).

pour d =1, b

Démonstration. On écrira, par raison de commodité, J(¢) = J(m, d, F)
pour marquer que J (¢) dépend de m, de d et de F'.

Remarquons d’abord que la partie infinie de J (¢) est indépendante de a,
pourvu que 'on ait @ > 0. Sir2-¢F(r?, r2 4 ¢) est borné pour » > 1,
en particulier si F' est & support compact, on pourra prendre aussi @ = oo.

Si d =0, il n’y a rien & démontrer, J(¢) ayant alors une limite finie
lorsque & — 0.

Si d = 1, on peut écrire, pour m > 2,

1—m

J(m, 1, F) =—— 7o) meld(rt fg) B

et une intégration par parties mene a 1’égalité
Jm,1,F)=J(m —2,1,F)+4 ...,

les termes non écrits ayant une limite finie pour ¢ — 0. On en déduit que
J(m, 1, F) ala méme partie infinie que J (0, 1, F) si m est pair, ou que
J(1,1,F) sim est impair. Or, on peut poser

JO,1,F) =jFr2,r2+e)dlog(r+I/r2+s)
0

J(1, 1,F)=J’F(r2,r2+ e)dlogV'rt + ¢ ;
0
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en transformant ces expressions & l'aide d’une intégration par parties,

on voit aisément que chacune d’elles a une partie infinie qui se réduit &

— %F (0,0)loge, dou résulte l'affirmation du lemme pour d = 1.
Si d > 1, on pose

o) —F@0 o pp - FE0=F0.0

Fl(xs y) =

Ces fonctions F) et F, sont C* et 'on a

F(x,y) =F(0,0) + y Fi(x, y) + = Fy(x) .

En substituant le second membre de cette égalité & F(x,y) dans
J(m,d,F), il vient

J(m’d,F)=F(O:O)J(m,d:1)+J(m7d'_"2ﬁlpl)+J(m+2’d’_‘23F2)'

Or, on a, pour @ = oo et en posant r = Ve e,

o™ dp

1—-a %
0

de sorte que, en raisonnant par récurrence relativement & d, on déduit
immédiatement de la formule ci-dessus le lemme énoncé.

En tenant compte du fait noté plus haut que les intégrales figurant au
second membre de (6.3), ol 'on a remplacé @ par @,, se réduisent & la
forme (6.4), avec d = 2k 4+ 3 — ¢ — n pour ¢ pair et d=2k+2—i—n
pour ¢ impair, il résulte immédiatement de ce lemme que,

pour k>%(n — 2), H[x] posséde ume partie infinie de la forme
Pk-l‘:;’: (¢) 8¢ n est pair et Qk_ n—3(€) 8 m est impair.
2 2

11 suffira pour la suite de calculer effectivement les parties infinies de
n—2 n -1

H:; [#] (pour n pair) et de H;T [#] (pour » impair). Dans ces deux
cas, le seul terme du second membre de (6.3), ou D, a été substitué a

@, qui diverge pour ¢ = 0 est celui qui correspond & 7= 0, les autres
n—2

termes ayant une partie infinie nulle. La partie infinie de H;T [x] est
donc la méme que celle de
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n—2 n

(—1)2 2 2g _,a )qu 2,72 + &)

r=2dr
n—1 2

Vit +¢

elle est égale, d’apres le lemme (casoi m =n — 2 et d =1), &

_r 5 (
2 s, ,a, Dy (0,0)log e

ce qui 8’écrit aussi o

— 217 % §,[«]loge,
si 'on tient compte des égalités suivantes:

By(0,0) = D(0,0) = ¢(0, ..., 0) = o] ,

5o AT G TP
8”‘2_1.3...(n~—3) (pour n pair), a, = (—1) 5. (n—3)

n—1

(d’aprés (6.2)). Quant & H:f[(x] , sa partie infinie est celle de

(=1 %2 * s 50" )fqio(fz,rz-l-S)M ;

b V24 ¢

elle a pour valeur, en vertu du lemme (cas ot m =n — 2 et d = 2),

n—1 n41 (n——l

=1 _ni1 - |
()72 T @.)(o,O)f—?——i%e ;)
Vor+1

0

ou encore

—q 1 _1
2 7w? dfa]e ?,
=1
2
sachant que s,_, = 3 4(2n)(n — 3) (pour » impair),
n—l)
——~(—-1 .5...(n——2),

(n—3)(n—3)..

et enfin que I'intégrale en g ci-dessus est égale & = 2) n—4).. 3

Sil’on considére & comme fixe et x comme variable, on voit que la partie
infinie de H% [«] est une distribution, dont le support se réduit au point O,
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car HY[x] converge pour & — 0 si le support de « ne contient pas ce
point. La démonstration qui précéde permet de constater aisément que,
pour ¢ —> 0, la convergence de la différence entre HY [x] et sa partie
infinie est uniforme par rapport & « sur tout ensemble borné dans 9.
Il en résulte que la limite Pf H* de cette différence est une distribution.
Nous la noterons H*. Nous pouvons alors énoncer ce qui suit:

La distribution HY posséde ume partie infinie, qui se réduit & zéro si
k<}(n—2) e qui, pour k>%(n —2), est de la forme P,_n—2(e)

2
8t n est pair et @, n—3 () i n est impair. Les coefficients de ces parties
2

infinies sont des distributions de support O.
n_%2 2
Pour n pair, la partie infinie de H.2 est — 21z * §,loge; pour n
u=1 n-1
wmpair, la partie infinte de H,® est 2-1m ? §,¢
Pour tout entier k >0, H* = Pf H* est une distribution invariante
définie dans R", associée a la paire (6'®, 0).

1
2

Considérons maintenant les distributions F#¥ .

Dans le domaine £,, défini par u < 0, nous utiliserons les mémes
n — 2 variables angulaires que dans £,, ainsi que %, mais nous substi-
tuerons ¢ & r. Comme u est négatif, » = V2 —u est réel quel que soit ¢ .

On a dr = —:'Tdt et, par conséquent, on peut poser
X = ¢(x1, e ey xn_l, t) d.’L‘l . .dx,n__l dt = '%‘(pl/t2 — u'n'—3dw dt du N

11 vient, pour toute fonction y(u) qui est C* a support compact contenu
dans la demi-droite » < 0:

foly@] =ol[f*y]l=%foVe—u' " dodip)du ;

cela montre que, dans la demi-droite » < 0, la forme f « est donnée par

+ oo

fa=dulfoVE—u""dodt = du 2 qu(rz, ) 13 dt |

ou @ est la valeur moyenne introduite précédemment et ol r doit étre
remplacé par V2 —u avant I'intégration.

Par définition méme de F¥, on a FE[x] = f* 6P [«] = 6P[fa],
d’ou (e est négatif):
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-+ o0
— k k n—
FHa] =L %SWﬂf £w¢m—uﬁv%~u *lat.  (6.5)

— 0 u==&

St n est impair (n > 3), 'expression sous le signe somme est fonction
C* de t et de ¢ quel que soit &, donc F¥[«] tend, pour toute valeur
de k, vers une limite finie lorsque ¢ — 0 .

D’autre part, si ’on remplace @(r2,t) par sa partie paire en ¢, soit
D, (2, t%), dans le second membre de (6. 5), celui-ci garde la méme valeur.

?
Fra D,(x, y), on trouve

ok I
WQO(tz — U, t2) (t2 - u) ®

Or, pour = pair, en posant @9 (z, y) =

k n—3 .
=(—)* PSP —w, )@ —w)yz T, (6.6)

i::

(-]

ou les b¥ sont des coefficients numériques ; en particulier,
b= —3)(n —5)... (n — 1 — 2k) 2-*
Il vient, par suite, pour » pair

dt

-n+38+2k—3¢ °

“+ oo
FH =5t 200 [0 @ et

Si k<% (n—2), toutes ces intégrales convergent pour & =0, et la
partie infinie de # £[«] se réduit & zéro. Si k >1 (n — 2), le lemme

ci-dessus (cas ot m = 0 et d est impair) montre que # ¥ [«] a une partie

infinie de la forme Pk_n_—-_z (—e).
2
Pour k=3 (n — 2), seul le terme correspondant & ¢ =0 diverge

n—2
pour & = 0, et, par conséquent, # > [«] a la méme partie infinie que

"2b< J @, ( -—eﬁ)Vﬁ_e;

en tenant compte de la parité de la fonction sous le signe somme, qui
permet de ramener l'intervalle d’intégration & (0, o) et en appliquant
le lemme (cas ol d =1 et m = 0), on voit que cette partie infinie est
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(=
S8y — 2
__%_abo

@,(0, 0) log (— ¢) ,

ou encore, tous calculs faits,
n—2

—m 2 8 [x]log (— ) .

En résumé, nous pouvons dire ce qui suit:

La distribution F¥ ¥ posséde une partie infinie, qui se réduit & zéro si n est

impair ou si k<4 (n—2), et qui est de la forme P, _n-2(—¢) si n
2

est pair et k>3 (n — 2). Les coefficients de cette partie infinie sont des

distributions de support O.

Pour n pair, la partie infinie de F, L2 oest —am 2 8plog (— &).

n-— 2 n——a

Pour tout entier k> 0, F* = Pf F?¥ est une distribution invariante
définie dans R™, associée & la paire (6'%), §(%)) .

Considérons encore les transformées H* de H* et H* de H* par une
rotation impropre de Lorentz 4, par exemple la rotation

/ / .
V=—t,oy=—a,2;,=2,0=2,3,...,n—1).

On a H![a] = AH![a]= H*[A*«]. Comme A permute les sphéres
S(r,t) et S(r, —t), la valeur moyenne de A* ¢ sur S(r,t) est égale
a la valeur moyenne de ¢ sur S(r, — ¢), soit @(r2, — t). On obtiendra
donc I’expression de H*[x] en substituant @ (2, —t) & D(r2,t) dans
le second membre de (6.1).

11 suit de 13 que les résultats obtenus pour HY, en particulier ceux qui
sont relatifs & sa partie infinie, restent valables pour Hf .

En comparant les limites pour ¢ = 0 de HY[x] et de H2[«], tirées
de D'égalité (6.1), et celle de FH 2[«], déduite de (6.5), limites qui
s’écrivent, respectivement,

_1\k i 1Y ~
—(—%—{'ﬁf@(ﬂ, r) ro=3 dr , ~(-—~H2—§-’iig—f¢(r2, — r)rn=3dr
0 0

+ o
1\k
L__l_)z.si:?_‘fQ(tz’ t)|t|r-2dt
on obtient la relation B

lim (HQ+ H!— Z#°,)=0, ou FH°=H'+4+ H°. (6.7)

€>0
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n—2 n—2 n—2
Formons maintenant la différence H,® + H,? — F#.% : elle posséde,
en vertu des résultats vus plus haut, une partie infinie nulle, donc elle
tend vers une limite finie lorsque & — 0. Nous allons montrer que cette
limite est nulle, autrement dit que ’'on a

n-2  n-2 n—z2y’ n-2  m-2  n-a
lim (Hes + H,? —zf_g)zo, doh H#?®* =H® +H:*® .
>0 (68)

Partons des formules (6.1) et (6.5) et désignons par d(¢) la différence
en question, au facteur (— 1)k 2-1s,_, pres. Il vient

{ kf@ (r, t) +¢(7'2 t)err}
0

u==£

— { 'Jr'_aa_k_Q(tz l/t2 w™ s dt\

- 0

w=—¢

ou encore, en faisant le changement de variable r = }/## —u dans la
premiére intégrale aprés avoir constaté que le numérateur de la fraction
qui 8’y trouve n’est autre que 2 @,(r2, ?), et en se souvenant qu’on peut
remplacer D (r2,t) par D,(r?,¢?) dans la seconde intégrale et, par con-
séquent, ramener l’intervalle d’intégration & (0, oo):

de) = 2 Dy(t2 — u, t2) Y12 —u""2dt
(du J }

u=E£

-2{ akqb (2 —u, ) V2 — "3dt}
s u=—=&

Le premier crochet ne comprend, en fait, qu’un seul terme, celui qu’on
obtient en dérivant par rapport & u la fonction sous le signe somme
k ==% (n — 2) fois: les autres termes contiennent, respectivement, les
dérivées d’ordre 1,2,...,k — 1 =1 (n — 4) de cette fonction & prendre
en ¢ = Vu, et sont alors nuls puisqu’ils possédent tous au moins V## — u
en facteur. Or, cette dérivée d’ordre k¥ = 4 (n — 2) de la fonction sous le
signe somme peut se mettre, en vertu de la formule (6.6), sous la forme

1
Vi —u

ou ¥(x,y) désigne une fonction C* de z et de y a support compact.
Cela étant, la différence d (¢) s’écrit

P2 — u, 1),
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oo rol
de) =2 | —————P2—¢e,3)dt —2 | ——— (2 , t2) dt
(e ij<s) ofl/me(“)
€

- 2[———1—~—[Y’(z2,z2 &) — W+ e, 2)]dz,
0

V22 +¢

expression qui tend bien vers zéro avec ¢.

On pouvait prévoir sans calcul que, quel que soit I'entier k > 0, les
distributions #* et H* 4 H* sont égales dans R™ — O, car elles ont
la méme paire associée, a savoir (4%, 6¥)) . Nous verrons au § 7, &
Paide des résultats établis ci-dessus, qu’elles sont toujours égales dans R".

Envisageons, pour terminer, une distribution 7' invariante dont le
support est contenu dans la surface du céne w = 0. Le support des
distributions 7'+ et 7'- de la paire associée ne peut contenir d’autres
points que le point u = 0, de sorte que la paire (7', T-) est égale &
une combinaison linéaire des paires (6¥),0) et (0,6®),(k=0,1,2,...).
Donc, dans R™ — O, T est égale & la méme combinaison linéaire des
distributions H* et HF associées & ces paires. Dans R*, la différence entre
T et cette combinaison linéaire, si elle n’est pas nulle, est une distribution
de support O. Se reportant au théoréme 1, on peut alors énoncer:

Théoréme 3. Toute distribution invartante dont le support est contenu
dans la surface du come w = 0 est une combinaison linéaire des distributions
Hk H* et %6, (k=10,1,2,...) .

§ 7. Développements asymptotiques de H? et de F°

On sait?) que si la dérivée ¢*™° F'@ (¢) d’une fonction F(¢) admet, dans
I'échelle des fonctions &*logte (A = nombre réel ou complexe quel-
conque, u = nombre entier > 0), un développement asymptotique & la
précision o(1), F(¢) admet dans cette méme échelle un développement
asymptotique & la précision o(e?), dont la dérivée d’ordre q est précisé-
ment le développement de F(@)(g). Or, la dérivée ¢®™¢ de H* qui est
égale, d’aprés (5.1), & (— 1)2 H4** | admet, en vertu des résultats du § 6,
un développement asymptotique & la précision o(1). Donc H¥ admet,
pour tout % entier > 0, un développement asymptotique & la précision
o(e?), si grand que soit ¢, ce quon peut exprimer en disant que H*
admet, dans Uéchelle des fonctions &* logt e, un développement asymptotique

%) N. Bourbaki: Eléments de mathématique, livre IV (Fonctions d’une variable
réelle), chapitre V, § 2 et § 3. (Actualités Sci. Ind., fasc. 1132; Paris, Hermann, 1951.)
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illimité. Le développement de H* pouvant se déduire par dérivation de

celui de HY, il suffira d’établir ce dernier.
q
Puisque HI = (— 1)¢ 3%1” H}, Yensemble des termes infinis pour & = 0
du développement qui se déduit du développement de HY en dérivant q
fois ce dernier doit étre égal, au facteur (—1)? prés, a la partie infinie de
HY déterminée au paragraphe précédent. Il en résulte immédiatement que

Pon peut écrire, en désignant par ~ le signe de I’égalité asymptotique:

o PRt ,
Y (A,, e+ B,e 2 log s) si » est pair,
0 h=0
Hy ~ - _ (7.1)
E (A e + B, e e ) si 7 est impair.

De la méme maniére, on voit que F# 2(e < 0) posséde un développement
asymptotique de la forme

n—2

oo B+ "
2(%‘8”’—}-@,‘8 T log (— s)) si n est pair,
0 h=0
FH o~ . (7.2)
> A, & si » est impair.

h=0

Le développement de #¥ se déduit encore par dérivation de celui de

k
F Y, en vertu de la formule F¥ = (— 1)* jk F .

Les coefficients de ces développements sont des distributions inva-
riantes. Pour les déterminer, remarquons que ’on peut obtenir le dévelop-
pement de [] H? soit en appliquant 'opération [J aux coefficients du
développement de Hj, soit, d’aprés (5.4), en effectuant l’opération

2_o1g e- ‘;i

4¢® T ¢ %— dans le développement de H). En identifiant les

résultats trouvés, on parvient aux relations de récurrence suivantes:

pour n trmpair :

04, = 4(h + 1)(h+2 —-’;) 4,
(7.3)
0 By = 4(h + 1) (b + % | Bar
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pour n pair:

[:]A,,=4(h+1)(h+2~~g—)A,,+1 si h<’—‘—;5,

Od,—4(h + 1)(h +2 _—g-) Ayt BhH12—20)B,_n  sih>222 (1)

OB, =4(h+ 1)(h + 32’—) B,,, .

\

Pour n impair, les coefficients de A4,,, et de B,,, dans les seconds
membres de (7.3) ne s’annulent jamais. Les distributions 4, et B, sont
donc égales, & des facteurs numériques prés, aux distributions [J* 4,
et [J* B, respectivement.

Pour n pair, le seul coefficient numérique figurant dans les seconds
membres de (7.4) qui puisse s’annuler est celui de 4,,, dans la seconde
formule. Il s’annule pour - = 4 (n — 4), et cette formule devient alors

04, ,=(2n—4) B, . (7.5)

On constate que, & un facteur numérique prés, B, est égal & [I* B,,
donc & [+ A,_,, donc a Dh+ !‘:_2;3‘40’ puisque, pour A<} (n —4), 4,
est proportionnef a [*4y. Si h=%(n — 2), 4, est égal & une com-
binaison linéaire de [ 15"%141,:_a et do 7% 4, .

En résumé, 4, et B, s’exprililent toujours & l'aide de dalembertiens
itérés de A, et de B, si n est impair, de 4, et de Aﬁ:_% si n est pair.

2
n—2

En considérant le développement asymptotique de H:r qu’on déduit

de celui de H{ (formule (7.1), » pair) par dérivation % (n — 2) fois et
n—2

multiplication par (—1) * , on voit immédiatement que la partie

n—2 n—2

infinie de H,? estégalea (—1) % <n vt~

) ! By loge. De méme, pour n
n—1
impair, on trouve que la partie infinie de H,? est égale &

n—1 1

(—2) ® m—2 (n—4)...3By¢ °.

250



La comparaison de ces valeurs avec celles qui ont été déterminées au
§ 6 fournit B,:
n—2 \

n
2 2

do si m est pair,

(— 1)
B, = ( ) (7.6)

[ I)T (2m) *
2.3.5.7...(n — 2)

8o s8i m est impair.

Enfin, H* = Pf H* n’étant pas autre chose que le terme indépendant,
de ¢ dans le développement asymptotique de H¥, on obtient:

(— 1)¥k! A, pour nimpair, oun pairet k<3(n — 2),
1 1 1
H* = | (= D0 Ay + (= D*E (14 g4 g+ b ) Bons | (1)
pour n pair et k >3(n — 2) .

Il résulte de la que la distribution B, est toujours égale a un multiple de

"6, et que la distribution A, est égale & la distribution (= 7 ')
n—2

h— %
mentée d’un multiple de [ 2 8, st n est pairet h >% (n — 2).

H*, aug-

D’autre part, on voit qu’il n’y aurait pas de difficulté & écrire I’expres-
sion du développement asymptotique de H¥ & laide des distributions
H*: et [1%¥6,(k=0,1,2,...). Il serait également aisé de calculer
maintenant la valeur précise des coefficients de la partie infinie de H*
pour tout k.

Ecrivons encore les relations de récurrence auxquelles satisfont les H%.
Elles découlent des formules (7.3) & (7.7):

pour = impair, ou n pair

2(n — 2k — 4) HE {et b dn )
OH*= (7.8)

k-2 +2 pour n pair et
2(n — 2k — 4) H¥1 4 ¢ 29
( ) + kD O{ k}%—(n—-—-’i),

ol ¢, est un coefficient numérique, dont la valeur serait facile & déterminer
pour tout k. Notons simplement que 1'on a

n—2
— 2
Cun_y =27 .

o
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Désignons maintenant par 4, la transformée de A, par une rotation
impropre de Lorentz. Il est clair que les formules (7.1) & (7.8) subsistent
lorsque 1’on y remplace 4 par A4 et H par H .

Des formules (7.8), pour les H et pour les H, on peut alors, compte
tenu du théoréme 3, tirer les conclusions suivantes:

Pour n tmpazr, il n’existe pas de distribution invariante T # 0 a sup-
port contenu dans la surface du come w = 0 qui satisfasse a Uune des
équations (JT =0 ou OT = §,.

Pour n pair, au contraire, la distribution

n—4 n—4

HT__‘H‘T

satisfait @ [T = 0, et toute distribution invariante & support contenu
dans la surface du cone u = 0 qus est solution de cette équation est un mul-
tiple de cette distribution. D’autre part, les distributions

2—n n-—4 2—n n—4

im ? 2 et %nTTf 2
satisfont a Uéquation T = §,.

Considérons, pour finir, les distributions ‘7, et £J, qui apparaissent
comme coefficients dans le développement (7.2) de #? . La premiére des
relations (7.3), pour »n impair, et les relations (7.4) et (7.5), pour » pair,
restent valables si I’on y remplace 4 et B par 27 et £J: les calculs & faire
sont semblables & ceux qui précédent. De méme, les formules (7.7)
sont encore vraies si ’on y substitue #, et &0 a H, A et B .

11 résulte alors de (7.7) pour £ = 0 et de (6.7) que
“70 - AO + Z-o .

D’autre part, la méthode méme qui a servi a établir (7.6) montre que,

pour n pair, -3

n n
-1)2n2
n——-2'
(*7)!

I1 suit alors de (7.7) pour k =4 (n — 2) et de (6.8) que

3, = _ 8o = 2B, .

zn—az An-—z Z—n—z .

= T =
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Ces trois égalités suffisent, si 'on se souvient, d’'une part, du fait,
remarqué plus haut, que 4, et B, s’expriment toujours a I’aide de dalem-
bertiens itérés de A, et de B, ou de 4, et de 4,_,, d’autre part, de

2
I'identité des formules de récurrence relatives aux A4,, 4, et 7,, ainsi

qu'aux B, et &J,, pour entrainer les relations
A, =A,+ A4, , DB,=2B,, pourtouth; (7.9)
on en déduit, compte tenu de (7.7), I’égalité

FHh = H* - H*, pour tout b . (7.10)

§ 8. Prolongement de distributions définies par certaines fonetions g(u)
non sommables au voisinage de u = 0. Les distributions S?, SP et o5

Soit g(u) une fonction définie et continue pour u > 0. Nous nous
proposons de chercher une distribution, définie dans R, qui soit égale &
g(u) pour v >0 et a 0 pour u < 0.

Désignons par Y,(u) la fonction de Heaviside valant 1 si u >e¢
et 0si u <e.Pour & > 0, la fonction Y (u)¢g(u) définit une distribu-
tion dans R. Lorsque ¢(u) est sommable dans l'intervalle (0, 1), mais
dans ce cas seulement, cette distribution converge pour ¢ — 0 vers une

distribution lim Y, (u)g(%) qui répond a la question. Si cette limite
E>0

n’existe pas, il peut arriver que Pf Y (u)g(u) existe, et alors cette
distribution résout le probléme posél?).

Il en est, en particulier, toujours ainsi quand Pf g(e) existe. En effet,
g (¢) 6, possede alors une partie infinie, que ’on obtient en multipliant la
partie infinie de g(¢) par le développement asymptotique de §, fourni
par la formule de Taylor

5o v (=D
& -

gh o
im0 P!

et en ne conservant de ce produit que les termes qui n’ont pas de limite
pour ¢ — 0. Il résulte alors de ’égalité —(—% Y. (u)g(u) = — g(e) 6 que

Y, () g(u) a aussi une partie infinie déterminée, donc que Pf Y (u) g(u)
existe.

10) Cette méthode est celle de M. J. Hadamard. Cf. L. Schwartz: Théorie des dis-
tributions, tome I, p. 38 et suivantes.
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Dans R®» — O, considérons la distribution invariante @, associée & la
paire (¥, g,0). Le point O n’adhére pas & son support, qui est contenu
dans ’ensemble (u > e, > 0), de sorte que la définition de G, s’étend
a4 R™. D’aprés la convention du § 4, cette distribution peut étre notée
{1 Y.g. Ona 0.

de

= — g(e) H ;

comme g(g) HY a une partie infinie, que ’on obtient en multipliant la
partie infinie de g(¢). par le développement asymptotique (7.1) de HY et
en ne conservant de ce produit que les termes qui n’ont pas de limite pour
e —>0,G, a aussi une partie infinie déterminée et, par conséquent,
P{G, = Pf I Y, g existe. Cest une distribution invariante, définie
dans R” et non seulement dans R™ — O, associée & la paire (PfY.g, 0).
Bien entendu, quand, en particulier, la fonction g(u) est sommable dans
Pintervalle (0, 1), on a simplement

PfGe[a] = Pf .f:. Yeg [«] =J gu) @21, ..., Tpq, ) day. .. da,_ db.

1

Un cas important pour la suite est celui ol la fonction g(u) est égale &

1A ]

u? , p étant un nombre quelconque. Nous désignerons par 8% la distri-

»
bution f}Y,u?, et par S? la distribution PfS%. Il serait aisé de
donner, dans chaque cas, ’expression détaillée de §». On a

p
87 [«] =qu2q>dx1...dx,,_ldt pour Rp>—2.

Les considérations précédentes s’étendent immédiatement & la distri-
bution G, = f* Y,g associée & la paire (0, Y, g). Nous poserons

— r —
J2 —{*Y,u? et RS2 = PfR? .

D’une maniére analogue, si g(u) est définie et continue pour u < 0
et si Pfg(—¢) existe, Pf(1 — Y_,)g existe aussi: c’est une distri-
bution définie dans R, égale & g(u) pour ©u <0 et & 0 pour > 0.
Soit- &_, = f*(1 — Y_,) g la distribution invariante définie dans R™ qui
est associée a la paire ( 1—-Y_,)g,1—1Y_,) g). On voit, comme plus
haut, que PfS .= Pf f*(1 — Y_,) g existe : c’est une distribution
invariante définie dans R™, associée & la paire

* (PIQ—Y_)g,Pi1—TY_ gg).
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Elle s’écrit gf ‘g(u)pdx,...dx, ,dt lorsque ¢g(u) est sommable dans
Pintervalle (i—— 1,0).

p
Nous aurons & considérer le cas o g(u) = |u|2. Nous noterons <57,

4
la distribution f*(1 —Y_,)|u|® et <SP la distribution Pf S? (e > 0).

Supposons maintenant que g(u) ait des dérivées premiere et seconde
continues pour u# > 0, qui possédent aussi des parties infinies déter-
minées lorsque % — 0. On trouve, par un calcul facile,

d
5 Xe9) =g() 6 + Yeg',

dz ,
u—g (Yeg) = Yeug” + [eg'(c) —g(e)] & + eg(e) ¢,

d’otr
D(Y.9) = Y, Dg + [(2n — 4) g(e) + 4e g’ ()] 6. + 4eg(e) 6, (8.1)

formule qui permettra de calculer D Pf(Y.g) = PfD(Y.g9). En vertu
d’un résultat du § 4, la paire associée & [1G, est (DY, ¢, 0). On a donc

OGe = f1Y: Dg + [(2n — 4) g(e) + 4e g’ (e)] He + 4eg(e) H, (8.2)
d’olr ’on pourra déduire [ PfG. = Pf OG,.

?
Par exemple, en prenant g(u) = «? , on obtient

p—2

Dg=pn+p—2u?,
d’ou
p+2

H® +4c * H., (8.3)

03

O8E=pn+p—2)8E~ "+ 2(n+p—2)e

d’ol1 encore
P+

) .
OS82 =p(n+p—2)8P-2+2(n+p—2)Pfed H +4Pfe * HL. (8.4)

Les mémes formules valent pour G,, HY¥, S? et S» .

D’une maniére analogue, si g(u) et ses dérivées premiére et seconde
sont continues pour % < 0 et ont des parties infinies déterminées lorsque
u — 0, on parvient & ’égalité

D(1—Y_.)g=(1—Y_¢) Dg+[(4—2n)g(—e)+4eg'(—e)]0_+4eg(—e)d.,,
(8.5)
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qui permettra de calculer DPf(1 —Y_,)g= PfD(1 —Y_,)g. Onen
déduit immédiatement la formule

08 e=f*(1-Y_;) Dg+ [(4-2n)g (~¢) + 4eg'(-&) ]| H° e+ deg (-e) F-,
(8.6)
grace a laquelle on pourra trouver (] Pf & .= Pf &,

p P2
Par exemple, pour g(u) = |u|?, ilvient Dg= —p(n +p—2)|u| * ,
d’ou

P p+2
DJ£e=""p(n+p_’2)6’1’;2"”2(”"*‘2)"'2)52 ~Z[—oe+45 2 z[—le ’
(8.7)
et enfin
p+2
DJP=—p(n+p~2)Jp°2 2(n+ p—2)Pf82Z[° —1—4Pf8
(8.8)

Nous allons tirer quelques conséquences de certaines des formules
précédentes.
Soit £ un nombre entier positif quelconque. On déduit sans peine de
(8.4) la relation
p+2 24 4

82 =d,, , OF 87+ 4 Pfe * RY,(e)H + Ple * RY, (e HL, (8.9)
ol d,; ; est le coefficient

P+2)p+4)...0+2E)(n+p)(n+p+2)...(n+p+ 2k —2)

et o BR{ ,(e) et R‘,f_’_l(e) représentent deux polyndmes en ¢ de degré
kE — 1. Ce résultat n’a évidemment de sens que lorsque p ne prend pas
I'une des valeurs annulant d} , .

Désignons alors par £ ’ensemble des nombres — 2, — 4, —6,..
et —m,—n—2,—n—4,.... Sipn’appartient pas & F, le coefficient
d- 1 »,& 1'est jamais nul ; de plus, on constate que, dans ce cas, compte tenu

de la forme (.7. 1) des développements de H? et de H. = — %H 9, les

deuxiéme et troisiéme termes figurant au second membre de (8.6) sont
nuls. On a, par suite,

8P =d, , . OF8+2k si p¢ E, quel que soit k entier >0. (8.10)
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Si 'on considére o« comme fixe, mais p comme variable, S? [x] est une
fonction de p, qui est définie, comme on I’a vu plus haut, pour toute valeur
réelle ou complexe de cette variable. C’est méme une fonction analytique
de p pour p ¢ E. Envisageons, en effet, la fonction

Ly
Ii(p)=fu* QO*edx,...dz,_,dt,
2

k étant un entier positif. Elle est définie pour Ap > — 2 — 2k, égale &
(% 8P+2k [4], et c’est une fonction analytique de p. La fonction

dn,p, ka(p)

est analytique dans le méme domaine, sauf aux points qui appartiennent
a K ; elle admet pour prolongement d, , ;. l;.;(p), car ces deux
fonctions sont égales, d’aprés (8.10), dans la partie commune de leurs
domaines d’existence. L’ensemble des fonctions I,.(p), (k=1, 2, 3,...),
définit donc une fonction I(p), qui est analytique, sauf pour les valeurs
p eE, quelle admet pour pédles simples ou doubles; et I(p) est égale
a 8P pour p¢ k.

Considérons maintenant les distributions Pfs? de M. Schwartz et
Z,,, de MM. Riesz et Schwartz!!). Pfs? est une fonction de p, qui est
analytique, sauf pour une double infinité de valeurs singuliéres, qui sont
précisément les valeurs de I'ensemble E. Z,, , est défini par 1’égalité

Pf sp
L = n+p—1 fn+p p+2 (8-11)
nE 2 r(=3%) r(&=)
pour p ¢ E, et par passage & la limite pour pe£Z. On a
0Z,=2Z,_5, quelquesoit!l. (8.12)
Enfin, on sait que les distributions Z, ,,Z, ,,...,Z,,Z_,,... (pour n
impair) et Z, 5,2, 4,...,Z, (pour n pair), qui sont invariantes, ont

pour support la surface du cone futur, et que ce sont les seules Z,; & pos-
séder cette propriété.

Cherchons les relations existant entre ces distributions et nos distri-
butions 87 et H* .

11) Cf. L. Schwartz: Théorie des distributions, tome I, p. 50;
M. Riesz: L’intégrale de Riemann-Liouville et le probléme de Cauchy
(Acta Math., 81 (1949), p. 1-223).
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De (8.11) et de (8.12), on tire immédiatement, pour p¢ E, 1'égalité
Pfs? =d, ,; (O PfsP+%; par conséquent, PfsP satisfait & la méme
formule (8.10) que 8?. Or, pour k assez grand, on peut écrire, toujours
pour p¢ E: )

+
Ok 8P +2k[4] =qu2 O*ede, . ..dx, dt = OFPfsp+2k[«] .

1

(-1

On a donc Sp — Pf sP pour p ¢ K. (8 13)

I1 est clair que les distributions Z,_, et H® doivent étre proportionnelles.
Effectivement, de (8.12) ou 'on pose [ =n et de (8.11) ou l'on fait
p =0, on déduit que

Zn—2 = Dzn =

H

n—32
w2 2" 11-’(%)

et, de (8.4) pour p = 0, on conclut que []8° = 2(r — 2) H°. Il vient
alors o 3

—_— n—-2
(n = 2) HO———"—?Z 2 2 P(%)Zn_z " (8.14)

On remarquera que l’ensemble des distributions Z, ayant pour support

la surface du come futur ne comprend pas, lorsque n est pair, toutes les distri-
n-2 n

butions invariantes ayant pour support ladite surface. En effet, H T, H?, ...
n—2

n’appartiennent pas & cet ensemble, puisque H ? n’est pas un dalem-
bertien itéré de H° .

Pour terminer, calculons les valeurs de [ 8%-7*, []82-7, [] §52-n,
qui nous serviront dans le paragraphe suivant. On a, par application
directe de (8.4) et de (8.8):

4-n 4-n 4—n
O82-"=4Pfe 2 H, (O82-»=4Pfe * H.,OS2-*=4Pfe * F#!,.

4—-n

Si n est impair, on déduit facilement de (7.1) que Pfe 2 HL , c’est-d-dire
n—4

le coefficient de ¢ > dans le développement asymptotique de

d

est égal & — 1 (n — 2) B, ; il vient alors, en vertu de (7.86),

ntl n-1
(—1)* @2n)°
1.3.6...(n — 4)

O82— = do , pour n impair. (8.15)
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Remarquons qu’une solution particuliére de I’équation [17 = §,, pour

n impair, est ainsi obtenue. Cette formule (8.15) est évidemment encore
4—n

vraie pour []82-7. D’autre part, on a Pfe > F#',=0, commele
montre immédiatement (7.2); d’ou

O S2-» =0, pour n impair. (8.16)
4—-n
Si n est pair, on déduit de (7.1) que Pfe 2 H: vaut, cette fois-ci,

1(2 — n) An—2 — B, ; par suite,
2

O8%-"= (4 —2n) An—2— 4B, , pour n pair. (8.17)

2

Ce résultat, ou I'on substitue 4 & 4, est valable pour [J82-*. Enfin, on
conclut de (7.2), en tenant compte de (7.9), que

L

OS2 = (—172[(4—2n)(4,_,+ A,_,) — 8B,], pour n pair.

2 2 (8.18)

§ 9. Les solutions invariantes des équations O T =0 et O T = J,

On connait déja une solution invariante particuliére de 1’équation
OT = d,, aussi bien pour n impair, par (8.15), que pour n pair, par
(7.8). Il suffit donc de chercher la solution générale invariante de ’équa-
tion (J7 = 0. D’une proposition démontrée a la fin du § 4, il découle
que, si une distribution invariante 7' associée & la paire (7', 7-) est
solution de J7 = 0, on doit avoir DT+ = DT-= 0. 1l convient
donc d’abord de déterminer toutes les distributions U dans R qui satis-
font & DU = 0.

Cette équation étant réguliere pour u # 0, toute distribution solution

est égale, dans chacune des demi-droites 4 > 0 et w < 0, & une solution
2—n

usuelle!?), laquelle est de la forme a + b |u|T . II en résulte qu’une
solution U s’écrira

2—n 2—n

U=aPfYu?® +bPf(1—Y_)|u| ? +c¥y+d+ Xe, oW,

car c’est 1a ’expression la plus générale d’une distribution égale, dans

2—-n
>0 comme dans % < 0, & une combinaison linéaire de |wu| 2
et de 1.

12) L. Schwartz: Théorie des distributions, tome I, p. 127-130.
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-2 2—-n

‘En tenant compte de (8.1) pour g=u ?* , de (8.5) pour ¢ = |u] ®
et de (5.2) ol 'on pose ¢ = 0, il vient

4— 4-—

DU = 4a Pfc ® 8.+ 4bPfc? 6,
+ 2(n —2)cd+ X 2(n — 2k — 4)e, 81KtV |

4—n 4-n
Si n est impair, les expressions Pfe * 8, et Pfe * 8’ , sont nulles
toutes deux, le coefficient » — 2k — 4 n’est jamais nul. Si n est pair
(n >4), ona

4—n n 4-—-n

n g (2
Pfe?® 6,=(—1)?2Pfe? 6’_6:-———%—_:1—)——6 2 ) ,
()"
n — 2k — 4 s’annule pour k = } (»r — 4). Dans les deux cas, DU est
une combinaison linéaire de dérivées de &, qui ne peut étre nulle que si le
coefficient de chaque dérivée est égal & zéro. On voit alors facilement que

la solution générale de Uéquation DU = 0 est une combinaison linéaire
arbitraire des trois distributions

2-—n 2-n
PiY,u?® , PfQ1—Y_ )|ul? , 1 pour 7z impair,
2~n n—2 2—n
Pf¥,u® +(—1) % Pf(1—Y_p|u| " ®-1)
= Pf(Yo+1—Y_gu?®, 6°* 7,1 pourn pair.

Les distributions 7'+ et 7'~ associées & une solution 7’de [17' = 0 sont
des combinaisons linéaires des trois distributions (9.1). Comme 7'+ et 7'-
sont assujetties & étre égales pour w < 0, d’aprés le théoréme 2, la
paire (7'+, T-) doit étre une combinaison linéaire des quatre paires

suivantes:
2—n 2-—

(PfYus,0), (0, PfYu1),

2—n 2—n

(PfA1—Y.))|u[ %, Pf(1—Y_)|u[7 ), (L1) pour n impair,

2—-n

(PITt+1—Yus, PHT+1—T Jus),
n—4 n—4
(6(T) ,0), (0, 6(7)) , (1,1)  pour n pair.
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Par conséquent, 7' est égale, dans R™ — O, & une combinaison linéaire
des quatre distributions associées & ces paires, & savoir, d’aprés les
§7et8:

Sz-n  §z-n o f2-n ] pour = impair,

— n—2 n—4 _n—4 (9.2)
§2-n 4 S2-7n 4 (—1) 2 S, Hz2 , H 2,1 pourn pair.

Or, toutes ces distributions sont définies dans R". Dans R"*, T est alors
égale & une telle combinaison linéaire augmentée éventuellement d’une
distribution invariante de support O. Il reste & voir quelles combinaisons
satisfont effectivement & I'équation [J 7' = 0. On sait, par les formules
(7.8) et (8.15) & (8.18), que, k et k&’ étant des constantes, on a

082-» = J8*-*=£ké,, [JI2-"=0 pourn impair,
n—2 n—-4 n—4
O8>+ 82-r4 (—1)2 $*")=0, OH:* =0H * =k'¢,
pour 7 pair.

De plus, il est clair que le dalembertien d’une distribution invariante de
support O, c’est-a-dire d’'une combinaison linéaire de [J* §,, ne peut
ni s’annuler, ni étre égal & un multiple de J,. On déduit alors facilement
de la les relations devant exister entre les coefficients des combinaisons
linéaires, et, partant, ’énoncé du

Théoréme 4. La solution générale invariante de Uéquation (1T = O est

a(§2-n — §2-n) L b F2-n L ¢ 8t n est impair,
T = . n—2 n—4 n—4a
a(§-n 4 Fe-n 4 (—1) T S2n) +b(H T —H 1 )t

81 n est pair,

avec trois constantes arbitraires a, b, c.
Une solution particuliére de Véquation [T = ¢, est 13)
At1 o 1-n
(—1)2 (2xn) 2 3.5...(n — 4) 82-" s n est tmpasr,
3-n n—4
2-1z 2 H @ st m est paar.

T =

Cet énoncé suppose n > 3; pour » = 3, la solution particuliére
g’éerit (27)-1 S-1.

13) Les formules (8.11) et (8.13), pour n impair, (7.8), (8.12) et (8.14), pour = pair,
montrent que cette distribution n’est autre que la distribution Z,, c’est-a-dire précisément
la solution particuliére de O 7' = d¢ donnée par M. Schwartz (Théorie des distributions,
tome I, p. 51, formule [II, 3; 34]).
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§ 10. L’équation des ondes amorties ((1 + k)T = 0 ou d,

La paire de distributions dans R associée & toute solution invariante
de ’équation ([J + k) 7' = 0 est formée de distributions satisfaisant
a 'équation (D + k)U =0, ou (D, + k) U =0, en désignant par

. , dz2 d d _d
D, au lieu de D l'opérateur 4u%é + 2n T Or, on a Dn@ = D, _,,
et, par suite, pour » impair,

n—1 n—1
d\z d \z

@, + () ()" B+ b, (10.1)

n—1
Si donc V satisfait & I'équation (D, + k) V=10,U = ( gu—) * V satis-

fait & (D, + k) U = 0. Réciproquement, si U satisfait & cette derniére

équation et si ¥, est une primitive d’ordre 3(n — 1) de U, on a
n—1

(71%) " (Dy+ k) V=0, don (D, + k) V, est un polynéme de degré

<1(m —1). Si k # 0, on vérifie aisément qu’il existe un polynéme P
de degré <1l(n—1) tel que (D, + k)P = (D, +k)V,; ainsi
V=V, — P satisfait & (D, + k) V=0 et 'on a I’égalité

n—1

U:(d)zv.

du
Un raisonnement analogue étant valable pour » pair, on a:

St n est imparr (ouw parr) et k non nul, les solutions U de 1'équation
(D, + k) U =0 sont les dérivées d’ordre L(n — 1) (ou 3(n — 2)) des
solutions V de Uéquation (D, + k) V=0 (ou (Dy+ k) V=0).

Pour k = 0, on verrait de méme que toute solution U de la premiere
équation est, & une constante additive prés, la dérivée d’ordre 3(n — 1)
(ou 3(n — 2)) d’une solution V de la seconde équation, ce qui est en
accord avec les résultats du § 9.

Soit alors d’abord » impair: considérons 1’équation (D, + k) V= 0.
On en connait les solutions usuelles g¢,(u) = cos Vku, fonction entiére
sin Vieu

Viu
de . En raisonnant comme au § 9, on voit que V ne peut étre qu'une
combinaison linéaire des quatre distributions

de u, et | u"l%gz (u), ou g,(u) = est aussi une fonction entiere

g1(u) , Yog:(u), Y, u%gz(’“) , (1—=1X,) Iuligz(u) ’
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augmentée éventuellement d’une distribution ayant 1’origine (de R) comme
support, ce que ’on peut écrire

V=ag) + bPfY,g ) + ¢ Pf¥,u?

gz (u)
FdPf(1—Y_ o) jultgw) + 3 e, 0m .

Il est clair que la distribution g, (u) satisfait & (D, + k) V= 0. On
trouve ensuite, en utilisant (8.1) et (8.5), avec n =1 :

(Dy + k) Yog,(w) = (— 29,(e) + 4£9;(e) ) S + 4eg,(e) 6, ,
(D, + &) Ty gyu) = de? gl(e) 6, + 42 g, () 8L, (10.2)
Dy + B) (1 —Y_ ) [ul¥gu) = 4ebgf(— ) 6_o+ 2 gy (—) 8, ,
d’oll se déduisent immédiatement les égalités

(D, + k) P Yog, (w) = — 28 , (D, + k) P Fyuby, (u)

— (D 4+ B Pf(L—Y ) |ulfgyw) =0 .
On a enfin, d’aprés (5.2),
(D, + k) 8 = — 2(2m + 3) 8D | f o)

Il résulte de 1& que la solution générale V de Uéquation (D, + k) V=0
est une combinaison linéaire arbitraire des trois distributions

PiYutg,w) , PIQ— Y o) |ul¥ga(u) , gi(u).

En vertu de la remarque faite plus haut, la solution générale de 1’équa-
tion (D, + k) U = 0, pour n impair, est une combinaison linéaire arbi-
traire des dérivées d’ordre 1(n — 1) de ces trois distributions, soit, les

opérations Pf et _d%; étant permutables, des trois distributions

n—1 % n—1 1

Ul———Pf(%)TYeu g2(w) , U= Pf (%)Tu — Yo lul galw)
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Cela étant, la paire associée & toute solution invariante 7' de 1’équation

(O + k)T = 0 doit étre une combinaison linéaire des quatre paires
suivantes:

(U11 0) ’ (09 Ul) ’ (U2: US) ’ (Ua ’ Ua) .

La méthode développée au début du § 8 montre que les distributions

1= P £(2) " Tow mw, 1= P () T 0 Yglul o),

n—1 i n—1

(10.3)

invariantes et définies dans R", sont respectivement associées aux paires

(U,, 0) et (U,, Uy). La transformée T de 7} par une rotation impropre

de Lorentz est associée & (0, U,), et la distribution égale & la fonction
n—1

(_3%) ® g,() continue dans R~ est associée & (U,, U,).

Dans R™,la distribution 7' est nécessairement une combinaison linéaire
de ces quatre distributions 7}, T}, T, et T}, augmentée éventuellement
d’une distribution invariante de support O.

Voyons maintenant quelles sont les combinaisons linéaires qui satisfont
effectivement & ((J + k) 7= 0. On a:

-1 1
(O+BT=PHO+B1 () T B’ o

n—1 l
2

=PI Da+B)(g5) " T’ aaw)

Or, d’apres (10.1) et (10.2), on peut écrire
n—-1 1 n—-1 1

Out B g) " Bt nw=(5) T D+ Bl n

3 el 2 mi1)
2 2 2
=4 gy(¢) 8, + 4¢ ga(e) O¢ :

ce qui entraine immédiatement

3 n—1 3 n+t1

(O+ k)T, =4Pfe gy(e) He® +4Pfetgy(e) Hy® .
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On déduit sans difficulté de (7.1) que le premier terme du second membre
est nul, alors que le second vaut

Lt S _ _
g(—pz.rz=2.n-t 1 =1 5.

n—1

ou encore, d’aprés (7.6), @ 2 §,. Des calculs semblables valent pour 7, .
Ainsi:

n—1

D’une maniere analogue, on obtient

3 n—1 3 n+1

(O + k) Ty =4Pfe?gy(— ) F % +4Pfega(—e) Z 1 =0.
Enfin, il est évident que ((J + k)7, = 0. Nous pouvons énoncer:

Théoréme b. Si n est tmpair (n > 3) et k = 0, la solution générale
tnvariante de Uéquation ([0 + k) T = 0 est, avec trois constantes arbi-
trarres a, b, c,

T=a(,—T,) +bT,+ T},

ou T, et T, sont définies par les formules (10.3) dans lesquelles
sin V' ku
92 (u) = '—‘_‘!'/—“—_“ ’
Viu

o T, est la transformée de T, par une rotation impropre de Loreniz et

n—1

ou T, est la distribution égale & la fonction invariante (%) * cosVu.

1—-n

Une solution particuliére de Véquation (01 + k)T =6, est n T, .

11 est possible aussi de définir 7', et 7', comme suit :

n—-1 n—1 1

1
ey (VT 3 , d\e, 7
=Pf 17, (g;) " o’ w0, TP 0 —Ta(g) " e 0
(10.4)

En effet, si h(u) est une fonction définie et suffisamment dérivable pour
u > 0, on tire de la formule

265



d \m d\m-1_
() Tt = b@o=0 + (] Eew

I’égalité

f¥ i)mY h=f%7Y, fz_)mh + m}EIh“)(e) Hr-t-1 (10.5)
encore valable si ’on y remplace f par f* et H par H ; de facon analogue,
si h(u) est définie et suffisamment dérivable pour w < 0, on trouve

Plag) =Yook == Yo () B =S B g amg -

du -
=0 (10. 6)

Or, pour m = 3(n — 1) (n impair), et h(u) = u%gg(u), ou |u|%gg(u) ,
avec ¢,(u) fonction entiére, on voit immédiatement, d’aprés (7.1) et
(7.2), que 'opération Pf appliquée aux sommes figurant dans les seconds
membres de (10.5), ou de (10.6), donne zéro, ce qui justifie les définitions
(10.4).

On peut encore substituer a la fonction g,(w) son développement en
série de puissances de u et, par suite, exprimer les distributions 7} et T,
4 'aide des distributions SP et <57, respectivement!?).

Occupons-nous maintenant du cas » pair: nous devons considérer
I’équation (D, + k) V= 0. La fonction entiére h,(u) =J, (}/ku), ouJ,
est la fonction classique de Bessel, est une solution usuelle de cette équa-
tion ; on sait qu’il existe une autre solution usuelle de la forme

by (w) = hy(u) log | u | + hy(u) ,

ou hy(u) est une fonction entiére. Le raisonnement déja utilisé pour les
équations DU =0 et (D, + k) V =0 montre que V ne peut étre,
ici, que de la forme

V=ah,(w) +b Pf Y h(u)+c Pf Y hy(u)
+d Pf(1—Y_¢)hy(u) + X e, 0™ .

14) On obtient, pour T, par exemple, par un calcul facile:

V;t— o0 (____k)l S2—n+2l
= T2 1 n :
=0 114 1‘(2_?+1)

T,

1-n
Sous cette forme, et compte tenu de (8.13), il est clair que 7 2 T, est la solution méme
de (] + %) T = d¢p , pour n impair, que donne M. Schwartz (Théorie des distributions,
tome II, p. 35, formule (VI, 5; 29) ot m = 1).
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La premiére de ces distributions satisfait évidemment & I’équation
(Dy + k) V=0. On trouve ensuite, en utilisant (8.1) et (8.5), avec
n=2:

(D + k) Y, hy(u) = 4e b (e) 8, + e hy(e) 8
(Dg + k) Yeho(u) = 41y (e) o

+ 4e(hy(e) log & + hy(e) ) 6, + 4e hy(e) 87 , (10.7)
(Dy + k) (1 — Y_¢) hy(u) = — 4hy (— ) 0_

- 4e((— o) loge + b (—#)) o_ + dehy(— )3

d’ou résultent aussitot (sachant que k,(0) = 1) les égalités

(D + k) Pf Yoy (u) = 0,(Dy + k) Pf Yohy(u) = 49,

(Dy + k) Pf(L — Y_)hy(u) = — 46 .
On a encore, par (5.2),

(Dy + k) 6™ = — 4(m + 1) §m+1D) L fotm) |

I1 découle de ces résultats que les constantes ¢ — d et e,, pour tout m
doivent étre nulles, et, par conséquent, que la solution générale V de
Déquation (Dy + k) V=0 est une combinaison linéaire arbitraire des
trovs distributions

P{Y by(u) , PH(Ye+1—Y o) hy(u) , Bh(u).

D’apres la remarque du début du paragraphe, la solution générale de
léquation (D, 4+ k) U = 0 est alors une combinaison linéaire arbi-
traire des trois distributions

n—2 n—2

i

Y, hy(u) , U, = Pf(gf;) (G 1— Yo hy(u)

n—2

Uy = (%)T hy(u) .

En raisonnant comme dans le cas n impair, on conclut alors que, dans
R, toute solution invariante 7' de I’équation (0 + k)7 = 0 est néces-
sairement une combinaison linéaire (augmentée éventuellement d’une
distribution invariante de support O) des quatre distributions 7} , T,, T,
et T, qui sont définies comme suit:
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n—2 n—32

Ll =Pt p(3) T (Bt 1= ),

7,=7f f:(4)

(10.8)

T, est la transformée de 7, par une rotation impropre de Lorentz, T}
n—2

est la distribution égale & la fonction (—g‘;) : h, (u) continue dans R™.

Il reste & déterminer les combinaisons linéaires satisfaisant effective-
ment & ((J + k) 7= 0. La méthode a suivre est la méme que pour »

impair. On obtient d’abord:
n—2 n

(O +k) T, = 4Pfehi(e) H,® + 4Pfeh(e) HE .

On déduit aisément de (7.1) que le premier terme du second membre est
n

nul, alors que le second vaut 4(— 1)3(—7;— — 1)! B,, ou encore, d’apres
n—2

(7.6), 2n : do - Un calcul semblable est valable pour 7, . Par consé-

quent: n— 8

(O+8T=(0+kT,=2xn* 4.

On obtient encore
n—2 n— 2
(O + 5 Ty = 4Pf{eh;<e>(ﬂg +7,7)
n 2 n—-2 i
b eh(e) (2 4T ) 4 e (= 0) T + byl 0 T | =0,
les termes non nuls se détruisant. Enfin, il est clair que (0 + k) T3, = 0.
D’ou Pénoncé :

Théoréme 6. Si n est pair (n>4) et k # 0, la solution générale
invariante de Uéquation ([0 + k) T = 0 est, avec trois constantes arbi-

traires a, b, c , —
T=aly—T)+ 0T, + cT;,
ouT et T, sont définies par les formules (10.8) dans lesquelles

@) = J,(Vu) |

Joﬁ désignant la fonction classique de Bessel, et hy(u) est une autre solution
linéairement distincte de U'équation (D, + k) V=0,
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o T, est la transformée de T, par une rotation impropre de Lorentz et

n—

Jo(Vku) .

ou T, est la distribution égale & la fonction invariante (_d‘%)

2—n

Une solution particuliére de Uéquation (O + k) T = J, est 2_1 xTTI .

On peut chercher a transformer, comme on I'a fait pour » impair, les
formules de définition (10.8). Comme &, () est une fonction entiére et que,
pour k<%(n—2),H ¥ converge lorsque & — 0 vers H*, on a immé-
diatement

n—4 n—4 _ n—4 n—;_l
L () 2 2 W 2
Pf IE h1 (E)He = IE h’l (O)H ’

la formule (10.5) appliquée & h(u) = h,(v), avec m = i(n — 2),
meéne alors & la nouvelle expression de T} 15):

. d ﬁ—;j n‘?’ 10 1‘-‘2—5-1
T=PfiL(g) M@+ Sk O . (0.9

Pour T, on doit utiliser les formules (10.5), pour f et f¥, et (10.6),
et, par suite, calculer ’expression

n—-4 n—4 n—4 n—4
2 0 = b ! 0] — !
lEPf hy (e)\ H, + H, — hy (—e) F_, ,
=0
On trouve qu’elle est nulle, ce qui entraine immédiatement 1'égalité
n—32
iV
Tz‘:::Pf f*(Ys"" 1 — Y_g)(—a;;‘) b hz(U) . (10.10)

15) Si, de plus, on substitue & k;(u) son développement en série, on obtient I'expres-
sion de T'; & I'aide des distributions S et H :

n—4
1"—11-1 l'4l + Y ~ .
=0 {! zml‘.’iﬁ 114 1"(2-—?+l)

2—n
-1 2=
On voit alors que 2 & 2 T, est, compte tenu de (8.13) et de (8.14), la solution de
(O + %) T = 80, pour n pair, donnée par M. Schwartz.

(Théorie des distributions, tome II, p. 35, formule (VI, 5; 29) o m = 1) .

(Regu le 24 octobre 1953.)
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