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Bezielmngeii zwîschen spezîellen linearen
ïntegralgleichimgen erster imd zweiter Art
und Losung des Dirichletschen Problems

dvircli das Potential einer einfachen Schiclit
von Hans Blumer, Glarus

Eiiileitung

Die vorliegende Arbeit ist aus der Aufgabe entstanden, die lineare
ïntegralgleichung 1. Art, die bei der Losung des Dirichletschen Problems
im J?3 durch ein Newtonsches Potential einfacher Schicht auftritt, auf
eine lineare ïntegralgleichung 2. Art zu transformieren. >*

Hilbert hat die analoge Aufgabe in der Ebene in einer Vorlesung liber
Integralgleichungen (Sommersemester 1905) folgendermaBen gelôst. Wird
der Rand C des einfach zusammenhàngenden Gebietes G durch die redu-
zierte Bogenlânge s, 0 ^ s < 2jz, beschrieben und sind f(s) die Rand-

werte der gesuchten harmonischen Funktion u{p) J g (t) • log — • dt,
c rPt

p cG, so ist die Dichte g der einfachen Schicht Losung der
ïntegralgleichung 1. Art

Hilbert hat festgestellt, dafi der Kern log — dieselbe Singularitât auf-
oo qoS 71 (S t\

weist wie die Funktion £ ^—- =H(s9t; f fur C \- Der

Operator

JE/ J H(s,t; 0 • f{t) -dt + ^r-. Jf(t) • dt
0 ^^0

ermôglicht die tîberfuhrung der ïntegralgleichung 1. Art

f(s) J K(s, t)-g(t)-dt K(si t) H(s, t ; f) + regulàre Funktion
o
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in eine Integralgleichung 2. Art, dank den Eigenschaften

,72

f fis /tf, fis /v+
Bei der Ûbertragung dieser Méthode in den Raum kann man von der

Tatsache ausgehen, daB die Eigenfunktionen sin (ns), cos (ns) des Ker-
nes H(s,t;Ç) die periodischen Lôsungen der Difïerentialgleichung
(pf/(s)+ A><p(s) 0 (0 < s < 2tz, A n2) sind. Man wird somit die

Eigenschaften der Reihe jg <P*(P)'J>n(q) ff(p,q; Ç) untersuchen,

wobei die ç?n (p) die uberall auf dem Rande Q eines Gebietes regulâren
Lôsungen und die %n die entsprechenden Eigenwerte der Laplace-Bel-
tramischen Differentialgleichung ây + A-99 0 sind (§2).

Eine uns wàhrend diesen Untersuchungen zur Kenntnis gekommene
Arbeit von Minakshisundaram und Pleijel [4] lôst im wesentlichen die uns
interessierenden Problème liber die analytische Fortsetzung von H(p,q; f)
beziiglich C- Fur den Nachweis der Ableitungen von H(p, q; £) benôti-
gen wir aber Abschâtzungen fur | -> + 00 der Greenschen Funktion

G(P,q',£)~E Vn^f'f^ des Differentialausdruckes Af - Çf, die

uber die Resultate der Abhandlung [4] hinausgehen, und die wir in An-
lehnung an die erwâhnte Arbeit in § 1 entwickeln.

DerOperator fif=£H(p,q;Ç)-f(q).dœq+jf£f(q) • dco

8 Inhalt von Q, besitzt ahnliche Eigenschaften wie das Analogon in
der Ebene § 3) und gestattet die Zuriickfuhrung der Integralgleichungen
1. Art, deren Kerne die gleiche Singularitàt wie H(p,q; Ç) aufweisen,
auf Integralgleichungen 2. Art vom Fredholmschen Typus (§4).

Insbesondere hat der reziproke Abstand der Punkte p und q

(p, q e Q) die Singularitàt von H{p, q ; ^), so daB die am Anfang ge-
stellte Frage uber die Lôsung des Dirichletschen Problems durch Anwen-
dung der Resultate von § 4 in § 5 behandelt werden kann. In § 6 wird fur
die Einheitskugel noch ein weiteres Résultat in dieser Richtung angegeben.

E. Picard hat eine notwendige und hinreichende Bedingung angegeben
fur die Lôsung des Dirichletschen Problems durch das Potential einer ein-
fachen Schicht mit quadratisch integrierbarer Dichte. (Siehe [2], S. 478
und [6].) Es scheint aber nicht leicht zu sein, daraus Lôsbarkeitsbedin-

gungen herzuleiten, die nur Differenzierbarkeitseigenschaften der Rand-
werte enthalten. Unter Benûtzung Cauchyscher Hauptwerte hat Bertrand
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[7] im Falle der Ebene zeigen kônnen, daB die Existenz der zweiten Ab-
leitung der Randwerte hinreieht, was der in unserer Arbeit gefundenen
Bedingung entspricht.

§ 1 Greensehe Funktion und Parametrix

Wir betrachten eine im R3 eingebettete, endliche, geschlossene, zu-
sammenhângende, zweidimensionale Flâche Q. Ihre Punkte bezeichnen
wir mit p, q, t die geodâtische Entfernung von p und q mit spq.

Wir setzen in der ganzen Arbeit voraus, daB, in bezug auf lokale Nor-
malkoordinaten ql9 q2. die Koeffizienten gik(q) der metrischen Form

2

ds2 £ Çi^(q)'dqi'dqk 5mal stetig differenzierbar sind.

Fur Funktionen / auf Q fiïhren wir folgende Bezeichnungen ein :

/(p) e C{n) oder f(p, q) e C{n), w 0, 1, 2,..., heiBt, / besitzt ein
w.stetiges Differential im betrachteten Bereiche. Wenn keiner be-
zeichnet ist, handelt es sich um Q bzw. Q xQ.

/(P>2)eC(Kn) heiBt: 1) f{p,q)€C™ fur sPQ>0.
2) Es gibt zwei positive Konstanten ô und c so, daB im Bereiche

0<*M < à von Ûxû | f(p, q) \ < c{sKm + 1) fur #c ^ 0 und
1 f(P> Q) \ ^ c I l°g 5î)q I fiïr #c 0 ist, und daB die absoluten
Betrage der Ableitungen v. Ordnung, v ln 2,.. ,,n, in diesem
Bereiche kleiner sind als c{s^~v + 1).

f{p,q)*C^) fur q fest, heiBt, die Ableitungen und ihre Schranken
brauchen nur bezûglich des Punktes p zu existieren.
Der Laplace-Beltrami-Operator auf Q lautet

wobei die </*fe durch 21 gik-gkl ô| definiert sind.

Die einzige uberall auf Q regulâre Lôsung der Differentialgleichung
AQf(q) 0 ist / const. Folglich existiert eine verallgemeinerte
Greensehe Funktion G0(p, q) des Differentialausdruckes Af, welche for
sm -> 0 logarithmisch singulâr wird und den Beziehungen

Ap G0(p,q) AQG0(p, q) -j p #g S Inhalt von ,0

genûgt. Ebenso existiert ein vollstândiges Orthonormalsystem {<pn(p)}

von Eigenfunktionen und eine Folge von reellen, nichtnegativen Eigen-
werten Kn der Differentialgleichung âcp + An-ç? 0, w 0, 1,2,.,.,
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mit den Eigenschaften <p0 — <pn c C<2>, 0 Ao< Xl9 Xn < An+1,

An->oo fur n-»oo. Q0(p,q) ist symmetrisch und besitzt nach dem
System der {<pn(p)} die formale Entwicklung

Da G0{p,q)€L* *), konvergiert Z A~2.

00

Hilfssatz 1. Aus 0<Xn < An+l5 n 1, 2, 3... und i;A-2<oo folgt

1- AJ =oo

Der Beweis ist elementar. Hilfssatz 1 ist scharf in dem Sinne, daB es

Beispiele gibt mit
lim sup kKn An+1 - A») 0 fur k < 1

n->oo

Nach unsern Voraussetzungen existiert fur jeden komplexen Wert
| ^z — Xn die GreenscheFunktion G(p,q; £) des DifiFerentialausdruckes

àf — (j'f. G(p,q; |) ist symmetrisch in p und g und es gilt

^(p.gîf)^ JflO(p,ï;f) f.G(p,ï;f) p # g (1)

Die vorher definierten Eigenfunktionen <pn(p) sind auch die Eigen-
funktionen der Differentialgleichung A<p — f *ç? + /^*ç) 0 mit den

Eigenwerten ju,n An + S - Demnach besitzt O(p,q; f) die formale

Entwicklung G(p, q; Q - 1 *W&LjM0

Die durch die Greensche Funktion vermittelten Beziehungen zwischen
den Differential- und den Integralgleichungen formulieren wir ohne Be-
weise im Hilfssatz 2, den wir in dieser Arbeit wesentlich benutzen werden.
Dabei fûhren wir folgende Bezeichnungen fur Mittelwerte ein.

/S-g-J/W • d<ot J(.,q) =^ ±
Hillssatz 2.

Aus f(p) e C» folgt : â, J G0(p, q)-f(q)-dcoQ f- f(p) (2.1)

Aus f(p, q) e C^ fur q fest, « > —1, folgt fur p^q:
àJOo(p,t)-f(t,q)-d<ot=J(.,q)-f(p,q) (^2)

1) Im LebeBgueschen Sinne integrierbare Funktionen / werden mit fçL bezeichnet,
quadratisch integrierbare Funktionen mit / € L2.

2) Intégrale ohne Bezeichnung der Grenzen sind iiber Q zu erstrecken. dw Flâchen-
element.
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Aus (^-flMp, «) /,(?,«), fv(P>t)*C(?> *><>, *=1,2, folgt
fur f ^-An: f1(p,q) -SG(t,q;£)-f2{p,t)-dœt (2.3)

Aus den Regularitâtsbedingungen und der Kompaktheit von Q folgt
die Existenz einer von p unabhângigen positiven Schranke J?o, derart,
daB die Umgebung sm < Ro ganz im Existenzbereich jedes Normal-
koordinatensystems mit Zentrum p liegt.

Um das Verhalten der Greenschen Funktion G(p,q; |) fur £ -+ + oo

zu untersuchen, konstruieren wir in einem Normalkoordinatensystem
mit Zentrum p die Funktion

K(p,q; ti)= .U0(p,q)K0{SVl)+ ^(p,?)— ^
* 5pg, 1^0 (2)

die im Bereiche 0<53)<z < i?0 von QxQ eindeutig definiert ist durch
die Metrik auf Q. Die Funktionen Uv{p,q) und K^s-V^), v 0, 1,
sind folgendermaBen erklârt. Uv(p,q) ist die fur q -> p regulàr blei-
bende Lôsung der Differentialgleichung

mit [/__! 0. -p bedeutet Ableitung in Richtung der Geodâtischen

von p nach q. Es ist mit

Die Déterminante d hat die Gestalt d l + slq-h(p,q) und somit gilt

wobei h, hx, Uo und U1 in spq ^ RQ existieren und zu C(4) gehôren. Die
absoluten Betrâge aller Ableitungen v. Ordnung (v ^ 4) dieser Funktionen
sind beschrânkt im Bereiche 0 < «^ :$C Ro von QxQ.

Die Kv (u) sind modifizierte Hankelfunktionen und durch
vni vni

tt \ n v ^ 2 -J-V(iu) — e 2 *Jv(iu)Ajttp — «lim ; 7
2 v+n sm (vtt)

-<^, n 0, ±1, ±2
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mit den Besselfunktionen Jv(u) verknûpft8). Es gilt Kn(u) K_n(u)

u v

*„_!(«) + Kn+1(u) - 2<(«), Zi(«) - Kx(%) (4)

Zo (s VI) - log (s VI) • £ an • (*2!)»+ £ bn ¦ («»f)" (5)
«==0 ft=0

-c\, c 0,577
/

fur 5R|>0. (6)

Fiir ^ reell, u -> + oo, benutzen wir die Abschâtzung

""M (7)

die nach (4) auch fur die Ableitungen von Kn(u) gilt.
K(P>Ql I) i8^ ©i116 lokale Parametrix der Gleichung Au — f -^ 0,

denn es gilt nach [4] :

AqK{p, q; f) - f Z(p, g; f) J-. ^^(p, q) -

y=
• KiifiVl)

Um eine auf der ganzen Flâche Q erklârte Parametrix F(p, q ; |) zu
erhalten, wâhlen wir eine Konstante R, 0<R ^ Ro, und eine viermal
stetig differenzierbare Funktion tjr(s) mit den Eigenschaften rjR(s) 1

fiir 0^5^— und rjR (s) 0 fur s ^ R und definieren nach [4] :

; I) =ite(«*)-JT(p, g ; f) fur sm < iî
;f)=0 ftir ^

Nun setzen wir /^(p, g ; I) àqF(p, q ; |) — ^F(p, q ; |) und be-
weisen mit Hilfe von

8) Die Bezeichnungen und Formeln fiir Zylinderfunktionen usw. sind aus [3] tiber-
nommen.
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+ 2 — VPQ

fur

+ Vz(p,q) F4(p,î)

~Kx (sVÏ)

fur

^ (8)

< s

A(2>,g;f) 0 fur s^R.
Die absoluten Betrâge von Vv(p,q), v 0, 1, 2, 3, 4, und ihrer Ab-
leitungen bis und mit der 2. Ordnung sind in den betreffenden Bereichen
von Q xQ kleiner als eine Konstante c(R).

r{p, q ; I) hat fur sm -> 0 die gleiche Singularitât wie eine Grund-
lôsung von Af — f •/. Unter Berueksichtigung von (8) besteht die Be-
zeichnung Parametrix somit zu Recht. Wir setzen deshalb

G(p,q;£) F(p, q; |) - y(p, q ; f) (9)

und erhalten aus /\ (p, g ; |) € C(K2), y (p, q ; f e C^, k > 0, nach Hilfs-
satz (2.3)

Hilfssatz 3. (3.1): Fur f reell, |
d

dpt

ot. (10)

^0(jR) <0, p und q beliebig, gilt :

a
fc-3/2

~z— resp. —— bedeuten hier Ableitung im Zentrum p resp. q eines

Normalkoordinatensystems. Die Konstante c c(R, £0) hàngt nicht
von der speziellen Wahl der Koordinatensysteme ab.

(3.2) : Zu jeder reellen Zahl l gibt es eine Konstante c c(l, ô, £0),

die nicht von der speziellen Wahl der Koordinatensysteme abhângt, so,
daB im Bereiche sm > à>0 von QxQ die absoluten Betràge von
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O(p,q\ |) und ihrer Ableitungen v. Ordnung, v < 2, kleiner sind als

c-rl fûr f >fo(JR)>O.
Beweis von (3.1). Da die diesbezuglichen Rechnungen relativ lang aber

nicht sehr schwierig sind, begnûgen wir uns mit der Beweisandeutung.

Im Bereiche 0<*V/f <oo, |>1, gelten nach (5) und (7) folgende Ab-
schâtzungen :

—u

ityk

mit <x9 lu) const I (-

R
In sPQ ^ -—- sind die linken Seiten der Abschàtzungen (11) kleiner als

2*

mit oc^u) const (| log u \ + u)-e

d

mit
Aus (10) ist durch Vertauschung von Differentiation und Intégration

ersichtlich, daB y(p, q\ |) und die bezeichnten Ableitungen fur aile p
und q beschrânkt sind. Das Maximum des absoluten Betrages wird in je
zwei Punkten poqo angenommen bei speziellen lokalen Koordinaten.
Dièse Punkte setzen wir in (10) ein und schâtzen ab.

Um zum Beispiel die erste Ungleichung zu beweisen, setzen wir

=max\y(p9q;()\
und erhalten sofort aus (10)

M (S) <\Sr(qo,t: Syr^^tiO-dœ, | + M{£).$ | r^pojii) \.\da>t \,

woraus die Behauptung mit Hilfe der Formelgruppe (11) hergeleitet
werden kann. Bei den ûbrigen Ungleichungen gehen wir analog vor, unter
Verwendung des oben gefundenen Résultâtes.

Beweis von (3.2), Wir definieren fur R genugend klein

wobei 8pq ^ fi*R ^ RQ ist, [i 2, 3, 4... Der Extremalwert wird je
in einem Punktepaar p^q^ angenommen, tind es folgt aus (10) :

* ; «-A^, t ; S)-dœt |
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Induktion bezuglich n liefert

t ;

Analog erhalten wir mit

d
fur

d2

dp}
fur spq>f*.R:M$>(t)^cll(R)-r''

Da y(p, q; g) in spq^ R symmetrisch ist, gelten die Abschàtzungen
auch fur die Ableitungen bezuglich q, und entsprechend untersuchen wir

d2
die gemischten Ableitungen -—^— Um unsere Behauptung zu be-

weisen, brauchen wir lediglich p, ^ l, R ^— • min {Ro, ô} zu wâhlen.

Hilfssatz 3 haben wir fur Normalkoordinaten hergeleitet. Er gilt natûr-
lich auch fur andere lokale Koordinaten, die genûgend regulàr von den
ersteren abhângen.

§2 Définition und Eigenschaften der Kerne H(p,q;Ç)

Fur die folgenden Rechnungen beniitzen wir die Konvergenz von

iygT"(g JG.(P. t) G(t. q;i).dcot,^-lnn=l K\An + S)

(12)
n=l

und zwar konvergieren beide Reihen absolut und gleichmàBig in QxQ
(siehe [2], Seite 452). Insbesondere gibt es eine Konstante c mit

n=l

Wir gehen aus von der wichtigen Beziehung

n=l
(13)

deren Richtigkeit durch Vergleich der Entwicklungskoeffizienten nach
dem vollstândigen System {q>n(p)} nachgewiesen werden kann. Beide
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Seiten von (13) sind stetig fur p ^ q und ci2. Nun multiplizieren wir

; I) mit ——r-e*w'-|~5, £ komplexer Parameter, und integrieren

in der f-Ebene lângs des geschlossenen Weges LR^, der folgendermaBen
festgelegt wird. LRsr lâuft von | a, 0<a<A1, lângs der positiven
reellen |-Aehse (arg | 0) nach Ç RN |(A^ + ^+i)- ^n<^n+i>
N > 1, von dort lângs des Kreises | f | RN im positiven Sinne wieder
nach £ iîj^, dann lângs der reellen |-Achse (arg 11= 2tt) zuriick
nach | a, worauf der Kreis | 11 a, im negativen Sinne dureh-
laufen, zum Ausgangspunkt fuhrt. Da G(p,q; |) meromorph ist in |
liefert der Residuensatz nach (13)

n=l (14)

Die Umlaufsintegrale sind im positiven Sinne zu durchlaufen. Den Inte-
granden ùber | f | iîjy ersetzen wir durch (13) und erhalten unter
Berûcksichtigung der Abschâtzungen

n-1

<PnjP) î
+

1 —

z 3{C (15)

NachHilfssatz 1 gibteseinemonotonwachsendeFolge Nv,1>=1,2,3,...
derart, daB fur aile v Anv(ànv+i — Xnv) ^ ô>0 ist. Somit folgt aus (15)

lim O furz>4.

Die linke Seite von (14) konvergiert nach (12) absolut fur N ->oo fur
z ^ 2. Deshalb liefert der Grenzûbergang Rnv ->oo aus (14) die Be-
ziehung
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m- {16)

Das erste Intégral in (16) ist eine ganze Funktion von f, das zweite
ebenfalls, dank Hilfssatz (3.2). Somit ist die im Bereiche z > 2 durch

die Reihe J£ ^n ,^n definierte holomorphe Funktion von f in die
•i-i kl

ganze £-Ebene analytisch fortsetzbar fur p =£ q und stellt eine ganze
Funktion von £ dar, die wir mit H(p, q; £) bezeichnen, also

£71% «y 71
lil-« •

(17)
Hilfssatz 4 ùber Eigenschaften von H(p,q; f).

(4.1) Fiir p^q gilt H(p,q; Ç) € C<2), H(p,q; Ç) H(q,p; Q

(4.2) Fur p^g- gilt ApH(p,q; Ç) àqH(p,q; Ç) - H(p,q; Ç-l)
(4.3) H(p,q;l)=O0(p,q) (18)

H(p,q;0) --1, /?(?),?; -n) 0 fur « 1,2,3,

(4.4) H(p,q;t) ist fur z>0 absolut integrierbar ûber p und g1.

(4.5) Fur 0<z<l, Sj,a < â, <5 genûgend klein, gilt
ff (p, « ; 0 z(C)-^"1 + ^tP' « ; f) ™* î7^' « ; 0e c^ (19)

und

(4.6) JH(p,«;:).^(*)-d©, V5-^P)' ^=1.2,3,..., z>0. (20)

0 z>0 (21)

;C1)-d(ot^H(p,q;C+^), z>0, Zl %^>0
(4.7) Fur B(p,q)eC(? fur # const, k>0, gilt

A,S H{p,t;Ç)-B{t,q)-da>t= f Hlp,t',Ç)AtB(t,q)-da>t, z>0

Beweis von (4.1). Die Symmetrie folgt aus der Symmetrie von G(p,q;$).
Die Differenzierbarkeit fur das erste Intégral in (17) ist évident, fur das
zweite Intégral benûtzen wir Hilfssatz (3.2).

Beweis von (4.2). In (17) durfen wir nach Hilfssatz (3.2) Intégral
und A vertauschen. (1) liefert dann sofort die Behauptung.
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Beweis von (4.3). In (17) ersetzen wir den Integranden ûber | £ | a
dureh (13) und erhalten

sinw(l —f)

Lassen wir £ -> 1 streben, so bleibt

Das Intégral ist aber Null, weil der Integrand in | f | < Ax holomorph
ist. Die beiden andern Beziehungen von (4.3) folgen daraus durch
wiederholte Anwendung von (4.2).

Beweis von (4.4). Wir ersetzen in (17) G(p,q; f) nach (9) und
erhalten, fur z > 0

a

;f).rç« (22)

Nach Hilfssatz (3.1) gehôren die beiden ersten Intégrale zu O<2),

wobei die Ableitung -r—r— vorlâufig ausgenommen ist. Da H(p, q; £)
oqj oqk

nach (4.1) stetig ist fur 53)ff>0, genugt es, das Verhalten der beiden
letzten Intégrale von (22) fur spq -> 0 zu untersuchen. Das letzte Intégral

schreiben wir in der Gestalt

und ersetzen K(p,q; f) nach (2), wobei wir im ersten Intégral rechts

die Reihenentwicklungen (5) verwenden. Die Substitution
liefert uns schlieBlich

a

+— U0(p, q) s25"2 • f [- log u • S «* ' o. + S «a" • *J ' «X~25 '^
1 1 r oo oo 2l<-
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Die GroBen 0o(f) J K^-u^^du und &(£) J K^u'^-du
1 1

sind ganze Funktionen von £. Bei den Reihen durfen wir Intégration
und Summation vertauschen und erhalten fur £=£1,2,3,...

Um den singularen Anteil des zweitletzten Intégrales von (22) zu
berechnen, schreiben wir F(p, q |) in der Form

; D= io((52i)K[-^ ^0(2». • log v7- «, + ^ tf0(p. î) •

~ U.ip,q)-*>log VI-cn + ±- U^p,g).a«.d,,j j + 2_ .^(p

log «.fi. Vx(p,q) ¦ s2- 1 (,«f)".6--^. U0(p, q) 1 (S2|f

Nur die Glieder, die den Faktor log s besitzen, konnen unendlich
werden fur sm -> 0, einschlieBlich der Ableitungen bis zur 2. Ordnung.
Wir erhalten

n=o
(24)

Setzen wir (23) und (24) in (22) ein, so heben sich die Glieder mit dem

Faktor log s weg, und wir erhalten mit (3) die Darstellung

(25)
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d2
Ti(P> 9 ; 0 € cm

> T*(P> Q ; £) * C(2) mit Ausnahme der Ableitung

Aus (25) und (4.1) folgt somit die absolute Integrierbarkeit fur
0<2<2 und f ^ 1, aber nach (18) gilt dièse Eigenschaft auch fur
f l. Fur 2^2 liefert die absolute und gleichmâBige Konvergenz
der linken Seite von (16) die Behauptung.

Beweis von (4.5). Aus (25) folgt die gesuchte Darstellung von
H(p,q;Ç) mit T(p,q; 0 s^-T^qi 0 + T2(p.q;Ç)- Da T(p,?;0
symmetrisch ist in ^ und g folgt aus der Existenz und den Abschâtzungen

32 32
fur -—-— durch analose Betraehtungen dasselbe fur ——-—. Es ist so-

dPidPk fyityk
mit T(p,q; Ç) € Cf}. Ferner gilt nach unsern Entwicklungen

lim [«•-«.#(?, q; f)] -^^- • J jr,^).»1"1-*.*.
«->o ^ 0

Mit Hilfe von (6) lâBt sich das Intégral berechnen und einige Umformun-
gen ergeben die gewiinschte Gestalt.

Beweis von (4.6) durch analytische Fortsetzung. Die Intégrale (20),
(21) existieren und haben die Gestalt F(p; C) JH(p,t; t>)'f(t)^dmv
f stetig auf Q. Wir setzen

F(p;0 HrnFR(p;0 mit FR(p; Ç) $H(p,t; Ç)-f(t)-dtot

wobei ÛR aus D entsteht durch Weglassen der JB-Umgebung des Punktes

p. In QR ist der Integrand beschrânkt und fur feste p, t eine holomorphe
Funktion von f. FR(p;Ç) ist somit holomorph in £ fur 0<z<oo.
Ferner bleibt FR (p ; 0 nach (4.4) in jedem abgeschlossenen Teilbereich
von 0<z<oo gleichmâBig beschrânkt fur i?->0, also ist F(p;Ç)
holomorph in 0 < z <00.

Auf àhnliche Weise, indem wir um p und q je eine -R-Umgebung aus-
schliefien, kônnen wir zeigen, da8 F(p9 q; 0 $H(p, t; C)mH(t,q; Ci)-dcot
mit z>0, zt>0, Ci fest, holomorph ist in £ fur 0<z<oo, p ^ q. Fur

z > 2 gilt H(p9 q ; 0 jr Vn(P)*Vn(9)
^ wobei ^ie Konvergenz gleich-

mâBig ist fur aile p und q. Mit dieser Formel beweisen wir (20), (21)
durch Vertauschung von Summation und Intégration. Durch analytische
Fortsetzung folgt die Richtigkeit fur 2 > 0.

Analog gilt fur z ^ 2
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Dureh analytische Fortsetzung folgt wiederum die Gûltigkeit fur
z>0.

Beweis von (4.7). Den Greenschen Satz fur Q schreiben wir in der
Gestalt

§ B1(p9t)-AtB2(t9q)-dœt J At B^p, t)- B2(t, q)-dwt fur p ^ q

Bv{p,q)*Cf, *>0, y =1,2.
Daraus folgt sofort fur z> 0

l)AtB(t,q)-dœt =$AtH(p,t;Ç+ l)B(t,q).d(ot
*>0

Vom ersten Intégral kônnen wir Ap berechnen durch Vertauschung mit
dem Integralzeichen und erhalten nach (4.2) sofort die Behauptung.

Aus dem Greenschen Satze folgt noch fur / c C(2)

jAtf(t)-da>t 0 (26)

§ 3 Der Integraloperator P

Um gewisse Rechnungen, die immer wieder auftreten, formai einfacher
schreiben zu kônnen, fuhren wir den Integraloperator P ein, der ein
Analogon der von M. Riesz in [5] eingefuhrten Operatoren ist.

Wir definieren fur / c L, f beschrànkt, z > 0

=SH(p,q;0-f(q)-d<og + T- (27)

Integrationsvariable ist somit derjenige Index des Operators i|g, der
auch in der Funktion / vorkommt, wâhrenddem der andere Index die
neue Variable bezeichnet. Hilfssatz (4.2) liefert die Darstellung

iy(q)=-ApIlff(q)+J (28)

In (28) existiert 1$ fiir z > — 1, falls / c (7<2), denn nach Hilfssatz (4.7) gilt

A,S H{p9q; Z + l)-f{q).dœq $ H(p9q; t + l)-Aqf{q)-dœq

(28) ist die analytische Fortsetzung von (27) bezuglich f.
Fur Funktionen B(p,q) von 2 Punkten fuhren wir die entsprechende

Définition ein, wobei wir schwàchere Voraussetzungen zulassen. Es sei

B(p, q) € Cf k>— 2 Dann existiert fur t ^q, z>0

f*) (29)

4) Zur Bestimmung des Indexes k + 2z in C^+2z siehe [2] Seite 362.

211



Ferner liefert Hilfssatz (4.7) fiir B(p, q) e C®\ k>0, wie oben die
Darstellung

fur z>~ 1, t ^q (30)

Fur die Existenz von (30) ist auch die absolute Integrierbarkeit der
Ableitungen 1. Ordnung von H(t, p ; 1 + £) und B(p,q) nach t und

p hinreichend5), das heiBt B(p, q) e C^ fiir q fest, k> — l, z>~^.
I\pB(p,q) kann ûber aile Schranken wachsen fiir s^~>0, bleibt
jedoch absolut integrierbar in q und t.

Die weiteren uns interessierenden Eigenschaften von /' fassen wir im
folgenden Hilfssatz zusammen :

Hilfssatz 5.

(5.1) Es ist Il\(iy(q)) l^f(q)
fur 2!>0, z>0 und feL, / beschrânkt, oder
fur /eC<2) und 21>0, z>— 1 oder Zj>—1, z>0.

Ferner gUt l\\{l\pB{p, q)) I%+^B(p, q)

fur B(p,q) eCfK k>0 und z^O, z>— 1 oder z^— 1, z>0 oder
fur B(p,q) e C^> fur g-fest, «:> — 1 und zt> 0, z> — | oder Sj> — ^,

(5.2) IpJ
I°tpB(p,q) B(t,q) fur B(p, g) e C«> fur ç fest,

(5.3) Ilt$ B(p,q)-g(q)-d<oa $IptB(p,q)-g(q)-dioQ
| 4

fiir g e L, g beschrânkt. B erfulle die Bedingungen von (30).

(5.4) Fiir g e L2, g beschrânkt, z>0, folgt aus I\qg{q) 0

fast iiberall g (q) 0.

(5.5) Wenn die beschrânkten Funktionen gv(q) e L2, v 1, 2,..., n,
linear unabhângig sind, dann sind die Funktionen hv (p) I\agv (q)

fiir z > 0 stetig und ebenfalls linear unabhângig.

Beweis von (5.1). Es sei B(p,q)eC® fur q const, k>—\, z1 >0,
z>— |. /|p£(p3g) existiert nach (30), die Existenz von Ifyt(I$pB{p,q))
folgt sodann aus (29). Wir ersetzen / durch seine Definitionen und er-
halten

5) Siehe [1] Seite 317.
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j H(v,t; ^)[-~ AtS H(t,p;l + 0
+ jH(v,t;C1)'d<orB(->q)

q) dcov] da>t+B(.,q)

Beim zweitletzten Summanden durfen wir At mit dem âuBern Intégral
vertauschen und erhalten dann, wie auch beim vorangehenden
Summanden, auf Grand von (21) Null. Im ersten Gliede wenden wir die
Hilfssâtze (4.7) und (4.6) an und erhalten

- -A9fH(v,p;Ç1+Ç+ l)-B{p,q).dœp+B{-,q)
Die andern Behauptungen von (5.1) beweisen wir âhnlich.

Beweis von (5.2). Der Beweis folgt unmittelbar aus Hilfssatz 2 unter
Beachtung von (18).

Beweis von (5.3). Wir vertauschen die Reihenfolge der Integrationen.

Beweis von (5.4). Wir bilden die Entwicklungskoeffizienten von
^Iq9(q) nach dem vollstândigen System {(pn(p)}, n 0, 1, 2, 3...
und erhalten mit Hilfssatz (4.6) A~ç J </(g)-9?n(g)-da>g 0 fur n ^ 1

und g 0, das heifit aile Entwicklungskoeffizienten von g verschwin-
den.

Beweis von (5.5). Die Stetigkeit von hv(p) ist évident. Aus
n n

E cv-hv(p) 0, cv const, folgt I\q{Ecv-gv(q)) 0, also nach (5.4)

E cv-gv(q) 0 fast uberall. Da die gv linear unabhangig sind, mussen
v=i
die cv verschwinden.

§ 4 Integralgleichungen 1. Art mit einem Kern K(p, q)=a • 8~*+Bx(p,q).
Ihre Transformation in Integralgleichungen 2. Art

In diesem Abschnitt werden wir Beziehungen herleiten zwischen der
linearen Integralgleichung 1. Art

f1(p)=$K(p,q)-g(q)-dœQ (31)

und linearen Integralgleichungen 2. Art fur die Funktion g(q).

213



In diesem Paragraphen gelten naehstehende Voraussetzungen. Wir
betrachten nur beschrânkte Lôsungen von Integralgleichungen.
K(p,q)€ O^Q9 q>0, so, da6 fur sPQ < è die Darstellung

K(p,q) a-s;« + Bx{pyq)

gilt, mit Bx (p, g) € CJJJ, wobei entweder 0 < q < 2 ist und kx > 0, oder
1 < q<2 und kx >— 1. a const ^ 0. fx(p) c C(2).

(31) nimmt nach Multiplikation mit der Konstanten - • #(C), C= 1 — f
C reell, unter Berucksichtigung von (19) folgende Gestalt an :

f(P) I\qg(q) + J S(p, q)'g(q)-dcoq (32)

-S (p, q) « C^), wobei entweder 1 > f > 0 und k > 0 ist, oder

und *>-l. f(p)cCi2)

Satz I: a) Jede Lôsung gr von (32) erfullt die lineare Integralgleichung
zweiter Art

=9(u)+$K1(u,q)-g(q).d<o<I (I)

fast iiberall. Stetige Lôsungen g erfûllen (I) exakt.
b) Jede Lôsung g von (I) ist stetig und befriedigt (32).

Beweis von a), Wir setzen in (32), nach Hilfssatz (5.1) und (5.2) :

f(p) /«.(/-«/(«)) B{p, q) lUtfB(t, q))

ein und erhalten, unter Beachtung von (5.3)

q)-g(q)-dœa oder

4 q)-g{q)-do>a] 0

Der Klammerinhalt ist nach unsern Voraussetzungen quadratisch inte-
grierbar. Daraus folgt nach Hilfssatz (5.4) sofort (I). Fur stetige g ist
auch der Klammerinhalt stetig und (I) ist ûberall erfullt.

Beweis von b). Wir multiplizieren (I) mit i|M und durchlaufen den
Beweis von a) rûckwârts. Da6 g stetig ist, folgt nach unsern
Voraussetzungen sofort aus

T$tKx(u, q)-g(q)-da>q

214



Unter einer Eigenfunktion einer linearen Integralgleichung 1. Art (31)
verstehen wir eine wesentlich von Null verschiedene, beschrânkte und
integrierbare Lôsung g fur ft 0. Unter einer Eigenfunktion der
linearen Integralgleichung 2. Art

f(P) 9(P)+SK(p,q)-g(q)-dcoq (33)

verstehen wir eine von Null verschiedene Lôsung g von (33) fur / 0.
Jede solche Lôsung ist stetig bei unsern Voraussetzungen.

Zusatz I. a) (I), (32) und ihre transponierten Gleichungen haben
dieselbe Anzahl k linear unabhângige Eigenfunktionen. 0 ^ k <oo.

b) Die Auflôsbarkeitsbedingungen fur (I) lauten, fur k > 1

/^ 0, *=l,2,...,fc (34)

wobei die Funktionen gfv eine Basis der Eigenfunktionen von

0 $K(p,q)-g'v(p)-dcoP (35)
bilden.

Beweis von a). Wenn (/) genau k linear unabhângige Eigenfunktionen
besitzt, so hat nach Satz I auch (32) dièse Eigenfunktionen. Umgekehrt
erfullt jede Eigenfunktion von (32) auch (I) fast uberall.

Wenn g' (q) eine Eigenfunktion von (35) ist, dann ist

e'(u) IlPgf(p) (36)

eine Eigenfunktion der transponierten Gleichung von (I)

0 e'(u) + f IrfB(t,u).e'(q).da>Q (37)

denn wir erhalten beim Einsetzen von (36) unter Beachtung von Hilfs-
satz 5

IIP9'(P) + I [IlP(IrfB(t, u))]-gf(p)-dcop
IlP9f(P) + S B{p, u) g'(p)-da>P const. f K(p, q)-gr(p)-dcop 0

Wenn k' die Anzahl der linear unabhângigen Eigenfunktionen von
(35) ist, dann gilt offenbar k > &', weil die Transformation (36) nach
Hilfssatz (5.5) die lineare Unabhângigkeit bestehen lâBt. Nach unsern
Voraussetzungen ûber den Kern K(p,q) kônnen wir dieselben Betrach-
tungen fur den transponierten Kern von K(p, q) machen und erhalten
k' > k. Daraus folgt k k1.
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Beweis von b). Die Auflôsbarkeitsbedingungen lauten

0 S [#/(«)]•<(«)•<*«. S [/-//«)]• [Ilpg'v(P)]-d*u

Wir formen nach Hilfssatz 5 um und erhalten

Die Méthode zur Bestimmung der Eigenfunktionen von (37) fûhrt auf
eine neue Integralgleichung 2. Art, bei der f(p) unveràndert eingeht. Als
Vorbereitung beweisen wir

Hilfssatz 6. Jede Lôsung g von (I) genugt der Beziehung

Beweis. g(u) erfïïllt (32), somit gilt I\ug{u) f(p) — J B(p, q)-dœq
Von der rechten Seite kônnen wir Ij£ bilden und erhalten nach (I) g(t).

Satz II. a) Wenn g eine Lôsung von (32) ist, dann ist

e(p) llqg(q) (38)

eine Lôsung der linearen Integralgleichung 2. Art

f(p) e(p) + $ K2(p,u)'e(u)-dœu

b) Wenn e(p) eine Lôsung von (II) ist, dann ist I^J>e(p) stetig und
lôst (32).

Zusatz II. (32), (II) und ihre transponierten Gleichungen haben
dieselbe Anzahl k linear unabhângige Eigenfunktionen. Fur die Lôsbar-
keit von (II) sind die Bedingungen (34) notwendig und hinreichend.

Beweis von a). Wir setzen in (32) B(p, q) I^u(I~^B(p, t)) ein und
erhalten

J [i$B{p,t)]-qug(q)-dcou

Die Substitution (38) liefert die gewûnschte Gestalt.

Beweis von Zusatz II. Die Eigenfunktionen von (32) gehen durch (38)
in Eigenfunktionen von (II) iiber, unter Erhaltung der linearen Unab-
hàngigkeit. (II) hat somit mindestens k linear unabhângige Eigenfunktionen,

die wir fur k ^ 1 durch ev(p) I\qgv{q), v 1, 2,..., k,
darstellen, wobei wir die gv als Basis der Eigenfunktionen von (I) stetig
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annehmen konnen. Wenn ef (p) eine Eigenfunktion der transponierten
Gleichung von (II) ist

0 ef(p) + J [IrfB{u, t)]-e'{u) dcou (39)

dann erhalten wir durch Multiplikation von (39) mit I\v

das heiBt ef (p) ist eine Eigenfunktion von (35). (II) kann somit nicht
mehr als k linear unabhangige Eigenfunktionen besitzen. Als Basis der
Eigenfunktionen von (39) wahlen wir die g'v(p), v 1, 2,..., &, wor-
aus sofort (34) folgt.

Beweis von b). Es sei go(q) eine Losung von (I), also auch von (32)
und eo(p) IlQg0(q) die entsprechende Losung von (II). Dann laBt sich
jede Losung e(p) von (II) darstellen als

e(p) eo(p) + Z cv.ev(p) •) cv const. (40)
v=l

Auf der rechten Seite von (40) konnen wir nach Hilfssatz 6 summanden-
weise I~} bilden und erhalten

Die in den Satzen I und II hergeleiteten Methoden zerstoren eine
eventuell vorhandene Symmetrie des Kernes K(p,q). Fur gewisse
Werte von k laBt sich das durch folgendes Verfahren vermeiden.

Satz III. a) Wenn g eine Losung von (32) ist, dann erfullt

Ht) I%*g(q) (41)

die luieare Integralgleichung 2. Art, fur 0<£<l, *>0,
ITp12 f (P) * (0 + J Z, («,«)• fc («) • dcou

Ks(t, u) =I^(I-^B(p, q))

K3(t,u) und K{p,q) sind gleichzeitig symmetrisch.
b) Wenn h(t) eine Losung von (III) ist, dann ist I~£l2h(t) stetig und

lost (32).

Zusatz III. (32), (III) und ihre transponierten Gleichungen haben
dieselbe Anzahl k linear unabhangige Eigenfunktionen. Fur die Losbar-
keit von (III) sind die Bedingungen (34) notwendig und hinreichend.

6) leere Summen (d. h. k 0) sind durch Null zu ersetzen.
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Beweis von a). Wir bUden

4?*w > (42)

'(«, g) oder £'(t, g) /-»•*(p, g) (43)

Nach (30) gilt B'(t, q) e €f^_x fur « fest. Wir setzen (42) und (43) in
(32) ein und erhalten

/(p) I$?h(t) + J /§?5' (f, g) -g(g) • da>, oder

Der Klammerinhalt ist stetig, somit liefert Hilfssatz (5.4)

I7qmf(q) Ht) + S B'(t, q)-g{q)'dwt (44)

Die Eigenschaften von Bf(t,q) gestatten uns, nach (30), zu schreiben

B'(t,q) I^KB(t, u) also Kz(t,u) I^Bf (t,q) (45)

Wir erhalten demnach J B1(t,q)-g(q) • dcoq J Ks(t,u)'h(u)-dcou, was
mit (44) zusammen die gewiinschte Gestalt ergibt.

Beweis von Zusatz III. Die Eigenfunktionen von (32) gehen durch (41)
in Eigenfunktionen von (III) ûber, unter Erhaltung der linearen Unab-
hângigkeit. (III) hat somit mindestens k linear unabhàngige
Eigenfunktionen hv(t) I\l£gv{q), v 1, 2,.. .k, fur k > 1. h'(t) sei

eine Eigenfunktion der transponierten Gleichung von (III)
0 hf (t) + $ Kz(u, t)-h!(u)-d(ou (46)

Wir multiplizieren (46) mit i|{f und erhalten

0 Ifth'(t) + JiftKAu, t)-h'(u)-dcou (47)

Den neuen Kern formen wir nach (45), (43) und Hilfssatz 5 uni.
lg*K3(u,t) B'(u,v) I%(IrfB(q,v)) setzen wir in (47) ein,

0 lfth>(t) + / [

woraus uns die Substitution (41) Gleichung (37) liefert, von der wir
wissen, daB sie genau k linear unabhàngige Eigenfunktionen I\qgrv{q),

?=1,2,.. .k fur &>1, hat. Somit besitzt (46) ebenfalls genau k
linear unabhàngige Eigenfunktionen, die wir nach den letzten Betrach-
tungen mit h!v{t) If*g'v(q) bezeichnen kônnen. Die Auflôsbarkeits-
bedingungen lauten folglich
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Beweis von 6). Jede Lôsung von (III) lâBt sich darstellen als
k

h(t) ho(t) + Z cv-hv(t) cv const.

Fur die partikulâre Lôsung ho(t) wâhlen wir /^2<7O(<?)> wobei g0 eine

Lôsung von (I) und somit auch von (32) ist. Nach (44) gilt
*h(t) Iï^fiq) - S l7PmB(p, q).g* (q) mit g* g0 + Z cv-gv

V 1

In dieser Darstellung von h dûrfen wir rechts I~^% bilden und erhalten
unter Berucksichtigung von (I)

§ 5 Die Lôsung des Dirichletschen Problems dureh das Potential

einer einfachen Schicht

Im Dirichletschen Problem im jR3 ist eine Funktion F (p) gesucht, die
in einem beschrânkten Gebiete D harmonisch ist und auf dem Rande Q

von D vorgeschriebene stetige Werte fx(p) annimmt. Q sei zusammen-
hângend und besitze uberall eine eindeutige Tangentialebene. In einem
raumlichen kartesischen Koordinatensystem mit Zentrum auf Q, dessen

#3-Achse mit der Flachennormalen zusammenfallt, lasse sich Q lokal
durch die eindeutige Funktion a% #3(#i, #2)> xz*C{%\ darstellen.
Unter diesen Voraussetzungen kann man auf Q lokale Normalkoordi-
naten einfuhren, welche die Voraussetzungen des § 1 erfullen. Somit
gelten die in den vorangehenden Paragraphen hergeleiteten Sâtze.

Das Potential einer einfachen Schicht g

ir" dcoq, (48)

rpQ geradliniger Abstand der Punkte p und q, g * L, g beschrânkt,
ist stetig im ganzen Raume und harmonisch im Innern und im ÂuBern

von Q. Um das Dirichletsche Problem mit dem Ansatz (48) zu lôsen,
haben wir somit lediglich dafûr zu sorgen, da8 die Randwerte angenom-
men werden, das heiBt g(q) muB der linearen Integralgleichung 1. Art

J rp
fi(P) Ar~ -9(q)-d«>q >

genûgen. Umgekehrt erfûllt jede beschrânkte und integrierbare Lôsung g

von (49) die gestellten Bedingungen. Nun weiB man aber, daB die Stetig-
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keit von f1 im allgemeinen nicht genûgt, um (49) zu lôsen7). Um unsere
Méthode anwenden zu kônnen, fordern wir jx c <7(2) und zeigen, daB

(49) auf die Gestalt (32) gebracht werden kann. Wir setzen

Es bleibt noch nachzuweisen, daB B(p,q) zu C^2) gehôrt, mit *>0.
Die Differenzierbarkeit von B(p, q) ist fur p =£ q évident. Fur spq ge-
nûgend klein entwickeln wir die Sehne rm der geodâtischen Linie von p
nach q nach Potenzen der Bogenlange sPQ und erhalten

TPQ

k(a) Kjûmmung der Geodâtischen in einem Punkte a zwischen p
und q. Daraus folgt

—- —- + svq-h(p,q), spq.h{p,q)cCfp fur spq^ô

Unter Verwendung von Hilfssatz (4.5) erhalten wir schlieBlich fur

B(P,q) ^ ' spq-MP>?) ~ T(p,q\\) — -j c C^

Die Kerne der Integralgleichungen 2. Art (I), (II), (III) werden somit
hôchstens wie | log svq \ singulâr fur spq -> 0.

Die Gleichung
n 1

— g(q)'dœQ 0

besitzt die einzige stetige Lôsung g 08). Aus dem Maximumprinzip
folgt nâmlich aus f(p) O sofort V(p) 0 und die Sprungrelationen
fur die Normalableitungen von V (p) ergeben g 0.

Die Gleichungen (I), (II), (III) lassen sich somit eindeutig lôsen fur
jedes / € O(2), (Je 0). Die gesuchte Funktion g ist stetig, und der
Kern Ks(p,q) ist symmetrisch.

7) siehe [1] Seite 135 und [2] Seite 479.
8) Im Dirichletschen Problem der Ebene treten beim Einheitskreis Eigenfunktionen auf

und aueh bei denjenigen Kandkurven, die die Kapazitàt des Einheitskreises besitzen.
Siehe auch [6].
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§ 6 Untersuchungen fur die Einheitskugel

Auf der Oberflâche der Einheitskugel besitzt die Differentialgleichung

die iiberall regulâren Lôsungen

cos (m(p)'Pnm (cos0), sin (mç>)-PWjm (cos #), kn>m n2 + n,
n=0,1, 2,..., m=0,1,2,..., n, (cp,ê)= Polarkoordinaten des Punktes p,

Pnm(x) zugeordnte Legendresche Funktionen,

Pn0 (x) Pn(x) Legendresche Polynôme n. Grades.

Dièses Funktionensystem ist vollstândig und orthogonal. Durch Nor-
mierung und mit Hilfe des Additionstheoremes der Kugelfunktionen
finden wir

-K £<Pn{P)-<Pn(q) _ ^,2^+1 Pn(p, g)

Wir stellen den Kern H(p, q\ f fur z > 0 als Summe eines Kernes
H'(p, q ; £) und einer konvergenten Reihe dar, wobei H'(p, q ; f) eine
einfache Integraldarstellung besitzt9). Zu diesem Zwecke definieren wir

H'(va-n-$2n+1. Pn{P'q} ~
1

¦ y Pn(P'q)

Da | Pn(p,q) | ^ 1 ist, konvergiert die Reihe (50) fur 2>1 absolut
und gleichmàBig in p und g, und es gilt

In (51) setzen wir

und
1 »

pwfe?) —•/ (cos y + i sin y • cos 9?)M- dç> (y «M)

9) Integraldarstellung und analytische Fortsetzung der Kerne H(p, q; f) sind von
Minakshisundaram in : Zeta-function on the sphère, J. Indian Math. Soc. 13 (1949), p. 41,
untersucht worden.
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ein und erhalten

i(cos y+isiny*cos^ ¦(e 2*)w *i
Fur y ^ 0, tï ; ç> ^ 0, rc ; 0 < J <oo gilt

— cos y)—t ;. (52)

2
W=JV

sin y cos <pf. (e~*r ; | B2 \ <

Da die rechte Seite von (52) summandenweise absolut integrierbar ist
in 0 < ç? ^ n, erhalten wir, unter Berûcksichtigung von

C-—P
J a + b •

o
cos <p

Durch gentigend groBe Wahl von N kann | R1 \ + | R31 beliebig klein
gemacht werden. Somit resultiert fur z>l; y ^ 0,n; y =spq, die
Darstellung ^

f M.

Die Vorzeichen der Wurzeln sind positiv zu wâhlen. Ftir p ¦=£ q ist
H* {p, q ; f) eine holomorphe Funktion von £ in z>^. Durch partielle
Intégrationkônnenwirsiebeliebig weit nachlinksfortsetzen. Hf (p,q; Ç)

ist somit eine ganze Funktion in £. Fur z > —1> p ^ g, gilt zum Bei-
spiel die Darstellung ^f
Fur spezielle Werte von £ erhalten wir

H'(p,q;0) 0, Jj'(j,,g;l) _L._L. (53)
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Die erste Beziehung folgt aus jT(0) oo, die zweite aus

E Pn(x) (2 - 2x)~112 fur | x \ < 1

Ferner sehen wir, daB (50) fur £ J konvergiert und in z > \ holo-
morph ist.

H(p, q ; £) und IT(p, g ; £) sind durch nachstehende Gleichung verknùpft,

wobei die ^n(C) definiert sind durch

(55)

Dank den Abschâtzungen fur hn(Ç) konvergiert die Reihe in (54) absolut
und gleichmâBig fur z > 0 und ist holomorph in f. Die Richtigkeit von
(54) ergibt sich fur groBe z sofort durch Einsetzen der Reihenentwick-
lungen von H(p,q\ £) und H'(p, q ; £). Analjrtische Fortsetzung be-
weist die Behauptung. Um in (54) eine besser konvergente Reihe oder
eine Darstellung fur négative z zu erhalten, mûssen wir lediglich die Ent-
wicklung (55) von (n2 + n)~^ nach Potenzen von (2n + 1)"~2 weiter
ausfiihren und erhalten eine zu (54) analoge Formel.

Da die Definitionen von H(p,q; f) und H'(p, q, £) âhnlich sind,
und da, wie aus (54) ersichtlich ist, Hf(p,q; f) ebenfalls absolut inte-
grierbar ist fur z>0, gelten wie in Hilfssatz (4.6) nachstehende Be-
ziehungen

z>0, n^O
(56)

zx>0

Neben den friiher behandelten Lôsungsmethoden des Dirichletschen
Problems mit dem Potential einer einfachen Schicht, erwâhnen wir fur
die Kugel noch folgenden Weg :

Die Gleichung

2n f(p) f-±- • g(q) dœt, f c 0») (57)

hat die Ldsung

In • g(q) ~J\^ +*(?,«)] à,M -dcop + n.f (58)
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mit

Zum Beweise setzen wir (58) in (57) ein und erhalten unter Beachtung
von (53), (56)

-L.g(q).d<ot=J4». H'(p,q;%)L~f[àn.H'(q,t;

f~J 'VQ.

+~L ' h (2^+1)»# K{v\ 'Atf{t) ¦ *°«

Die Formeln (54) und (26) liefern uns schlieBlich

>g(q) •do)( — 27i>

und daraus erhalten wir nach (4.7), (18) und (2.1)

/ • g(q) da)0 — 2tt • Av I G0(p, t) • f(t) • da>t + 2nf 2nf(p)
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