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Beziehungen zwischen speziellen linearen
Integralgleichungen erster und zweiter Art
und Losung des Dirichletschen Problems
durch das Potential einer einfachen Schicht

von HAaNs BLUMER, Glarus

Einleitung

Die vorliegende Arbeit ist aus der Aufgabe entstanden, die lineare
Integralgleichung 1. Art, die bei der Losung des Dirichletschen Problems
im R, durch ein Newtonsches Potential einfacher Schicht auftritt, auf
eine lineare Integralgleichung 2. Art zu transformieren.

Hilbert hat die analoge Aufgabe in der Ebene in einer Vorlesung iiber
Integralgleichungen (Sommersemester 1905) folgendermafien gelost. Wird
der Rand C des einfach zusammenhingenden Gebietes G durch die redu-
zierte Bogenlidnge s, 0 << s <X 2z, beschrieben und sind f(s) die Rand-

1
werte der gesuchten harmonischen Funktion u(p) = [ g(¢) -log —;-—-dt ,
c pt

p €@, so ist die Dichte ¢ der einfachen Schicht Losung der Integral-
gleichung 1. Art

f6) = fa()-log—— - dt
C st

Hilbert hat festgestellt, dafl der Kern log 1 dieselbe Singularitdat auf-

oo . Tst
weist wie die Funktion cos;z (;2; t =H(s,t;¢) fir (=4 Der
fn=1 :

Operator
2n 27
I'f=[H(st;0) - ft) - dt-l—?ly; - [f@) - dt
0 0

ermoglicht die Uberfithrung der Integralgleichung 1. Art
2n
j(8) =[K(s,t)-g(t)-dt , K(s,t)= H(s,t; () -+ regulire Funktion
0
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in eine Integralgleichung 2. Art, dank den Eigenschaften

B = I%af, If=f, g5 Bf= = +5- 10 at .

Bei der Ubertragung dieser Methode in den Raum kann man von der
Tatsache ausgehen, dafl die Eigenfunktionen sin (ns), cos (ns) des Ker-
nes H(s,t;{) die periodischen Losungen der Differentialgleichung
P"(8)+A-¢p(s) =0 (0 <s < 2n, A=n? sind. Man wird somit die
5 (P om0 _ g
n=1 A
wobei die ¢,(p) die iiberall auf dem Rande 2 eines Gebietes reguliren
Losungen und die 4, die entsprechenden Eigenwerte der Laplace-Bel-
tramischen Differentialgleichung Adg + 4-¢ = 0 sind (§2).

Eine uns wihrend diesen Untersuchungen zur Kenntnis gekommene
Arbeit von Minakshisundaram und Plesjel [4] 16st im wesentlichen die uns
interessierenden Probleme iiber die analytische Fortsetzung von H (p,q;¢{)
beziiglich {. Fiir den Nachweis der Ableitungen von H (p, q; ) benéti-
gen wir aber Abschitzungen fiir & - 4 oo der Greenschen Funktion

G(p,q; & ~ § Pn (7;) fg @) des Differentialausdruckes Af — &f, die
n=0 (2

iiber die Resultate der Abhandlung [4] hinausgehen, und die wir in An-
lehnung an die erwdhnte Arbeit in § 1 entwickeln.

1
Der Operator IngJH(p,q; ¢)- flg) - do,+ 5 fo(q) - do, ,

8§ = Inhalt von 2, besitzt dhnliche Eigenschaften wie das Analogon in
der Ebene (§3) und gestattet die Zuriickfiihrung der Integralgleichungen
1. Art, deren Kerne die gleiche Singularitit wie H(p, q; () aufweisen,
auf Integralgleichungen 2. Art vom Fredholmschen Typus (§ 4).

Eigenschaften der Reihe (p,q; ) untersuchen,

Insbesondere hat der reziproke Abstand ;—1-— der Punkte p und ¢q

(p,q «2) die Singularitit von H(p,q; 3), S(;) qdaB die am Anfang ge-
stellte Frage iiber die Losung des Dirichletschen Problems durch Anwen-
dung der Resultate von § 4 in § 5 behandelt werden kann. In § 6 wird fiir
die Einheitskugel noch ein weiteres Resultat in dieser Richtung angegeben.

E. Picard hat eine notwendige und hinreichende Bedingung angegeben
fiir die Losung des Dirichletschen Problems durch das Potential einer ein-
fachen Schicht mit quadratisch integrierbarer Dichte. (Siehe [2], S. 478
und [6].) Es scheint aber nicht leicht zu sein, daraus Losbarkeitsbedin-
gungen herzuleiten, die nur Differenzierbarkeitseigenschaften der Rand-
werte enthalten. Unter Beniitzung Cauchyscher Hauptwerte hat Bertrand
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[7] im Falle der Ebene zeigen konnen, dafl die Existenz der zweiten Ab-
leitung der Randwerte hinreicht, was der in unserer Arbeit gefundenen
Bedingung entspricht.

§ 1 Greensche Funktion und Parametrix

Wir betrachten eine im R, eingebettete, endliche, geschlossene, zu-
sammenhédngende, zweidimensionale Flache . Ihre Punkte bezeichnen
wir mit p, ¢, ¢ ..., die geoditische Entfernung von p und ¢ mit s,,.

Wir setzen in der ganzen Arbeit voraus, daf}, in bezug auf lokale Nor-
malkoordinaten ¢q,, ¢,, die Koeffizienten g¢,,(q) der metrischen Form

2
ds* = ¥ g¢..(q)-dq,-dq, 5mal stetig differenzierbar sind.
i, k=1

Fiir Funktionen f auf Q fiihren wir folgende Bezeichnungen ein :

f(p)eC™ oder f(p,q) eC™, n=0,1,2 ... heillt, f besitzt ein
n.stetiges Differential im betrachteten Bereiche. Wenn keiner be-
zeichnet ist, handelt es sich um Q2 bzw. Q xQ.

f(p,q) eC™ heiBt: 1) f(p,q) e C™ fiir s,,>0.
2) Es gibt zwei positive Konstanten 6 und ¢ so, dal3 im Bereiche
0<s,, <0 von 2x2 |f(p,q)| <c(sy, + 1) fiir « %0 und
| f(p,q) | <cl|logs,, | fir «= 0 ist, und daf} die absoluten
Betrige der Ableitungen ». Ordnung, » = 1,2,...,n. in diesem
Bereiche kleiner sind als c(sp, " + 1).

f(p,q) eC® fiir q fest, heillt, die Ableitungen und ihre Schranken
brauchen nur beziiglich des Punktes p zu existieren.
Der Laplace-Beltrami-Operator auf 2 lautet

2,fq) = ml@

2 0 TR i af (9) -
& aqi<'/‘.l@ - X 9% () ‘5’4;“) ¢=9(21, 32)

wobei die gi* durch X g¢,,-g*! = 6. definiert sind. d(q) =|| ¢;%(2) || -
k=1

Die einzige iiberall auf 2 regulire Losung der Differentialgleichung
4,f(q) =0 ist f= const. Folglich existiert eine verallgemeinerte
Greensche Funktion G,(p, q) des Differentialausdruckes Af, welche fiir
8,, = 0 logarithmisch singulir wird und den Beziehungen

4,G(p,q) = 4,G,(p, q) = —é,— , P#q, S = Inhalt von 2,
geniigt. Ebenso existiert ein vollstédndiges Orthonormalsystem {g,(p)}

von Eigenfunktionen und eine Folge von reellen, nichtnegativen Eigen-
werten A, der Differentialgleichung A¢ 4+ 4,-¢ =0, n=20,1,2,...,

199



L
VS
A,—>o00 fir n-—>o00. Gy(p,q) ist symmetrisch und besitzt nach dem
System der {¢,(p)} die formale Entwicklung

mit den Eigenschaften ¢, = s PrneC? 0= 24,<A, A, < Ay,

Go (p’ q) ~ § Q’n(p) ) ‘Pn(Q)

n=1 ln
Da Gy(p, q) € L* 1), konvergiert X A ;2.
n=1
Hiltssatz 1. Aus 0<A, < 4,.,, n=1,2,3... und T4 *<oo folgt

n=1
lim sup 4,(4,,, — 4,) =0 .
fi->» 0
Der Beweis ist elementar. Hilfssatz 1 ist scharf in dem Sinne, daB es

Beispiele gibt mit
limsup A5 (4,4, — 4,) =0 fir «<1.

n->»00
Nach unsern Voraussetzungen existiert fiir jeden komplexen Wert

& # — A, die Greensche Funktion G (p, ¢ ; &) des Differentialausdruckes
af — &-f. G(p, q; &) ist symmetrisch in p und ¢ und es gilt

4,G(p,q;8) =46, q:8) =¢G(p,q;8), pH#4q. (1)
Die vorher definierten Eigenfunktionen ¢,(p) sind auch die Eigen-
funktionen der Differentialgleichung A¢ — &-¢ + p-¢p = 0 mit den
Eigenwerten pu, = 4, + &. Demnach besitzt G(p,q; &) die formale
. . < Pn (D) - ¢alq)
Entwicklung G (p, q; &) — n;:_; A TE .

Die durch die Greensche Funktion vermittelten Beziehungen zwischen
den Differential- und den Integralgleichungen formulieren wir ohne Be-
weise im Hilfssatz 2, den wir in dieser Arbeit wesentlich beniitzen werden.
Dabei fiihren wir folgende Bezeichnungen fiir Mittelwerte ein.

F=g[f0 do,, T(.0) =5 [f6.0 do, T, )= [f@:H-do?)
Hilfssatz 2.

Aus f(p) e OV folgt: 4,[G4(p,q)-f(9)-dw, = f — {(p) . (2.1)
Aus f(p,q) «CP fiir g fest, k> —1, folgt fiir p # ¢
4, §Go(p,t)-ft,9)-do, =f(-,9) — f(p,9) . (2.2)

1) Im Lebesgueschen Sinne integrierbare Funktionen f werden mit fe L bezeichnet,
quadratisch integrierbare Funktionen mit fe L2,

1) Integrale ohne Bezeichnung der Grenzen sind iiber £2 zu erstrecken. dw = Flachen-
element.
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Aus (4, — &) f1(p,t) = fa(p, 1), f,(p, 1) eCP, x>0, v=1,2, folgt
fiir 5 # - Z’n: fl(paQ) = _IG(t,q; 5)'f2(p:t)'dwt . (23)

Aus den Regularititsbedingungen und der Kompaktheit von Q folgt
die Existenz einer von p unabhingigen positiven Schranke R,, derart,
da die Umgebung s,, < R, ganz im Existenzbereich jedes Normal-
koordinatensystems mit Zentrum p liegt.

Um das Verhalten der Greenschen Funktion G(p, q; &) fir & > 4+ oo
zu untersuchen, konstruieren wir in einem Normalkoordinatensystem
mit Zentrum p die Funktion

1 - 1
K (p,q;: 8= P Uy(p,q)- Ko(sV &) + F Us(p,q)- ;/%- - K, (sV §),

$=8,, £#0 (2)
die im Bereiche 0<s,, < B, von QX eindeutig definiert ist durch
die Metrik auf 2. Die Funktionen U,(p,q) und K ,,(s.l/g), vy=20,1,
sind folgendermaflen erkldart. U, (p, q) ist die fir g — p regulir blei-
bende Losung der Differentialgleichung

aU,(p, s d(logVd(q)
8 éf q)_+__2_, (Ogds (Q)).Uv(p,q)-}_'p. Uv(p,q)':__-Aqu_l(p,q)

mit U_; =0. % bedeutet Ableitung in Richtung der Geoditischen

von p nach ¢. Es ist mit

d s
Usp,p) =1, Uyp,q) = (‘a‘%) )

Uy, 0) = Uo(p, @) — - | (@)1 4,(d @) - ds, .

Spq
Die Determinante d hat die Gestalt d = 1 4- s3 -h(p, ¢) und somit gilt

Uo(P, Q) =1+ S;q'hl(p’ Q) > (3)

wobei kb, hy, Uyund U, in s,, < R, existieren und zu O gehoren. Die
absoluten Betrige aller Ableitungen ». Ordnung (» < 4) dieser Funktionen
sind beschrénkt im Bereiche 0 < s,, < R, von 2Xx0.

Die K, (u) sind modifizierte Hankelfunktionen und durch

2 vai
m o, e d_,(Gu)—e 2 -J,(iu
K”(u)————i'},ﬁ sin (v ) ’
—-az<argu<—7f~ n=0, +1, +2...

2 b]
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mit den Besselfunktionen J, (u) verkniipft?). Es gilt K, (u) = K_,(u)

KA+ 5 K = (1 + 5 ) Ku(@
Koo s(0) + Kppy ) = — 2K00) , Kyfu) = — Ky () (4)

Ey(sVE)= —log sVE): Xa,: (*8"+ X b, ()" (5)
S o0 o0 l
5 Ko VO =15 log(sVE) - Top- (8" 15" T dy- (%) +
a,=4""nH?, b,=a, - (\ ~——+log2-——c) c=0,577 ...,
m=1M
any / L | 1
an—m, d &C'——*l()gZ"‘m 1—;;’/‘ m)
K"(sﬁ)z%'(m/&‘) -Ofe"= cargmldt fir RESO. (6)
Fiir  reell, « — + oo, beniitzen wir die Abschéitzung
| K, (u) | < const-e™™ (7)

die nach (4) auch fiir die Ableitungen von K, (u) gilt.
K(p, q; &) ist eine lokale Parametrix der Gleichung Au — §-u = 0,
denn es gilt nach [4]:

1 —_
4,K(p,g;6) — & K(p, g;8) = -4, Ui(p 9) - K (sVE)

S
Ve
Um eine auf der ganzen Fliche 2 erklirte Parametrix I'(p,q; &) zu

erhalten, wihlen wir eine Konstante R, 0< R < R,, und eine viermal
stetig differenzierbare Funktion 7y(s) mit den Eigenschaften 7y (s) =1

fir 0 <s < £23~ und 7gz(s) =0 fir s > R und definieren nach [4]:

I'(p,q;8) =nalsy) K(p,g; 8 fir s, <R,
I'p,q;8 =0 fir s,>R.

Nun setzen wir I'\(p,q; &) =4, (p,q;& — &-I'(p,q; &) und be-
weisen mit Hilfe von

3) Die Bezeichnungen und Formeln fiir Zylinderfunktionen usw. sind aus [3] iiber-
nommen.

202



2 d V
4,(f(5,0)9(0)) x(ddﬁﬁf’-+—i—- I cloa @) d’;ff)) - 9(@)
+ 2. dfd(;) dg(q) + f(s) - Aqg(q) , BEE By
I'(p,q; &) =—-4,Us(p, Q) - K, (sVe)= o(p,q)-;,%-Kl(sl/E)

fir sg—}—; (8)
[0, q; &) = Vip,q) Ko(sVE+Vo(p,q)- 7%-1{1(81/5

+Vo(p,g) - VE-K(sVE+Vy(pg)- Ko(sV &) fiir -—g— <s<R

I'(p,q; & =0 fir s > R.
Die absoluten Betrige von V,(p,q), v=0,1,2,3,4, und ihrer Ab-
leitungen bis und mit der 2. Ordnung sind in den betreffenden Bereichen
von Q2 X2 kleiner als eine Konstante ¢(R).

I'(p,q; &) hat fir s,, - 0 die gleiche Singularitdt wie eine Grund-
losung von Af — &-f. Unter Beriicksichtigung von (8) besteht die Be-
zeichnung Parametrix somit zu Recht. Wir setzen deshalb

G(p,q; 8 =T'(p,q;8 —yp,q;8 (9)

und erhalten aus I',(p, ¢; &) e CP, y(p, q; &) e C®, «>0, nach Hilfs-
satz (2.3)

y(,q;8)=—[G(q,t;&) -TI'(p,t;§) do,
=—[I'(q,t;8) Ty (p,t;&) -dw,+ [y(g.t;&)-T'y(p,t;&)-dow,. (10)

Hilfssatz 3. (3.1): Fir £ reell, § > &,(R) <0, p und g beliebig, gilt:

- 0 _
l?’(p,q;é) <o | yas )| et | ypaid)|<or £
op; 9
o2
. < C. -1, : <r -1, 2 —_ .
}apiapkr(p,q,ﬁ)l\c £ aq,.ap,c”(p’q’f)l\" £ 1, k=1,2
3, resp. az . bedeuten hier Ableitung im Zentrum p resp. ¢ eines

Normalkoordinatensystems. Die Konstante ¢ = c¢(R, &, hédngt nicht
von der speziellen Wahl der Koordinatensysteme ab.

(3.2): Zu jeder reellen Zahl [ gibt es eine Konstante ¢ = ¢(l, J, &),
die nicht von der speziellen Wahl der Koordinatensysteme abhéingt, so,
daB} im Bereiche s,, > d>0 von 2x£2 die absoluten Betrige von
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G(p, q; &) und ihrer Ableitungen v. Ordnung, » < 2, kleiner sind als
c- £t fir & > &,(R)>0.

Beweis von (3.1). Da die diesbeziiglichen Rechnungen relativ lang aber
nicht sehr schwierig sind, begniigen wir uns mit der Beweisandeutung.

Im Bereiche 0<sV E<oo, &>1, gelten nach (5) und (7) folgende Ab-
schitzungen :

| T(p,q; 8| <usVE), |r1(p q-e><s—1-alsl/5)

— , -1/2,
13pirl(p’q’§) eV, ap.am

mit o, (u) = const (| logu | + u)-e™* .

Ii(p,q; 8| <oy (sVE (11)

T(pgi8) | <8, (V) mit xy(u) = const 5 +u)-e.

l 0
op; /

In s,, > 3;1 sind die linken Seiten der Abschédtzungen (11) kleiner als
2., (s-V'E) mit oy(w) = c(R)-e~".

Aus (10) ist durch Vertauschung von Differentiation und Integration
ersichtlich, daB 9 (p, q; &) und die bezeichnten Ableitungen fiir alle p
und ¢ beschriankt sind. Das Maximum des absoluten Betrages wird in je
zwei Punkten p,9, angenommen bei speziellen lokalen Koordinaten.
Diese Punkte setzen wir in (10) ein und schétzen ab.

Um zum Beispiel die erste Ungleichung zu beweisen, setzen wir

M (&) =max |y (p,q; &) | =|v(Po ;&) |
und erhalten sofort aus (10)

<1 L(Qos8: 8)-Ti(pos 85 §)-doo, | + M (£)-f| I'(po, 25 &) | - | do, |,

woraus die Behauptung mit Hilfe der Formelgruppe (11) hergeleitet
werden kann. Bei den iibrigen Ungleichungen gehen wir analog vor, unter
Verwendung des oben gefundenen Resultates.

Beweis von (3.2). Wir definieren fiir R geniigend klein

M®N¢) =max | y(p,q; &) |,

wobei 8,, = u-R < R, ist, p= 2, 3,4... Der Extremalwert wird je
in einem Punktepaar P,9, 8angenommen, und es folgt aus (10):

M(E) < | §7(q2, 85 &)- Ty (pg, t; &)-doo, |
SME)-J | I(pg,t; &) ]| doo, | < M(E)-c(R)-&72=c,(R)-&E7*.
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Induktion beziiglich u liefert
MBE) <|[y@u,t; &) -T1(py,t; ) -do, |
S MEDE) | Ti(py, ¢ 8) || dooy| <o, (R)-67% .
Analog erhalten wir mit

d
30 4V X' 3]

M® (&) = max

filr 8,y > p+ R: MU () <c,(R)-(EVE)

2

F,
P apkw(p, q;§)

M¥) (&) = max

fir s,,>p-R: M (E) <c,(BR)-&*.

Da y(p,q; &) in s,, > R symmetrisch ist, gelten die Abschétzungen

auch fiir die Ableitungen beziiglich ¢, und entsprechend untersuchen wir
2

die gemischten Ableitungen . Um unsere Behauptung zu be-

p; 9¢s .
weisen, brauchen wir lediglich u > 1, R < —;1; - min {R,, 6} zu wéhlen.

Hilfssatz 3 haben wir fiir Normalkoordinaten hergeleitet. Er gilt natiir-
lich auch fiir andere lokale Koordinaten, die geniigend regulir von den
ersteren abhingen.

§2 Definition und Eigenschaften der Kerne H(p,q;{)

Fiir die folgenden Rechnungen beniitzen wir die Konvergenz von

5_%‘”’ 2D _ (Gp, b) - Gty g5 £) - deoy s E — A,

S50 ES
5 22— 60,0 -Gyt ) - do (12)

und zwar konvergieren beide Reihen absolut und gleichmifig in 2 xQ
(siehe [2], Seite 452). Insbesondere gibt es eine Konstante ¢ mit

s > | @ (p) k2 @)]
n=1 A2

<c< o0,

Wir gehen aus von der wichtigen Beziehung

= 1
Op.gi) = — & £ LD LG+ gL pg, (9

deren Richtigkeit durch Vergleich der Entwicklungskoeffizienten nach
dem vollstindigen System {p,(p)} nachgewiesen werden kann. Beide
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Seiten von (13) sind stetig fiir p £ ¢ und eL? Nun multiplizieren wir

G(p, q; &) mit S

in der £-Ebene lings des geschlossenen Weges Ly ., der folgendermaBen
festgelegt wird. Lz, lduft von & =a, 0<a<4,, lings der positiven
reellen £-Achse (arg & = 0) nach &= Ry = 1(Ay + Ay,1)- Ay <Ayi1s

.e%:. £75 ¢ = komplexer Parameter, und integrieren

N > 1, von dort lings des Kreises | £ | = Ry im positiven Sinne wieder
nach &= R,, dann lings der reellen £-Achse (arg & = 2x) zuriick
nach & = a, worauf der Kreis | £| = a, im negativen Sinne durch-

laufen, zum Ausgangspunkt fithrt. Da G(p, ¢; £) meromorph ist in &
liefert der Residuensatz nach (13)

y 99n(p)'(pn(Q) - ] . pint CEYLE-L,

= & g |E=a0(p’q’§) dhe (14)
1

t 2w emgiglg\ra(p,q,,) Tt d§+sm(nc fG(p,q §)-&7tde .

Die Umlaufsintegrale sind im positiven Sinne zu durchlaufen. Den Inte-
granden iiber | £ | = Ry ersetzen wir durch (13) und erhalten unter
Beriicksichtigung der Abschédtzungen

2@ ea@ | _ o) -eul@| 1
SHaey| <y [+ £

n=1
By _ Av(Ayi1—Ay)
AN+1 = 43}

£
T

-2z
lﬁa(p,q §. &t fl Smo- BY”_+ 27

' “Ax Gya1 — A3)

1— =1—

o]

1
Go(p:9) \ By "+ By’

z=RC (15)

Nach Hilfssatz 1 gibt es eine monoton wachsende Folge N, ,»=1,2,3,...,
derart, daB fiir alle » Aw,(Av,+1— An,) = 6>0 ist. Somit folgt aus (15)

lim ¢‘G(p,q;§)-§_§°d§=0 fir z>4.

By, >
Nv>% 161=Ry,,

Die linke Seite von (14) konvergiert nach (12) absolut fir N —oco fiir
z > 2. Deshalb liefert der Grenziibergang Ry, —>co aus (14) die Be-
ziehung
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1 .
A_-vl (p)lfﬂ(Q) 27”:'8@“;' \¢‘G(p>qa§)5-§d§
"= |f=a (16)

sin (nC) %

- [G(p,g;8)-E75-dE .

a

+

Das erste Integral in (16) ist eine ganze Funktion von ¢, das zweite

ebenfalls, dank Hilfssatz (3.2). Somit ist die im Bereiche z > 2 durch

die Reihe ¥ Zn(p )Ag(p n(9) definierte holomorphe Funktion von ¢ in die
n=1 n

ganze (-Ebene analytisch fortsetzbar fir p £ ¢ und stellt eine ganze

Funktion von ¢ dar, die wir mit H(p, q; ) bezeichnen, also

sin né’)

—1 .
H(p,g; )=g_- ™+ 55 (P g36)- 675 dEH—=00 [G(p,g;8) - 6754 d.
lél=a (17)

Hilfssatz 4 tber Eigenschaften von H(p, q; ¢).

(4.1) Fir p#gq gilt H(p,q;0) e C®, H(p,q;0) =H(g, p; {)

(4.2) Fir p#q gilt 4,H(p,q;8)=A4,H(p,q;0)=—H(p,q;{—1)

(4.3) H(p,q;1) = Gy(p,q) (18)
H(p,q;0) = ———%, H(p,q; —n) =0 fir n =1,2,3, ...

(4.4) H(p,q; ) ist fir 2>0 absolut integrierbar iiber p und ¢q.
(4.5) Fir 0<z<1, s,, <J, 6 geniigend klein, gilt
H(p,q;8) = 2(0)-85, "+ T(p,q; ) mit T'(p,q;0)eCY (19)
1
O =g rgem@y 7"

(4.8) [H(p,t;0)@,0)-do, = A5 9,(p), p=1,2,8,..., 2>0. (20)
fH(p,t;0)-do,=0, 2>0 (21)
S H(pt;8)-H(t,q;8) do,=H(p,q;{+(), 2>0, 2, =R >0 .
(4.7) Fiir B(p,q) ¢ C® fir g = const, «>0, gilt
A4,§ H(p,t;¢)-B(t,q)-dw,= [ H(p,t;0)4,B(t,q)-dw,, 2>0 .

und

Bewets von (4.1). Die Symmetrie folgt aus der Symmetrie von G (p, g; &).
Die Differenzierbarkeit fiir das erste Integral in (17) ist evident, fiir das
zweite Integral beniitzen wir Hilfssatz (3.2).

Bewets von (4.2). In (17) diirfen wir nach Hilfssatz (3.2) Integral
und 4 vertauschen. (1) liefert dann sofort die Behauptung.
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Beweis von (4.3). In (17) ersetzen wir den Integranden iiber | £| = a
durch (13) und erhalten

oins (S r-t, = Pn@)#ul@) ;. @t sinzl
‘g AL BT Tat
¢ sinz(l—{) sinnl <

TGP g) @ — Tt -GfG(p,q;E)-S“Eode.

H(p,q;8) =

27

Lassen wir ¢ — 1 streben, so bleibt

1) = L gin %(p) en(9) |
Das Integral ist aber Null, Well der Integrand in | £ | <4, holomorph
ist. Die beiden andern Beziehungen von (4.3) folgen daraus durch

wiederholte Anwendung von (4.2).

Beweis von (4.4). Wir ersetzen in (17) G(p, q; &) nach (9) und er-
halten, fiir 2>0

P L Jr@.;0)-£75ds
l§l=a

—wei“gﬁfp,q £)-&70dE+

2nt
[él=a

H(p,q;0) =

2m

smnC

f I'(p,q;&)-&5dE (22)

Nach Hilfssatz (3.1) gehoren die beiden ersten Integrale zu C®,

wobei die Ableitung vorldufig ausgenommen ist. Da H(p, q; {)

02
09; 0g
nach (4.1) stetig ist fir s,,>0, geniigt es, das Verhalten der beiden
letzten Integrale von (22) fiir s,, - 0 zu untersuchen. Das letzte Inte-
gral schreiben wir in der Gestalt
1

ff(p,q;f)-£‘§d§=fK(p,q;é)f“?ds—l—lfK(p,q;§)~5'€-d5

e
und ersetzen K (p,q; &) nach (2), wobei wir im ersten Integral rechts

die Reihenentwicklungen (5) verwenden. Die Substitution s VE=u
liefert uns schliefllich

o 1 . 1 .

[T(p,q;8)- &5 edé=—1Uy(p,q) -8 B (0)+ 5+ Us(p: 9) - 8=+ 1 (£)

+;‘1; o(P: q) 8%72 - I[—logu Euz" 3w b,] et du
sya n=0

+_— l(p,Q)82§ j'[logu vuzn.c W vu% d,+ 2] A% du

sVa n=0 —0
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Die GroBen ﬁo(C)E}oKo(u)-ul'zgdu und ﬂl(C)E?Kl(u)u“%du
1 1

sind ganze Funktionen von . Bei den Reihen diirfen wir Integration
und Summation vertauschen und erhalten fur { £ 1, 2, 3,...

o0 . ) —§. _ 2;_2. 1 00 a, i o0 b
[r@.0:0- 675 ae =2 U 0| Aol 4 3t o 5 iy
1 = Cn 1 = d, 1 ]

1
[ S — s e W
+ 82 Ul(p7 Q) [2:1 ﬁl(c) 167 n‘::O (n_l_ 1_4‘)2 + 87 n:—\——o ’)’b+ 1———5 47‘ECj

1 2 (sfa)"-b, 1 2 (s2a)"-a,

- 1-gy ~ .y 2 e - N2 R
T Ualprg)a [‘m Sont 1= dn = (ot 10 s

S < (&%) ani | AL, QERa)-d,
g logl/— ot J+s -Uy(p, q) y. n}:on—l—l—é'

oo n 1
Ogl/a’ ! -{-—)].—-CZ;} 4’5TC Ul(p’ Q)'a‘——g

0 2
1 v(s)"c

1
T 67 et 1—0)2  8x

(s*a)"-a, 12 .2 2. (s*a)" - cq
T S U,p,q)a S logs-sn Py w2

+ Upg)-at~ logs- - £

Um den singuldren Anteil des zweitletzten Integrales von (22) zu
berechnen, schreiben wir I'(p, ¢; &) in der Form

I'(p,q; 5)“—5 {( )" [—*Uo(p,q) logV'é-a, + 5= U o(?:q)+ b,
1 1
o Uypg)- s log V Ewc, + o Uy )-sﬁ-dn]}n———”f'vl(p,q)
1 -t 1 e
+log 5| Uipi) - 3 (80,5 Uolpra) - SIELA
n=0 7T n=0

Nur die Glieder, die den Faktor log s besitzen, konnen unendlich
werden fiir s,, — 0, einschlieBlich der Ableitungen bis zur 2. Ordnung.
Wir erhalten

C 1
-log s [— 5"

P /Y M s-z(sl)l "C] Ty(p,q:0) € C®. (24

Setzen wir (23) und (24) in (22) ein, so heben sich die Glieder mit dem
Faktor log s weg, und wir erhalten mit (3) die Darstellung

H(p,q;0)=x(0)-8% 24+ - T (p,q; O)+Ts(p,q.0) , | x(0) | <oo  (25)

Uyp,q)-a'~*

__'_- m’gﬁr(p,q 5) &7 5 df"‘ (p:

lél=a
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Typ,q;8) eC®, Ty(p,q; L) e C® mit Ausnahme der Ableitung 5 aq
q:0q

Aus (25) und (4.1) folgt somit die absolute Integrierbarkeit fiir
0<z<?2 und ¢ # 1, aber nach (18) gilt diese Eigenschaft auch fiir
{=1. Fir z > 2 liefert die absolute und gleichméfige Konvergenz
der linken Seite von (16) die Behauptung.

Beweis von (4.5). Aus (25) folgt die gesuchte Darstellung von

H(p,q;¢) mit T(p,q;0)=s%-T:(p,q;0)+ To(p.q;). Da T(p,q;0)
symmetrisch ist in p und q folgt aus der Existenz und den Abschétzungen

82 a2
durch analoge Betrachtungen dasselbe fiir ——— . Es ist so-
3p: 9y s 5 94,00,
mit T(p, q; ) e C). Ferner gilt nach unsern Entwicklungen

2(0) = lim [&* . H(p, ¢;¢)] =

£>0

Mit Hilfe von (6) 148t sich das Integral berechnen und einige Umformun-
gen ergeben die gewiinschte Gestalt.

Beweis von (4.6) durch analytische Fortsetzung. Die Integrale (20),
(21) existieren und haben die Gestalt F(p;{) = [ H(p,t; () -f(¢)-do,,
f stetig auf 2. Wir setzen

F(p;0) = }fnf,FR(p; {) mit Fg(p;{) =95H(p, t; 0)-f(t)-do, ,

> R
wobei 2, aus 2 entsteht durch Weglassen der R-Umgebung des Punktes
p. In Q ist der Integrand beschrénkt und fiir feste p, ¢ eine holomorphe
Funktion von . Fyp(p;¢) ist somit holomorph in ¢ fiir 0<z<oo.
Ferner bleibt Fg(p; {) nach (4.4) in jedem abgeschlossenen Teilbereich
von 0<z<oo gleichmiBig beschrinkt fir R — 0, also ist F(p; ()
holomorph in 0<z<oo.

Auf dhnliche Weise, indem wir um p und ¢ je eine R-Umgebung aus-
schlieBen, konnen wir zeigen, da F(p,q; {)=[H(p,t; L) H(t, q; L) do,
mit 2>0, 2,>0, {, fest, holomorph ist in { fir 0<z<oo, p 7% ¢q. Fir
z>2 gilt H(p,q;0) = §_ ?n(P) ;;;w,.(q) , wobei die Konvergenz gleich-

n=1 n
miBig ist fiir alle p und ¢q. Mit dieser Formel beweisen wir (20), (21)
durch Vertauschung von Summation und Integration. Durch analytische
Fortsetzung folgt die Richtigkeit fiir 2> 0.
Analog gilt fiir z > 2.

JH®E.60B,0:8)-do—= X 228 [o,0)-H(t,4;8)-do

fir

sin nC

fKo(u -2 du .

— E ‘Pn(’p)°(pn(Q) =H(p,q’c+ Cl)

n=1 ﬂ.gf 3}
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Durch analytische Fortsetzung folgt wiederum die Giiltigkeit fiir
2>0.

Beweis von (4.7). Den Greenschen Satz fiir 2 schreiben wir in der
Gestalt

fBl(p: t)-Asz(t, Q)'dwz = j‘ AtBl(p: t)- B,(t, Q)'dwt fir p+#gq
B,(p,q)eC?, x>0, v=1,2.

Daraus folgt sofort fiir 2> 0
fH(p,t;L+1)A4,B(¢t,q)-do, = [ A4,H(p,t;{ + 1)-B(t, ¢)-do,
=—(H(p,t;¢)-B(t,q)-do, , B(p,9)eC®, x>0,

Vom ersten Integral konnen wir 4, berechnen durch Vertauschung mit
dem Integralzeichen und erhalten nach (4.2) sofort die Behauptung.
Aus dem Greenschen Satze folgt noch fiir f e C®

§ Af(t)-dw, =0 . (26)

§ 3 Der Integraloperator I°

Um gewisse Rechnungen, die immer wieder auftreten, formal einfacher
schreiben zu kénnen, fiihren wir den Integraloperator I° ein, der ein
Analogon der von M. Riesz in [5] eingefiihrten Operatoren ist.

Wir definieren fiir fe L, f beschrinkt, z2>0

B f@) =L,fq) = Hp,q; 0)f(a)-do, + [ . (27)

Integrationsvariable ist somit derjenige Index des Operators I , der

auch in der Funktion f vorkommt, wihrenddem der andere Index die
neue Variable bezeichnet. Hilfssatz (4.2) liefert die Darstellung

L9 = — 4,155 (@) + | - (28)
In (28) existiert I° fiir z>— 1, falls f e C®, denn nach Hilfssatz (4.7) gilt
A,§H(p,q;¢+ 1)-f(g)-do, = [H(p,q; ¢+ 1)-4,f(9)-do,

(28) ist die analytische Fortsetzung von (27) beziiglich ¢.

Fir Funktionen B(p, q) von 2 Punkten fithren wir die entsprechende
Definition ein, wobei wir schwichere Voraussetzungen zulassen. Es sei
B(p,q) eC®, x>—2. Dann existiert fir ¢ #¢q, 2>0

I,B(p,q) =fH(t,p; {)-B(p,q)-do, + B(.,q) ¢COyp ¥ . (29)

4) Zur Bestimmung des Indexes « + 2z in Cf?lzz siehe [2] Seite 362.
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Ferner liefert Hilfssatz (4.7) fir B(p, q) ¢ O®, «>0, wie oben die
Darstellung

I, B(p,q)=— A5 B(p,q) + B(., q) e OO, fiirz>—1,t#q. (30)

Fir die Existenz von (30) ist auch die absolute Integrierbarkeit der
Ableitungen 1. Ordnung von H(t,p;1 + {) und B(p,q) nach ¢ und
p hinreichend %), das heilt B(p, q) e CP fiir g fest, «>—1, z>—1.
I§,,B(p, g) kann iiber alle Schranken wachsen fiir s,, — 0, bleibt
jedoch absolut integrierbar in ¢ und ¢.

Die weiteren uns interessierenden Eigenschaften von I> fassen wir im
folgenden Hilfssatz zusammen :

D

Hilfssatz b.
(56.1) Esist Ly, /(@) = 15325 (q)

fir 2,>0, 2>0 und feL, fbeschrinkt, oder
fir feC® und 2, >0, 2>—1 oder z;,>—1, 2>0.

Ferner gilt I (L5,B(p, q)) = I%FB(p, )

fir B(p,q)eC?®, x>0 und z,;>0, 2>—1 oder z,>—1, 2>0 oder
fir B(p, q) « C? fiir g fest, x>—1 und 2,>0, z>—131 oder z,>—13,2>0.

(5.2) qf q) = f(p) fir feC®
I" B(p,q) = ( q) fir B(p, q) eC’(l) fiir g fest, x«>—1.
(5.3) IB(p 9)-9(9)-dw, = f I}, B(p (q)-dwq

I[I pq]g(t dwt prq[I t)]-do,
fir g e L, g beschrinkt. B erfiille die Bedingungen von (30).
(5.4) Fiir geL?, g beschrinkt, >0, folgt aus I5 g(q) = 0
fast iiberall g(gq) = 0.
(5.5) Wenn die beschrinkten Funktionen ¢,(g) e L% »=1,2,...,n,
linear unabhingig sind, dann sind die Funktionen &, (p) = I f,qt Q)
fir z>0 stetig und ebenfalls linear unabhéngig.

Beweis von-(5.1). Es sei B(p,q)eC® fiir ¢=const, x>—1, 2,>0,
z2>—3. It B(p, q) existiert nach (30), die Existenz von I3(I;,B(p.q))
folgt sodann aus (29). Wir ersetzen I durch seine Definitionen und er-
halten

8) Siehe [1] Seite 317.
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ICI(I p, Q)) “-—“jH('I), t, C])[_fth(t’p’ 1 + C)B(p’q)'dwp]'dwt
+fH(’U,t;Cl)'dﬂ)t'B(°,Q)

+ g [ 4, [ Bt p; 14 0)- B, @) do,] do, + B(+, q) .

Beim zweitletzten Summanden diirfen wir 4, mit dem duflern Integral
vertauschen und erhalten dann, wie auch beim vorangehenden Sum-
manden, auf Grund von (21) Null. Im ersten Gliede wenden wir die
Hilfssédtze (4.7) und (4.6) an und erhalten

Igl(l B(p’Q)) o

= — A, fH@,t; L)[HE, p; 1+ 0)-Bp, 9)-do,]-do, + B(-,q)
= — A4, J[fH@, t;80)-H(t, p; 1+ 0)-do]-B(p, ¢)-dw, + B(+, q)
= —A4,fH@w,p; &+ ¢+ 1)-B(p,q)-do, + B(-,q) .

Die andern Behauptungen von (5.1) beweisen wir dhnlich.

Beweis von (5.2). Der Beweis folgt unmittelbar aus Hilfssatz 2 unter
Beachtung von (18).

Beweis von (5.3). Wir vertauschen die Reihenfolge der Integrationen.

Beweis von (5.4). Wir bilden die Entwicklungskoeffizienten von
I 9(¢9) nach dem vollstindigen System {g,(p)}, »=10,1,2,3...
und erhalten mit Hilfssatz (4.6) 4,°(g(q) @.(q)-dw, =0 fir n >1

und g = 0, das heilt alle Entwicklungskoeffizienten von g verschwin-
den.

Beweis von (5.5). Die Stetigkeit von %,(p) ist evident. Aus

Zec, h,(p)=0, c,=const, folgt I5 (Zc,-g,(q)) = 0, also nach (5.4)
v=1 v=1

2 ¢,-g,(q) = 0 fast iiberall. Da die g, linear unabhéngig sind, miissen

v=1
die ¢, verschwinden.

§ 4 Integralgleichungen 1. Art mit einem Kern K (p, 9)=a-s,’+B,(p,q) .
Ihre Transformation in Integralgleichungen 2. Art

In diesem Abschnitt werden wir Beziehungen herleiten zwischen der
linearen Integralgleichung 1. Art

f1ip) = K(p, 9)-9(9)-do, (31)
und linearen Integralgleichungen 2. Art fiir die Funktion g(g).
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In diesem Paragraphen gelten nachstehende Voraussetzungen. Wir
betrachten nur beschrinkte Losungen von Integralgleichungen.
K(p,q)eC%,, 0>0, so, daB fir s,, < d die Darstellung

K(p,q) =a-s,2 + B,(p,q)

gilt, mit B, (p, ) « O, wobei entweder 0<o<2 ist und «, >0, oder
l1<p<2 und «,>—1. a = const # 0. f,(p) eC?®.

IR

(31) nimmt nach Multiplikation mit der Konstanten % x(0), t=1—
¢ reell, unter Beriicksichtigung von (19) folgende Gestalt an :

f(p) = I3,9(@) + § B(p,9)-9(9)-de, (32)
B(p, q) ¢ C®, wobei entweder 1>{>0 und x>0 ist, oder
1>¢>0 wund «k>—1. f(p)eC® .

Satz I: a) Jede Losung g von (32) erfiillt die lineare Integralgleichung
zweiter Art
7)) =g@) + J Ky (u,9)-9(q) do, ()
K,(u,q) =I{B(t,q) ¢ 05?—2;‘

fast iiberall. Stetige Losungen g erfiillen (I) exakt.
b) Jede Losung ¢g von (I) ist stetig und befriedigt (32).

Beweis von a). Wir setzen in (32), nach Hilfssatz (5.1) und (5.2):
fp) = LIZ0) . Blp, 9 = (B, 9)
ein und erhalten, unter Beachtung von (5. 3)
LI ®) = .9 + I}, [ IiB(t, 9)-9(q)-do, oder
BuUe) — 9(w) — [ 1Bt 9)-9(9)-do] =0 .

Der Klammerinhalt ist nach unsern Voraussetzungen quadratisch inte-
grierbar. Daraus folgt nach Hilfssatz (5.4) sofort (I). Fiir stetige g ist
auch der Klammerinhalt stetig und (I) ist iiberall erfiillt.

Beweis von b). Wir multiplizieren (I) mit I3, und durchlaufen den
Beweis von a) riickwirts. Dafl g stetig ist, folgt nach unsern Voraus-
setzungen sofort aus

g(u) = I f(t) — f Ky(u,q)-9(q) -do, .
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Unter einer Eigenfunktion einer linearen Integralgleichung 1. Art (31)
verstehen wir eine wesentlich von Null verschiedene, beschrinkte und

integrierbare Losung ¢ fiir f, = 0. Unter einer Eigenfunktion der
linearen Integralgleichung 2. Art

fp) =g + [ K(p,q)9(q)-do, (33)

verstehen wir eine von Null verschiedene Losung ¢ von (33) fiir f = 0.
Jede solche Losung ist stetig bei unsern Voraussetzungen.

Zusatz I. a) (I), (32) und ihre transponierten Gleichungen haben
dieselbe Anzahl k£ linear unabhiingige Eigenfunktionen. 0 <{ k <oo.
b) Die Auflosbarkeitsbedingungen fiir (I) lauten, fiir £ > 1

fgo=0, »v=1,2,...,k, (34)
wobei die Funktionen g, eine Basis der Eigenfunktionen von
0={K(p,q)9, ) do, (35)

bilden.

Beweis von a). Wenn (I) genau k linear unabhingige Eigenfunktionen
besitzt, so hat nach Satz I auch (32) diese Eigenfunktionen. Umgekehrt
erfiillt jede Eigenfunktion von (32) auch (I) fast iiberall.

Wenn ¢'(q9) eine Eigenfunktion von (35) ist, dann ist

e (u) = I5,9' (p) (36)

eine Eigenfunktion der transponierten Gleichung von (I)
0=¢e'(u) + [ I;*B(t, u)-¢'(g)-dw, , (37)

denn wir erhalten beim Emsetzen von (36) unter Beachtung von Hilfs-
satz 5

I g'( +;[I;,¢Btu][* '(p)]-deo,
*Igpg(p ) + § 15, (1, gBt u)] g'(p)-do,
= I;,9'(p) + | B(p, u) ¢’ (p)-dw, = const. { K(p, 9)-g'(p)-do, =0 .

Wenn k' die Anzahl der linear unabhingigen Eigenfunktionen von
(35) ist, dann gilt offenbar k > k', weil die Transformation (36) nach
Hilfssatz (5.5) die lineare Unabhingigkeit bestehen 1d8t. Nach unsern
Voraussetzungen iiber den Kern K (p, gq) konnen wir dieselben Betrach-
tungen fiir den transponierten Kern von K (p, g) machen und erhalten
k' > k. Daraus folgt &k = k'.
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Beweis von b). Die Auf lﬁsbarkeitsbedingungen lauten

OZJ[I; ]6 d(}.) _.’.[ upgv( )] dw

Wir formen nach Hilfssatz 5 um und erhalten

0 = [ [L (L5 0))]-9, (p)-do, = [ {(P)-g, (p)-dw,

Die Methode zur Bestimmung der Eigenfunktionen von (37) fithrt auf
eine neue Integralgleichung 2. Art, bei der f(p) unverindert eingeht. Als
Vorbereitung beweisen wir

Hilfssatz 6. Jede Losung g von (I) geniigt der Beziehung
i (I,gw) = g()

Beweis. g(u) erfiillt (32), somit gilt I}, g(u) = f(p) — [ B(p, q)-dw,
Von der rechten Seite konnen wir I t—pg bilden und erhalten nach (I) g (¢).

Satz II. a) Wenn ¢ eine Losung von (32) ist, dann ist

e(p) = I5,9(q) (38)

eine Losung der linearen Integralgleichung 2. Art

f() =e(p) + | K,(p, w)-e(u)-day, ,

II
K,(p,u) =I{B(p,t)e 0532-2; . an

b) Wenn e(p) eine Losung von (II) ist, dann ist I ;pge (p) stetig und
lost (32).

Zusatz II. (32), (IT) und ihre transponierten Gleichungen haben
dieselbe Anzahl k linear unabhingige Eigenfunktionen. Fiir die Losbar-
keit von (II) sind die Bedingungen (34) notwendig und hinreichend.

Beweis von a). Wir setzen in (32) B(p, q) = I5,(I;#B(p,t)) einund
erhalten

f(p) = L3,9() + § U2 B(p, )] 15, 9(2)-do,
Die Substitution (38) liefert die gewiinschte Gestalt.

Beweis von Zusatz 1I. Die Eigenfunktionen von (32) gehen durch (38)
in Eigenfunktionen von (II) iiber, unter Erhaltung der linearen Unab-
hingigkeit. (II) hat somit mindestens £ linear unabhidngige Eigenfunk-
tionen, die wir fir k¥ >1 durch e,(p) =1I},9,(¢), »=1,2,...,k,
darstellen, wobei wir die g, als Basis der Eigenfunktionen von (I) stetig
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annehmen konnen. Wenn e’ (p) eine Eigenfunktion der transponierten
Gleichung von (II) ist

0=¢'(p) + | [;7B(u,t)] ¢ (u)-do, , (39)
dann erhalten wir durch Multiplikation von (39) mit I?,

0=1I;¢(p)+ [ Bu,q) e (u)do, ,

das heiBt e'(p) ist eine Eigenfunktion von (35). (II) kann somit nicht
mehr als k linear unabhéingige Eigenfunktionen besitzen. Als Basis der
Eigenfunktionen von (39) wihlen wir die ¢, (p), v =1, 2,..., k, wor-
aus sofort (34) folgt.

Beweis von b). Es sei g,(q) eine Losung von (I), also auch von (32)
und ey(p) = 1 f,q go(q) die entsprechende Losung von (II). Dann 148t sich
jede Losung e(p) von (II) darstellen als

ep) = eo®) + Z oyey(p) Y, o= comst. . (40)

v=1
Auf der rechten Seite von (40) konnen wir nach Hilfssatz 6 summanden-
weise ¢ bilden und erhalten
k
I;t(ZE(p) = go(t) + i‘:'lcv'gv(t) .

Die in den Sdtzen I und II hergeleiteten Methoden zerstoren eine
eventuell vorhandene Symmetrie des Kernes K (p,q). Fir gewisse
Werte von « 13t sich das durch folgendes Verfahren vermeiden.

Satz III. a) Wenn ¢ eine Losung von (32) ist, dann erfiillt

h(t) = Ii}g () (41)
die lineare Integralgleichung 2. Art, fir 0<{<1, x>0,

I f(p) = h(t) +5Kt10h()

Ky(t,u) =I5 (1B (p )eij’_’_ .- (D

K,(t,u) und K(p,q) sind glelchzeltlg symmetrisch.
b) Wenn £ (t) eine Losung von (III) ist, dann ist I 2h(t) stetig und
lost (32).

Zusatz III. (32), (III) und ihre transponierten Gleichungen haben
dieselbe Anzahl k linear unabhingige Eigenfunktionen. Fiir die Losbar-
keit von (III) sind die Bedingungen (34) notwendig und hinreichend.

8) leere Summen (d. h. k& = 0) sind durch Null zu ersetzen.
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Beweis von a). Wir bilden

L, g(q) = IS} (L9 () = IR () (42)
B(p,q)=1I{}B'(t,q) oder B'(t,q)=1I."B(p,q) . (43)

Nach (30) gilt B'(t,q) ¢ O,
(32) ein und erhalten

f(p) = IFh () + f IERB' (¢, 9)-g(q)-dw, oder
LRI @) — h(t) —  B'(¢t, 9)-9(9)-dw,] =0 .

Der Klammerinhalt ist stetig, somit liefert Hilfssatz (5.4)

fiir ¢t fest. Wir setzen (42) und (43) in

I *f(q) = h(t) + § B'(t, 9)-9(2) - deog - (44)
Die Eigenschaften von B’'(t, q) gestatten uns, nach (30), zu schreiben
B'(t,q) = IPKy(t,u) also Ky(t,u)=I"B'(t,q) .  (4)

Wir erhalten demnach [ B'(t, q)-g(q)-dw, = | Ks(t, u)-h(u) -dow,, was
mit (44) zusammen die gewiinschte Gestalt ergibt.

Beweis von Zusatz I11. Die Eigenfunktionen von (32) gehen durch (41)
in Eigenfunktionen von (III) iiber, unter Erhaltung der linearen Unab-
hingigkeit. (III) hat somit mindestens &k linear unabhingige Eigen-
funktionen bk, (f) = I{*g,(q), v=1,2,...k, fir k>1. Ah'(}) sei
eine Eigenfunktion der transponierten Gleichung von (III)

0= h () + [ Ky(u, )b (u)-doo,, - (46)
Wir multiplizieren (46) mit I5/* und erhalten
0= I2h' (t) + [ I32K,(u, £)-h' (u)-dey, . (47)

Den neuen Kern formen wir nach (45) (43) und Hilfssatz 5 um.
II*K, (u, t) = B'(u,v) = IJ}(I;*B(q,v)) setzen wir in (47) ein,
= I{gh' () + § L} B(g, v)]- [LFP (w)]-da, |
woraus uns die Substitution (41) Gleichung (37) liefert, von der wir
wissen, daB sie genau k linear unabhingige Eigenfunktionen I, g, (q),
v=1,2,...k fir kt>1, hat. Somit besitzt (46) ebenfalls genau &
linear unabhé:ngige Eigenfunktionen, die wir nach den letzten Betrach-
tungen mit hj(¢) = I}*g, (q) bezeichnen konnen. Die Auflosbarkeits-
bedingungen lauten folglich |

![I‘g’zf(p] (1579, @] -do, = J [T f()]-9,(9)-de,
“‘j‘f(q gv )dwq—'o °
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Beweis von b). Jede Losung von (IIT) 148t sich darstellen als

k
h(t) = ho(t) + 2 c,-h,(t) , ¢, = const.
v=1
Fiir die partikulire Losung h,(f) wihlen wir I;gy(q), wobei g, eine
Losung von (I) und somit auch von (32) ist. Nach (44) gilt

k
h(t) = I @) — [ I*B(p, 0)-9" (@) mit ¢" =go+ Zc,g, .
v=1
In dieser Darstellung von A diirfen wir rechts I, 5* bilden und erhalten

unter Beriicksichtigung von (I)

I;tglzh(t) = g* (w) .

§ 6 Die Losung des Dirichletschen Problems durch das Potential

einer einfachen Schicht

Im Dirichletschen Problem im R, ist eine Funktion V (p) gesucht, die
in einem beschrinkten Gebiete D harmonisch ist und auf dem Rande Q
von D vorgeschriebene stetige Werte f,(p) annimmt. 2 sei zusammen-
hingend und besitze iiberall eine eindeutige Tangentialebene. In einem
riumlichen kartesischen Koordinatensystem mit Zentrum auf 2, dessen
x;-Achse mit der Flichennormalen zusammenfillt, lasse sich £ lokal
durch die eindeutige Funktion =z, = z,(,, 7,), 3 € C®, darstellen.
Unter diesen Voraussetzungen kann man auf Q lokale Normalkoordi-
naten einfithren, welche die Voraussetzungen des § 1 erfiillen. Somit
gelten die in den vorangehenden Paragraphen hergeleiteten Sitze.

Das Potential einer einfachen Schicht g

YW = [+ 90) - da, (48)
o) pa

r,, = geradliniger Abstand der Punkte p und ¢, g ¢ L, g beschrinkt,

ist stetig im ganzen Raume und harmonisch im Innern und im AuBern

von . Um das Dirichletsche Problem mit dem Ansatz (48) zu losen,

haben wir somit lediglich dafiir zu sorgen, dal die Randwerte angenom-

men werden, das heilt g(q) muf der linearen Integralgleichung 1. Art

50 = [+ 0@ - do,, pe@ (49)
Q

geniigen. Umgekehrt erfiillt jede beschrinkte und integrierbare Losung g
von (49) die gestellten Bedingungen. Nun weill man aber, daf die Stetig-
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keit von f, im allgemeinen nicht geniigt, um (49) zu losen?). Um unsere
Methode anwenden zu kénnen, fordern wir f, e C® und zeigen, daB
(49) auf die Gestalt (32) gebracht werden kann. Wir setzen

1 1

pa

Jo) = 2@ £®), 1B =5, Bod=5- -

Es bleibt noch nachzuweisen, da B(p,q) zu C?® gehort, mit x>0.
Die Differenzierbarkeit von B(p, q) ist fir p s ¢q evident. Fiir s,, ge-
niigend klein entwickeln wir die Sehne r,, der geodétischen Linie von p
nach ¢ nach Potenzen der Bogenlinge s,, und erhalten

1
Tpe = qu(l —stm'k2(")> , 0=20(p,q)

k(o) = Kriimmung der Geoditischen in einem Punkte o zwischen p
und ¢. Daraus folgt

1

1
=—— 8, k(D q), S h(pq) eCP fiir s, <6.

qu S?Q

Unter Verwendung von Hilfssatz (4.5) erhalten wir schliefilich fir
830 < 8

1 1
B(p,q) =5+ 55" Mp,0) — T(0:053) — 5 < OP.

Die Kerne der Integralgleichungen 2. Art (I), (IT), (III) werden somit
hochstens wie |logs,, | singuldr fir s,, > 0.

Die Gleichung
1
f . g(q) . dwq = (

Tpq
7]

besitzt die einzige stetige Losung g = 08). Aus dem Maximumprinzip
folgt ndmlich aus f(p) = 0 sofort V(p) = 0 und die Sprungrelationen
fiir die Normalableitungen von V (p) ergeben g = 0.

Die Gleichungen (I), (II), (III) lassen sich somit eindeutig losen fiir
jedes feC®, (k= 0). Die gesuchte Funktion g ist stetig, und der
Kern K,(p, ¢) .ist symmetrisch.

7) siehe [1] Seite 135 und [2] Seite 479.

8) Im Dirichletschen Problem der Ebene treten beim Einheitskreis Eigenfunktionen auf
und auch bei denjenigen Randkurven, die die Kapazitat des Einheitskreises besitzen.
Siehe auch [6].
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§ 6 Untersuchungen fiir die Einheitskugel
Auf der Oberfliche der Einheitskugel besitzt die Differentialgleichung
4,8(p) + A-B(p) = 0
die iiberall reguldren Losungen

cos (mg)- P, ,, (cosd), sin (me)-P, , (cosd), 4,, =mn*-+n,
n=0,1,2,...,m=0,1,2,...,n, (p,?)= Polarkoordinaten des Punktes p,
P, .(x) = zugeordnte Legendresche Funktionen,
P, ,(x) = P,(x) = Legendresche Polynome n. Grades.
Dieses Funktionensystem ist vollstindig und orthogonal. Durch Nor-

mierung und mit Hilfe des Additionstheoremes der Kugelfunktionen
finden wir

2n+1 Pu.(p,q)
47 (n2+ n)5’

P, (p.q) =P,(cos s

pq) ?

Hpgst)= ST0L00) _ 3
n=1 n n=1
Wir stellen den Kern H(p, q; {) fir z>0 als Summe eines Kernes
H'(p,q; ) und einer konvergenten Reihe dar, wobei H'(p, q; () eine
einfache Integraldarstellung besitzt®). Zu diesem Zwecke definieren wir

/ o2n41  Pu(p,9q 1 3 Pup.9)
M = ¥ BT s
H (p: q; C) ——n:O 47 (27& + 1)2§ 47 n‘:;o (2n+ 1)2@—1 .
Da | P,(p,q)| <1 ist, konvergiert die Reihe (50) fiir z2>1 absolut
und gleichmifBig in p und ¢, und es gilt
1 & Pu(p:g)
= by

H'(p,q;0) = I 2 Ent e
R—L.3 D@d pi L

47 v (2n+ 1)26-1° St 2 (2%-1—1)1 22,0 fir N—> oo .

(50)

+ R, N=1,2,3,..., 2>1, (5])

In (51) setzen wir

_ 20—1 % _ _
1-2§ (en+1)-t s25—-2,
(2n 4 1) F(%)oje t dt

und

1 7
Po(pg)=—- [(cosy +isiny-cosg)-dg, (y=s,)
0

%) Integraldarstellung und analytische Fortsetzung der Kerne H (p, ¢;{) sind von
Minakshisundaram in : Zeta-function on the sphere, J. Indian Math. Soc. 18 (1949), p. 41,
untersucht worden.
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ein und erhalten

! . 2¢ -2, —t’N—l —ant | .
H(p,q,C) in P(2C jt X e -Py(p,g)-dt + B,

N—l

2 . n, (o—2tyn

Fiir y;éo,n, p#0,7; 0Lt <o gilt

N1 e2t
. . n —2h\n__
né:o (cosy-+tsiny-cos ¢)" . (e™*) (e2* —cosy)—1+8iny « cos @ +h,, (52)
o0 . - L
R,=— ¥ (cosy-+isinycosg)®(e )", |R,| < 2N (] — ¢—2t)

n=N

Da die rechte Seite von (52) summandenweise absolut integrierbar ist
in 0 < ¢ <z, erhalten wir, unter Beriicksichtigung von

n

de — 2__ p2y—1/2
fa+b~cos<p =n@—=5)

0

20 —1 = . -
H’(p,q;C) = Z—nTCI—Wo 6[ t2§~2.et[(e2t_ COS)/)2+ sz'y] 1/2.dt+R1+R3

_ 201 Tars o f .
Rﬁ_ m oft € [OJ..Rgdq?] dt

|20 — 1] T v, W ;
'R3l<4ﬂll’(2<§)l'oft e samy 0 fir N>oo.
Durch geniigend grofie Wahl von N kann | R, | + | R, | beliebig klein
gemacht werden. Somit resultiert fir z2>1; y #£0,%; y =s,,, die
Darstellung -

2r — 1 1252
H'(p,q;0)= ¢

. - dt .
4. V2.I'(20) Y ¥ Cos 2t — cos y

Die Vorzeichen der Wurzeln sind positiv zu wihlen. Fir p ¢ ist
H'(p,q; ) eine holomorphe Funktion von { in z>%. Durch partielle
Integration kénnen wir sie beliebig weit nach links fortsetzen. H' (p, ¢; ¢)
ist somit eine ganze Funktion in {. Fiir z>——%, p # q, gilt zum Bei-

spiel die Darstellung
' t25-1. Sin 2¢

1
H'(p,q;0) = - . e dt.
(p.4;%) 4nV2I(20) : (Cos 2t — cos )32

Fiir spezielle Werte von { erhalten wir

1
Hl(p,q,()):(), Hl(f’:Q:%):Z;'?;;‘ (53)
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Die erste Beziehung folgt aus I'(0) =oo, die zweite aus

X P (zx)=(2—2x) " fir |z|<l.

n=0
Ferner sehen wir, da (50) fiir { = 1 konvergiert und in z>3 holo-
morph ist.

H(p, q; £)und H'(p, q ; {) sind durch nachstehende Gleichung verkniipft,

—1 1 =2P.p,q)h,
H(p,q;0)= P 4€+4€°H’(pa935)+4—7‘t‘n§1 (g(z).‘?)])a;g)’

z>0, (54)

wobei die k,({) definiert sind durch

1 _ 4 W)
(R*Fn)t — (2n+ 1)% ' (2n - 1)+’

W23 p—12 ...

(65)
Dank den Abschitzungen fiir 4,({) konvergiert die Reihe in (54) absolut
und gleichméBig fiir z>>0 und ist holomorph in {. Die Richtigkeit von
(54) ergibt sich fiir grofle z sofort durch Einsetzen der Reihenentwick-
lungen von H(p,q; ) und H'(p, q; ). Analytische Fortsetzung be-
weist die Behauptung. Um in (54) eine besser konvergente Reihe oder
eine Darstellung fiir negative z zu erhalten, miissen wir lediglich die Ent-
wicklung (55) von (n® -+ n)~° nach Potenzen von (2n + 1)-2 weiter
ausfiihren und erhalten eine zu (54) analoge Formel.

Da die Definitionen von H(p,q;{) und H'(p,q, {) dhnlich sind,
und da, wie aus (54) ersichtlich ist, H'(p, q; ) ebenfalls absolut inte-
grierbar ist fiir 2>0, gelten wie in Hilfssatz (4.6) nachstehende Be-
ziehungen

| ha(8) | <

(H (p,t;0)-P,(t,9)-dow, = 2n+1)"%.P,(p,q) , 2>0, n=>0

56
JH'(p,t;)-H'(t,q9;¢) do, = H'(p,q;{+,) 2>0, 2,>0 i

Neben den frither behandelten Losungsmethoden des Dirichletschen
Problems mit dem Potential einer einfachen Schicht, erwihnen wir fiir
die Kugel noch folgenden Weg :

Die Gleichung

1
27 f0) = [ 9(@) - do,, feC® (57)
raq
hat die Losung

27 g(g) = — f [ ! +R<p,q>]A,,f<p)-dwp+n-f (58)

rqu
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mit

Rpg=t- S0 3. £ D005 1RE.g i<}

Zum Beweise setzen wir (58) in (57) ein und erhalten unter Beachtung
von (53), (56)

f Tou 9(q) - dw —f4n-H’ (p,q;% ——f[4n H'(g,t;3)+R(g,1)14, f(t)-dw,
+%f}-dwq=——Sﬂf[fH'(p,q;%)-H’(q,t;%)‘dwq

1 _
167 f (p,q z) n_—' (2 ﬂ(j_?; n(l)'dwq}dtf(t)-dwt
+ 2af - fH’(p,q;%)-dwq=—~ an[‘i.ﬂl(p’t; 1)

1 n(p, t) r3
tim e St hn(l)]-z],f(t)-dw,—{-znf.

Die Formeln (54) und (26) liefern uns schlief3lich

1 —
frmog(q) -dwq=~2n-fH(p,t;1)-A,f(t)-dwt + 2nf

und daraus erhalten wir nach (4.7), (18) und (2.1)

[+ 1@do,= =22 4, [ Gp.1)- £ do, + 22f = 2af ()
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