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Uber eine Klasse von linearen Systemen
mit konstanten Koeffizienten

Von WALTER GAvUTscHI, Basel

1. Sei 0, ein linear homogener Funktionaloperator, sodafl allgemein
0,(au 4 bv) = al,u + bO,v gilt, wenn a, b Konstanten und =, v
Funktionen der Variablen x aus einer geeigneten Funktionsklasse be-
deuten?). Das System der » linearen homogenen Gleichungen

n

bu,(x) =2 a, u(z) (@=1,...,n)

vk K
K=1

mit konstanten Koeffizienten a,, 148t sich in Matrizenform schreiben als
0U =AU , (1)

wo A = (a,,) die n xn-Matrix mit den Elementen a,, und U, 60U die

(Kolonnen-) Vektoren der Dimension » mit den Komponenten %, bzw.
Ou, sind. Im Falle des Differentialoperators 6 = D, (D,, = (—%) zum
Beispiel stellt (1) ein System von linearen homogenen Differentialglei-
chungen erster Ordnung dar. An sich kann ein solches System mit Hilfe
der Elementarteilertheorie nach klassischen Methoden gelost werden.
Indessen ist es von einigem Interesse, eine explizite Form der Losung zu
kennen, in die nur die Eigenwerte von A und ihre Vielfachheiten ein-
gehen.

Eine solche Darstellung der Losung im Falle § = D, ist von J. S.
Frame?) angegeben worden und neuerdings von M. Kumorovitz?) wie-

der gefunden worden. B. Z. Linfield?) hat die entsprechende Losung

1) Der Index z bei 0, wird im folgenden, wenn keine Miverstindnisse méglich sind,
weggelassen.

%) J. 8. Frame, On the explicit solution of simultaneous linear differential
equations with constant coefficients, Amer. Math. Monthly 47 (1940).

3) M. Kumorovitz, Une solution du systéme linéaire homogéne d'équations
différentielles du premier ordre & coéfficients constants, Ann. Soc. Pol. Math.
23 (1950).

4) B. Z. Linfield, On the explicit solution of simultaneous linear difference
equations with constant coefficients, Amer. Math. Monthly 47 (1940).
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fiir den Fall des allgemeinen Differenzenoperators 4, angegeben. In einer
Herausgebernote im Anschlufl an die Arbeit von Linfield fait R. J. Wal-
ker das Resultat von Frame und Linfield mit Hilfe des allgemeinen Ope-
rators 0 in dem folgenden Satz zusammen :
Geniigen die Funktionen v, ; fir irgendeine Konstante a den rekursiven

Relationen

(0 —a)v,,0=0,

0 —a)v, ; = v, (t=1,2,...) (2)

und 1st A exn p-facher HEigenwert von A, | A—AI | =0, so hat die Gleichung
(1) esne Losung p—1
U= 2 (4 — Al)ivy ,C , (3)

i=0
wo C irgendein Losungsvektor des linearen homogenen [leichungssystems

(A — ALyC =0 (4)
18t.
2. Ist zum Beispiel 6 = D,, so haben die Gleichungen (2) als
einfachste Losung
Vo= 2 e (0 =1D,). (29
In diesem Fall hat Kumorovitz gezeigt, dafl die allgemeinste Losung von
(1) sich linear zusammensetzen liflt aus den Losungen, die sich aus (3)
und (4) ergeben, wenn man A simtliche voneinander verschiedenen
Eigenwerte von A durchlaufen 148t, fiir jeden Eigenwert das zugehorige
Gleichungssystem (4) durch ein vollstindiges System von linear unab-
hiéingigen Vektoren 16st und fiir die Funktionen v, , in (3) die Funktionen
(29 fiir @ = A verwendet.

Analog kann man auch bei allgemeineren Operatoren 6 vorgehen, vor-
ausgesetzt, daBl die Gleichungen (2) fiir die Werte a = 4 der Konstante
a losbar sind. Man erhilt dann in jedem Falle n Losungen von (1) von
der Form (3). Verwendet man fiir jeden Wert @ = 1 jeweilen ein einziges
Losungssystem v A, von (2), so kann es allerdings sein, dal man dann
nicht mehr zur allgemeinsten Losung von (1) gelangt. Dies zeigt schon
der einfache Fall § = D2 In diesem Falle haben freilich die Gleichungen
(2) eine groflere Losungsmannigfaltigkeit als die entsprechenden Glei-
chungen mit 6 = D, so dall man erwarten darf, dafl durch geeignete
Auswahl unter diesen Losungen die noch fehlenden Konstanten gewonnen
werden konnen. Untersuchungen in dieser Richtung indessen sind von
den zitierten Autoren nicht unternommen worden.
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Im folgenden sollen nun an Stelle des Systems (1) erster Ordnung
allgemeiner Systeme hoherer Ordnung betrachtet werden, und zwar solche,
die durch eine einzige Matrix A «erzeugt» werden konnen. Genauer seien

p(u) (x=20,1,...,m) m + 1 Polynome beliebigen Grades und
@(u,t) = po(u)t™ + py (W)™t 4 - -+ p,(u) ; (5)
dann handelt es sich um das lineare System m-ter Ordnung
p(4,0)U(x) =0, (6)

das fir m =1, ¢(u,t) =t — u mit dem System (1) identisch ist.

Derartige Systeme, in denen die Koeffizienten p, linear von 4 ab-
hiéngen, spielen im Falle des Verschiebungsoperators 6 = £ (E=I144)
eine gewisse Rolle bei Fehleruntersuchungen iiber graphische und nume-
rische Methoden der Integration gewohnlicher Differentialgleichungen
n-ter Ordnung.

In Satz I wird der obige Satz von Walker auf Systeme (6) verallge-
meinert. AnschlieBend wird in den Fillen 0 = D, 6 = E die Frage
nach der vollstindigen Losung diskutiert und unter einer gewissen An-
nahme in Satz II vollstindig gelost. Am Beispiel (24) eines Systems von
Differenzengleichungen (0 = E) wird — im Hinblick auf eine spitere An-
wendung auch fiir den Fall eines inhomogenen Systems — die allgemeine
Losung in geschlossener Form [(29), (33)] angegeben.

3. Satz I. Es bezeichne ¢;(a,0) fir irgendeine Konstante a den Ope-
rator

%(a,e)=33,—1>:;¢(a,0) G=01,2...), go(a,0) = p(a,0). (7

Geniigen die Funktionen v, ;(x) den rekursiven Relationen
i
2(]?5(01, e)va,i_j=0 (?:=0, 1, 2,...) (8)
j=0
und ist A ein p-facher Eigenwert von A, so hat (6) eine Losung

U@) = Z (4 — a)op.() C , )

i=0
wo C irgendein Losungsvektor von (4) ust.

Bewets. Mit Hilfe der Operatoren (7) kann die Taylorentwicklung von
¢(4,60) an der Stelle 4 = AI in der Form

(4,6 = I ¢,(2,0)(4 — ATy (10)

=0
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geschrieben werden. Der Einfachheit halber erstrecken wir die Summa-
tion iiber j ins Unendliche, obwohl, da ¢(4, 6) beziiglich A ein Poly-
nom ist, nur endlich viele Summanden vorhanden sind.

Die Anwendung von (10) auf den Vektor (9) ergibt, wenn in (10) das
Glied mit § = 0 abgetrennt wird,

p(4,0) U =¢(2,6) z (A — Al)m, 0+
=0 v
4 X (A 6)(4 — A1 X (4 — Alyivy ,C . (11)

j=1 t=0

Wegen (8) fiir ¢ = 0 ist der erste Summand rechterhand in (11) gleich
p—1
2 (A —Al)p(A,0)v, ,C .
i=1
Andererseits wird der zweite Summand rechts in (11), da wegen (4)
(A — ADHC =0
fir ¢« + 9 = p ist, gleich

P—1 o L p—1 p-—1
2 XA - A 93,0 00,0 =2 X(A4— A e_;(4,0)v, ,C

i=0j=1 i=0 k=i+1
p—1 k
=2 (4 — 2D X g,(2, 0) v, ;O
k=1 7=1

und wegen (8) gleich
r—1
— I (A — A}rg(4, 0)v) ,C
k=1
Daher folgt ¢(4,0)U = 0 und Satz I ist damit bewiesen.

Uber die Losbarkeit der rekursiven Gleichungen (8) kann im Falle
eines allgemeinen Operators § unmittelbar folgende Aussage gemacht
werden : Hat die Qleichung ¢ (u,0)v, o = 0 eine Lésung v, o(x), die
fir w = a geniigend oft nach w differenzierbar ist, so kann

1
a

Va,i = ,& Dfl,va,o (12)

@,

gesetzt werden, vorausgesetzt, dap D,0,= 0,D, gilt.
In der Tat ergeben sich die Relationen (8) aus ¢(%, 6)v, , =0 und
(12) durch s-maliges Differenzieren nach « an der Stelle v = a:

0=_}_D*'
2!

1
9@, 0)v, ,oz—‘r

:S:() Dig(a, 6) Diiv, o= X9y, 0)00 ;-

j=0
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4. Wir spezialisieren im folgenden 0 auf den Differentialoperator
0 = D und den Verschiebungsoperator 6 = E.

Ist ¢, eine Wurzel der Gleichung ¢(a,?) = 0 m-ten Grades in ¢, so
gilt offenbar ¢(a, D,)e'*®* =0 und, falls ¢,%40 ist, @(a, E,)e*""%=0 .
Daher kann in diesen Fillen v, = €'%* bzw. v, , = e*i¢ =7
gesetzt werden. Beide Funktionen sind beliebig oft nach a diffe-
renzierbar, vorausgesetzt, daf ¢, eine einfache Wurzel und £ 0 ist,
die erste auch, wenn ¢, = 0 gilt. Gemi8 (12) sind daher im Falle 6§ = D
die Funktionen

etaz

Ya,0 )

Vg1 = €8,

0=D 13
voa= ety TP o

ooooooooooo

und im Falle 6 = E die Funktionen

— 4T
”a,o - ta’

z—1 4/
xt, " t,,

ll

va,l

0=F,t 0 13°
”a,z = (;) t:—z t;Z + %xtﬁ"l t;’ ( a —7{: ) ( )

Losungen der Gleichungen (8).

Um zur vollstéindigen Losung des Systems (6) zu gelangen, moégen die
voneinander verschiedenen Eigenwerte von 4 mit 4, (6 =1,...,8),
ihre Vielfachheiten mit p, bezeichnet werden. Das Gleichungssystem

(4 — A, I)psC = 0 (14)

besitzt dann genau p, linear unabhingige Losungsvektoren C,,
(I=1,...,p,). (An Stelle von p, in (14) kénnen auch die Vielfach-
heiten m, der Wurzeln der Minimalgleichung von 4 treten, denn auch
dann existieren p, linear unabhingige Losungen.) Bildet man fiir jeden
Eigenwert 4, ein solches Vektorsystem, so sind auch die » Vektoren C,
(e=1,...,8;l=1,...,p, bekanntlich linear unabhéngig?).

5) Vgl. etwa J. H. M. Wedderburn, Lectures on Matrices, American Mathematical
Society Colloquium Publications, Vol. XVII (1934), p. 43.
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Ferner nehmen wir an, dap jede der s Gleichungen ¢ (A,,t) = 0 m ver-
schiedene (also esnfache) Wurzeln t, , (u =1, m) besitzt. Die Funk-
tionen (13) bzw. (13°), die zu ¢, , gehoren, mOgen mit vk . bezeichnet

werden. Dann gilt der

Satz II. Die allgemeine Losung von (6) setzt sich in den Fillen 60 = D
und 0 = K linear zusammen aus den mn Liésungsvektoren

Pg—1
Uk (x) = Z(A AgL)iok (x)C',,,( o83 l=1,...,p,;u=1,...,m)
= (15)
mit den Funktionen v} ; ous (13) baw. (13°) fir a = 4;, ¢, =1, ,.

Beweis. a) Sei zunidchst 6 = D. Es ist zu zeigen, daB die Vektoren
(15) linear unabhingig sind. Die Funktion vg‘a’i(x) ist, wie aus (13)
hervorgeht, ein Produkt aus e‘e, »* und einem Polynom in z vom Grade <.
Ferner enthalten alle v% _fiir ¢>0 den Faktor », wihrend fir i =0

bei e’o,n? der Faktor 1 steht Daher lassen sich die Vektoren (15) in der
Form

UGi(x) = e'on®(I + x P, ,(x)) Oy (16)

schreiben, wo P, p(x) bestimmte n X n-Matrizen bedeuten, deren Ele-
mente Polynome in x sind. Angenommen, es besteht zwischen den Vek-
toren (16) eine lineare Beziehung

2 cyeton (I + x P, , (%) Co,
o,l,p (17)
=2 @, () =0, Q,,= Z'ca, I+ xP,,,) Cy

o,p

mit mn Konstanten cf,. Sind dann, wie wir zuniichst annehmen wollen,
simtliche Wurzeln ¢, " voneinander verschieden, so folgt, da die Kom-
ponenten der Vektoren @, , Polynome in # sind, fiir alle o, u die Identitét
Q,,u () = 0, insbesondere also @, ,(0)= IZ‘ chCoi = 0. Wegen der

linearen Unabhingigkeit der Vektoren C,, miissen daher alle c¥, ver-
schwinden.

Dasselbe gilt, falls einige der Wurzeln ¢, , einander gleich sind. Denn
anderenfalls géibe es in (17) eine Konstante ct,, die nicht verschwindet.
Ohne Beschrinkung der Allgemeinheit nehmen wir ¢}, 40 an. Wir
bezeichnen die Wurzel ¢, ; kurz mit ¢ und die Indexpaare o, u, fiir welche
bop =10 i8t, mit o, B;...;q,,B,:

bha=1t, @ = by, = ¥ (g =By =1). (18)

0(1,51 -
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Da die Wurzeln ¢, , fiir ein festes o untereinander verschieden angenom-
men wurden, gilt

oy F o, (0 #7), r <s. (19)
o,pus SO fo}gt durch Null-

setzen des Koeffizientenvektors bei e'” die Identitit 2 Qu,,8, (¥) =0
und fiir z = 0 insbesondere e=1

Ordnet man nun in (17) nach verschiedenen t

r Z)ae

2 Xege, Oy =0.

e=1 l=1

Wegen (19) und wegen der linearen Unabhéngigkeit der Ca,: miissen in
dieser Summe alle Koeffizienten verschwinden, also auch ¢!, = ¢},
entgegen unserer Annahme.

b) Der somit fiir 6§ = D gefiihrte Beweis stiitzt sich auf die Formel
(16) und die Eigenschaft (19). Die Darstellung (16) gilt aber auch im
Falle 6 = E, falls in ibr ¢, , durch 7, , =Igt, , ersetzt wird. Ande-
rerseits gelten die Relationen (18), (19), wenn fiir die ¢, ,, dann auch fiir
die 7, ,. Daher ergibt sich auch fir 6 = £ die lineare Unabhéngigkeit
der Vektoren (15) und Satz II ist vollstindig bewiesen.

5. Als Beispiel betrachten wir ein spezielles System von (inhomo-
genen) Differenzengleichungen (6 = E). Es geht aus (6) hervor, wenn
fiir A die Matrix

K= ....... (20)

n

mit beliebigen reellen Konstanten £k,, fir die Funktionen p (u)
in (5) lineare Polynome und an Stelle des Nullvektors auf der
rechten Seite von (6) ein konstanter Vektor R gesetzt werden. Ge-
nauer sei

po(u)=ao-bou; pp,(u):_(a‘u_l'bpu) y Qg bo,a,ub,;,g 0 (‘u=1,. . "m) (21)

und dariiber hinaus
m

= 2a,,
p=1

b=gb,¢0. (22)

T=0

Ferner moge die Diskriminante D(4,) des Polynoms ¢(4,,%) fiir alle
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Eigenwerte 4, (¢ = 1,...,8) von K und ebenso die Koeffizienten
Po(45)s Pm(4,) nicht verschwinden :

D(A) #0 , (@9 — boA)(@y, +bpd) #0 (e=1,...,8). (23)

Dann sind die Wurzeln ¢, , der Gleichung ¢(4,,f) = 0 sicher einfach
und keine von ihnen verschwindet.
Das System lautet also ausgeschrieben :

m
@ —bpK)U(x +m)= X (a, I +b,K)U(x +m — )+ B ¢). (24)
p=1
Zur Matrix (20) gehort bekanntlich das charakteristische Polynom
n—1
— 2k, A . (25)
0

Y=

p()=|2l —K|=2"

Die voneinander verschiedenen Wurzeln 4, von p(4) seien so durch-
numeriert, daf

[l 2] 2214
gilt.
Ferner bilden die (linear unabhingigen) Vektoren C,;, definiert durch
p 1 dl-1
=1 At

ein geordnetes Hauptvektorsystem, das hei3t es gilt

0o (=1
(K —2,1) Cyy = (27)
Coia <1 = p,).
Die Gleichungen fiir I = 1 driicken die bekannte Tatsache aus, dal die
Vektoren C,, Eigenvektoren der Matrix K sind?). Die iibrigen Gleichun-
gen fiir [>1 ergeben sich leicht durch vollstindige Induktion. Diffe-
renziert man namlich die [-te Gleichung nach A,, so erhélt man

- OO’ + (K - AO'I) l00,1+l = (l - 1) 00‘,1 ] (K - laI) Oc.l+l = Oo’l ’

also die entsprechende Gleichung fiir [ + 1.
Aus (27) folgt offenbar

Cors Obi=(1, Ay, ..., A27Y (I=1,2,...p,), (26)

(K — 23,0, =0 (=1,...,p,) . (28)

%) Eine praktische Anwendung solcher Systeme findet man in meiner Dissertation
»nFehlerabschatzungen fiir die graphischen Integrationsverfahren von Grammel und
MeiBner-Ludwig*, Verh. Naturforsch. Ges. Basel 64 (1953).

Y Vgl. H. W. Turnbull and A. C. Aitken, An Introduction to the Theory of Cano-
nical Matrices, 2nd ed., p. 58, wo die Vektoren C; aus (26) zur Transformation der
Matrix (20) auf die Jordansche Normalform verwendet werden.
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Wir betrachten nun zuerst die homogene Gleichung (24) mit R = 0.
Satz II gibt die allgemeine Losung in der Form

Pe—1

& Po
2 2 (K — A I)' o, Oy

'-'0

U(2)

“\'Ja

@
wo die Funktionen o} _, durch (13°) fir ¢ = 4,, t,=1,, und die
Vektoren C,; durch (26) gegeben sind. ¢4, sind mn beliebige Konstanten
(oder periodlsche Funktionen der Periode 1). Wegen (27) und (28) wird

aber

pg 1-1 Pe 11
U@)=2 2 2K —2AD0% ;Cop=2 2 Xdyoh 0o,
p,0 l=1 1t=0 p,0 l=1 i=0

._zzzcv“,o

Bn,& I=1 j=1

Vertauscht man hier die beiden inneren Summationen und ersetzt man
hinterher ! durch den neuen Summationsindex ¢ =1 — j, so wird

Po 170""7'

U@) =2 2 X, ;v ;0.

p,0 j=1 i=0

Daher ist
8 VYo m pg—
U(x) =2 X We; (=) Ooj s Wy (z) = 2 Z ch Jiti 7«0,@ (x) (29)

die allgemeine Lisung der zu (24) homogenen Gleichung.

Es sei nun im inhomogenen Fall R 7 0 zunichst 4, # 0. Dann
kann als Partikuldrlosung von (24) ein konstanter Vektor P angesetzt
werden. Man erhilt fir P, unter Beriicksichtigung von (22), die Glei-

chung ¢(K, 1) P——bKP=R, also,da K-t existiert, P—— - K~'R .

b

Ist hingegen A, = 0 mit der Vielfachheit p = p,, so folgt aus (25),
da ky=ky=...=k,=0, k,,; #0 gilt. K hat daher die Gestalt

010...0({0...0

001 ...0[0...0 0 1 0

’Kn——p=("‘ ,kp+15ﬁ0

000 ...0(1 ...0 Koy Fopa k, .

0 Kn-—-p ( )
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Die Funktionen ,(x) mogen den rekursiven Relationen
aowo(x+m)=Za#wo(x—i—m———u)%—-l, (31)
p=1

a,0; (% +m)= ln‘:'auwi(x—i—m—-y)—}— Zmb,wi_l(x—{—m-—r) (¢=1,2,...)

[L==1 =0

geniigen, die kiirzer in der Form
(0, E) wg=1, ¢(0,E) w0, + ¢,(0,E) w; ;=0

geschrieben werden kénnen. Ferner sei Q(x) die Matrix

Wo@Wy - o0 Wy g | —@, ;0...0

0 wy ... w,_, w, 0 . 0
0 () — s € 1 5 B S s a e ' -
() 00 ... | —wy 0...0 (32)

1
0 —~—b-—In_p
Dann ist

I, 0
U(z)=P(x)R, P(x)=Q(x) (33)

0 K1

eine partikulire Losung der tnhomogenen Gleichung (24).
Fir p = 0, das heit A, £ 0, ergibt sich aus (33) die bereits gefun-

dene Losung — —g— K1 R. Zum Beweis 'von (33) geniigt es offenbar, die

Matrixgleichung 0

I
o(K,E) Q= (0”K ) (34)

n—p

nachzuweisen. (34) folgt sofort durch Anwendung des Operators
¢(K, E)=¢(0, E) + ¢, (0, E) K

auf die Matrix (32), wenn dabei die Relationen (31) beriicksichtigt
werden.

Ein Funktionensystem w,(x) kann durch sukzessive Auflosung der
Relationen (31) gewonnen werden. Hierzu sind fortwidhrend lineare,
inhomogene Differenzengleichungen aufzulosen, denen das charakte-
ristische Polynom m
p(0,t) = aot™ — & @, tme

p=1
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gemeinsam ist. Dieses hat wegen (22) und (23) die einfache Wurzel
t=1:
9(0,8) = (t — 1) p*(t), ¢*(1)5#0.

Bildet man die Entwicklung
Ho*(1 +8) = yo + 1t + yut® +- - (7o # 0)

und ist B der Operator B = X b _E™ %, so kann zum Beispiel

=0

t
w; (%) = BA™ X y A w1 (x), wp=7p2 (¢=1,2,..) (35)
v=0

gesetzt werden8®). A-lg(x) bedeutet dabei irgend eine Funktion, deren
Differenz g(x) ist. Wéahlt man in (35) insbesondere A4-lx = (g) ,

4-1 (;) = (g) usw., so ist durch (35) die Funktionenfolge w, eindeutig

bestimmt. Die ersten dieser Funktionen lauten
x
@ =ne, o6 =nBln(3)+na.

0y (%) = B {73 (“3’) + 27n (9;:) + (1 + 07 w} ,  USW.

(Eingegangen den 15. Juli 1953.)

8) L. M. Milne-Thomson, The Calculus of Finite Differences, London 1933,
p. 392 ff.
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