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Ûber eine Klasse von linearen Systemen
mit konstanten Koeffizîenten

Von Walteb Gatjtschi, Basel

1. Sei 0x ein linear homogener Funktionaloperator, sodafi allgemein
6x(au + bv) aÔxu + b6xv gilt, wenn a> b Konstanten und u, v
Funktionen der Variablen x aus einer geeigneten Funktionsklasse be-
deuten1). Das System der n linearen homogenen Gleichungen

n

6uy{x) Z aVKuK(x) (v 1,..., n)

mit konstanten Koeffizienten aVK làBt sich in Matrizenform schreiben als

OU AU (1)

wo A (aVK) die wxw-Matrix mit den Elementen aVK und U, OU die
(Kolonnen-) Vektoren der Dimension n mit den Komponenten uv bzw.

Buv sind. Im Falle des Differentialoperators 6 Dx lDx -i~ zum

Beispiel stellt (1) ein System von linearen homogenen Differentialglei-
chungen erster Ordnung dar. An sich kann ein solches System mit Hilfe
der Elementarteilertheorie nach klassischen Methoden gelôst werden.
Indessen ist es von einigem Interesse, eine explizite Form der Lôsung zu
kennen, in die nur die Eigenwerte von A und ihre Vielfachheiten ein-
gehen.

Eine solche Darstellung der Lôsung im Falle 0 Dx ist von J. S.

Frame2) angegeben worden und neuerdings von M. Kumorovitz3) wie-
der gefunden worden. B. Z. Linfield4) hat die entsprechende Lôsung

x) Der Index x bei 6X wird im folgenden, wenn keine MiÔverstândnisse môglich sind,

2) J. S. Frame, On the explicit solution of simultaneous linear differential
équations with constant coefficients, Amer. Math. Monthly 47 (1940).

8) M. Kumorovitz, Une solution du système linéaire homogène d'équations
différentielles du premier ordre à coefficients constants, Ann. Soc. Pol. Math.
23 (1950).

*) B. Z. Linfield, On the explicit solution of simultaneous linear différence
équations with constant coefficients, Amer. Math. Monthly 47 (1940).
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fur den Fall des allgemeinen Differenzenoperators Ah angegeben. In einer
Herausgebernote im AnschluB an die Arbeit von Linfield faBt R. J. Wal-
ker das Résultat von Frame und Linfield mit Hilfe des allgemeinen Ope-
rators 6 in dem folgenden Satz zusammen :

Genûgen die Funktionen vai filr irgendeine Konstante a den rekursiven
Relationen

(6-a)va>0=0
(9 - «K.« »«,<-i (i= 1,2,...) V ]

und ist X ein p-fâcher Eigenwert von A9\ A —XI \ =0,so hat dieOleichung
(1) eine Lôsung p_1

- U= Z {A- XIYvKiC (3)

wo G irgendein Losungsvektor des linearen homogenen Gleichungssystems

{A - Xiy>C 0 (4)
ist.

2. Ist zum Beispiel 0 Dx, so haben die Gleichungen (2) als
einfachste Lôsung

Vi -freOX (0 Dm). (2»)

In diesem Fall hat Kumorovitz gezeigt, daB die allgemeinste Lôsung von
(1) sich linear zusammensetzen lâBt aus den Lôsungen, die sich aus (3)
und (4) ergeben, wenn man X sâmtliche voneinander verschiedenen
Eigenwerte von A durchlaufen làBt, fur jeden Eigenwert das zugehôrige
Gleichungssystem (4) durch ein vollstàndiges System von linear unab-
hàngigen Vektoren lôst und fur die Funktionen vxti in (3) die Funktionen
(2°) fiir a X verwendet.

Analog kann man auch bei allgemeineren Operatoren 6 vorgehen, vor-
ausgesetzt, daB die Gleichungen (2) fur die Werte a X der Konstante
a lôsbar sind. Man erhàlt dann in jedem Falle n Lôsungen von (1) von
der Form (3). Verwendet man fur jeden Wert a X jeweilen ein einziges

Lôsungssystem v^ti von (2), so kann es allerdings sein, daB man dann
nicht mehr zur allgemeinsten Lôsung von (1) gelangt. Dies zeigt schon
der einfache Fall 6 D2. In diesem Falle haben freilich die Gleichungen
(2) eine grôBere Lôsungsmannigfaltigkeit als die entsprechenden
Gleichungen mit d D, so daB man erwarten darf, daB durch geeignete
Auswahl unter diesen Lôsungen die noch fehlenden Konstanten gewonnen
werden kônnen. Untersuchungen in dieser Richtung indessen sind von
den zitierten Autoren nicht unternommen worden.
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Im folgenden sollen nun an Stelle des Systems (1) erster Ordnung
allgemeiner Système hàkerer Ordnung betrachtet werden, und zwar solche,
die durch eine einzige Matrix A «erzeugt» werden konnen. Genauer seien

pr(u) (t 0, 1,..., m) m + 1 Polynôme beliebigen Grades und

<p(u, t) po(u)t™ + Pl(u)t™~i + • •. + pm(u) ; (5)

dann handelt es sich um das lineare System m-ter Ordnung

<p(A,6)U(x) 0 (6)

das fur m 1, q>(u,t) t — u mit dem System (1) identisch ist.
Derartige Système, in denen die Koeffizienten pr linear von A ab-

hangen, spielen im Falle des Verschiebungsoperators 0 E {E—I-\-A)
eine gewisse Rolle bei Fehleruntersuehungen uber graphische und nume-
rische Methoden der Intégration gewohnlicher Differentialgleichungen
w-ter Ordnung.

In Satz I wird der obige Satz von Walker auf Système (6) verallge-
meinert. AnschlieBend wird in den Fallen 6 — D, 0 E die Frage
nach der vollstandigen Losung diskutiert und unter einer gewissen An-
nahme in Satz II vollstandig gelost. Am Beispiel (24) eines Systems von
Differenzengleichungen (6 E) wird - im Hinblick auf eine spatere An-
wendung auch fur den Fall eines inhomogenen Systems - die allgemeine
Losung in geschlossener Form [(29), (33)] angegeben.

3. Satz I. Es bezeichne q>3 (a, 0) fiir irgendeine Konstante a den Ope-

rator

q>,(a96) 4ïB>aq>(a90) (j 0, 1, 2, 9o(*>0) <P(<*> 0) - (7)

OenUgen die Funktionen vai(x) den rekursiven Belationen

£ç>,(a,0K,.-, O (t 0,l,2,...) (8)

und ist X ein p~fâcher Eigenwert von A, so hat (6) eine Losung

U(x)=^PI(A-UYvXti(x)C (9)
1=0

wo G irgendein Losungsvéktor von (4) ist.

Beweis. Mit Hilfe der Operatoren (7) kann die Taylorentwicklung von
<p(A, 6) an der Stelle A Kl in der Form

1,0) E %{X,O){A - Uy (10)
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geschrieben werden. Der Einfachheit halber erstrecken wir die Summa-
tion uber j ins Unendliche, obwohl, da (p(A, 6) bezuglich A ein Poly-
nom ist, nur endlich viele Summanden vorhanden sind.

Die Anwendung von (10) auf den Vektor (9) ergibt, wenn in (10) das
Glied mit j 0 abgetrennt wird,

<p{A,o) u <p{X, 6) vs\a - xiyvXttc +

+ r <p,(Cd)(A - xi/s (A - uyvKtc (ii)
?=1 1=0

Wegen (8) fur i 0 ist der erste Summand rechterhand in (11) gleich

Andererseits wird der zweite Summand rechts in (11), da wegen (4)

{A - uy+w o

fur i + j ^ p ist, gleich

2?£ (A - Uy+> v,(X,0) vKlC Z PS(A - */)*?»_,(*,0K.
1=0 ?=1 1=0 k=i+l

k=l 3=1
und wegen (8) gleich

Daher folgt q>(A, 0) U 0 und Satz I ist damit bewiesen.
Ûber die Losbarkeit der rekursiven Gleichungen (8) kann im Falle

eines allgemeinen Operators 6 unmittelbar folgende Aussage gemacht
werden: Hat die Gleichung <p(uid)vu 0 0 eine Losung vuQ(x), die

fUr u a genligend oft nach u differenzierbar ist, so kann

V ^>M (12)

gesetzt werden, vorausgesetzt, dafi Da0x 6xDa gilt.
In der Tat ergeben sich die Relationen (8) aus (p(u, 6)vu0 0 und

(12) durch i-maliges DifiEerenzieren nach u an der Stelle u a :

0= i- /r £ (j) \
189



a

4. Wir spezialisieren im folgenden 6 auf den Differentiahperator
6 D und den Verschiebungsoperator 0 E.

Ist ta eine Wurzel der Gleichung <p(a, t) 0 m-ten Grades in t, so

giïtoffenbar y (a, Dx)etaX 0 und, falls £a#0 ist, <p(a, Ex)exlgta 0

Daher kann in diesen Fâllen vo 0
etaX bzw. va>0 e*'y'a t

gesetzt werden. Beide Funktionen sind beliebig oft nach a diffe-
renzierbar, vorausgesetzt, daB ta eine einfache Wurzel und ^ 0 ist,
die erste auch, wenn ta 0 gilt. GemâB (12) sind daher im Falle 0 D
die Funktionen

vat0 — e »

und im Falle 0 £ die Funktionen

(13»)

Lôsungen der Gleichungen (8).
Um zur vollstàndigen Lôsung des Systems (6) zu gelangen, môgen die

voneinander verschiedenen Eigenwerte von A mit %a (a 1,...,«),
ihre Vielfachheiten mit 2>a bezeichnet werden. Das Gleichungssystem

(A - Aa/)^C 0 (14)

besitzt dann genau pa linear unabhângige Lôsungsvektoren Cal
(l 1,...,^). (An Stelle von pa in (14) kônnen auch die Vielfachheiten

ma der Wurzeln der Minimalgleichung von A treten, denn auch
dann existieren pa linear unabhângige Lôsungen.) Bildet man fur jeden
Eigenwert Xa ein solches Vektorsystem, so sind auch die n Vektoren Cal
(a 1,. ..,«;/= 1,..., pa) bekanntlich linear unabhângig5).

6) Vgl. etwa J. H. M. Wedderburn, Lectures on Matrices, American Mathematical
Society Colloquium Publications, Vol. XVII (1934), p. 43.
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Ferner nehmen wir an, dafi jede der s Oleichungen <p (Xa, t) 0 m ver-
schiedene (also einfacke) Wurzeln tafl (fi 1,..., m) besitzt. Die Funk-
tionen (13) bzw. (13°), die zu tafl gehôren, môgen mit v% bezeichnet
werden. Dann gilt der

Satz II. Die allgemeine Lôsung von (6) setzt sich in den Fàllen 0 D
und 6 E linear zusammen aus den mn Losungsvektoren

Aa/)< (o:)Oal((Tl,...,5;Zl,...,pa;^l,...,m)
(15)

mit den Funktionen v^ ans (13) bzw, (13°) fur a Ka, ta tOfl.

Beweis. a) Sei zunâchst 6 D. Es ist zu zeigen, daB die Vektoren
(15) linear unabhângig sind. Die Funktion v$ .(x) is^ ^e aus (13)

hervorgeht, ein Produkt aus et<T> nx und einem Polynom in x vom Grade i.
Ferner enthalten aile t# fur i>0 den Faktor x, wàhrend fur i 0

Aa,t
bei eto»^x der Faktor 1 steht. Daher lassen sich die Vektoren (15) in der
Form

U^(x) e':i**(I + xPGtfx(x)) Col (16)

schreiben, wo Pa>n(x) bestimmte ^xw-Matrizen bedeuten, deren Ele-
mente Polynôme in x sind. Angenommen, es besteht zwischen den
Vektoren (16) eine lineare Beziehung

^( + attA())al
°,i,v> va (17)
1 e^^QOtfJL(x) 0, Q £cÇê(I + xPoJ Cal

mit mn Konstanten c^. Sind dann, wie wir zunâchst annehmen wollen,
sâmtliche Wurzeln ta voneinander verschieden, so folgt, da die Kom-
ponenten der Vektoren Qa ^ Polynôme in x sind, fur aile a, ft die Identitât
QafH>(x)~0, insbesondere also Qatlx(0) Zc%fîal 0. Wegen der

linearen Unabhângigkeit der Vektoren Cal mussen daher aile c^ ver-
schwinden.

Dasselbe gilt, falls einige der Wurzeln tafl einander gleich sind. Denn
anderenfalls gâbe es in (17) eine Konstante c^, die nicht verschwindet.
Ohne Beschrânkung der Allgemeinheit nehmen wir c\x =fi 0 an. Wir
bezeichnen die Wurzel txl kurz mit t und die Indexpaare a, fi, fur welche

K,p =t ist> mit «i> A ; • • • ; af > Pr :

*i,i t, tauH t^ t ((* &= 1). (18)
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Da die Wurzeln tafl fur ein festes a untereinander verschieden angenom-
men wurden, gilt

aQ ^ar (e#T), r ^s. (19)

Ordnet man nun in (17) nach verschiedenen tafJL, so folgt durch Null-
r

setzen des Koeffizientenvektors bei etx die Identitât 2J Q<xq,pq (%) 0

und fur x 0 insbesondere e==1

Wegen (19) und wegen der linearen Unabhângigkeit der C<xQi miissen in
dieser Summe aile Koeffizienten verschwinden, also auch c^iX cjly
entgegen unserer Annahme.

b) Der somit fur 0 D gefuhrte Beweis stutzt sich auf die Formel
(16) und die Eigenschaft (19). Die Darstellung (16) gilt aber auch im
Falle 0 E, falls in ihr ta durch ra lg ta ^ ersetzt wird. Ande-
rerseits gelten die Relationen (18), (19), wenn fur die taffA, dann auch fur
die rafl. Daher ergibt sich auch fur 6 E die lineare Unabhângigkeit
der Vektoren (15) und Satz II ist vollstàndig bewiesen.

5. Als Beispiel betrachten wir ein spezielles System von (inhomo-
genen) Differenzengleichungen (6 E). Es geht aus (6) hervor, wenn
fur A die Matrix

0 1 0 0

0 0 1 0

K | | (20)
0 0 0 1

h h h h
A/J #1/2 A/g /l/^j

mit beliebigen reellen Konstanten kv, fur die Funktionen pt(u)
in (5) lineare Polynôme und an Stelle des Nullvektors auf der
rechten Seite von (6) ein konstanter Vektor B gesetzt werden. Ge-

nauer sei

PoM=ao— M;PfiM= — (%+bpU);ao,bo,ap,b^Q (fi—1,.. .,m) (21)

und darûber hinaus

ao= E a^ b S bx ^ 0 (22)

Ferner môge die Diskriminante D(kG) des Polynoms <p(Xa, t) fur aile
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Eigenwerte Xa (a 1,..., s) von K und ebenso die Koeffizienten
Pq(A>o)> VmiK) nicht verschwinden :

D{K) # 0 (a0 - b,K)K. + KXa) * 0 {a 1,..., s). (23)

Dann sind die Wurzeln tatfl der Gleichung q>(Xai t) 0 sicher einfach
und keine von ihnen verschwindet.

Das System lautet also ausgesehrieben :

(aol - b0K) U(x + m) S (a^I + b^K) U(x + m-f*) + R 6). (24)

Matrix (20) gehôrt bekanntlich das charakteristische Polynom

| U - K | Xn - "s kv+1V (25)

Die voneinander verschiedenen Wurzeln Xa von p(A) seien so durch-
numeriert, da8

\K\ ^\h\ ^•••2sMf|
gilt.

Ferner bilden die (linear unabhângigen) Vektoren Cal, definiert durch

Cal J -^r C,,!, O^=(l, A,, A»"1) (ï=l, 2, .pff), (26)

ein geordnetes Hauptvektorsystem, das heiBt es gilt
[ 0 (1=1)

(K~XaI)Cal \ (27)

Die Gleichungen fur l 1 driicken die bekannte Tatsache aus, daB die
Vektoren CQl Eigenvektoren der Matrix K sind7). Die ûbrigen Gleichungen

fur l > 1 ergeben sich leicht durch vollstandige Induktion. Diffe-
renziert man namlich die Z-te Gleichung nach ACT, so erhâlt man

- Col + (K - XaI) WGtl+1 (I - 1) G^ 9 (K - Kl) Catl+1 Gal

also die entsprechende Gleichung fur l + 1.
Aus (27) folgt offenbar

(K-laI)lCal=0 (l=l,...,pff) (28)

6) Eine praktische Anwendung solcher Système findet man in meiner Dissertation
,,Fehlerabschâtzungen fur die graphischen Integrationsverfahren von Grammel und
MeiBner-Ludwig'*, Verh. Naturforsch. Grès. Basel 64 (1953).

7) Vgl. H. W. Turnbull and A. G. Aitken, An Introduction to the Theory of Cano-
nical Matrices, 2nd éd., p. 58, wo die Vektoren Col aus (26) zur Transformation der
Matrix (20) auf die Jordansche Normalform verwendet werden.
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Wir betrachten nun zuerst die homogène Gleichung (24) mit B 0.
Satz II gibt die allgemeine Lôsung in der Form

(x) £ E
Va

tGfJL und diewo die Funktionen ^ { durch (13°) fur a Xa, t
Vektoren Cal durch (26) gegeben sind. cgj sind mn beliebige Konstanten
(oder periodische Funktionen der Période 1). Wegen (27) und (28) wird
aber

U{x) Z E E
fi,o /=1 i=0

27 E Zc

E E 27 < <?„,,_,

Vertauscht man hier die beiden inneren Summationen und ersetzt man
hinterher l durch den neuen Summationsindex i l — j so wird

Daher ist

V{x)=Z

Va Po-i
(x) E E 27

woj{x) Coj, waj{x) Z ï
l 0

(29)

die allgemeine Lôsung der zu (24) homogenen Gleichung.
Es sei nun im inhomogenen Fall J? ^ 0 zunâchst X8 ^ 0. Dann

kann als Partikulârlôsung von (24) ein konstanter Vektor P angesetzt
werden. Man erhâlt fur P, unter Beriicksichtigung von (22), die

Gleichung <p(K, 1) P=—bKP=R, also^alf-iexistiert, P=-jr1J!
Ist hingegen Xs 0 mit der Vielfachheit p p8, so folgt aus (25),

daB kx h2 jfcy 0, 0 gilt. K hat daher die Gestalt

K

/
1

l

\

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0
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Die Funktionen wt (x) mogen den rekursiven Relationen

\= £ dp o)0 (x + m — ju) + 1 (31)

m m
i E ailù)%(x~\-m — jbt) + Ebtœl_1(x -\- m — r) (i=l,2,

genugen, die kurzer in der Form

ç?(0, E) o)Q 1 <p(O, jB) co, + ^(0, E) w^ 0

geschrieben werden kônnen. Ferner sei Q(x) die Matrix

/°>0

f °

0

\

ft>0

0

ft>p_i

0

^ Q

- op-2 0

— co0 0

1

0

0

0
(32)

Daim ist

U(x) P(»)Jî r_l (33)

eme partikulare Làsung der inhomogenen Gleichung (24).
Fur p 0, das heifit Ag ^ 0, ergibt sich aus (33) die bereits gefun-

dene Lôsung —j- K~XB. Zum Beweis von (33) genugt es offenbar, die

Matrixgleichung

9(Z3JB)i3=( " I (34)

nachzuweisen. (34) folgt sofort durch Anwendung des Operators

0

auf die Matrix (32), wenn dabei die Relationen (31) berucksichtigt
werden.

Ein Funktionensystem cot(x) kann durch sukzessive Auflosung der
Relationen (31) gewonnen werden. Hierzu sind fortwahrend lineare,
inhomogene Differenzengleichungen aufzulôsen, denen das charakte-
ristische Polynom m

(pyvji) aoc — £* a^i t*
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gemeinsam ist. Dièses hat wegen (22) und (23) die einfache Wurzel

t= 1:

Bildet man die Entwicklung

• • - (y0

und ist B der Operator B E bxEm T, so kann zum Beispiel
T=0

i
(ûiix) BA~l E yvAvœi^l(x) (o0 y0x {i 1, 2,...) (35)

gesetzt werden8). A~1g(x) bedeutet dabei irgend eine Funktion, deren
lx\DifEerenz g(x) ist. Wâhlt man in (35) insbesondere A~lx [A

lx\ lx\ ^ '
A~i i J j j usw., so ist durch (35) die Funktionenfolge cot- eindeutig

bestimmt. Die ersten dieser Funktionen lauten

(Eingegangen den 15. Juli 1953.)

8) L. M. MUne-Thomson, The Calculus of Finite Différences, London 1933,
p. 392 ff.
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