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Lineare Differenzengleichungen
mit periodîschen Koeffizienten

von Res Jost, Institute for Advanced Study, Princeton, New Jersey

Herrn Prof, Dr. W. Scherrer zum 60. Geburtstag gewidmet

Einleitung

Wir betrachten im folgenden lineare Differenzengleichungen, deren
Koeffizienten periodische Funktionen sind, und zwar besitzen sie Perio-
den, die ein Multiplum der Spanne sind. Weiter sind die Koeffizienten
aus einem bestimmten Funktionenkôrper gewàhlt. Sie sind insbesondere
meromorphe Funktionen der unabhângigen Variablen. Das Haupt-
gewicht der Untersuchung liegt auf den funktionentheoretischen Eigen-
schaften der Lôsungen. Dièse werden zum Beispiel dadurch einge-
schrànkt, daB sie selbst auch meromorphe Funktionen sein sollen.

Die Literatur ûber diesen Gegenstand scheint recht spârlich zu sein.
So gibt zum Beispiel der bekannte Existenzbeweisx) fur die Lôsungen
linearer Differenzengleichungen in unserem Fall im allgemeinen durch-
aus nicht meromorphe Lôsungen.

Der Verfasser sah sich zu dieser Untersuchung veranlaBt durch den
Umstand, daB gewisse Integralgleichungen auf derartige Differenzengleichungen

(und entsprechende funktionentheoretische Einschrânkun-
gen fur die Lôsungen) fuhren. Er hofft, auf diesen Zusammenhang spàter
zuruckzukommen.

Weiter glaubt sich der Verfasser, der nicht vom Fâche ist, entschuldi-
gen zu mussen, wenn seine Methoden etwas antiquiert sind und seine

Behandlung des Problems lûckenhaft ist.

§ 1. Der einîachste Fall mit Période 1

Die Differenzengleichung, die wir in diesem Paragraphen lôsen werden,
ist von der Form

Z ak(z)H(z + k) 0 (1.1)
&=0,l,2,...,r

Ihre Koeffizienten ak(z) seien meromorphe Funktionen der Période 1.

*) N. E. Nôrlund, Differenzenrechnung, Berlin 1924, p. 273 ff.
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Wir wollen die Koeffizienten durch die folgenden Forderungen weit-
gehend einschrànken.

1. Einschrânkung'. ak(z) seien rationale Funktionen von v e2niz.

Bezeichnen wir den Funktionenkôrper dieser rationalen Funktionen mit
ï und fûhren wir den Translationsoperator t ein

tf(z) Hz+l), (1.2)

dann laBt sich (1.1) auch schreiben

P(t)H(z) 0 (1.3)

wo P(A) ein Polynom ûber ï ist.
Es ist eine besondere Annehmliehkeit dièses einfachsten Falles, daB t

mit den Elementen von ï vertauseht.

2. Einschrânkung. P(A) soll irreduzibel sein ûber ï. An dieser
zweiten Einschrânkung halten wir durch diesen ganzen Paragraphen fest.
Im nàchsten Paragraphen werden wesentlich allgemeinere Gleichungen
auf die hier gelôsten Gleichungen zurûckgefûhrt. Die nun folgenden zwei
Einschrânkungen werden nur vorubergehend gemacht.

3. Einschrânkung. Die durch P(w) 0 definierte algebraische
Funktion w(v) habe weder ûber v 0 noch ûber v =oo einen Ver-
zweigungspunkt. Es ist leicht zu sehen, daB dièse 3. Einschrânkung zur
folgenden Folgerung AnlaB gibt :

Folgerung. P(X) ist irreduzibel ûber jedem Kôrper
2niz

îv î (e~), v ganz.

SchlieBlich fordern wir der Bequemlichkeit halber die

4. Einschrânkung. Die Werte von w ûber den Punkten v 0 und
v oo seien endlich und von Null verschieden.

Die Singularitâten von (1) werden wie folgt definiert : es ist offenbar
môglich, durch passende Multiplikation mit einem Polynom in v, die
Koeffizienten von (1) zu teilerfremden Polynomen pk(v) von v zu
machen :

*=o (1.1')
(p9,Pl,...,Pr) 1 J

Définition. Die Nullstellen von î>0(e*"iJ!) vnà pr(e2"ii:) heiBen die
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Singularitâten von (1). Jetzt kônnen wir genauer festlegen, welche An-
forderungen wir an die Lôsung H (z) machen wollen :

1. Bedingung. H(z) soll meromorph sein.

2. Bedingung. H(z) soll Pôle nur in den Singularitâten von (1) be-
sitzen.

Die 3. Bedingung soll ein unverniinftiges Verhalten von H (z) fur
groBen \Im [z] | ausschlieBen.

3. Bedingung. Falls Im [z]>N, N<oo, so soll H(z) wie folgt dar-
stellbar sein : r

H(z) Z ^k(v)ezlogw^ (1.4)

und analog fur Im [z] < — Nf, N' <oo

H(z) Z ^.(v-

Dabei sind wk(v) die r verschiedenen Lôsungen von

P(w) O (1.5)

in der Umgebung von v 0.

wk (v~1) ^e L^sungen von (1.5) in der Umgebung von v oo. ^}fc(A)
und ^Pi(A) sind konvergente Potenzreihen, die nur endlich viele négative

Potenzen enthalten.
Unser Ziel ist es, eine solche Lôsung von (1.1) zu konstruieren. Doch,

bevor wir dazu ubergehen, eine Bemerkung. Essei H(z) eine meromorphe
Lôsung von (1.1). Dann gilt der folgende

Satz 1.1. H(z), H(z + 1),..., H(z + r — 1) bilden ein fondamentales

Lôsungssystem von (1.1). Die Wronskische Déterminante

Det || H(z + i + h) \\

t 0, 1, 2,..., r — 1 ; 4 0, 1, 2,..., (r — 1) verschwindet nicht
identisch in z.

Verschwânde nâmlich die Wronskische Déterminante, dann lieBen sich
periodische Funktionen der Période 1 so finden, daB

(1.6)
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Die <xk(z) kann man dabei als meromorph voraussetzen. Wir kônnen
(1.6) auch schreiben

P1(t)H(z) 0 (1.6')

wobei Px (X) ein Polynom mit periodischen, meromorphen Koeffizienten
ist. Ist P2(A) derG. G.T.von P(A) und P^A), dann gilt offenbar auch

P2(t)H(z) 0 (1.7)

Da aber P(A) irreduzibel ist (auch ùber dem Kôrper der meromorphen
Funktionen der Période 1 schlechtweg), sind wir auf einen Widerspruch
gestofien.

Nun zur Lôsung : Dazu leiten wir aus (1.1) zunàchst eine Hilfs-
gleichung 1. Ordnung ab. 5 [mit den Punkten p, q,... ] sei das durch
(1.5) defînierte analytische Gebilde (w,z). GemâB Einschrânkung 2

und 3 ist g zusammenhângend. AuBerdem gestattet 5 Translationen,
die definiert sind durch

tz z + 1 tw w (1.8)

Ist /(p) eine Funktion auf 2?
> dann verstehen wir unter

Wir werden zunàchst die folgende Hilfsgleichung lôsen :

(1.10)

und zwar durch eine auf $f eindeutige, meromorphe Funktion
die Pôle hôchstens besitzt in den Polen und Nullstellen von w(p) und
die liber den Punkten v 0 und v oo ein spâter zu definierendes
Verhalten zeigt. Jede Lôsung von (1.10) ist offenbar Lôsung von (1.1).
Aus einer Lôsung von (1.10) erhalten wir eine Lôsung von (1.1), die den

Bedingungen 1 und 2 genugt, durch die Vorschrift :

(1.11)
Vz

wobei pz liber aile Punkte von g lâuft, die iiber z liegen.
Bevor wir zur Lôsung von (1.10) schreiten, einige Bemerkungen.

Eindeutige Funktionen auf 3f mit der Eigenschaft

*/(p)=/(p) (1-12)

nennen wir periodisch. Periodische Funktionen sind offenbar eindeutige
Funktionen auf dem iiber den Punkten v 0 und v oo punktierten
algebraischen Gebilde (v,w), das durch (1.5) definiert ist. Dièses Gebilde
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sei mit 50, seine Punkte mit p°, q°,... bezeichnet. Mit g0 bezeichnen
wir das durch (1.5) definierte geschlossene algebraische Gebilde (v, w).
Was eben liber Funktionen gesagt wurde, gilt auch fur Differentiale.
Unter einem Periodenstreifen von $ verstehen wir ein Fundamental-
gebiet der durch t erzeugten Gruppe. Wir kônnen von einem linken oder
rechten Randpunkt des Periodenstreifens sprechen, je nachdem mit p
auch tp oder ^-1p Randpunkt ist.

Nun seien qe die Pôle des Difïerentials dlogw(p), die in einem be-
stimmten und im folgenden festgehaltenen Periodenstreifen liegen.
Se seien die zugehôrigen Residuen. Dann gilt der folgende

Hilfssatz 1.1. Es ist

- 2n%Z89z(q9) + E log w(q*tk) - E log w(qlfk) 0 mod (2ni) (1.13)
k _ k

Dabei sind qj k die Punkte von 5o die ûber v 0, q^ k diejenigen, die
tiber v =oo liegen. Man kann ûber die Logarithmen so verfugen, daB

(1.13) eine Gleichung wird.

Beweis. Man integriere zd log w um die Begrenzung eines Periodenstreifens,

die entsteht durch den Rand des Periodenstreifens und eine
kanonische Zerschneidung im Innern des Periodenstreifens2).

Jetzt sind wir in der Lage, (1.10) zu lôsen.
Es sei

(1.14)

(1.15)
dann aus (1.8) :

ta(V) a(p) + ri(V) (1.16)
oder

wobei

(Lis)

Also ist g(p) ein Differential auf 5o- £>a ^(p) a^s logarithmisches
Differential einer meromorphen Funktion nur Pôle erster Ordnung
haben soll, gilt dasselbe auch fur @(p). Dadurch, daB wir dièse Forde-

rung auf gfo ausdehnen, erhalten wir die oben angekundigte Bedingung
ûber das Verhalten von §(p) ûber v 0 und v =oo.

2) Siehe zum Beispiel P. Appell et E. Goursat, Théorie des Fonctions Algébriques...,
Paris 1929, Ch. III und Ch. VII.
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ist daher ein Abelsches Differential 3. Art. Im folgenden be-
sehrânken wir uns auf den Periodenstreifen, oder, was dasselbe ist, auf
das lângs gewissen Wegen aufgeschnittene Gebilde 2fo- (Zum Beispiel
sollen aile Integrationswege in diesem Periodenstreifen liegen.) Nun hat
g(p) die Aufgabe, die Residuen von a(p) ganzzahlig zu machen. Nach
dem Hilfssatz kann das bei geeigneter Verfûgung iiber logw(p) durch
ein Differential 3. Art geschehen, das an den Stellen

q°e das Residuum — Sez(qe)

q°Otk das Residuum —jlogw(q°Qtk)

Residuum —j^ï log

Qi(V) (1.19)

besitzt. Nach (1.13) existiert ein solches Differential. Bezeichnen wir es

mit Q1(p) und spalten wir @(p) auf:

e(P) Qi(V) + MP) • (1.20)

Was haben wir dadurch nun in der Umgebung eines Punktes qJJ ^ ge-
wonnen? Integrieren wir zrj + qx in dieser Umgebung :

J (ZV + Qi) z 1(>g w — J (log w dz — qx)

(1.21)

Nach (1.19) aber und nach Einschrankung 3. und 4. ist das letzte Intégral

eine regulâre Funktion von v. Insbesondere ist

J (*q + Qi) log w (1.22)

das heiBt in der Umgebung von qJ}jJb (und von q«>fe) lôst exp Jp (zrj + £i)
die Differenzengleichung (1.10) [wenigstens in den Randpunkten des

abgeschlossenen Periodenstreifens], Die Funktion besitzt aber noch
im allgemeinen von 1 verschiedene Multiplikatoren zu den Rûckkehr-
schnitten im Periodenstreifen. Dièse Multiplikatoren sollen durch Wahl
von £2 zu 1 gemacht werden. Das ist aber nach dem folgenden Satz
immer môglich3) :

Satz. Zu jedem System ^...jUj,, v1...p von endlichen, nicht-
verschwindenden Multiplikatoren zu einer Basis ax.. ,av, bx.. .b9 von

s) Etwa H. Weyl, Die Idée der Riemannschen Flâche, Leipzig und Berlin 1923,
§17.
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Ruckkehrschnitten auf einer geschlossenen Riemannschen Flâche vom
Geschlecht p gibt es eine meromorphe Funktion <p(p°) mit p Polen und
p Nullstellen. Die Lage der Pôle kann man beliebig vorgeben. Die Lage
der Nullstellen ist dureh das Jacobische Umkehrproblem bestimmt.

Legt man also die Pôle in die Pôle von ï?(p) und identifiziert man die
Multiplikatoren mit den reziproken Multiplikatoren von

expj (zrj + qx)

dann hat man nur zu setzen

(1.23)

Durch unsere Vorschriften ist ç(p) bis auf das logarithmische Diffe-
rential einer algebraischen Funktion auf gfo bestimmt4).

Setzt man
*

p

(1.24)

so ist nun §(p) im abgeschlossenen Periodenstreifen eindeutig. Liegt
p auf dem linken Rand, dann gilt (1.10). Setzen wir § (p) nach (1.10),
also in den rechts benachbarten Periodenstreifen fort, so ist dièse Fort-
setzung stetig und daher analytisch. So fortfahrend erhalten wir das

Résultat, da6 (1.24) eine allen Bedingungen genùgende Lôsung von
(1.10) ist. Es ist natxirlich leicht, iiber die in q unbestimmt gebliebene
algebraische Funktion so zu verfûgen, daB der Ausdruck (1.11) sicher
nicht identisch verschwindet [man kann zum Beispiel immer erreichen,
dafi (1.11) einen Pol hat]. Das so gefundene H(z) erfûllt offenbar die
1. und 2. Bedingung. DaB es auch die 3. Bedingung erfûllt, folgt aus
(1.21). GemâB Satz 1.1 aber ist dadurch auch die Existenz eines den
Bedingungen 1 bis 3 genugenden Fundamentalsystems gesichert.

Es ist leicht, zu erkennen, daB das Weglassen der 4. Einschrànkung
in der durchgefuhrten Konstruktion und der 3. Bedingung nur zu un-
wesentlichen Ânderungen AnlaB gibt. Wesentlich ist es, die 3.

Einschrànkung zu eliminieren.

4) Sind also ^(p) und $2(P) zwei Losungen von (1.10), die nach dem angegebenen
Verfahren konstruiert sind, dann gilt immer

wobei ock(z) €I. Mit (1.10) und (1.11) also

r-1
H2{z) £ (x.k(z)Hx{z + k)

was man mit Satz 1.1 zu vergleichen hat.
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Ich môchte kurz skizzieren, wie man dann zu verfahren hat.
Es sei also P{X) irreduzibel iiber l, habe aber Verzweigungspunkte

iïber v 0 oder v oo. Nun bestimme man m derart, dafi die samt-
lichen Funktionselemente von w(v) ûber v 0 und v 00 sich als

Potenzreihen in v' e m

definiere man
P

Die Lôsungen von

sind
_ ^Hn(z)=e mn°H(z) (1.27)

Weiter ist das Polynom P0(^)P1(A).. .Pm_i(A) offenbar ein Polynom
in Xm : m_x

/7PB(A) g(^) (1.28)

ist die Potenz eines irreduziblen Polynoms liber ï

(1.29)

resp. vr

P«(t)Hn

2ni

(Z)

e

0

2ni
m

•

darstellen lassen Dann

(i.

.25)

.26)

ist definiert als das Polynom kleinsten Grades fur welches Q^{Xm)

durch P(A) teilbar ist. Definiert man den Translationsoperator T durch

f(z + m) (1.30)

Dann ist jede Lôsung von (1.1) auch Lôsung von

Q0(T)K(z) 0 (1.31)

Nun kann QQ(A) liber dem Kôrper tm zerfallen. Es sei Q0(A) ein
irreduzibler Faktor. Betrachtet man dann die Gleichung

Q0(T)K(z) 0 (1.32)

so ist K(z) auch eine Lôsung von (1.31). Nach der Substitution zf —

erfûllt Q0(A) die Einschrânkungen 1, 2 und 3 aus dem Anfang dièses

Paragraphen. Die Gleichung (1.32) kann also gemàB der angegebenen
Konstruktion gelôst werden. Nun suchen wir das Polynom kleinsten
Grades liber ï, fur welches gilt

P(t)K(z) 0 (1.33)

Nach (1.30) und (1.31) gibt es ein solches Polynom. P(X) ist offenbar
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ein Teiler von QQ{Xm) und dahervon Q{Xm). (28) stellt aber die Zer-
legung von Q(km) in irreduzible Faktoren uber ï dar. Daher gilt :

I7Pni(t)K(z) 0 (1.34)

aber a _
IIPni(t)K(z) Hni(z) ^0 (1.35)
i 2

Aus (1.34) und (1.35)
Pni(t)Hni(z) 0 (1.36)

und nach (1.27) 2ni
H(z) e^niZHni(z) (1.37)

Damit ist (1.1) gelôst.
SehlieBlich wollen wir als Vorbereitung fur den nâchsten Paragraphen

noch den folgenden Satz anfuhren :

Satz 1.2. Ist H(z) eine meromorphe Lôsung von (1.1), dann bilden
die Funktionen

z«tPH(z) a 0, 1,...,?&— 1

j8 0,l,...,r- 1

ein Fundamentalsystem der Gleichung

[P{t)]*H{z) 0 (1.38)
Der Beweis ist trivial5).

§ 2. Fall beliebiger ganzzahliger Période

Es ist im folgenden bequemer, sichaufein System erster Ordnung von
Differenzengleichungen zu beziehen. Weiter wollen wir die Abmachung
treffen, Elemente des Kôrpers î mit kleinen Buchstaben a, b, c..., ;

Elemente des Kôrpers ïv (v > 1 ganz und fest) mit groBen Buchstaben
A, B,C,... zu bezeichnen.

y(z) sei der Vektor {yx(z),..., yn(z)) ; seine Elemente gehôren nicht
notwendig einem der Kôrper ï oder îv an,

M die nicht singulàre Matrix || Mik{z) || ; Mik e îv

Zu lôsen sei dann die Differenzengleichung

l) M(z)y(z) (2.1)

5) N. E. Nôrlund, 1. c. p. 295.
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Natûrlich ist
M(z + v) M(z) (2.2)

Weiter solly(z) meromorph sein. Weitere Einschrànkungen ergeben sich
im Verlauf der Lôsung von selbst. Es ist natûrlich, die folgende Grappe
© von nichtsingulàren linearen Transformationen zuzulassen :

y(z)=S(z)y(z); 8ik(z)eîv (2.3)

(2.1) transformiert sich dann in

y(z+l) M(z)y(z) (2.4)
mit

M(z) S-1 (z + 1) M(z)S(z) (2.5)

Fragen wk uns nach den Invarianten von (2.1) unter ©. Dazu betrachte
man die aus (2.1) folgende Hilfsgleichung :

(2.6)
wobei

SR(z) M(z + v - 1) M(z + v - 2)... M(z + 1) M(z) (2.7)

Bei der Transformation S c © transformiert sich 9K (z) nach

m(z) s-ifâ m(z)S(z). (2.8)

Darans folgt unmittelbar

Satz 2,1. Die Elementarteiler ek(X) von 3R(z) — XI sind
Invarianten bezûglich der Grappe ©. Sie sind auBerdem Polynôme liber ï.

Die letzte Behauptung folgt aus

m(z + 1) M{z) m(z) M-^z) (2.9)

GemâB Satz (2.1) kann man ein So € © so finden, daÛ

e î (2.10)

die erste Normalform annimmt6). Nach Ausfûhrung dieser Transformation,

sagen wir, daB (2.1) und damit M(z) auf Normalform transformiert
ist.

Nun gilt die folgende Umkehrung von Satz 2.1:

Satz 2.2. Zwei Matrizen M(z) und N(z) mit denselben Invarianten
ek{X) sind beziiglich der Grappe © àquivalent.

6) B. L. van der Waerden, Moderne Algebra, Berlin 1940, Bd. II, § 111.
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Zum Beweis haben wir zu zeigen, da8 es ein S(z) e © so gibt, daB

N(z) S-*(z + 1) M(z) S(z) (2.11)

AuBerdem kônnen wir von vornherein annehmen, daB N(z) und M(z)
die Normalform haben :

N(z + v- l)N(z + v-2) ...N(z+l)N{z) mo(z)
M(z + v- 1) M(z + v - 2) M(z + 1) M(z) îtto(z) l ;

Schreiben wir (2.9) als Dififerenzengleichung fur S(z) :

S(z +!)== M(z) S(z) N-*(z) (2.13)

so kônnen wir davon unmittelbar eine Lôsung angeben :

S(z) A{z) + M(z - l)A(z - 1) N-*(z - 1)

+ M(z - 1) M(z -2)A(z — 2) N-^z - 2) JV-*(z - 1)

+
+ M(z - 1) M(z - v + 1) A(z - v + 1) iV-^z - v + 1)

iV-Mz- 1) (2.14)

wobei ^4(z) || Aik(z) || ; Aik c lv nur der Bedingung

(2.15)
zu geniigen hat.

Es ist immer môgiich ûber A(z) so zu verfugen, daB S (z) nicht singulàr
wird. Es geniigt zum Beispiel A(z) so zu wâhlen, daB Det || S(z) || an
einer Stelle einen Pol hat.

Es ist von Bedeutung, daB wir die Invarianten ek(X) auch noch in
unabhàngiger Weise gewinnen kônnen. Zu diesem Zweck schreiben wir
(2.1) fur ein Fundamentalsystem, das heiBt fur eine nicht singulâre
Lôsungsmatrix Y(z) :

Y(z+l) M(z)Y(z) (2.16)

Sind Yx(z) und Y2(z) zwei solche Lôsungsmatrizen, so ist offenbar

Y^(z)Y2(z)=2(z) (2.17)

eine Matrix mit meromorphen Elementen, und es gilt

Z(z+ 1) =ï(z) (2.18)

Ohne Einschrânkung tiber Y(z) folgt aber nicht, daB slk(z)€Î. Wir
bezeichnen allgemein meromorphe Funktionen der Période 1, die
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nicht notwendig Elemente von ï sind, mit einer Tilde. Nun folgt aber
weiter aus (2.2) und (2.17) :

Y(z + v) Y(z)n(z) (2.19)
aber aus (2.6)

Y(z + v) m(z) Y(z) (2.20)
oder

U(z)=Y-i(z)m(z)Y(z) (2.21)
daraus aber

2.3. tt(z) — Al hat die Elementarteiler eh{K)

und

Satz 2.4. Ist H(z) eine nichtsingulâre Lôsungsmatrix des Systems

H(z + v)=H(z)mo(z) (2.22)
und ist

H(z + l)H-*(z) N(z) etv (2.23)

dann ist N(z) bezûglich © àquivalent mit M(z), das heiBt, es gibt ein
S (z) € © derart, daB

Y(z)=S(z)H(z) (2.24)

Der Beweis erfolgt nach Satz 2.2 und Satz 2.3.
Das Problem ist jetzt also reduziert auf die Lôsung von (2.22). Setzt

man fur 11to(z) die Normalform ein, so tritt eine Reduktion nach MaB-

gabe einzelner Elementarteiler ein. Um den AnschluB an die in § 1

gelôste Differenzengleichung zu finden, ziehen wir es jedoch vor, die
Matrix Hto(z) im Kôrper îv auf die zweite Normalform7) zu transformieren.
Dièse sei mit 9R0(z) bezeichnet

o(z)T-i(z) (2.25)

ff(z)=L(z)T(z) (2.26)
und

L(z + v) L(z)mQ(z) (2.27)

Setzt man die Normalform von %R0(z) wirklich ein, so erkennt man durch
Elimination, daB das Problem zuriickgefuhrt ist auf die Lôsung von
Differenzengleichungen der Form

[P{T)fL(z) 0 (2.28)

7) B. L. van der Waerden, 1. c.
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wobei
TL{z) L(z + v) (2.29)

und P(A) ein irreduzibles Polynom iïber iv ist. Damit ist der AnschluB
an § 1 gewonnen. Es ist nicht schwer, zu verifizieren, daB (2.23) eine
Folge unseres Konstruktionsverfahrens ist8).

Da man umgekehrt offenbar von beliebigen Elementarteilern ek(X)
iiber l ausgehen kann und zu beliebigen v immer eine Matrix M(z) und
ein Gleichungssystem (2.1) finden kann, das zu den Invarianten ek(X)
gehôrt, haben wir

Satz 2.5. Abgesehen von der Bedingung efc(A)€Ï[A] unterliegen
die Elementarteiler von SR — Al nur den gewôhnlichen Einschrânkun-
gen9).

Der Verfasser fïïhlt sich den Mathematikern seiner Umgebung, die er
oft mit Fragen belàstigt hat, verpflichtet.

BesonderenDankschuldet er denHerrenDr. A. Beurling und Dr. F. Hir-
zebruch fur anregende Diskussionen, Dr. F. J. Dyson fur Durchsicht des

Manuskripts.

(Eingegangen den 23. Oktober 1953.)

8) Man vergleiche dazu die FuBnote p. 7.

9) O. Schreier und E. Sperner, Analytische Géométrie, Leipzig und Berlin 1935,
Bd. II, p. 124.
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