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Lineare Differenzengleichungen

mit periodischen Koeffizienten
von REs Jost, Institute for Advanced Study, Princeton, New Jersey

Herrn Prof. Dr. W. Scherrer zum 60. Geburtstag gewidmet

Einleitung

Wir betrachten im folgenden lineare Differenzengleichungen, deren
Koeffizienten periodische Funktionen sind, und zwar besitzen sie Perio-
den, die ein Multiplum der Spanne sind. Weiter sind die Koeffizienten
aus einem bestimmten Funktionenkorper gewéhlt. Sie sind insbesondere
meromorphe Funktionen der unabhingigen Variablen. Das Haupt-
gewicht der Untersuchung liegt auf den funktionentheoretischen Eigen-
schaften der Losungen. Diese werden zum Beispiel dadurch einge-
schriankt, daf} sie selbst auch meromorphe Funktionen sein sollen.

Die Literatur iiber diesen Gegenstand scheint recht sparlich zu sein.
So gibt zum Beispiel der bekannte Existenzbeweis?!) fiir die Losungen
linearer Differenzengleichungen in unserem Fall im allgemeinen durch-
aus nicht meromorphe Losungen.

Der Verfasser sah sich zu dieser Untersuchung veranlaBt durch den
Umstand, dafl gewisse Integralgleichungen auf derartige Differenzen-
gleichungen (und entsprechende funktionentheoretische Einschrinkun-
gen fiir die Losungen) fithren. Er hofft, auf diesen Zusammenhang spéter
zuriickzukommen.

Weiter glaubt sich der Verfasser, der nicht vom Fache ist, entschuldi-
gen zu miissen, wenn seine Methoden etwas antiquiert sind und seine
Behandlung des Problems liickenhaft ist.

§ 1. Der einfachste Fall mit Periode 1

Die Differenzengleichung, die wir in diesem Paragraphen losen werden,
ist von der Form
2 a,(2)H(z + k)=0 . (1.1)

k=0,1,2,...,r
Thre Koeffizienten a,(2) seien meromorphe Funktionen der Periode 1.
1) N. E. Nérlund, Differenzenrechnung, Berlin 1924, p. 273 ff.
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Wir wollen die Koeffizienten durch die folgenden Forderungen weit-
gehend einschrinken.

1. Einschrinkung. a,(z) seien rationale Funktionen von v = e*7%2,
Bezeichnen wir den Funktionenkorper dieser rationalen Funktionen mit
f und fithren wir den Translationsoperator ¢ ein

tfx) =fz+ 1) , (1.2)
dann 148t sich (1.1) auch schreiben
Pt)H(z)=0 , (1.3)

wo P(A) ein Polynom iiber f ist.
Es ist eine besondere Annehmlichkeit dieses einfachsten Falles, daB ¢
mit den Elementen von f vertauscht.

2. Einschrinkung. P(A) soll irreduzibel sein iiber f. An dieser
zweiten Einschrinkung halten wir durch diesen ganzen Paragraphen fest.
Im nichsten Paragraphen werden wesentlich allgemeinere Gleichungen
auf die hier gelosten Gleichungen zuriickgefiihrt. Die nun folgenden zwei
Einschrinkungen werden nur voriibergehend gemacht.

3. FEinschrinkung. Die durch P(w)= 0 definierte algebraische
Funktion w(v) habe weder iiber v = 0 noch iiber v =oco einen Ver-
zweigungspunkt. Es ist leicht zu sehen, dafl diese 3. Einschrinkung zur
folgenden Folgerung Anlaf} gibt :

Folgerung. P(A) ist irreduzibel iiber jedem Korper

2tz
I, =%f(ev ), »ganz.

Schlieflich fordern wir der Bequemlichkeit halber die

4. Einschrinkung. Die Werte von w iiber den Punkten » = 0 und
v =oo seien endlich und von Null verschieden.

Die Singularitéten von (1) werden wie folgt definiert : es ist offenbar
moglich, durch passende Multiplikation mit einem Polynom in v, die
Koeffizienten von (1) zu teilerfremden Polynomen p,(v) von v zu
machen :

képk('v)ﬂ(z 4+ k) =0

(1.1')
(po, Pis-- . p,) == ]

Definition. Die Nullstellen von p,(e**¢?) und p,(e**%?) heiBen die
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Singularititen von (1). Jetzt kénnen wir genauer festlegen, welche An-
forderungen wir an die Losung H (z) machen wollen :

1. Bedingung. H (z) soll meromorph sein.

2. Bedingung. H (z) soll Pole nur in den Singularititen von (1) be-
sitzen.

Die 3. Bedingung soll ein unverniinftiges Verhalten von H (z) fiir
groen |Im [z]| ausschliefen.

3. Bedingung. Falls Im [2] >N, N <oco, so soll H(z) wie folgt dar-
stellbar sein :

H(z) = X P (v)er ' ma (1.4)
k=1
und analog fir Im [z]<—N', N'<oo
H(z) = X Pjlv) e 8wk (1.4)
k=1

Dabei sind w,(v) die r verschiedenen Losungen von

Pw) =0 (1.5)

in der Umgebung von v = 0.

wy (v!) die Losungen von (1.5) in der Umgebung von v =oco0. P (4)
und P, (A) sind konvergente Potenzreihen, die nur endlich viele nega-
tive Potenzen enthalten.

Unser Ziel ist es, eine solche Losung von (1.1) zu konstruieren. Doch,
bevor wir dazu iibergehen, eine Bemerkung. Es sei H (z) eine meromorphe
Losung von (1.1). Dann gilt der folgende

Satz 1.1. H(z),H(z+1),...,H(z +r — 1) bilden ein fundamen-
tales Losungssystem von (1.1). Die Wronskische Determinante

Det || H(z + @ + k) ||

t=20,1,2,...,r—1; k=0,1,2,...,(r — 1) verschwindet nicht
identisch in z.

Verschwinde niamlich die Wronskische Determinante, dann lie3en sich
periodische Funktionen der Periode 1 so finden, da3

S @) HE+ k) =0 . (1.6)

k=0

175



Die «,(2z) kann man dabei als meromorph voraussetzen. Wir konnen
(1.6) auch schreiben
Pi(t)H(z) =0, (1.6)

wobei P,(A) ein Polynom mit periodischen, meromorphen Koeffizienten
ist. Ist P,(4) der G. G.T.von P (1) und P,(4), dann gilt offenbar auch

P,()H(z) =0 . (1.7)

Da aber P(A) irreduzibel ist (auch iiber dem Korper der meromorphen
Funktionen der Periode 1 schlechtweg), sind wir auf einen Widerspruch
gestoBen.

Nun zur Loésung: Dazu leiten wir aus (1.1) zunidchst eine Hilfs-
gleichung 1. Ordnung ab. § [mit den Punkten p, q,...] sei das durch
(1.5) definierte analytische Gebilde (w,z). Gemdfl Einschrinkung 2
und 3 ist & zusammenhingend. Aullerdem gestattet § Translationen,
die definiert sind durch

tz=12-+1 fw=w . (1.8)

Ist f(p) eine Funktion auf §, dann verstehen wir unter

tf(p) = f(tp) - (1.9)
Wir werden zunéchst die folgende Hilfsgleichung losen :
tH(p) = wH(p) , (1.10)

und zwar durch eine auf § eindeutige, meromorphe Funktion $(p),
die Pole hochstens besitzt in den Polen und Nullstellen von w(p) und
die iiber den Punkten » = 0 und v =oo ein spiter zu definierendes
Verhalten zeigt. Jede Losung von (1.10) ist offenbar Losung von (1.1).
Aus einer Losung von (1.10) erhalten wir eine Losung von (1.1), die den
Bedingungen 1 und 2 geniigt, durch die Vorschrift :

H(z) =X $(p,) » (1.11)
Pz

wobei p, iiber alle Punkte von § liuft, die iiber z liegen.
Bevor wir zur Losung von (1.10) schreiten, einige Bemerkungen. Ein-
deutige Funktionen auf § mit der Eigenschaft

tf(p) = f(p) (1.12)

nennen wir periodisch. Periodische Funktionen sind offenbar eindeutige
Funktionen auf dem iiber den Punkten v = 0 und v =oco punktierten
algebraischen Gebilde (v, w), das durch (1.5) definiert ist. Dieses Gebilde
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sei mit §,, seine Punkte mit p°, q°... bezeichnet. Mit §, bezeichnen
wir das durch (1.5) definierte geschlossene algebraische Gebilde (v, w).
Was eben iiber Funktionen gesagt wurde, gilt auch fiir Differentiale.
Unter einem Periodenstreifen von § verstehen wir ein Fundamental-
gebiet der durch ¢ erzeugten Gruppe. Wir konnen von einem linken oder
rechten Randpunkt des Periodenstreifens sprechen, je nachdem mit p
auch tp oder ¢~p Randpunkt ist.

Nun seien q, die Pole des Differentials d log w(p), die in einem be-
stimmten und im folgenden festgehaltenen Periodenstreifen liegen.
S, seien die zugehorigen Residuen. Dann gilt der folgende

Hilfssatz 1.1. Es ist
— 26 38,2(q,) + X log w(a) ) — X log w(ql ;) = 0 mod (2xi) . (1.13)
k k

Dabei sind qj , die Punkte von &, die iiber v = 0, 9%,z diejenigen, die
iiber v =oo liegen. Man kann iiber die Logarithmen so verfiigen, daf
(1.13) eine Gleichung wird.

Beweis. Man integriere zd log w um die Begrenzung eines Perioden-
streifens, die entsteht durch den Rand des Periodenstreifens und eine
kanonische Zerschneidung im Innern des Periodenstreifens?).

Jetzt sind wir in der Lage, (1.10) zu losen.

Es sei
o(p) = dlog H(p) (1.14)
7(p) = d log w(p) (1.15)
dann aus (1.8):
to(p) = a(p) + n(p) (1.16)
oder
o(p) =zn(p) + o) , (1.17)
wobei
to(p) = e(p) . (1.18)

Also ist o(p) ein Differential auf §,. Da o(p) als logarithmisches
Differential einer meromorphen Funktion nur Pole erster Ordnung
haben soll, gilt dasselbe auch fiir ¢(p). Dadurch, dal wir diese Forde-
rung auf §, ausdehnen, erhalten wir die oben angekiindigte Bedingung
liber das Verhalten von $(p) iitber v =0 und v =oo.

2) Siehe zum Beispiel P. Appell et E.Goursat, Théorie des Fonctions Algébriques.. .,
Paris 1929, Ch. III und Ch. VII.
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o(p) ist daher ein Abelsches Differential 3. Art. Im folgenden be-
schrinken wir uns auf den Periodenstreifen, oder, was dasselbe ist, auf
das lings gewissen Wegen aufgeschnittene Gebilde &,. (Zum Beispiel
sollen alle Integrationswege in diesem Periodenstreifen liegen.) Nun hat
o(p) die Aufgabe, die Residuen von o(p) ganzzahlig zu machen. Nach
dem Hilfssatz kann das bei geeigneter Verfiigung iiber log w(p) durch
ein Differential 3. Art geschehen, das an den Stellen

q? das Residuum — 8,z(q.)
1
0 : 0
Go,c das Residuum  ——log w(qa,)) | — o, (p) (1.19)
1
0 i — o
4%, das Residuum 5 log w(qq,x)

besitzt. Nach (1.13) existiert ein solches Differential. Bezeichnen wir es
mit p,(p) und spalten wir g(p) auf:

e(p) = e1(p) + e:(p) - (1.20)

Was haben wir dadurch nun in der Umgebung eines Punktes g , ge-
wonnen? Integrieren wir z# + p, in dieser Umgebung :

§zn + e)) =zlogw — f (logwdz — ¢,)
1 ’"f( 1 o de (1.21)
= zlog u 3 0gw—~— @) -

T

Nach (1.19) aber und nach Einschrankung 3. und 4. ist das letzte Inte-
gral eine regulire Funktion von v. Insbesondere ist
Z,+1

§ (zn+ ¢)) =logw , (1.22)

%

das heift in der Umgebung von qg , (und von qg, ;) lost exp [ (z% + ¢,)
die Differenzengleichung (1.10) [wenigstens in den Randpunkten des
abgeschlossenen Periodenstreifens]. Die Funktion besitzt aber noch
im allgemeinen von 1 verschiedene Multiplikatoren zu den Riickkehr-
schnitten im Periodenstreifen. Diese Multiplikatoren sollen durch Wahl
von g, zu 1 gemacht werden. Das ist aber nach dem folgenden Satz
inimer moglich3) :

Satz. Zu jedem System u,...u,, v..., von endlichen, nicht-
verschwindenden Multiplikatoren zu einer Basis a,...a,, b,...b, von

3) Etwa H. Weyl, Die Idee der Riemannschen Flache, Leipzig und Berlin 1923,
§ 17.
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Riickkehrschnitten auf einer geschlossenen Riemannschen Fliche vom
Geschlecht p gibt es eine meromorphe Funktion ¢(p°) mit p Polen und
p Nullstellen. Die Lage der Pole kann man beliebig vorgeben. Die Lage
der Nullstellen ist durch das Jacobische Umkehrproblem bestimmt.
Legt man also die Pole in die Pole von #(p) und identifiziert man die
Multiplikatoren mit den reziproken Multiplikatoren von

exp f (29 + ¢,)

dann hat man nur zu setzen

0:(p) = dlog p(p) . (1.23)

Durch unsere Vorschriften ist p(p) bis auf das logarithmische Diffe-

rential einer algebraischen Funktion auf @o bestimmt 4).

Setzt man °
fizn+e)

H(p) = € (1.24)

so ist nun $H(p) im abgeschlossenen Periodenstreifen eindeutig. Liegt
p auf dem linken Rand, dann gilt (1.10). Setzen wir $(p) nach (1.10),
also in den rechts benachbarten Periodenstreifen fort, so ist diese Fort-
setzung stetig und daher analytisch. So fortfahrend erhalten wir das
Resultat, daf3 (1.24) eine allen Bedingungen geniigende Losung von
(1.10) ist. Es ist natiirlich leicht, iiber die in ¢ unbestimmt gebliebene
algebraische Funktion so zu verfiigen, dafl der Ausdruck (1.11) sicher
nicht identisch verschwindet [man kann zum Beispiel immer erreichen,
daB (1.11) einen Pol hat]. Das so gefundene H(z) erfiillt offenbar die
1. und 2. Bedingung. DaB es auch die 3. Bedingung erfiillt, folgt aus
(1.21). GemidB Satz 1.1 aber ist dadurch auch die Existenz eines den
Bedingungen 1 bis 3 geniigenden Fundamentalsystems gesichert.

Es ist leicht, zu erkennen, daBl das Weglassen der 4. Einschrinkung
in der durchgefiihrten Konstruktion und der 3. Bedingung nur zu un-
wesentlichen Anderungen AnlaB gibt. Wesentlich ist es, die 3. Ein-
schrankung zu eliminieren.

%) Sind also $,(p) und $,(p) zwei Losungen von (1.10), die nach dem angegebenen
Verfahren konstruiert sind, dann gilt immer

r—1
H:(p) = (kﬂoak(z)w"m) $:(10)
wobei o, (2) €. Mit (1.10) und (1.11) also
r—1
Hy(2) = X o (2)H,y (2 + k) ,

k=0
was man mit Safz 1.1 zu vergleichen hat.
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Ich mochte kurz skizzieren, wie man dann zu verfahren hat.
Es sei also P(4) irreduzibel iiber ¥, habe aber Verzweigungspunkte
iilber v = 0 oder v =oco. Nun bestimme man m derart, da3 die simt-

lichen Funktionselemente von w(v) iitber » = 0 und v =oo sich als
271 2nt

z
Potenzreihen in v' =e™ resp. v'"1=e¢ ™ darstellenlassen. Dann
definiere man

P,(A) = P(e™ 2). (1.25)
Die Losungen von
P,t)H,(z) =0 (1.26)
sind omi
Hyz)=e ™ H() . (1.27)
Weiter ist das Polynom P,(4)P,(4)...P,_,(4) offenbar ein Polynom
in A™: m—1
IT P,(2) = Q(A™) . (1.28)
n=0

@ (A) ist die Potenz eines irreduziblen Polynoms iiber f

Q(4) = [@o(A)}* . (1.29)

Qo (A) ist definiert als das Polynom kleinsten Grades fiir welches @,(i™)
durch P(A) teilbar ist. Definiert man den Translationsoperator 7' durch

Ti)=fz 4 m) . (1.30)
Dann ist jede Losung von (1.1) auch Losung von
Qo(T)K (2) =0 . (1.31)

Nun kann @,(A) iiber dem Korper f, zerfallen. Es sei @_0(/1) ein
irreduzibler Faktor. Betrachtet man dann die Gleichung

QK@) =0, (1.32)
8o ist K (z) auch eine Losung von (1.31). Nach der Substitution 2’ = —;n—

erfiillt 60 (A) die Einschrinkungen 1, 2 und 3 aus dem Anfang dieses
Paragraphen. Die Gleichung (1.32) kann also gemdfl der angegebenen
Konstruktion gelost werden. Nun suchen wir das Polynom kleinsten
Grades iiber f, fiir welches gilt

Pt)K(z) =0 . (1.33)
Nach (1.30) und (1.31) gibt es ein solches Polynom. P(2) ist offenbar
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ein Teiler von @,(4™) und daher von @Q(A™). (28) stellt aber die Zer-
legung von @(A™) in irreduzible Faktoren iiber f dar. Daher gilt :

P, t)K(z) =0, (1.34)
t=1
aber o _
P, () K@) =H,(z) #0 . (1.35)
Aus (1.34) und (1.35)
P, ()H, () = 0 (1.36)
und nach (1.27) ami
Hz =e™ "H,(2) . (1.37)

Damit ist (1.1) gelost.
Schlieflich wollen wir als Vorbereitung fiir den nichsten Paragraphen
noch den folgenden Satz anfiihren :

Satz 1.2. Ist H(z) eine meromorphe Losung von (1.1), dann bilden
die Funktionen

z2t8 H (2) x=0,1,...,n—1
B=0,1,...,r—1

ein Fundamentalsystem der Gleichung

[PE)]"H(z) =0 . (1.38)
Der Beweis ist trivial ).

§ 2. Fall beliebiger ganzzahliger Periode

Es ist im folgenden bequemer, sich auf ein System erster Ordnung von
Differenzengleichungen zu beziehen. Weiter wollen wir die Abmachung
treffen, Elemente des Korpers f mit kleinen Buchstaben a, b, c...,;
Elemente des Korpers f, (» > 1 ganz und fest) mit groBen Buchstaben
4, B,C,... zu bezeichnen.

¥ (2) sei der Vektor (y,(?),...,¥,(2)); seine Elemente gehoren nicht
notwendig einem der Korper f oder f, an,

M die nicht singuldre Matrix || M, (2) || ; M €%, .
Zu losen sei dann die Differenzengleichung

y+1) = M@)y() . (2.1)

8) N. E. Nérlund, 1. c. p. 295.
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Natiirlich ist
Mz 4+ v) = M(z) . (2.2)

Weiter soll y(z) meromorph sein. Weitere Einschrinkungen ergeben sich
im Verlauf der Losung von selbst. Es ist natiirlich, die folgende Gruppe
® von nichtsinguldren linearen Transformationen zuzulassen :

y&)=S5@)y@; Sal)el, (2.3)
(2.1) transformiert sich dann in

¥+ 1) = M@) y(2) (2.4)
mit

M@Ez) =81z + 1) M(z) S(z) . (2.5)

Fragen wir uns nach den Invarianten von (2.1) unter . Dazu betrachte
man die aus (2.1) folgende Hilfsgleichung :

y+9)=Me)yE , (2.6)

wobei
Mz =Mz+v—1)MEz+v—2)...M(z+ 1) M(2) . (2.7)
Bei der Transformation S ¢ ® transformiert sicil Pt (z) nach
M(z) = S~1(z) M(2) S(z) . (2.8)
Daraus folgt unmittelbar

Satz 2.1. Die Elementarteiler e,(4) von P(z) — A1 sind Inva-
rianten beziiglich der Gruppe ®. Sie sind auBerdem Polynome iiber f.
Die letzte Behauptung folgt aus

Mz + 1) = M(z) M(z) M-1(z) . (2.9)
GemiB Satz (2.1) kann man ein S, ¢ ® so finden, da3
My(2) = S;71(2) M(2) So(@) « £ (2.10)

die erste Normalform annimmt®). Nach Ausfithrung dieser Transforma-
tion, sagen wir, daf (2.1) und damit M (z) auf Normalform transformiert
ist.

Nun gilt die folgende Umkehrung von Satz 2.1 :

Satz 2.2. Zwei Matrizen M(z) und N(z) mit denselben Invarianten
e,(A) sind beziiglich der Gruppe ® &dquivalent.

%) B. L. van der Waerden, Moderne Algebra, Berlin 1940, Bd. II, § 111.
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Zum Beweis haben wir zu zeigen, dafl es ein S(2) e ® so gibt, daB
N(z) =81z + 1) M(2) S(z) . (2.11)

Auflerdem konnen wir von vornherein annehmen, dafl N(z) und M(z)
die Normalform haben :

Nz+v—1)N@Ez+v—2) ... N2+ 1) N(z) = my(2)

Mez+v—1)ME+v—2) ... Mg+ 1) Mz) = m,(z) 212
Schreiben wir (2.9) als Differenzengleichung fiir S (z) :
S+ 1)= M(2)S(z) N () , (2.13)
so konnen wir davon unmittelbar eine Losung angeben :
S(z)=A()+ M(z —1)A(z — 1) N1(z — 1)
+ M(z—1)M(z—2)A(z — 2) N1(z — 2) N1(z — 1)
iM(z——l T M@z—v+ 1Az —v+ 1)N1(z—»+ 1)
Nz — 1) (2.14)
wobei A(z) = || 4;x(2) || ; A € f, nur der Bedingung
m,(z) A(z) m;(z) = A(z) (2.15)

zu geniigen hat.

Es ist immer méglich iiber A4 (z) so zu verfiigen, dal S(z) nicht singuldr
wird. Es geniigt zum Beispiel 4 (z) so zu wihlen, da Det || S(z) || an
einer Stelle einen Pol hat.

Es ist von Bedeutung, daBl wir die Invarianten e,(4) auch noch in
unabhingiger Weise gewinnen konnen. Zu diesem Zweck schreiben wir
(2.1) fiir ein Fundamentalsystem, das heifit fiir eine nicht singulédre
Losungsmatrix Y (z):

Yz+1)= M) Y(2) . (2.16)
Sind Y, (z) und Y,(2) zwei solche Losungsmatrizen, so ist offenbar
Yi1(2) Y, (2) = 8(2) (2.17)
eine Matrix mit meromorphen Elementen, und es gilt

s(z+1) =s() . (2.18)

Ohne Einschrinkung iiber Y(z) folgt aber nicht, daBl s, (z) e . Wir
bezeichnen allgemein meromorphe Funktionen der Periode 1, die

183



nicht notwendig Elemente von f sind, mit einer Tilde. Nun folgt aber
weiter aus (2.2) und (2.17):

Yz + ) = Y)1(2) , (2.19)
aber aus (2.6)
Y(z 4+ v) =M Y() (2.20)
oder N
niz) = Y1) WME) Y() , (2.21)

daraus aber

Satz 2.3. M(z) — A1 hat die Elementarteiler e, ()
und

Satz 2.4. Ist H(z) eine nichtsingulire Losungsmatrix des Systems

H(z 4+ v) = H(z) m,(2) (2.22)
und ist
H(z+ 1)H'(2) = N(2) ¥, , (2.23)

dann ist N(z) beziiglich ® dquivalent mit M (z), das heilt, es gibt ein
S(z) e ® derart, dal
Y(2)=S(z)H(() . (2.24)

Der Beweis erfolgt nach Satz 2.2 und Satz 2.3.

Das Problem ist jetzt also reduziert auf die Losung von (2.22). Setzt
man fiir my(z) die Normalform ein, so tritt eine Reduktion nach MaB-
gabe einzelner Elementarteiler ein. Um den Anschlu an die in § 1
geloste Differenzengleichung zu finden, ziehen wir es jedoch vor, die
Matrix m,(z) ¢m Korper §, auf die zweite Normalform?) zu transformieren.
Diese sei mit Pt (z) bezeichnet

My (2) = T(z) my(2) T (2) (2.25)

H(z) = L(z) T(?) (2.26)
und

L(z + v) = L(z) M,(2) . (2.27)

Setzt man die Normalform von R,(z) wirklich ein, so erkennt man durch
Elimination, dal das Problem zuriickgefiihrt ist auf die Losung von
Differenzengleichungen der Form

[P(D)]*"L(z) =0, (2.28)
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wobei
TL(z) = L(z + ») (2.29)

und P (A) ein irreduzibles Polynom iiber ¥, ist. Damit ist der Anschluf}
an § 1 gewonnen. Es ist nicht schwer, zu verifizieren, dafl (2.23) eine
Folge unseres Konstruktionsverfahrens ist?®).

Da man umgekehrt offenbar von beliebigen Elementarteilern e, (1)
iber f ausgehen kann und zu beliebigen ¥ immer eine Matrix M(z) und
ein Gleichungssystem (2.1) finden kann, das zu den Invarianten e, (A)
gehort, haben wir

Satz 2.5. Abgesehen von der Bedingung e,(4) e f[A] unterliegen
die Elementarteiler von it — 21 nur den gewohnlichen Einschrinkun-
gen?).

Der Verfasser fiihlt sich den Mathematikern seiner Umgebung, die er
oft mit Fragen belistigt hat, verpflichtet.

Besonderen Dank schuldet er den Herren Dr. A. Beurling und Dr. F. Hir-
zebruch fiir anregende Diskussionen, Dr. F. J. Dyson fiir Durchsicht des
Manuskripts.

(Eingegangen den 23. Oktober 1953.)

8) Man vergleiche dazu die Fuinote p. 7.
%) 0. Schreter und E. Sperner, Analytische Geometrie, Leipzig und Berlin 1935,
Bd. I, p. 124,
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