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Zerlegungsiiquivalenz von Funktionen
und invariante Integration

von WALTER NEF, Bern

Herrn Prof. Dr. Willy Scherrer zu seinem 60. Geburtstag, am 29. Juli 1954,
gewidmet

Einleitung
In seiner unter der Leitung von H. Hadwiger entstandenen Disserta-
tion!) hat A. Kirsch die Zusammenhinge zwischen der Zerlegungsgleich-
heit von Funktionen und der invarianten Integration in homogenen
Réumen untersucht. Zwei iiber einem homogenen Raum R (dessen
Transformationsgruppe mit I' bezeichnet werden moge) definierte Funk-
tionen f(x) und g(x) heilen beziiglich einer Funktionenmenge IR zer-
legungsgleich :
f~g@Mm) ,

wenn zwei endliche Zerlegungen

f=2f, ¢ :k{d;gk (x> gx € M)

k=1
existieren,sodafl f, >~ g, (k = 1,...,n). Dieletzte Beziehung bedeutet
die ,,Kongruenz* von f, und g,, das heilt die Existenz einer Transfor-
mation 7, €I, so daBl f,(z) = g, (7 @) ist.

Ein Integrationssystem [¥,7'] iiber dem homogenen Raum R be-
steht aus einem Integralfeld ¥ und einem auf T definierten Integral 7'.
Dabei bedeutet :

A. Ein Integralfeld ¥ iiber R eine Menge von auf R definierten reellen
Funktionen, die folgende Postulate erfiillt :
1) T ist ein Vektorraum iiber dem Korper der reellen Zahlen :
Aus f,geT, a,b reell folgt: af + bge.

1) Arnold Kirsch, Uber Zerlegungsgleichheit von Funktionen und Inte-
gration in abstrakten Réumen, Math. Ann. 124 (1952) 343—363. Im folgenden
zitiert als (K). Vgl. auch H. Hadwiger und A. Kirsch, Zerlegungsinvarianz des Inte-
grals und absolute Integrierbarkeit, Portugaliae Math. 11 (1952) 57—67. Ferner:
H. Hadunger und W. Nef, Zur axiomatischen Theorie der invarianten Inte-
gration in abstrakten Raumen. Im folgenden zitiert als (HN). Diese Arbeit wird
demnéchst in der Mathematischen Zeitschrift erscheinen.
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2) X ist invariant gegeniiber der Gruppe I":
Aus f(x)eT und 7vel folgt: f(rx)eZ.

3) T ist normal : das heifit eine bestimmte vorgegebene nichtnegative
und nicht identisch verschwindende Funktion (Einheitsfunktion)
e(x) gehort zu I. '

4) T ist e-beschrinkt :

Zu jeder Funktion fe I existieren reelle Zahlen a,,...,a, und
Transformationen t,,...,7, eI, so daB
n
1< 2age(ry2) (1)
ist. k=1

Aus diesen Postulaten folgt unmittelbar, da jedes Feld alle

Funktionen von der Form X a,e(r,x) enthilt. Diese Funktionen
k=1
heilen ,,elementar”. Die elementaren Funktionen bilden selber

ein Feld, das wir im folgenden mit € bezeichnen und das ,,elemen-
tare Feld“ nennen.
Ein weiteres Beispiel eines Feldes ist die Menge aller e-beschrinkten
Funktionen ; das sind die Funktionen, die eine Relation der Form
(1) erfiillen. Dieses Feld nennen wir das ,,universelle Feld* und be-
zeichnen es mit B.

B. Ein Integral T' auf ¥ ist ein auf T definiertes Funktional 7'(f(x)),
das die folgenden Postulate erfiillt :

I. Tist linear: T(af + bg) =aT(f) + 0T (9).

II. T ist invariant gegeniiber der Gruppe I":

T(f(zx)) =T (f(x)) (vel).
III. T ist positiv (monoton): Aus f >0 folgt 7T'(f) > 0.
IV. T ist normiert: 7'(e) = 1.

Bei gegebenem R, I" und e ist es nicht zum vornherein gesagt, daf ein
Integrationssystem existiert. Dafiir muB8 vielmehr e(x) eine bestimmte
Bedingung erfiillen 2), die allerdings immer erfiillt ist, wenn die Gruppe I"
Abelsch ist3). Wenn diese Bedingung erfiillt ist, wenn also iiberhaupt ein
Integrationssystem existiert, so existiert auf jeden Fall das elementare

2) Vgl. Satz 11 oder (HN) Existenz-Kriterium. (3).
3) (HN) Satz 5.
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System : dessen Feld ist das elementare Feld € und das Integral hat fiir
die elementare Funktion f= Xa,e(7,x) den Wert T (f) = Za,4).
k k

Ein auf dem universellen Feld 8B existierendes Integral heit univer-
sell. Notwendig und hinreichend dafiir, dall ein universelles Integral
existiert, ist, wie Kirsch bewiesen hat, die Bedingung, da3 e(x) beziiglich
der Menge aller e-beschrinkten Funktionen nicht zerlegungsgleich 0 ist %).

Sei I ein Integralfeld und M eine Obermenge von T. Ein auf T defi-
niertes Integral 7' heiflt zerlegungsinvariant beziiglich I (in Zeichen :
~ (M) — invariant), wenn aus

f~g@R) folgt T(f)=T() .

Einer der wichtigsten Sdtze von Kirsch sagt dann aus: Ein auf einem
zerlegungsfreien Feld T definiertes Integral kann dann und nur dann zu
einem universellen Integral erweitert werden, wenn es ~(B)-invariant ist$).

Die genannten Beispiele zeigen die engen Zusammenhinge, die zwi-
schen den Eigenschaften der Zerlegungsgleichheit von Funktionen und
der Integrationstheorie bestehen.

In der vorliegenden Arbeit werden die Untersuchungen von Kirsch
weitergefithrt. Die Zerlegungsgleichheit von Funktionen wird durch
eine schwichere Relation ersetzt, die wir Zerlegungsiquivalenz nennen.
Dadurch erhilt man die Moglichkeit, die Resultate von Kirsch wesent-
lich zu verallgemeinern. Insbesondere ist es in keinem Falle mehr notig,
sich auf solche Bezugsmengen It zu beschrinken, welche die Bedingun-
gen «, (3, v erfiillen 7). So tritt zum Beispiel an die Stelle des zuletzt er-
wiahnten Satzes von Kirsch der allgemeinere Satz 9 der vorliegenden
Arbeit.

Nebenbei findet man auf einem neuen Wege das die Einheitsfunktion e
betreffende Kriterium fiir die Existenz eines Integrationssystems (Satz
11), womit zwischen der vorliegenden und der von ihr methodisch sehr
verschiedenartigen Arbeit (HN) eine Beziehung hergestellt ist.

1. Teil. Zerlegungsiquivalenz von Funktionen

Im folgenden setzen wir von der Funktionenmenge I stets voraus, daf
sie selber ein Integralfeld ist.

4) (HN) Definition 4.

5) (K) Seite 355.

6) (K) Satz 5.3. (T heiflt zerlegungsfrei, wenn aus fe3, f~ g(B) folgt geI).

7) (K) 8. 346 und Satz 2.6. Diese Bedingungen, die insbesondere fiir das Feld B erfiillt
sind, haben u. a. zur Folge, dal aus der Zerlegungsiquivalenz (s. u.) zweier Funktionen
deren Zerlegungsgleichheit folgt (s. unten).
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Definition. f und g seien zwei Funktionen aus 9R. Wir nennen f zer-
legungsgroBer als g beziiglich IR :

fZg@M ,

wenn zwei Funktionen f', g’ ¢ IR existieren, fiir die

f~f =29 ~gM)
gilt.

Satz 1. Die Relation = (M) ist reflexiv und transitiv.

Beweis. 1) Reflexivitdt: f= f(IR) ist wegen f ~ f(M) selbstver-
standlich.

2) Transitivitdt: Essei f=> g(IM) und g = A (), das heildt
frf =29 ~g9g und gmr~g" =h" ~h. (2)

(Im folgenden werden wir, wenn keine Verwechslung moglich ist, die Be-
zugsmenge I in den Formeln weglassen.)

Da die Zerlegungsgleichheit eine mit der Vektorraumstruktur von I
vertrigliche Aquivalenzrelation ist?®), folgt ¢’ ~ ¢” und es gilt:

O~g —9" 29 —9" ~0.
Addiert man dies zum zweiten Teil von (2), so erhidlt man
g~g Z2h +9 —9' ~h
und mit dem ersten Teil von (2) zusammen :
fraf =2 +9g —¢" ~h,
das heiit f=> A (M), w.z. b. w.

Definition. Zwei Funktionen f,g eIt heilen zerlegungsidquivalent
beziiglich M :

f~gm) ,

wenn f = g(IM) und g = f(IM) ist.

Zu dieser Definition bemerken wir, daBl aus der Zerlegungsiquivalenz
die Zerlegungsgleichheit folgt, falls 9t gewisse Bedingungen erfiillt?).
Ob dies allgemein gilt, ist nicht bekannt. Hingegen folgt umgekehrt,

8) (K) Satz 1.3.
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wie man sofort einsieht, die Zerlegungsiquivalenz tmmer aus der Zer-
legungsgleichheit.

Satz 2. Aus f~Ah(IM) und f =g = k(M) folgt
f~g@®) und g~hAM) .

Beweis. Aus f~h folgt b= f. Darausund aus f > ¢g folgt » > g.
Da nach der Voraussetzung auch g > & ist, folgt g ~A. Auf dieselbe
Art wird f ~g bewiesen.

Satz 3. Auf jedem Unterfeld T von IR ist die Zerlegungsiquivalenz
beziiglich I eine Aquivalenzrelation, die mit der Vektorraumstruktur
von I vertriglich ist.

Beweis. 1) DaB ~ (M) eine Aquivalenzrelation ist, folgt unmittelbar
aus der Reflexivitit und Transitivitdt von > (IN).

2) Sei f,g,heIR und f~g. Esist zu beweisen, dal af ~ag fir
jede reelle Zahl @ und ferner f 4+ A ~g + h ist.

Aus f ~g folgt

fZg und g2f. (3)
Die erste dieser Relationen bedeutet
frf =9 ~g. (4)

a) Ist vorerst a > 0, so folgt
of ~af >ag ~ag, also af>ag.

Ist hingegen a << 0, so folgt auf dieselbe Art ag = af.
Aus der zweiten Relation (3) folgt auf dieselbe Weise

fir a>0: ag=af,
fir a<<0: af=ag.

In jedem Fall ist also af > ag und ag > af, also

af ~ag(M) .
b) Aus (4) folgt ferner

f+hnf+h>g +hng+h.

dasheiBt f+A2=>g+ & .
Auf dieselbe Art beweist man g + & = f + k, so daB schlieBlich folgt :
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Auf Grund von Satz 3 konnen wir den Restklassenraum von ¥ nach
der Aquivalenzrelation ~ (9R) bilden. Er ist der Quotientenraum von
¥ nach dem Unterraum O derjenigen Funktionen feZ, die ~ 0(IN)

sind. Wir bezeichnen ihn mit I (JR) oder kurz mit T, wenn keine Ver-

wechslung moglich ist. Seine Elemente bezeichnen wir mit F,G, H,...

Diese sind als Restklassen der Relation ~ (M) gegeniiber I' invariant.
Insbesondere kann in den vorhergehenden Uberlegungen T = Mt

sein. Als Quotientenraum erhalten wir dann (M), wofiir wir kiirzer
IN* schreiben. T (M) ist, falls T S M, ein Unterraum von IR*?).

Es seien nun F und G zwei Elemente von . Wir nennen F grofer als
G: F>G, wenn feF und geG existieren, so daff = g(M) 1st.
Diese Beziehung gilt dann, wie man leicht sieht, fiir zwei beliebige Funk-
tionen aus F bzw. G.

Satz 4. Durch die Relation > wird -‘i(iﬁ) ein teilgeordneter Vektor-
raum.

Beweis. 1) Wir beweisen vorerst, daf3 die Relation > eine Teilordnung
auf der Menge T ist.

a) Transitivitdt : Es sei ' > G und G > H. Fiir beliebige Elemente
féF, geQ, heH giltdann f>g=>h, also f=> h undsomit F > H.

b) Aus F > G und G > F folgt F = G. Die Voraussetzung bedeutet
nimlich f>¢g und g=>f (felF, ge@), also

ng und F"—_-G.

c¢) SchlieBlich folgt ohne weiteres F > G aus F = Q.
2) Es bleibt zu zeigen, dal aus F > G folgt

F+H>G+H (HeX) und aF>aG (a=0).

Nun bedeutet die Voraussetzung, daBl feF und g eG existieren, so
dal f 2 g ist. Wie beim Beweis des letzten Satzes folgt daraus

f+hZg+h (heX) und afZag (a2>0).
Da f+ h eF + H usw., folgt die Behauptung.

Bemerkung. Auch als teilgeordneter Vektorraum ist —fl_i(im) Unter-
raum des teilgeordneten Vektorraumes Jt*?).

9) Genau genommen gilt dies erst, wenn jedes Element von T () durch dasjenige
Element von IM* ersetzt wird, dessen Untermenge es ist. Diese Ersetzung ist ein Iso-
morphismus und &ndert an der algebraischen Struktur nichts.
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Ein auf I definiertes Integral 7' nennen wir im folgenden invariant
gegeniiber Zerlegungsiquivalenz bez. M (in Zeichen: ~ (M)-invariant),
wenn aus f ~g(IP) folgt T'(f) = T'(g).

Wir nennen es (Ik)-zerlegungsmonoton, wenn aus f 2= g(I) folgt
T = T().

Man sieht unmittelbar, daBl die ~ (JN)-Invarianz von 7' aus der (M)-
Zerlegungsmonotonie folgt. Die Umkehrung gilt ebenfalls, wenn das
Feld T beziiglich I zerlegungsfrei ist, das heilt wenn aus feX, fa~f (M)
folgt f' ¢ T. In diesem Falle folgt die (I)-Zerlegungsmonotonie sogar
schon aus der = (It)-Invarianz19).

Satz 5. IR und T seien zwei Integralfelder und TS IN. Zwischen den
(IM)-zerlegungsmonotonen Integralen auf I und den normierten positi-

ven Linearformen auf dem teilgeordneten Vektorraum E(ﬁm) besteht
eine umkehrbar eindeutige Beziehung?!!).

Genauer: Jedes (IN)-zerlegungsmonotone Integral auf I ist ~(IN)-
invariant und hat also fiir alle Funktionen einer ~(It)-Klasse denselben

Wert. Es liefert also eine Funktion auf i(im). Diese ist eine normierte
positive Linearform. Geht man umgekehrt aus von einer normierten

positiven Linearform 7*(F) auf T und setzt man T(f) = T*(F) fur
feF, soist T ein Integral auf T . .
Der Beweis ist so einfach, daf er iibergangen werden kann.

Satz 6. Zwischen den Integralen auf einem Feld I und den nor-
mierten positiven Linearformen auf 9i* besteht eine umkehrbar ein-
deutige Beziehung.

Beweis. Der Satz erscheint als Spezialfall von Satz 5, wenn man
T = I setzt und bedenkt, daB jedes auf IN definierte Integral (IN)-zer-
legungsmonoton ist.

Zum AbschluB} des ersten Teiles formulieren wir einen Satz iiber positive
Linearformen. Er ist zur Hauptsache schon bei Kirsch ausgesprochen )
und kann fast wortlich bewiesen werden wie dort. Es wird deshalb hier
auf den Beweis verzichtet.

Satz 7. @ sei ein teilgeordneter Vektorraum und ¥ ein Unterraum
von @. Zu jedem Element @ von @ mégen zwei Elemente ¥, und F, von

1) Aus fayf > g~ g mit f,f,...eT folgt T(f) > T(9).
11) Normiert nennen wir eine Liniearform 7, wenn T(E) =1 (E = Klasse von

e(x)).
12) (K) Satz 5.2.
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Y existieren, so dal F, > G > F, ist. Dann la8t sich jede auf ¥ definierte
positive Linearform auf @ fortsetzen.

2. Teil. Existenzsitze fiir Integrale

Satz 8. I sei ein Integralfeld. Dann und nur dann existiert ein Unter-
feld TSIM und ein (M)-zerlegungsmonotones Integral auf T, wenn
e~ O(IN) ist.

(Setzt man hier IM = B, so erhdlt man Satz 3.5 von Kirsch, vgl.
Fufinote 7.)

Bewets. 1) Die Bedingung ist notwendig. Wiirde ndmlich e ~ 0(JR)
sein und gleichzeitig auf einem Unterfeld T von IR ein (IN)-zerlegungs-
monotones, also ~(IN)-invariantes Integral 7' existieren, so wiirde, da ja
eed ist, T(e) = 0 folgen, was dem Postulat IV widerspricht.

2) Die Bedingung ist hinreichend. Ist ndmlich e~ 0(IM), so ist in
M die ~(M)-Klasse von e, die wir mit F bezeichnen, von der Klasse 0
verschieden. Auf dem durch E aufgespannten Unterraum von IRt* ist
demnach durch 7*(aE) = a eine positive normierte Linearform ge-
geben. Diese liefert nach Satz 5 auf dem entsprechenden Unterfeld ¢’
von IR ein (IM)-zerlegungsmonotones Integral. (€' besteht aus allen
Funktionen von I, die beziiglich IR mit einer elementaren Funktion
zerlegungsdquivadent sind.)

Satz 9. IN und T seien zwei Integralfelder und T S I. Ein auf I
definiertes Integral 143t sich dann und nur dann auf IR fortsetzen, wenn
es (IM)-zerlegungsmonoton ist.

Bemerkung. Wenn das Unterfeld (IR)-zerlegungsfrei ist, so kann die
Bedingung der (IN)-Zerlegungsmonotonie durch die = (IN)-Invarianz
ersetzt werden.

Beweis. 1) Die Notwendigkeit der Bedingung ist deshalb klar, weil ein
auf I definiertes Integral (IM)-zerlegungsmonoton ist.

2) Die Bedingung ist hinreichend. Sei ndmlich 7' ein (Ik)-zerlegungs-
monotones Integral auf I . Nach Satz 5 erscheint 7' auf T(IM) als posi-
tive normierte Linearform 7'*. Weil e in I enthalten und I e-be-
schrinkt ist [Postulat 4]), sind die Voraussetzungen von Satz 7 fiir die

Riume T (M) und M* erfiillt und 7'* 1aBt sich auf M* fortsetzen. Geht
man von IN* zu IN zuriick, so erhilt man auf diesem Feld ein Integral,
welches Fortsetzung des Integrales 7' auf T ist.
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Satz 10. Notwendig und hinreichend dafiir, daBl auf einem Feld I
ein Integral existiert, ist die Bedingung e ~ 0(IN).

Beweis. 1) Dal} die Bedingung notwendig ist, folgt wie bei Satz 8.

2) Die Bedingung ist hinreichend : Ist sie nimlich erfiillt, so existiert
nach Satz 8 ein (I)-zerlegungsmonotones Integral auf einem Unterfeld
T von IR. Dieses 148t sich nach Satz 9 zu einem Integral auf M fort-
setzen.

Satz 11. Notwendig und hinreichend dafiir, daB zu einer Einheits-
funktion e(z) ein Integrationssystem existiert, ist die Bedingung
e ~ 0(E). (5)

Beweis. 1) Die Bedingung ist notwendig. Wenn némlich ein Integrations-
system existiert, so enthilt dessen Feld das elementare Feld & und es
existiert also auch ein Integral auf . Nach dem vorhergehenden Satz
folgt also e ~ 0(C).

2) DaB sie auch hinreichend ist, folgt aus Satz 10, indem man IR = €
setzt.

Der Beweis zeigt, daB, falls die Bedingung e ~~ 0(€) erfiillt ist, auf
jeden Fall das elementare Integrationssystem existiert. Im allgemeinen
existieren noch weitere, die alle aus dem elementaren durch Fortsetzung
hervorgehen.

In der Arbeit (HN) wurde fiir die Existenz eines Integrationssystems
zu e(x) die folgende notwendige und hinreichende Bedingung abgeleitet :

Aus ZXage(t,x) >0 folgt ZXa, > 01). (6)
k k

Daf3 die Bedingungen (5) und (6) dquivalent sind, kann man wie folgt
direkt einsehen :

1) Bedingung (5) sei nicht erfiillt. Wir zeigen, dafl auch (6) nicht er-
fullt ist.
a) Es sei sogar e a~ 0(€). Das bedeutet
e(x) =2a,e (o) (7)
und k
0=Cla,e(t,x) . (8)
k

o) Ist hier Za, 5% 0, so zeigt Gleichung (8), daBl (6) nicht erfiillt ist.
k

13) (HN) Existenzkriterium (3).
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p) Ist hingegen Xa, = 0, so zeigt Gleichung (7), daB (6) nicht erfiillt
k
ist.
b) Es sei e ~0(E) abernicht e ~ 0(€). Es folgt ¢ < 0(E) und das be-
deutet
e(x) ~ Z'ak e(o,x) < ).'.'b e(t,x) ~ 0(€) .

Da e nicht ~ 0(C) lst folgt Zak = 1 und Zbk = 0. Man hat also

2[b.e(tex) —a,e(o,x)] =0
k
mit 2'(b, — a,) <0, das heilt (6) ist nicht erfiillt.
k

2) Jetzt sei Bedingung (6) nicht erfiillt. Dann folgt vorerst, daB reelle
Zahlen a, existieren, so dafl

f(x) = Eake(akw) <0 und Z'ak>0

ist. Ohne Elnschrankung der Allgemeinheit kbnnen wir Z.' a,=1 an-
nehmen. Es folgt dann

e~ f(€) <0, also e<0(E).

Da anderseits wegen e¢ > 0 auch e = 0(€) ist, folgt e ~ 0(€), also ist
(5) nicht erfiillt.

Nachtrag. Nach Abschlufl des Manuskriptes erhielt der Verfasser
Kenntnis von einer Arbeit von H. Hadwiger4), in der von einer Rela-
tion Gebrauch gemacht wird, die ebenfalls Zerlegungsiquivalenz genannt
wird. H. Hadwiger nennt zwei Funktionen f und g ¢ B zerlegungsiqui-

valent, f,i, g, wenn zu jedem &>0 zwei Funktionen f', g’ ¢ B existie-
ren, so daf

f~f®B), g~g®@B), [[—g|<ee
ist.

Damit stellt sich die Frage nach der Beziehung zwischen der von
H. Hadwiger verwendeten und der in der vorliegenden Arbeit definierten
Relation. Dabei ist sinngemi8l unsere Relation fiir den Fall Nt = B zu
betrachten. In diesem Falle ist sie aber mit der Relation der Zerlegungs-
gleichheit dquivalent, wihrend dies nach einer Mitteilung von H. Had-

wiger fiir die Relation f ~ g nicht der Fall ist. Die Relation f ~ g ist

14) H. Hadwiger, Deckungsaquivalenz und Zerlegungsiquivalenz bei Funktionen in
abstrakten Raumen und invariante Integration. Diese Arbeit wird demnéchst im Archiv
der Mathematik erscheinen.
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also schwiicher als f ~ g(B) (das heiBt ihre Aquivalenzklassen sind um-
fassender).

Es sei schlielich bemerkt, dal sich die Hadwigersche Relation eben-
falls unter Bezugnahme auf ein beliebiges Feld M definieren 146t : Man

setzt ff:-' g(M), wenn f, g eIN. In allen Sétzen der vorliegenden

Arbeit kann dann ~(IN) durch ~ (IR) ersetzt werden.
Die Frage nach den Beziehungen dieser beiden Relationen ist bei be-
liebigem I unabgeklirt.

(Eingegangen den 14. Oktober 1953.)
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