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Ein Minimum-Maximumproblem

ilber konvexe Rotationskorper
von H. Bieri, Bern
Seinem verehrten Lehrer, Herrn Prof. Dr. W. Scherrer,
zum 60. Geburtstag gewidmet

Ein konvexer Rotationskorper des R, kann durch folgende MafBzahlen
charakterisiert werden (Abb. 1a)?)
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Linge oder Poldistanz I, Aquatorradius r,  Ldnge der erzeugenden Meridiankurve L,
Flicheninhalt des halben Meridianschnittes Q, Volumen V, Oberfliche F,
Integral der mittleren Kriimmung M (1)

Das Problem, alle Relationen zu finden, welche zwischen den genannten
Groflen bestehen miissen, damit wirklich konvexe Korper vorliegen, ist
wohl zu kompliziert. Man kann sich in der Weise einschrinken, dal man

1) Wesentliche GréBen wie Durchmesser und Dicke hatten sich dem gewahlten Rahmen
nur schlecht angepaf3t und fehlen deshalb.
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einige der Groflen 1) passend vorgibt und hernach nach den Extrem-
werten einer weitern Grofle aus 1) fragt?). Probleme dieser Art sind in
groflerer Zahl gelost worden. In vielen Fillen muBl zunéchst eine dem
Problem angemessene direkte Methode entwickelt werden3). Als sehr
giinstig hat sich die Einfithrung der polygonalen Rotationskdrper erwiesen.
In den Arbeiten von H. Hadwiger ¢) spielen sie eine entscheidende Rolle.
Sind in der Tat die gesuchten Extremalkorper selber solche spezielle
konvexe Rotationskorper, so hat man Aussicht, sie durch Operationen
im Bereich dieser Unterklasse von konvexen Rotationskérpern aufzu-
finden. Der Ubergang zu beliebigen konvexen Rotationskérpern durch
Approximation und Stetigkeitsbetrachtungen bereitet keine Miihe.

In der vorliegenden Arbeit wird folgender Safz bewiesen:

,,Bet vorgeschriebener Korperlinge | und ebensolcher Meridianlinge L
besitzen Zylinder und nur sie kleinstes Integral der miitlern Krismmung M ,
symmetrische Doppelkegel und nur diese Korper grofites M.”

Er 148t sich auch in der Form einer doppelten Ungleichung schreiben :

n-—g—(L——l)gMSn-arccos(%—) VI ¢ (2)

wobei das Gleichheitszeichen linker Hand genau fiir Zylinder, dasjenige
rechter Hand genau fiir symmetrische Doppelkegel gilt.

Beziiglich der verwendeten individuellen Methode sei auf eine schon
publizierte Arbeit verwiesen %).

Mit I bezeichne ich die Teilklasse aller Polygonalkorper, deren Aqua-
torradius » am Rande liegt, mit /I die analoge Teilklasse mit einem im
Innern liegenden r. Durch Vereinigung passender Teilklassen der Typen
I, II konnen abgeschlossene Teilklassen K;,..; konstruiert werden,
deren Korper aus hochstens ¢ Kegelstimpfen (im weitern Sinne) be-
stehen.

Als wirksamste, weil analytisch einfachste Deformation, hat sich fiir
unser Problem das A4bschleifen (unter Erhaltung von l) erwiesen ©).

2) T. Bonnesen und W.Fenchel, Theorie der konvexen Kérper, Ergebnisse der
Mathematik und ihrer Grenzgebiete, Bd. 3; Berlin 1934, S. 74.

3) Siehe FuBnote 2, S. 74—75.

4) H. Hadwiger, Einige neue Ergebnisse iiber extremale konvexe Rotations-
kérper. Abhandlungen aus dem Mathematischen Seminar der Universitit Hamburg,
Bd. 18, S. 42—44.

5) H. Bieri, Kurvendiskussion als Methode. Mitteilungen der Naturforschenden
Gesellschaft Bern, 8. Band 1950.

%) H. Bieri, Ein (M, F)-Problem mit Nebenbedingung. Experientia IX 16, 1953,
207—209, speziell Abb. 5, 6, 7.
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Beweis. Fiir Kegelstimpfe (Abb. 1b) gilt mit der Substitution
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p—'2q‘
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S (@g+2tgy-y)

1(g + secy)

M
(3)
L

I

Die Bildkurven der Kegelstumpfscharen in einem (L, M)-Diagramm
2
sind bei festem y Geraden mit der Steigung % = 32—

Eine dieser Geraden entspricht den Zylindern mit y = 0. Fir die
Kegel aber hat man: p = ~;— -tang v, also ¢ = tang . Es folgt:

M-:%E--tangzp(?,zp—f—n)
1(1 + si ®)
I — (1 + sin y)
cos

Waiichst ¢ von 0 bis n/2, so wird die Kegelkurve durchlaufen. Sie besitzt
folgende Eigenschaften :

a) Im Bildpunkt der Strecke von der Lénge [(y = 0) betrigt die
Steigung 72/2.

b) Es ist im Intervall 0 <y < 7/2 genau ein Wendepunkt vorhanden. .
Die Kurve ist zunédchst von unten konvex.

c) Die einzige geradlinige Asymptote liegt oberhalb der Zylinderkurve
und ist zu ihr parallel.
M Damit sind aber die Verhiltnisse in
der Teilklasse &, geklart (Abb. 2).

In der gestaltlich reichhaltigeren
Teilklasse K,, werden wir schon die
Hauptschwierigkeit des Problems an-
treffen.

Wenden wir uns zuerst den sym-
metrischen Doppelkegelstiiompfen zu. Man

I.  erhilt (Abb. la, ¢ =9p', ¢ =p):

7) Berechnet wird M* = M — nl. Hernach wird der Stern weggelassen.
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M =n(rp' +1-tangy-y)

b
L=2p 4 1l-secy 5)

Die Bildkurven der Doppelkegelstumpfscharen mit festem 3 sind

wieder Geraden mit der Steigung % = n2/2. Mit p’ = 0 erhilt man

die symmetrischen Doppelkegel mit

M =nl-tangy-yp

L=1-secy )

Wichst » von 0 bis z/2, so wird die Bildkurve der symmetrischen
Doppelkegel durchlaufen. Sie besitzt folgende Eigenschaften :

a) Im Bildpunkt der Strecke von der Linge I betrigt die Steigung
27 > 7?2,

b) Im Intervall 0 < p < &/2 ist sie durchwegs von unten konkav.

c) Ihre geradlinige Asymptote fillt mit derjenigen der Kegelkurve zu-
sammen.

Es ist nun von groBter Bedeutung, die relative Lage der Kurve der
symmetrischen Doppelkegel und der Kegelkurve zu kennen. Wir be-
trachten spezielle Kegelstumpfkegel aus II (Abb. la, p' =0, ¢ =1y
fest, ¢', also « variabel). Es folgt :

M = nl-tang p (y + /2 — 7w x)

7
L = l(secy + tang y — 2 -tang y) )

Durchlduft x das Intervall 0 <z < -%, so entstehen im Diagramm
Strecken mit der Steigung n?%2. Der eine Endpunkt liegt auf der Kegel-
kurve, der andere auf der Kurve der symmetrischen Doppelkegel. Wegen
der Form der Kegelkurve ist der Schlull gestattet, daff die Kegelkurve
ganz nicht oberhalb liegt (vgl. Abb. 2).

Jetzt verschieben wir die eine Stiitzebene nach auBlen (Abb. la,
@ =y fest, ¢’ fest, p’, also auch x variabel).

Durchlduft = das Intervall 0 < x < %, so entstehen im Diagramm
neuerdings Strecken. Ihre Endpunkte sind Bildpunkte je eines Kegel-
stumpfes und eines symmetrischen Doppelkegelstumpfes. Da diese Kor-
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per nicht extremal sind und die Doppelkegelkurve von unten konkav ist,
kommt keiner der betrachteten Korper fiir ein Extremum in Frage.

Wir betrachten ferner Doppelkegelstiimpfe aus I (Abb. 1c¢).

Diesmal liegen zwei verschiedene Neigungswinkel vor. Wir verschieben
die untere Stiitzebene nach innen, erhalten eine einparametrige Korper-
schar und zeigen wie oben, daf3 diese Korper ebenfalls nicht extremal
sein konnen. Es ist klar, daB der obere Kegelstumpf durch einen Kegel
ersetzt werden darf.

Damit ist aber der Formenreichtum der Teilklasse &;, noch nicht er-
schopft. Da sind zunichst die unsymmetrischen Doppelkegel aus 11 zu
beachten. Bei ihnen versagt das Abschleifen, so dafl sie auf andere Weise
zu einparametrigen Scharen zusammengefalt werden (Abb. 1d).

Wandert P auf einem Kreisbogen durch 4 und B, so wird eine zwischen
Strecke und symmetrischem Doppelkegel interpolierende eimparametrige
Korperschar erzeugt, die allerdings im Falle y <#z/2 auch nichtkonvexe
Korper enthilt. Dieser Umstand wird aber keine Stérung verursachen.
Die Maf3zahlen sind :

o _zwlw—y)sing - sin(p + )
— sin y

 Lesin(p + ¥/2) (®)
o sin /2

L

Die Steigung berechnet sich zu

dM _ n(z—y)sin (p+p/2)

dL cos /2

Aus 8) kann der Parameter eliminiert werden :

M— 7t (7 — y)z.l tang y/2 12 n(m — y) t;ng p[2 -1 (8a)

Die betrachteten Kurven sind also von unten konvexe Parabeln.

Auflésung der Enveloppenbedingung —%%[-— = 0 liefert als einzige
Nulistelle L =1. Es handelt sich demnach um ein ausgezeichnetes

Kurvenfeld, das ganz nicht oberhalb der Kurve der symmetrischen Doppel-
kegel liegt.
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Die genauere Diskussion férdert weitere Resultate zutage :

8) y>n/2>0<gp<l 7
. 2
% — n(mw — y) tang /2 limw——' i

Y=n/2 Cotg 7’/2 - —é_

nm—y)
yix cotgyz " ®)

b) 7<n/2-——>n/2—y_<_<p£n;y

amM 72
AL [ o=n2—vy zE—r) =5 -

2

Die gestaltlichen Verhidltnisse sind leicht iiberschaubar. Eine Skizze
nach dem Muster der Abb. 2 verdeutlicht auffallende GesetzmaBigkeiten.
Macht man sich schlieBlich noch klar, daBl auch die restlichen Korper
nicht extremal sein konnen, so ist der Satz zunichst fiir die Teilklasse
K, bewiesen 8).

Der Beweis gilt aber auch fiir irgendeine Teilklasse &,;,...,. Durch
Abschleifen gelangt man nidmlich zu K55, 8,34, schlieBlich zu Ki,...,.
Die einparametrigen Korperscharen aus RK,,...,, besitzen fiir jedes m
aus 2<m<mn Randkorper aus K,,...,_,. Die Bildkurven sind jedes-
mal Strecken. Die Bildpunkte der Randkorper liegen nicht auferhalb des
von der Zylinderkurve und der Kurve der symmetrischen Doppelkegel be-
grenzten Bereiches, so dafl innere Punkte dieser Strecken sogar innerhalb
liegen, w. z. b. w.

Weil aber ein beliebiger konvexer Rotationskorper sich durch Poly-
gonalkoérper approximieren lit und weil die GroBlen 1) stetig vom
Korper abhéngen, so ist der Beweis fiir die volle Klasse der konvexen
Rotationskorper mit der festen Lénge [ geleistet.

(Eingegangen den 6. September 1953.)

8) Von den unsymmetrischen Doppelkegeln aus erreicht man durch Verschiebung einer
Stutzebene Kegel. Weil die Bildkurve eine Strecke ist, kénnen die interpolierenden Korper
aus IT nicht extremal sein. Von den letztgenannten Kérpern aus erreicht man durch Ver-
schiebung der andern Stiitzebene Kegelstiimpfe, und man sieht wie oben, daB kein Doppel-
kegelstumpf aus IT mit verschiedenen Winkeln extremal sein kann.
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