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Absolut meBBbare Punktmengen
im euklidischen Raum

Von H. HApwiGER, Bern

Meinem Lehrer und Freund Willy Scherrer zum 60. Geburtstag gewidmet

Einleitung

Im Rahmen einer axiomatischen Inhaltstheorie wird eine Menge absolut
mefbar genannt, wenn ihr Inhalt bereits durch die der Theorie zugrunde-
liegenden Inhaltsaxiome eindeutig vorbestimmt ist. Einer solchen Menge
wird demnach in allen individuellen Inhaltssystemen, in welchen sie noch
mefBbar ausfillt, stets ein und derselbe Inhalt, nimlich der absolute Inhalt,
zukommen miissen. Die Mannigfaltigkeit der absolut mebaren Mengen
und der auf ihr definierte absolute Inhalt bilden unter Umsténden?) selbst
ein spezielles Inhaltssystem, welchem offenbar innerhalb der betreffenden
axiomatischen Theorie eine ausgezeichnete Bedeutung zukommt.

Fiir beschrinkte Punktmengen des linearen Raumes wurden Existenz
und Haupteigenschaften des absoluten Systems von A. Tarski?) nach-
gewiesen. Seine Konstruktion der absoluten MeBbarkeit stiitzt sich auf
den Begriff der Zerlegungsgleichheit (Endlichgleichheit) linearer Punkt-
mengen ; eine Erweiterung auf k-dimensionale Punktmengen ist aber im
Hinblick auf die bekannten Banach-Tarskischen Zerlegungsparadoxmn")
fir £ > 2 unmoglich.

Dies #dndert sich indessen, wenn man das klassische Postulat der
Bewegungsinvarianz eines Inhalts fallen 148t und nur noch Translations-

1) Im euklidischen Raum ist hierzu jedenfalls erforderlich, da mit den Axiomen nicht
verlangt werde, das Inhaltsfeld sei ein Mengenring oder sogar ein Mengenkorper. Das Feld
der absolut meB8baren Punktmengen ist nur additiv; der Durchschnitt absolut meBbarer
Punktmengen ist i. a. nicht auch meBbar.

%) A. Tarski, Uber das absolute MaB linearer Punktmengen, Fund. Math. 30, 1938,
218-234.

3) St. Banach und A. Tarskt, Sur la décomposition des ensembles de points en
parties respectivement congruentes, Fund. Math. 6, 1924, 244-277.
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invarianz verlangt. Da diese Transformationsgruppe abelsch ist*), fallen die
oben angedeuteten Schwierigkeiten weg; manche fiir den Ausbau der
Inhaltslehre bedeutsame Entwicklungswege, welche innerhalb der klas-
sischen Behandlungsweise verschlossen waren, stehen damit offen?).

Die vorliegende Abhandlung gibt einige erste Ansitze zu einer trans-
lationsinvarianten axiomatischen Inhaltstheorie fiir den k-dimensionalen
euklidischen Raum und befat sich in erster Linie mit der Frage der
absolut mefibaren Punktmengen.

In Abschnitt I werden die Inhaltspostulate (Axiome) gewahlt. Ein Inhalt
ist ein iiber einem translationsfreien, additiven und normalen Mengenfeld
definiertes definites, translationsvariantes, additives und normiertes Men-
genfunktional®). In Abschnitt 11 wird die Deckungsmonotonie eines Inhalts
besprochen, eine Eigenschaft, welche fiir die vorgesehene Entwicklung
der Theorie von Bedeutung ist. Abschnitt 111 bringt Definition und Haupt-
eigenschaften eines speziellen Ober- und Unterinhaltes. Unsere Definition,
die in dieser Form neu sein diirfte, schlieBt an die Verhiltnisse an, die
beziiglich der gegenseitigen Bedeckbarkeit endlich vieler, translations-
gleicher Punktmengen und ebensolcher Einheitswiirfel bestehen, wobei
die Vielfachheiten der Uberdeckung mitberiicksichtigt werden?). In
Abschnitt IV wird das zugehorige Inhaltssystem erkliart und Vergleiche mit

4) Nach sehr allgemeinen Ergebnissen von J.won Neumann (Zur allgemeinen
Theorie des MafBes, Fund. Math. 18, 1929, 73—-116) bestehen im Wirkungsraum einer
Gruppe keine ,,paradoxen‘‘ Zerlegungsverhaltnisse, wenn die Gruppe mefBbar ist. Eine
abelsche Gruppe ist meBbar, die k-dimensionale euklidische Bewegungsgruppe fir & > 2
dagegen nicht.

8) Bei translationsinvariantem Aufbau ist das universelle Inhaltsproblem lésbar, d. h.
es existieren in jedem euklidischen Raum Banach’sche Inhaltssysteme, wie sie von St. Banach
(Sur le probléme de la mesure, Fund. Math. 4, 1923, 7-33) fir Gerade und Ebene in
bewegungsinvarianter Behandlung nachgewiesen wurden und fiir welche jede beschrankte
Punktmenge meBbar ist.

¢) Es handelt sich um vier Forderungen, die sowohl in sachlicher als auch in historischer
Beziehung besonders ausgezeichnet sind; neu gegeniiber den iiblichen Festsetzungen ist
nur die Beschrankung auf Translationsinvarianz. Im einfacheren Rahmen eines allgemein
einfithrenden Lehrbuchs ist der axiomatische Standpunkt innerhalb der Inhaltslehre
besonders klar hervorgehoben bei K. Knopp-H.v. Mangoldt’s ,,Einfiithrung in die
héhere Mathematik*, 3. Band, Leipzig 1942, 7. Auflage, Nr. 52.

In Spezialwerken iiber neuere und abstrakte MafBtheorie wird in der Regel keine In-
varianzforderung in Betracht gezogen, schon deshalb nicht, weil in abstrakten Réumen
keine besondere Transformationsgruppe von vornherein in gleichem MafBle ausgezeichnet
ist, wie die Bewegungs- und Translationsgruppe im euklidischen Raum.

Eine abstrakte und invarianzlose Inhalts- und Maf@itheorie kann vermége der viel-
faltigen und feinen Begriffsbildungen der neuzeitlichen Mengenlehre sehr weit vorgetrieben
werden; sie bleibt jedoch in manchen Teilen formal.

) Vgl. auch H. Hadwiger, Une mesurabilité moyenne pour les ensembles
de points, Fund. Math. 84, 1947, 293-305. Die in dieser Note gewihlten Ansétze sind
mit den hier verwendeten verwandt.
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klassischen Systemen gezogen. Da sich spiter herausstellen wird, da8
diesem Inhaltssystem die Rolle des absoluten Systems zugesprochen wer-
den kann, trigt es schon von Anfang an diesen Namen (absoluter Ober-
und Unterinhalt, absoluter Inhalt). In Abschnitt V werden zwei verschie-
den definierte Aquivalenzen in Betracht gezogen (Deckungs- und Zer-
legungsdquivalenz) und gezeigt, dafl sie gleichwertig sind. Dieser Sach-
verhalt ermoglicht es, verschiedene neue Erkenntnisse zu erschliefen. So
ergibt sich (wie in Abschnitt VI dargelegt wird), die Zerlegungsinvarianz
eines beliebigen deckungsmonotonen Inhalts®). Ferner kann gezeigt wer-
den, daf3 absoluter Ober- und Unterinhalt die exakte obere und untere
Schranke der Menge der Inhalte darstellen, welche der betreffenden
Punktmenge in deckungsmonotonen Systemen zukommen. Hierbei ergibt
sich auch die Bedeutung des absoluten Inhalts einer absolut meBbaren
Punktmenge.

In Abschnitt VII wird der dufere und innere Tarskische Inhalt®) unab-
héngig vom Vorstehenden mit Hilfe des Begriffs der translativen Zer-
legungsgleichheit definiert und dann gezeigt, daB diese mit den in I1I. ein-
gefithrten Ober- und Unterinhalten iibereinstimmen. Damit ist erwiesen,
dafl das von uns entwickelte absolute Inhaltssystem mit dem den Ideen
Tarsk’s nachgebildeten identisch ist. Eine Punktmenge ist genau dann
absolut mef3bar, wenn sie mit einem Wiirfel zerlegungsiquivalent ist.
Endlich wird in Abschnitt VIII noch eine weitere Konstruktion eines
duBeren und eines inneren Inhaltes verfolgt, welche sich auf die Trans-
lation der Punktmenge im Einheitsgitter und auf die Anzahl der bedeckten
Gitterpunkte stiitzt. Da hierbei Ideen verwertet werden, welche der J.von
Neumannschen Theorie der Mittelwerte fastperiodischer Funktionen iiber
Gruppen zugrundeliegen'?), sind diese beiden Inhalte nach diesem Autor
benannt. Es stellt sich wieder heraus, daBl der dufere und innere Neu-
mannsche Inhalt mit den in III. eingefiihrten absoluten Ober- und Unter-

8) Die bis anhin wenig beachtete Zerlegungsinvarianz des Lebesgue’schen Mafles wurde
fir lineare Punktmengen von 4. Tarski (loc. cit.) bewiesen, allerdings auf dem Umwege
iiber die Konstruktion Banach’scher Inhalte, die sich auf das Auswahlaxiom der Mengen-
lehre stiitzt. In diesem Zusammenhang sei darauf hingewiesen, dafl innerhalb der Tarski’-
schen Theorie eine MaBfunktion bereits als zerlegungsinvariant vorausgesetzt wird. Wegen
dieses Umstandes ist es naturgemaB leichter, die Zusammenhinge zwischen dem absoluten
Maf3 und beliebigen Ma@funktionen herzuleiten. Im Rahmen unserer Entwicklung zeigt es
sich, daf alle diesbeziiglichen, wesentlichen Ergebnisse T'arski’s sich auf beliebige Réaume
tibertragen lassen, auch dann, wenn die Zerlegungsinvarianz des Inhalts nicht axiomatisch
vorweggenommen wird.

%) loe. cit. 2).

10) J.von Neumann, Almost periodic functions in a group, Trans. Amer.
Math. Soc. 36, 1934, 445-492.
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inhalten iibereinstimmen. Unser absolutes Inhaltssystem ist so auch mit
dem sich aus den Ideen von Neumann’s ergebenden identisch. Eine Punkt-
menge ist genau dann absolut meBbar, wenn die Bedeckungszahl im
Punkteinheitsgitter als Funktion der Translation ergodisch!!) ist. Der
absolute Inhalt selbst ist ein Neumannscher Mittelwert dieser Funktion.

In diesem Zusammenhang ergibt sich noch eine Erweiterung eines
bekannten Theorems von 4. F. Blichfeldt'?) und W. Scherrer'3) auf belie-
bige beschrinkte Punktmengen.

I. Inhaltspostulate

A, B,C,.. sollen Punktmengen (kurz Mengen) des k-dimensionalen
euklidischen Raumes R bezeichnen; A sei die leere Menge. Eine Trans-
lation « in R fithre die Menge A4 in die Menge A* iiber. Zwei Mengen heiflen
translationsglerch, symbolisch 4 ~ B, wenn A*= B gilt. Besonders
ausgezeichnet ist der Einheitswiirfel E , der bezogen auf ein festbleibendes
kartesisches Koordinatensystem durch das sich auf die Koordinaten seiner
Punkte beziehende Ungleichungssystem 0 < z; < 1(¢ = 1, . . k) charak-
terisiert sei. '

Eine Menge A ist beschrinkt, wenn sie Teilmenge einer Vereinigungs-
menge endlich vieler mit Z translationsgleicher Mengen ist, symbolisch
durch 4 < X E* ausgedriickt!?).

Alle im folgenden auftretenden Mengen werden stillschweigend als
beschrinkt vorausgesetzt.

Ein Inhaltssystem (g, J) besteht aus einem Inhaltsoperator (Mengen-
funktional) J und einem Inhalisfeld (Definitionsfeld des Mengenfunk-
tionals) §. Der Operator J ordnet jeder Menge A des Feldes § eine reelle
Zahl J (A) zu, welche Inhalt heifit; A wird dann im betreffenden System
mefbar genannt.

Innerhalb einer axiomatischen Inhaltstheorie werden fiir ein Inhalts-
system willkiirlich, aber sinnvoll gewihlte Forderungen ~ die Inhalts-

11) Vgl. iiber diesen Begriff: W. Maak, Integralmittelwerte auf Gruppen und
Halbgruppen, J.reine angew. Math. 190, 1952, 34—48.

12) A. F. Blichfeldt, A new principle in the geometry of numbers, with
some applications, Trans. Amer. Math. Soc. 15, 1914, 227-235.

13) W. Scherrer, Ein Satz iiber Gitter und Volumen, Math. Ann. 86, 1922,
106-107.

14) Die besondere Form dieser Definition soll den Hinweis dafiir geben, wie die Be-
schranktheit in einem abstrakten Raum bezogen auf eine beliebig gewahlte Einheits-
menge E erklart werden muB, wenn der wesentlichste Teil der folgenden Theorie, wie dies
moéglich ist, auf allgemeinere Réume mit abelscher Transformationsgruppe erweitert
werden soll.
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postulate — in Kraft gesetzt. Jedes Inhaltssystem, das den gesetzten For-
derungen geniigt, ist dann innerhalb dieser Inhaltstheorie zulissig, und es
ist Aufgabe der betreffenden axiomatischen Theorie, die mannigfaltigen
Verhiltnisse und Fragen, die sich ergeben, moglichst umfassend abzu-
klidren. _

Die der hier vorliegenden Skizze einer axiomatischen Theorie zugrunde-
gelegten Inhaltspostulate lauten wie folgt:

a) Ein Inhaltsfeld § ist ein System beschrinkter Punktmengen des
Raumes R, welches den folgenden drei Feldpostulaten geniigt:

(Io) & ist translationsfrer, d.h.aus 4 eF und A ~ B folgt Be§F;
(ILy) & ist additiv, d.h.aus A, Be, AB=A4 folgt A+ Bey;
(II1,) & ist mormal, d. h.es gilt K e §& .

b) Ein Inhaltsoperator J ist ein fiir alle Mengen des Feldes § definiertes,
reellwertiges Mengenfunktional, welches den folgenden vier Operations-
postulaten geniigt:

(I) J ist definit, d. h.es gilt 0 < J(4) < oo;

(II) J ist translationsinvariant, d.h.es gilt J(4) =J(B), falls
A~ B ist;

(II1) J ist additiv, d.h.es gilt J(A4 + B) =J(4) + J(B), falls
AB = A ist;

(IV) J ist normiert, d. h.es gilt J(£) =1.

Neben den durch die Feldpostulate (I,) bis (ILI,) vorgeschriebenen
Eigenschaften kann ein Feld §§ noch weitere zusitzliche Eigenschaften
aufweisen. Im Hinblick auf klassische Inhaltssysteme erwiéhnen wir hier:
(IVy) & ist ein Mengenkorper, d. h. aus A, Be & folgt auch

A+ B,A— Beg;
(Vo) & ist ein Mengenring, d. h. aus A, Be§ folgt auch
AB, A+ Be§.

Eine Eigenschaft, die vor allem fiir Inhaltssysteme in Betracht kommt,
welche innerhalb der hier entwickelten axiomatischen Theorie von Bedeu-
tung sind, beruht auf dem Begriff der Zerlegungsgleichheit. Zwei Mengen
A und B nennen wir translativ-zerlegungsgleich (kurz: zerlegungsgleich),
geschrieben 4 ~ B, wenn sie sich in je endlich viele disjunkte und paar-
weise translationsgleiche Mengen 4, und B, zerlegen lassen, so daBl also

n n
A=2XA, und B=2B,,4,4,=B, B, = A(v# p) und 4, ~ B,
1 1
gilt. Wie man leicht verifiziert, ist die Zerlegungsgleichheit transitiv, d. h.
aus A~ B und B~ C folgt A~C.
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Die in Aussicht gestellte Feldeigenschaft ist nun die folgende:
(VI,) & ist zerlegungsfrei, d.h.aus A e und A~ B folgt Be .

Selbstverstindlich kann auch der Inhaltsoperator J weitere zusétzliche
Eigenschaften aufweisen. Eine besondere Monotonieeigenschaft, die sich
nicht aus den Operationspostulaten (I) bis (IV) ableiten 1i8t, wird fiir
unsere Entwicklung sehr wesentlich sein, und wir setzen uns mit ihr ein-
laBlicher im folgenden Abschnitt auseinander.

II. Deckungsmonotonie
Wir erkliren weiter:

(V) J heiBt monoton, wenn aus A € B die Beziehung J(4) < J(B)
folgt.

Wenn das Feld & ein Mengenkorper ist — vergleiche (IV,) —, so ist (V)
offensichtlich eine einfache Folgerung aus (I) bis (IV). Im andern Fall
braucht J nicht monoton zu sein.

Wir wollen nun dieser bekannten, gewohnlichen Monotonie eine etwas
stirkere Eigenschaft — die Deckungsmonotonie — gegeniiberstellen, einen
Begriff, dessen Einfithrung (wie erst einldf8liche Studien zeigen) durchaus
lohnend ist.

Vorbereitend noch einige Erkldrungen: Es bezeichne [4] die charak-
teristische Funktion von 4, d. h. eine im Raum R definierte Funktion,
welche fiir Punkte von 4 den Wert 1 annimmt und sonst verschwindet.

Es sei weiter A,, ..., 4, ein endliches System von Mengen — im folgen-

den Auslegung genannt — und es sei die dieser Auslegung zugeordnete

Funktion [4,, ..., 4,] durch Ansatz [4,,...., 4,] = 2 [4,] definiert.
1

Es handelt sich um eine Funktion, welche ganzzahlige, nicht-negative
Werte annimmt ; der Funktionswert in einem Punkte P gibt die Vielfach-
heit der Bedeckung von P durch Mengen der Auslegung an.

Ist die Auslegung disjunkt, so daBi 4, 4, = A(4 #pu) gilt, so ist
[4:,...,4,] offensichtlich mit der charakteristischen Funktion der

n

Vereinigungsmenge X' A4, identisch.
1

Wir definieren jetzt:
(VI) J heit deckungsmonoton, wenn aus [4,,..., 4,] < [B,, ..., B,]
n m
die Beziehung X J(4,) < X J(B,) folgt.
1 1
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Ohne weiteres erkennt man, dal die gewohnliche Monotonie (V) in der
Deckungsmonotonie (VI) enthalten ist ; denn [4] << [B] ist mit 4 € B
gleichbedeutend.

Andererseits aber kann (VI) nicht allein aus (V) in Verbindung mit den
Postulaten (I) bis (IV) gefolgert werden.

Die Hauptergebnisse der vorliegenden Arbeit werden sich ausschlieBlich
auf deckungsmonotone Inhaltssysteme beziehen. Dies bedeutet indessen
keine storende Einschriankung, da einerseits die klassischen Systeme diese
Eigenschaft haben, sich also als spezielle Fille unserer Theorie eingliedern
lassen, und andererseits die von uns besonders untersuchten Systeme
sich ebenfalls als deckungsmonoton herausstellen werden.

Es scheint, daB die in Betracht gezogene Deckungsmonotonie besonders
ausgezeichnet ist, da sie als zusétzlich zu den iiblichen Axiomen (I) bis
(IV) hinzutretende Forderung einerseits noch schwach genug ist, um alle
im Rahmen der axiomatischen Theorie wichtigen Systeme zuzulassen,
andererseits aber stark genug, um die Theorie durch kréftige und abrun-
dende Sitze zu einem befriedigenden Abschlufl zu fithren.

Als erstes beweisen wir nun ein fiir die Deckungsmonotonie hinrei-
chendes

Kriterium 1. Ein Inhaltssystem (¥, J) ist dann deckungsmonoton, wenn
einer der drei folgenden Tatbestinde erfiillt ist :
a) & st esn Mengenkorper;
b) & ist esn Mengenring und J ist monoton;
c) & ust zerlegungsfrei und J st monoton.
Den Beweis vorbereitend definieren wir: Eine Menge 4 heillt zerlegungs-
kleiner als B, symbolisch 4 ~ < B, wenn eine Menge 4’ so existiert,
da 4~ A" und 4’ < B gilt. Diese Beziehung ist, wie man sich leicht

iiberzeugt, wieder transitiv, d. h.aus A~ c B und B~ < ( folgt
A~ c C. Wir beweisen nun vorerst den folgenden

Hilfssatz 1. Wenn die Relation [A,, ..., 4,] < [B,, ..., B,] besteht,
so qilt fir zwei disjunkte Auslegungen von mit den beteiligten Mengen A,
bzw. B, translationsgleichen Mengen A’ bzw. B, eine Zerlegungsbeziehung

n m
YA ~cZXB
1 1
[4, ~A,; B, >~ B,; 4, A, = B, B, = A(v # p)] .

Die fir die Realisierung der Zerlegungsbeziehung erforderlichen Teilmengen
gehoren alle zu dem durch die Mengen A, und B, erzeugten Mengenring.
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Beweis: Es bezeichne U, bzw. V,; die Menge der Punkte in R, wo
[4,,...,4,] =1t bzw. [B,, ..., B,] =1 ausfillt. Setzen wir

A4,,=A4,U; bzw. B,,= B, V,,
n m
so gilt sicher 4, =X A4,, uwnd B,=2XB,,. Fir eine djsjunkte Aus-

t=1 t=1
legung der Mengen A/ 1Bt sich die Darstellung Z' A = P (2 Al)

v=11i=1
aufschreiben, wobei A, ~ A,; gilt. Vertauschen wir dle Reihenfolge in

der Mengenaddition und bedenken wir, dal im Hinblick auf die Kon-
struktion der Menge U, die Zerlegungsgleichheit Z’ A~ Z' U,, besteht,

vi —

=1 e=1
wobei rechts eine disjunkte Auslegung von 1 verschledenen Mengen

Uzg , U, ie = o U i» UiqUsjg = A,(0 # 0) dargestellt ist, so erhalten wir
Z’A,’, ~ Z' 2 U,,- Analog ergibt sich Z' B, ~2% XV, und da nach der

t=1¢=1 i=1¢=1
Voraussetzung des Hilfssatzes U, C V gelten muf}, folgt die Behaup-

tung 2 A, ~ c Z B, . Ferner sieht man leicht ein, daB sich die Mengen
1 1

U,;bzw. V,, also auch die Mengen A4,, und B,; durch endlichfache Durch-
schnittsbildung aus den urspriinglich beteiligten Mengen A, und B,
gewinnen lassen ; sie gehoren somit, wie behauptet, zu dem von diesen
erzeugten Mengenring.

Die Behauptungen von Kriterium 1 ergeben sich nun miihelos aus
dem Hilfssatz 1

Wir wollen diesen Abschnitt abschliefen, indem wir zeigen, dafl
1. micht monotone und 2. monotone, aber nicht deckungsmonotone Inhalts-
systeme existieren.

Beisptel 1. Es sei k = 1. S bezeichne ein Intervall a <z <a + s
(— oo <a < oo;8>1, ganz)und P einen Punkt = p(— oo < p <o0).
& sei nun das System aller Mengen A4, die sich in endlich viele Punkte und

Intervalle disjunkt zerlegen lassen,sodal 4 = 2’ P, + Z’ S, gilt. Setzen
wir J(4) =m + Z 8y, 80 sind die Postulate (I ) bis (III ) und (I) bis
1

(IV) erfiillt, so daB (&, J) ein Inhaltssystem darstellt. Sind nun P und @
zwei in K enthaltene Punkte und setzt man A = P + @, sogilt A C F;
dagegen ist 2 = J(4) > J(&) = 1. Die Monotonie (V) ist also verletzt.

Beispiel 2. Es sei wieder k = 1. § habe die gleiche Bedeutung wie in
Beispiel 1 und 7" bezeichne weiter ein Intervall

a<e<a+t,(— o0 <a<oo;t=0).
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& sei das System aller Mengen A4, die sich in endlich viele Intervalle S und
T dls]unkt zerlegen lassen, so dal 4 = Z’ S, + Z’ T, gilt. Wir setzen
J(4) = 2 8, + Z [t.], wobei [] die Gaul}’ sche Klammer bedeutet, also

[t] die grﬁBte ganze Zahl darstellt, die nicht groBer als ¢ ist. Obwohl die
Zerlegung einer Menge A dieser Art in S- und 7-Intervalle nicht not-
wendig eindeutig ist, fdllt doch der oben angesetzte Wert J (4) fiir alle
zuldssigen Zerlegungen immer gleich aus, wie sich auf Grund der Bemer-
kung ergibt, daB fiir ganze s stets [s 4 ¢] = s + [t] gilt. Man bestiitigt
sofort, dafl (§F, J) ein Inhaltssystem ist, indem man die Giiltigkeit der
zustindigen Postulate tberpriift. Ist nun 4 © B, so folgt auf Grund
einfacher Uberlegungen, daB8 J(4) < J(B) wird ; hierbei ist die Funk-
tionalungleichung [«] + [v] < [ + v] zu beachten. Die Monotonie (V)
ist also gewdhrleistet. Andererseits betrachten wir die beiden Intervalle
P:o<<ze<<Y und @: ¥, <z <1, sodal EcC P+ oder also auch
[£] < [P,Q] gilt. Nun ist aber 1 =J(E) >J(P)+ J(Q) = 0; die
Deckungsmonotonie (VI) ist demnach verletzt.

ITI. Absoluter Ober- und Unterinhalt

Unter n-4(n > 1, ganz) wollen wir im folgenden eine Auslegung von
n mit A4 translationsgleichen Mengen A4*, ..., A*» verstehen ; formal
erginzend treffen wir noch die Konvention 0-4 = A. Bezeichnet wie im
vorstehenden Abschnitt [A] die charakteristische Funktion von 4, so

sei [n-A] = [A*, ..., A*n], wobei wie oben [4*,...Ax] = X [Aw]
1

gesetzt ist. Diese symbolischen Abkiirzungen sind fiir die einfache und
iibersichtliche Darstellung der hier skizzierten Theorie von Bedeutung.
Wir geben jetzt die folgende

Definition 1. Unter dem absoluten Oberinhalt H (A4) bzw. dem absoluten
Unterinhalt H (A) einer beschrinkten Punktmenge A verstehen wir die durch
die Ansdtze

H(A) = inf pjn; [1n-4] < [p-E] (1)
H(A) = sup p/n; [p-E] < [n-4] (2)
erklirten unteren bzw. oberen Gremzen ; bei threr Bildung sind alle Aus-
legungen der Menge A und des Einhettswiirfels E mit p > 0 und n > 1

wn Betracht zu ziehen, filr welche die rechis geschriebemen Bedingungen
realisiert werden.
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Die Existenz der beiden in (1) und (2) angesetzten Schranken weisen
wir weiter unten nach. Ebenso begriinden wir weiter unten einige ein-
fache Eigenschaften des absoluten Ober- und Unterinhaltes, die nun im
Zusammenhang genannt werden sollen. Es gelten ndmlich die Relationen:

0<H()<H() <oo (3)
H(A) <H(B); H(4) <H(B) (4 € B) (4)
H(E)=H(E)=1 (5)
H(A)=H(B); H(A) = H(B) (4 =~ B) (6)
H(A + B) <H(4)+ H(B) (7)
H(A + B) = H(4) + H(B) (AB = 4) (8)
Hn-A) =nH(A); Hn-A) =nH(A) (n-A4 disjunkt) (9)
H(A) + H(B) < H(A + B) (4B = 4) _(10)
H(A+ B)<H (4) + H(B) (4B = A) (11)

Zunichst leiten wir einige weitere Hilfssitze ab, auf die wir uns auch
bei spiteren Beweisen stiitzen miissen.

Hilfssatz 2. Aus [n-E] < [m-E] folgt n < m.

Beweis: Es bezeichne ;i =1,2,3,...) die Folge der Einheits-
gittertranslationen in R, so daB durch die Gesamtheit der Wiirfel E”°
der ganze Raum R schlicht und liickenlos iiberdeckt wird. Fiir eine belie-

bige Translation « gilt dann die Identitit 2 [E*ri] = 1. Ist n-E die
1
Auslegung E*, ... E*n, so hat man

3 [m-By] =X E[Bw"] = Z(Z [B%"))
1

i=1lv=1 v=11
oder im Hlnbhck auf die eben erwihnte Identitit Z [(n-E)] = n.
Analog gilt 2 [(m-E)"] = m und mit Riicksicht auf dle Voraussetzung

folgt tatsachhch n <

Ein fiir die Beweistechnik leistungsfahiger Hilfsbegriff ist derjenige der
Produktauslegung. Sind n-A = A*,...,A*» und m-4A = AP1,... APm
zwei Auslegungen, so erklidren wir die Produktauslegung n-(m-A4) durch
n-(m-A) =(m-4),...,(m-A)n = AP APmon  Infolge der Kom-
mutativitit der Translationsgruppe gilt offensichtlich =n.(m-4)=
m - (n - 4). Wir kénnen die Produktauslegung auch mit nm - 4 bezeichnen.
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Hilfssatz 3. Sind n-A4 und m- B zwei Auslegungen, fiir welche
[n-4] < [m- B],
und 18t p-X eine weitere Auslegung, so gilt [np-A] < [mp- B].
Beweis. Sei p-X = X*1, ..., X’ ; dann folgt
[np-A] = [(n-A)L,...,(n-A)?2] < [(m-B)4,...,(m-B)r] = [mp-B].

Hilfssatz 4. Aus [n-A] < [m-B] und [p-B] <|[q-C] folgt die
Existenz zweier Produktauslegungen np-A und mq-C so, daf
[np-A4] < [mq-C]
qult.
Bewers. Nach Hilfssatz 3ist [np-A] < [mp- B], [mp- B] < [mq -],
woraus die Behauptung sofort folgt.

Hilfssatz 6. Gilt [q- E] < [p- E], so gibt es zu einem beliebigen ¢ > 0
Auslegungen n-(p-E),n-(q-E) und m-E so, daf

[n-(p-BE)] <[n-(¢-H)] + [m- E]

und weiter
min <p—q-+ ¢
ausfallt.
Beweis. Es sei ¢q-E=E*,...,E4 und p-E=EP,. . . EB»,
Weiter sollen y, (v =1, 2, .., n)n Translationen des Einheitsgitters im

Raum R so bezeichnen, daB die Gesamtheit X EY» den Wiirfel
1
W{0 <z, <N,Gt=1,..k), N ganz}

der Kantenlinge N schlicht und liickenlos iiberdeckt. Offenbar ist dann
n = N*. Es ist nun

[n-(p-B)]=Z[(p-E)]=[Wh,..., Wk].
1
Bedeutet U die Vereinigungsmenge W*® 4- ... 4 WPf», so gilt demnach

[n-(p-E)] <p[U]. (a)

Analog ist n
e (g B = Z (- BY"] = (W™, ..., W]

und falls ¥ den Durchschnitt W*:..... W% bedeutet, gilt entsprechend
glVi<I[n-(q-2)]. (b)
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Nach Konstruktion ist ¥ durch N* gitterformig angeordnete Einheits-
wiirfel iiberdeckt; einfache Erwidgungen ergeben, daB sich die Menge
U — V durch c¢N¥*! gitterformig angeordnete Einheitswiirfel iiber-
decken 1d8t, wo die Konstante ¢ nicht von N, sondern nur von den unserer
Betrachtung fest zugrunde liegenden Translationen « und g abhéngig ist.
Nach diesen beiden letzten Bemerkungen wird [V] < [N*-E] und
[U — V] < [¢eN*1. E]. Riickgreifend auf (a) haben wir zunichst

[n-(p-E)]<plU—-V]+(—9qI[V]+qlV]

und in Verbindung mit (b) weiter

[n-(p-B)] <[pcN*'-El+ [p— ¢ N*-E]+[n-(q¢-B)].
Wird noch m = (p — q) N* + pc N¥*1 gesetzt, so bleibt endlich

[v-(p-B)]<[n-(q¢ BE)]+ [m-E],

wobei m/n = p — q + pc/N ist. Da N beliebig groB gewihlt werden
kann, bestitigt sich die Behauptung mit pc/N < e.

Wir weisen jetzt die Existenz der mit (1) und (2) angesetzten Schranken
H(A) und H(A) nach und verifizieren dann ihre durch (3) bis (11) aus-
gedriickten Haupteigenschaften.

Da A beschrinkt ist, gilt fiir eine ausreichende Auslegung p - E sicher
[1-4] = [4] < [p- E]; also gibt es natiirliche Zahlenpaare n, p, fir
welche die Bedingung bei (1) erfiillt wird. Damit ist offenbar die Existenz
von H (A) sichergestellt. Andererseits gilt 0 = [0-E] < [1- 4], so daB
auch Zahlenpaare n, p vorhanden sind, welche die Bedingung bei (2)
erfiilllen. Wir haben zu zeigen, daBl die Menge der Quotienten p/n be-
schriankt ist.

Es gelte [n'-A] < [p'-E] und [p-E] < [n-A]. Nach Hilfssatz 4
gilt dann auch [n'p - E] < [np’ - E] und nach Hilfssatz 2 folgt n'p<<np’
oder p/n < p'[n’. Hieraus schliefen wir mit (1) p/n < H(A). Damit ist
offensichtlich die Existenz von H (4) nachgewiesen. Gleichzeitig folgt (3).
Die Eigenschaften (4), (5) und (6) ergeben sich unmittelbar aus den Defi-
nitionen (1) und (2). Wir beweisen (7): Es sei [n-A4] <[p-E] und
[m- B] < [¢-E]. Nach Hilfssatz 3 gilt dann [rm - 4] < [pm - E] und
[mn-B]l <[¢gn-E], sodaBl [nm-A,nm-B] <[(mp +nq)-E]. Wegen
[pnm-(A+ B)] <[nm-A,nm.B] folgt so mit (1)

H(A + B) < (p/n) + (g/m)

und nochmals mit (1) schlieBlich H(4 + B) < H(4) + H(B), wzbw.
Der Beweis von (8) verlduft analog, nur ist neu zu bedenken, daB3 dann
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[pm.-(A+4+ B)]l=[nm-4,nm-B] ausfillt, da AB= A4 voraus-
gesetzt ist.

Wir beweisen jetzt (9): Nach wiederholter Anwendung von (7) er-
gibt sich
Hn-A) <nH(A). (c)

Es gelte weiter [m - (n-A4)] = [mn-A] < [¢- E]; nach (1) ist demnach
H(A) < ¢/nm und erneut nach (1)

nH(A) <H(n-A). (d)

Mit (c) und (d) folgt H(n -A) =nH(A). Analog gewinnt man auch
H(n-A)=nH(A), wzbw.

SchlieBlich weisen wir noch (10) nach: Es sei [p-E] < [n-4] und
[m-(A+ B)] <[g-E]. Wegen AB = A gilt

[m- A+ B)]=[m-A,m-B]=[m-4] + [m- B].
Fiir die sinngemidfl gebildeten Produktauslegungen gilt
[pm-A] + [nm-B] < [rq-E] und [pm-E] <[nsm- A].
Die Verbindung der beiden Relationen liefert
[pm - E] + [nm - B] < [ng- H]. (e)

Insbesondere ist [pm - E] < [nq-E] und nach Hilfssatz 5 gibt es zu
jedem & > 0 zwei natiirliche Zahlen r und s, so da3 einerseits

[r-ng-E] <[r-pm-E]+ [s-E] (f)

und andererseits
(s/r) <mqg —pm + ¢ (g)

gilt. Greifen wir auf (e) zuriick, so resultiert mit Bildung der entsprechen-
den Produktauslegungen

[r-pm-E]l+ [r-nm-B] < [r -nq- E]

und in Verbindung mit (f) folgt jetzt [rnm -B] < [s-E]. Damit
schlieBen wir nach (1) zunichst auf H (B) < s/rnm und mit (g) hieraus
weiter auf H(B) + (p/n) < (g/m) + (¢/nm); erneut nach (1) und (2)
folgt H{A) - H(B) < H(A + B) + ¢. Da & > 0 beliebig wihlbar ist,
folgt so die Behauptung (10); der Beweis von (11) verlduft analog.
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IV. Absoluter Inhalt

Auf Grund der im vorstehenden Abschnitt untersuchten absoluten
Ober- und Unterinhalte H (4) und H (4) konstruieren wir nun das abso-
lute Inhaltssystem. Die gewihlte Bezeichnungsweise wird, wie schon in der
Einleitung bemerkt wurde, weiter unten durch die Giiltigkeit gewisser
Sétze gerechtfertigt werden, welche die ausgezeichnete Rolle dieses
Systems innerhalb der axiomatischen Inhaltstheorie aufdecken.

Wir gehen aus von der folgenden

Definition 2. Eine beschrinkte Punktmenge A heifit absolut mepbar, wenn
H(4) = H(4) = H(4) (12)

ausfallt, d. h. wenn der absolute Oberinhalt mit dem absoluten Unterinhalt
von A ibereinstimmt. Den gemeinsamen Wert H(A) nennen wir den abso-
luten Inhalt von A.

Es bezeichne § die Gesamtheit aller absolut mef3baren Mengen. Wir
zeigen jetzt, dafl § ein Inhaltsfeld und H ein Inhaltsoperator ist. ($), H)
ist das absolute Inhaltssystem.

Fiir § sind die Feldpostulate (I,) bis (III,;) und fiir H die Operations-
postulate (I) bis (IV) als giiltig nachzuweisen. Die erforderlichen Schliisse
sind aber so einfach, daBl wir uns darauf beschrinken kénnen, zu jedem
Postulat nur stichwortartig die fritheren Relationen zu zitieren, auf die
man sich in stindiger Verbindung mit (12) berufen kann.

(Lo): (8); (ILy): (7), (8) und dann (3) ; (I1L,): (5);
(I): (3); (IT): (6); (III): (7), (8) und dann (3); (IV): (5).

FormelméBig nochmals zusammengestellt handelt es sich also um die
folgenden Eigenschaften des absoluten Inhalts:

0 < H(A4) < oo; (13)
H(4) = H(B) (4 =~ B) (14)
H(A + B)= H(4) + H(B) (AB = 4) (15)
H(E) =1 (16)

Wir bemerken noch, dal H(A) wohl additiv, aber sicher nicht voll-
additiv ist?®).

15) Dies folgert man beispielsweise leicht auf Grund eines Ergebnisses von J. von Neu-
mann (Fund. Math. 11, 1928, 230-238), wonach sich ein abgeschlossener Wiirfel in abzahl-
bar viele paarweise disjunkte, translationsgleiche Teilmengen zerlegen laft.
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Die Feldeigenschaften (IV,) oder (V,) sind nicht realisiert, d. h. das
absolute Feld §) ist kein Mengenkorper, nicht einmal ein Mengenring,
dagegen hat es die wesentliche Eigenschaft (VI,), d. h. § ist zerlegungsfrez.
Dies konnen wir allerdings erst im folgenden Abschnitt beweisen. Auf
Grund dieser Tatsache ergibt sich indirekt, dal § kein Mengenring sein
kann ; andernfalls wiirde sich namlich leicht schlieBen lassen, daf3 jede
beschrinkte Menge absolut mef3bar wire, was nicht zutrifit. Die Existenz
nicht absolut meBbarer Mengen ergibt sich fiir £ > 2 leicht aus den para-
doxen Zerlegungen nach Banach-Tarski in Verbindung mit der am Ende
von Abschnitt VII gewonnenen Einsicht, daBl § bewegungsfrei und H
bewegungsinvariant ist.

Dagegen ist die Eigenschaft (V) realisiert: es ist

H(4) <H(B), falls 4 c B, (17)

d. h. H ist monoton. Dies folgt aus (4). Dal auch (VI) gilt, d. h. daBl H
auch deckungsmonoton ist, konnen wir erst im folgenden Abschnitt
beweisen.

Zusiatzlich fiigen wir noch die folgenden Relationen bei: Es gilt fiir eine
absolut meBbare Menge 4 und jede Menge B nach (7), (8), (10) und (11)

H(A+ B)=H(A)+H(B) (4B=4) (18)
H(A+ B)=H(A)+ H(B) (AB=4). (19)
Diese Aussagen stehen in engem Zusammenhang mit dem folgenden

Kriterium 21¢)., A4 ust dann und nur dann absolut mefbar, wenn eine der
beiden Relationen

H(A + B) = H(4) + H(B) (20)
H(A + B) = H(A) + H(B) (21)
fir alle Mengen B zutreffend ist.

Beweis. Dafl das Kriterium notwendig ist, folgt aus (18) und (19);
daf es auch hinreicht, zeigen wir wie folgt: Es sei 4 eine vorgegebene
Menge, und es gelte etwa (20) fiir jede Menge B. Da A beschrinkt ist,
gibt es eine absolut meBbare Menge C, die 4 enthilt. C 148t sich etwa
aus einer ausreichenden Anzahl gitterférmig angeordneter Einheitswiirfel
zusammensetzen. Ist nun B = ¢ — A4, so ergibt sich nach (20) und (11):

H(A) + HB)=H(A + B)=H(C)=H(4A + B) <H(A) + H(B)

18) Dieses Kriterium folgt den Ideen Carathéodorys, wie sie in seiner Maftheorie zum
Ausdruck kommen. Vgl. etwa ,,Reelle Funktionen*, 1. Auflage 1918, 246 ff.
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oder H(A) < H{(A). Hieraus folgt mit (3): H(A4) = H(A4), also ist 4
absolut mefbar.

Weiter erwihnen wir noch eine T'eilbarkeitseigenschaft des Feldes §:
Ist n-A eine disjunkte Auslegung und gehért von den beiden Mengen
A und n- A eine zu §), so triffit dies auch fiir die andere zu und es gilt

H(n-A)=nH(4). (22)

Dies ist eine einfache Folge von (9) in Verbindung mit der Definition (12).
Endlich geben wir noch einen kurzen Hinweis iiber das Verhéltnis
zwischen dem absoluten Inhaltssystem und den klassischen Systemen.
Bezeichnet (J,I) das Jordansche Inhaltssystem, so gilt J C 9,
d. h. jede ym Jordanschen Sinne mefbare Menge A ist absolut mefBbar, und

es gilt H(A) = I(4). (23)

Umgekehrt gibt es absolut mefbare Mengen, welche nicht einmal im
Lebesgueschen Sinne meBbar sind. Dies ergibt sich aus den Tatsachen,
dafB das Feld £ des Lebesgueschen Systems (8, L) ein Mengenkorper, das
Feld § aber zerlegungsfrei ist, in Verbindung mit dem Umstand, daf3 es
Mengen gibt, die nicht L-mefbar sind.

Der Nachweis der Aussage § C § und der Relation (23) ist einfach:
Die Behauptung ist richtig fiir die Einheitsmenge £, also nach der oben
erwihnten Teilbarkeitseigenschaft von § und (22) in Verbindung mit den
translativen und additiven Eigenschaften auch fiir Wiirfel p £, die aus £
durch Dilatation mit einem rationalen p hervorgehen, ferner auch fiir
rationale Wiirfelmengen, die sich in disjunkte Wiirfel der Art pE zer-
legen lassen. Es sei nun zunéchst 4 eine beliebige beschrinkte Menge und
U und V zwei rationale Wiirfelmengen, so da ¥V < 4 < U gilt. Unter
Verwertung der Monotonie-Eigenschaften schliet man sodann

I(V)=H(V) <H() <HA) <H (U)=I1(U)

und mit Berufung auf die klassischen Definitionen fiir den dufBeren und
inneren Jordanschen Inhalt I(4) und I(A4) ergibt sich schlieBlich die

Relation [(4) <HA) <HA) <T(4), (24)

aus der die Behauptung in vollem Umfang folgt.

Ein Vergleich mit dem Lebesgueschen System liefert keine zu (24)
analoge Relation zwischen den MafBzahlen L(A4), L(A) einerseits und
H(A), H(A) andererseits. Dagegen liBt sich zeigen: Es gelten die
Formeln

L(4) = H(A) fiir jede abgeschlossene Punktmenge 4 ;
H (

L(A) = H(A) fiir jede offene Punktmenge A4 . (25)
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Der Nachweis stiitzt sich indessen auf die erst im Abschnitt VI her-
geleitete Beziehung (28), deren Anwendung auf L-meBbare Mengen!?)
zunéchst

H(4) < L(4) < H(4) (a)

ergibt. Ist nun A4 abgeschlossen, so gibt es zu jedem ¢ > 0 noch eine
I-meBbare Menge X, so dal 4 € X und I(X) < L(4) + ¢ ausfillt.
Mit (4) folgt H(4) < H(X) und mit (23) H(X)= H(X) = I(X),
so daB H(A) < L(A4) + ¢ oder also

H(4) < L(A) (b)

gilt. Aus (a) und (b) ergibt sich (25) fiir abgeschlossene Mengen ; analog
schlieBt man fiir offene Mengen.

V. Deckungs- und Zerlegungsiquivalenz

Wir fithren nun zwei auf verschiedene Art definierte Aquivalenzen ein.
Weitere Fortschritte und neue Einsichten innerhalb unserer axiomati-
schen Inhaltstheorie werden sich dann dadurch ergeben, dafl nachfolgend
die Gleichwertigkeit der beiden Aquivalenzen aufgewiesen wird. Der
damit gewonnene Aquivalenzbegriff ist der axiomatischen Inhaltstheorie
msofern vollkommen angemessen, als sich herausstellen wird, dafl zwei
Mengen dann und nur dann dquivalent sind, wenn sie in allen deckungs-
monotonen Inhaltssystemen, in welchen sie beide meBbar sind, iiberein-
stimmenden Inhalt aufweisen.

Wir geben nun die folgende

Definition 3. Zwe: beschrinkte Punktmengen A und B nennen wir dek-
kungsiquivalent, symbolisch A ~ B, wenn zu jedem & > 0 natirliche
Zahlen n,p und m,q und zugehorige Auslegungen so existieren, daf

[n-4A] < [n- Bl + [p- E]
und gleichzeitig

[m-B] < [m-4] + [q- E]

gilt, wober pln < e und gq/m < e ausfdllt.

DaB die Deckungsiquivalenz reflexiv und symmetrisch ist, folgt unmittel-
bar ; daB3 sie auch transitiv ist, weist man miihelos nach, indem man sich
in passender Weise eines bereits wiederholt angewendeten Verfahrens
bedient, das mit den Produktauslegungen operiert.

17) (28) gilt fiir deckungsmonotone Inhalte. Dies trifft nach Kriterium 1 fir L(A4) zu,
da das Feld £ ein Mengenkérper ist.
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Wir schlieflen hier gleich an die

Definition 4. Zwei beschrinkte Punktmengen A und B nennen wir
zerlegungsiquivalent, symbolisch A ~ B, wenn fir jedes ¢ >0 die
Relationen

A~c B+ ¢E und B~Cc A4 ¢k

gelten, wobei € E ein durch Dilatation mit € aus K hervorgehender Wiirfel ist.
Er sei in eine solche Lage verschoben, dafy er mit A und B keine Punkte
gemeinsam hat.

Daf} die Zerlegungsiquivalenz reflexiv und symmetrisch ist, folgt wieder
unmittelbar ; dafl sie auch transitiv ist, ergibt sich sehr leicht mit Riick-
sicht darauf, daf dies fiir die Relation =~ C (zerlegungskleiner) gilt.

Wir formulieren nun das erste Hauptergebnis unserer Theorie, welches
die Gleichwertigkeit der beiden oben definierten Aquivalenzen aussagt.
Es gilt der folgende

Satz 1. Zwei beschrinkte Punktmengen A und B sind dann und nur dann
zerlegungsdquivalent, wenn sie auch deckungsiquivalent sind ; aus A ~ B
folgt A ~ B und umgekehrt.

Bewezs.
Aus A~ B folgt A~ B. (a)

2

1. Fall: Es sei A mit B 2-stufig zerlegungsgleich, symbolisch 4 ~ B,
so daBB man durch eine passende Verschiebung die Beziehungen

A=U+V und B=U+ V=

herstellen kann. Damit ergibt sich

n—1

n—1 n—-1
[4, A%, ..., 44" = Z [4¥] = X [U¥]+ 2 [V*]
0 (1} 0

= [ 4 V] + 2‘ [B"] .

Beriicksichtigt man, dafl [1- U] <[1:-B] und [1-V]<[1-B]<[p- E]
ist, wobei p nicht von dem willkiirlich wiahlbaren n abhéngt, so folgt

[n-A} < [n-B]+ [p-E],

wihrend p/n < ¢ erzielt werden kann. Da man hier 4 und B vertauschen
darf, folgt 4 ~ B.
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2. Fall: Es sei A mit B s-stufig zerlegungsgleich, symbolisch 4 >~ B,
so dal A =2U, und B = X Uj» geschriecben werden kann. Wir
1 1

setzen jetzt

Ay=2U, =4, 4, =2U0% 4+ 22U, undsomit A4,=2U}»=B.

1 1 i+1 1

Nun erkennt man, daf} die konsekutiven Mengen A4; und 4,,, 2-stufig
2 2 2

zerlegungsgleich sind, also 4,~4,~.....~4,; nach dem ersten

Fall folgt somit Ay ~A4,~..... ~ A, und in Verbindung mit der
Transitivitdt der Relation ~ schliefllich A, ~ 4, oder 4 ~ B.

3. Fall: Es sei A ~ B oder also- erstens
A~A"c B+ e¢E 0O<e<l).

Nach dem 2. Fall ist A ~ 4’, so dall zwei natiirliche Zahlen » und p
vorhanden sind, welche die Relation

-4l <[n 47+ [p-B] mit pn <e (a)
erfiilllen. Weiter ist offenbar
[n-A]<[n-B]+ [n-eE]. (b)

Da ¢ £ absolut meflbar ist, gibt es nach den Definitionen 1 und 2 und nach
(23) zwei natiirliche Zahlen m und ¢ so, daf die Relation

[m-eE] <[¢g-E] mit ¢g/m <ek+ e <2¢ (¢)

gilt. Durch Verbindung von (a), (b) und (¢) mit Bildung geeigneter
Produktauslegungen gewinnt man

[mn - A] < [mn - B] + [(mp + ng) - E],

wobei (mp + nq)/mn = (p/n) + (g/m) < 3¢ ausfillt. Da man 4 und B
vertauschen kann, indem zweitens auch B~ B’ € 4 + ¢¥ gilt, folgt
A ~ B, wzbw.

Aus A~ B folgt A ~ B. (b)

Es gibt zwei natiirliche Zahlen » und m, fiir welche die Relation
[v-A] < [n- B] + [m- £]
besteht, wobei m/n < ¢ ist. Wenn s eine natiirliche Zahl bezeichnet,

k E
fiir welche W =8 > Vn—1 gilt, so kann E durch eine disjunkte
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Auslegung 7 - (1/s) E iiberdeckt werden, so daB [m - E] < [n-m - (1/s) E]
und also [n-4] < [n-B,n-m-(1/s) E] richtig ist.

Nach Hilfssatz 1 gibt es disjunkte Auslegungen #-4,n-B und
n-(m-(1/s) E), fir welche die Zerlegungsbeziehung

n-A>~cCn-B+n-(m-(l/s)E)

besteht. Nach einem Theorem von D. Konig und 8. Valké'®) folgert man
hieraus

A>~c B+m-(1/s) K.
Nun gilt weiter %
m-(1s)E~c 2Vmls)E,

da der Inhalt des Wiirfelpolyeders links kleiner ist als der Wiirfelinhalt
rechts (Verhiltnis 1:2%). So ergibt sich

A~ cCc B+ ¢F,

k k ko
wo & =2Vmls < 4V min < 4Ve wird, falls n > 2k ist, was ohne
Einschrinkung vorausgesetzt werden kann. Da man offensichtlich auch
hier A und B vertauschen darf, folgt 4 ~ B wzbw.

VI. Aquivalenz und Inhalt

Wir bringen nun die im vorstehenden Abschnitt eingefiihrten Aqui-
valenzbegriffe mit der Inhaltstheorie in Beziehung. Zunéchst gewinnen
wir aus der festgestellten Gleichwertigkeit von Deckungs- und Zer-
legungsiquivalenz als einfache Folgerung gewisse Sitze, welche die
Zerlegungsinvarianz eines deckungsmonotonen Inhalts ausmachen.

Wir wenden uns vorerst dem absoluten Inhaltssystem ($, H) zu.
Hier gelten die Relationen

HA)=H(B), HA) =H(B) (4=B)), (26)

d. h. die absoluten Ober- und Unterinhalte sind einzeln bereits zerlegungs-
invariant.

Hieraus folgt jetzt, daB das absolute Feld §) die Eigenschaft (VI,) hat,
also zerlegungsfres ist. Ist 4 eine absolut meBbare Menge, so ist auch jede

18) D. Konig und 8. Valké, Uber mehrdeutige Abbildungen, Math. Ann. 96
1925, 135-138. Vgl. auch 4. Tarski, Uber Aquivalenz der Mengen in bezug auf
eine beliebige Klasse von Abbildungen, Atti del Congresso Internazionale dei
Matematici, Bologna 1928, Bd. 2, 243-252.
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mit ihr zerlegungsgleiche Menge B absolut meBbar, und es gilt die Bezie-
hung H(4) = H(B).

Da weiter nach (17) H auch monoton ist, folgt mit Kriterium 1, dafl H
die Eigenschaft (VI) aufweist, also deckungsmonoton ist.

Wir beweisen jetzt (26): Mit 4 ~ B gilt nach Definition 4 erst recht
A ~ B und also nach Satz 1 auch 4 ~ B. Nach Definition 3 gilt somit
[n- Al <[n-B]+ [p:-E] mit p/n <e. Es sei ferner [m-B] < [q-E].
Fir die passenden Produktauslegungen gilt nun

[nm-A] < [(nq + mp) - E]

und hieraus folgt mit (1) H(A4) < (g/m) + (p/n) und erneut nach (1)
H(A) < H(B) + ¢, also schlieBlich H(A4) < H(B). Man kann 4 und B
vertauschen, so daB} sich der erste Teil von (26) ergibt ; der Beweis des
zweiten Teils verliuft analog.

Es sei jetzt (&, J) ein deckungsmonotones, im iibrigen aber beliebiges

Inhaltssystem. Wir zeigen, dal der Inhalt stets zerlegungsinvariant ist,
d. h. daB3 die Relation

J(A)=J(B) (4~ B) (27)

gilt. Wenn das Feld § zerlegungsfrei ist, ergibt sich natiirlich die Zer-
legungsinvarianz als Folgerung aus den Inhaltspostulaten. Die Bedeutung
der Aussage liegt nun darin, dafl der Inhalt auch dann zerlegungsinvariant
ausfallt, wenn das Feld nicht zerlegungsfrei ist, wie das bei den klassi-
schen Systemen (Jordan, Lebesgue) zutrifft.

Fiir den Beweis von (27) schlieBt man zunéchst gleich wie beim voraus-
gehenden Beweis von (26) auf eine Relation [n-A4] < [»- B] + [p- E]
mit p/n < e. Nach der vorausgesetzten Deckungsmonotonie (VI) ziehen
wir die Folgerung nJ(4) < nJ(B) + p, und somit weiter

J(A) <J(B)+ ¢ oderalso J(A) <J(B).

Auch hier kann man 4 und B vertauschen, so daf} sich (27) ergibt.

Wir lassen jetzt das absolute Inhaltssystem mit einem beliebigen dek-
kungsmonotonen Inhaltssystem in Beziehung treten und beweisen die
folgende wichtige Relation:

Ist J (A) ein deckungsmonotoner Inhalt, so gilt fiir jede J-mePbare Menge
H(4) <J(4) <HA4). (28)

Eine einfache Folgerung ist die folgende Aussage:
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Ist J (A) ein deckungsmonotoner Inhalt, so gilt fir jede J-mefbare Menge
A, welche gleichzeitig absolut mefbar st :

J(A)=H(4). (29)

Damit wird bereits die entscheidende charakteristische Eigenschaft
der MaBzahlen H(A), H(A) und H(A) angedeutet, welche die gewihlte
Bezeichnungsweise zu rechtfertigen vermag. Ein vollstdndigeres Urteil
gestatten indessen erst die weiter unten bewiesenen Sétze.

Zum Beweis von (28) sei [n-A] < [p- E], so daBl mit Riicksicht auf
die vorausgesetzte Debkungsmonotonie (VI) auf nJ(4) <p oder
J(A) < p/n geschlossen wird. Mit (1) folgt jetzt J(4) < H(A). Der
Nachweis von H(A4) < J(A4) verlauft analog.

Wir gehen jetzt auf eine Aussage ein, die in gewissem Sinne eine Um-
kehrung von (28) darstellt.

Ist w ein beliebiger im Intervall H(A) < w < H(A) gelegener Zahl-
wert, so existiert ein deckungsmonotoner Inhalt, fiir welchen

JA) =w (30)
gelt.
Dies zeigt, dafl die absoluten Ober- und Unterinhalte die exakten oberen
und unteren Schranken der Menge der Inhaltswerte darstellen, die der
Punktmenge in deckungsmonotonen Systemen zukommen konnen.

Beweis: Ist A absolut meflbar, so liefert der Ansatz J(A) = H(A)
eine Losung. Es sei A nicht absolut meBbar. Wir betrachten das System
aller Mengen X, fiir welche eine Aquivalenz X ~ U + p- A besteht,
wobei p innerhalb der Reihe der nicht negativen ganzen Zahlen und U
innerhalb des Feldes § der absolut meBbaren Mengen unabhingig
variieren sollen. Die Auslegungen p-A der gegebenen Menge A seien
disjunkt und auch zu U fremd.

Nun setzen wir J(X)= H(U) + pw und zeigen, daB dieser der
Menge X zugewiesene Zahlwert J (X) eindeutig durch X bestimmt ist.
In der Tat: Gilt etwa X ~ U + p- A und gleichzeitig X ~V 4+ ¢ -4,
so ist offenbar auch U +p-A ~V + q-A. Wie beim Beweis von (26)
gezeigt wurde, haben dquivalente Mengen den gleichen absoluten Ober-
inhalt, so daB zunichst H(U + p-A) = H(V + ¢ - A) folgt. Nach (18)
und in Verbindung mit (9) ergibt sich

H(U) + pH(4) = H(V)+ qH(4). (a)
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Eine analoge Betrachtung mit dem absoluten Unterinhalt fiihrt zu

H(U)+ pH(A)=H(V)+ qH(4). (b)

Subtrahiert man die beiden letzten Relationen (a) und (b), so erhilt man
»—q) (H(4) — H(4))=0.

Da A nicht absolut meBbar ist, mul} der zweite Faktor positiv sein, so daf
sich p = q ergibt. Aus (a) folgt weiter, dal H(U) = H(V) sein muB}, und
damit sind die der Menge X auf Grund der beiden verschiedenen Dar-
stellungen zugeordneten Zahlwerte J (X) gleich.

Wir wollen nun zeigen, dafl das System § ein Inhaltsfeld und J ein in &
definierter Inhaltsoperator ist. Die Feldpostulate (I,) bis (III,) und die
Operationspostulate (I) bis (IV) sind aber mit Riicksicht auf die Kon-
struktion von § und J evident. Zusétzlich zeigen wir noch, dal J die
Eigenschaft (V) hat, also monoton ist.

Essei X=U-+p-4,Y=V +q-A4 und weiter X C Y. Mit (4)
schlieBen wir zunichst auf H(X) < H(Y) und H(X) < H(Y) und
mit (18) und (19) in Verbindung mit (9) hieraus auf

HU)+ pH(A) < H(V)+ qH(4) (c)

und H(U)+ pH(A) <H(V)+qH(4). (d)
1. Fall:

p<q; wegen H(4) < w folgt aus (¢) HU)+ po <H(V)+qw.
2. Fall:

q<p; wegen o << H(A) folgt aus (d) H(U) + po < H(V)+qw.

In beiden Fillen hat sich J(X) < J(Y) ergeben, wzbw.

Nun folgt weiter, dafl J auch die Eigenschaft (VI) aufweist, also dek-
kungsmonoton ist. Da namlich & nach Konstruktion sicher zerlegungsfrei
ist, folgt auf Grund der soeben nachgewiesenen Monotonie die Deckungs-
monotonie nach Kriterium 1. Mit der Bemerkung, dal J(4) = w ist,
schlieBt der Beweis von (30).

Wir wollen nun die Ergebnisse (28), (29) und (30) zusammengefal3t
formulieren in

Satz 2: Ist (§,J) etn deckungsmonotones Inhaltssystem, so gilt fiir
jede Menge A e § die Ungleichung H(A) < J(A) < H(A); gilt auPer-
dem A e$, so ist insbesondere J(A) = H(A), so dap der Inhalt einer
absolut-mefBbaren Menge in jedem deckungsmonotonen System gleich aus-
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fallt und mit dem absoluten Inhalt identisch ist. Umgekehrt gibt es zu jedem
Zahlwert o des Intervalls H(A) < w < H(A) ein deckungsmonotones
Inhaltssystem (§,J), fir welches J(A) = w wird.

Eine in gewissem Sinne abschliefende Aussage iiber das Verhéltnis der
Aquivalenz zur axiomatischen Inhaltstheorie wird ausgesagt durch das
folgende

Kriterium 3. Zweir Mengen A und B sind dann und nur dann dquivalent
(deckungsiquivalent A ~ B, zerlegungsiquivalent A ~ B), wenn in
jedem deckungsmonotonen Inhallssystem, in welchem sie beide gleichzeitig
mefbar sind, J(A) = J(B) ausfdllt.

Die Aussage ,,nur dann‘ ist im Hinblick auf die vorstehenden Ergeb-
nisse klar ; die Aussage ,,dann‘‘ ist jedoch nur unvollkommen belegt und
die vollstindige Beweisfilhrung wiirde eine noch weitergehende Ent-
wicklung unserer Theorie in der Richtung zur Konstruktion universeller
oder Banachscher Inhaltssysteme erforderlich machen, was im Rahmen
dieser Abhandlung nicht geschehen kann.

VII1. Der Tarskische Inhalt

Im folgenden verallgemeinern wir einen von A. Tarski'®) fiir lineare
Punktmengen eingefiihrten MaBbegriff fiir k-dimensionale Punktmengen.
Diese Erweiterung ist moglich, weil wir unsere Theorie translationsinva-
riant aufgebaut haben und demnach auch nur translative Zerlegungs-
gleichheit in Betracht ziehen. Da die Translationsgruppe abelsch ist, gibt
es nach bekannten, allgemein gewonnenen Einsichten keine Zerlegungs-
paradoxien im Sinne der Sitze von St. Banach und A. Tarski®®). Die
Nichtexistenz paradoxer Zerlegungen ist indessen bereits implizite in der
innerhalb unserer Theorie bewiesenen Zerlegungsinvarianz des Inhalts
enthalten. Wird die Bewegungsgruppe der Theorie zugrundegelegt, so
kann der Satz von der Gleichwertigkeit von Deckungs- und Zerlegungs-
dquivalenz fiir mehrdimensionale Rdume nicht mehr bewiesen werden ;
unsere Begriindung stiitzte sich wesentlich auf die Kommutativitét der
Translationen.

Wir geben nun die folgende, den Ansétzen von A. Tarsk: nachgebildete

Definition 5. Fiir eine beschrinkte Punktmenge A setzen wir

T(A) = inf Ak, A~ c AE (31)

19) Joe. cit. 2).
20) Joe. cit. 3).
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und analog
T(A) = sup Ak; AE>~Cc A (32)

und nennen T (A) den duferen, T (A) den inneren Tarskischen Inhalt. Die

Ermattlung der unteren und oberen Grenzen erstreckt sich iiber alle A, fir

welche die rechts hingeschriebenen Zerlegungsrelationen erfiillbar sind. Ist

T(A) =T (A) = T(A), so nennen wir T(A) den Tarskischen Inhalt.
Der Existenznachweis von 7'(4) und T (A4) ist in der weiter unten

folgenden Begriindung des Hauptergebnisses dieses Abschnitts mit ent-

halten. Dieses wird durch die beiden folgenden Aussagen wiedergegeben:
Es gelten die Identitiiten

T4)=H); T(4)=H(4). (33)

Beweis: Essei A~ C AE, also A~ 4’ c AE, so dall mit (26) und
(4) folgt: H(A) = H(A') < H(AE). Wegen (23) ist

HAE) = HGAE) = A*,
so daB auf H(4) < A* und mit (31) weiter auf

H(4) <T(4) (a)
geschlossen werden kann.

Andererseits gehen wir von einer Relation [n-A] < [p-E] aus, bei
der nach Hilfssatz 1 auf eine Zerlegungsrelation n-4A >~ c p-E ge-
schlossen werden kann, fiir die die beteiligten Auslegungen disjunkt sind.
Wird 4 so gewéhlt, daBB A* > p/n ist, so gilt wieder mit disjunkten Aus-
legungen eine Zerlegungsrelation p-E >~ C n-AE, da das Wiirfel-
polyeder rechts einen groBeren Inhalt aufweist als das linksstehende. Mit
der Transitivitdt der Relation ~ < folgt nun n-4~ C n.1E, nach
dem bereits frither angewendeten Theorem von D. Kénig und S. Valké
schlieBlich 4~ c AE und mit (31) T(4) < A*. Im Hinblick auf
unsere Konstruktion ergibt sich T (4) < p/n und mit (1) also auch

T(4)<H4). (b)

Die Ergebnisse (a) und (b) verifizieren die Behauptung 7 (4) = H(4).
Der Nachweis fiir 7'(4) = H(A) verlduft analog.

Mit dieser Feststellung, durch welche die vollige Ubereinstimmung des
Tarskischen Systems mit dem von uns entwickelten absoluten System
aufgewiesen ist, konnen wir hier abbrechen, da sich alle Ergebnisse ein-
zeln vom absoluten System auf das Tarskische System (I, T') iiber-
schreiben lassen.
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Wir formulieren lediglich noch eine Charakterisierung der absolut-meg-
baren Mengen, die sich aus dieser Gegeniiberstellung ergibt :

Kriterium 4. Eine Menge A ist dann und nur dann absolut mefbar,
(¢tm Tarskischen Sinne mefbar), wenn sie mit einem Wiirfel AE dquivalent
st (deckungsdquivalent A ~ AH, zerlegungsiquivalent A ~ AE). Ins-
besondere ist dann H(A) = T(A) = Ak.

Da kongruente Wiirfel translativ zerlegungsgleich sind, ergibt sich
leicht, daBB kongruente Wiirfel in unserem Sinne dquivalent sind. Mit
Kriterium 4 schlieft man hieraus auf eine weitere Eigenschaft des abso-
luten Systems: Das Feld $ = T ist bewegungsfre: und der absolute Inhalt
H = T ist bewegungsinvariant.

VIII. Der Neumannsche Inhalt

Im folgenden entwickeln wir eine Konstruktion eines Inhalts, die auf
der Anzahl der von der Menge im Einheitsgitter bedeckten Gitterpunkte
beruht. Wird die Menge relativ zum Gitter verschoben, so erscheint diese
Anzahl als Funktion iiber der Translationsgruppe. Fiir meBbare Mengen
wird es sich um eine ergodische Funktion handeln, und der Inhalt selbst
1483t sich als Mittelwert im Sinne von J. von Neumann interpretieren. Aus
diesem Grunde sprechen wir vom Neumannschen Inhalt.

Die Definition vorbereitend, erklidren wir die folgenden Hilfsbegriffe:
Es sei wie frither [4] die charakteristische Funktion der Menge 4.
Bezeichnet noch P den verianderlichen Punkt im Raum R, so schreiben
wir fiir die gleiche Funktion auch [4 ; P], falls es erforderlich sein sollte,
die Verdnderliche P besonders hervortreten zu lassen. Es bedeute nun-
mehr G das Punkteinheitsgitter im Raum R, dessen Punkte ganzzahlige
Koordinaten haben. Die Anzahl der von der Menge 4 bedeckten Gitter-
punkte ist dann durch g(4) = X' [4; P,] gegeben, wobei sich die Sum-

Y

mation iiber die irgendwie abgezihlte Folge (P,;j=1,2,....) der
Gitterpunkte von @ zu erstrecken hat. Wegen der Beschrénktheit der
Menge A reduziert sich diese Summation auf eine endliche.

Ist A,,..., 4, eine Auslegung von n» Mengen A4, und v eine Trans-
n

lation, so setzen wir weiter g(A47,..., 4}) = 2g(4}), wobei wie er-
v=1

sichtlich alle MMengen der Auslegung simultan verschoben sind. Ist wie
frither n - 4 eine Auslegung von n zu A4 translationsgleichen Mengen, so
ist g [(n-4)°] analog erklirt.
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Wir geben nun die folgende

Definition 6. Fiir eine beschrinkte Punktmenge A setzen wir

N(A) = inf Max % g [(n- A)7] (34)
N(4) = sup Min g [(n- 4)] (35)

und nennen N (A) den duferen, N (A) den inneren Neumannschen Inhalt.
Die Ermittlung des Maximums bzw. des Minimums erstreckt sich bet fester
Auslegung n - A iber alle Translationen t und diejenige des Infimums bzw.
des Supremums iiber alle Awuslegungen. Ist N(A) = N (4) = N(4),
so nennen wir N (A) den Neumannschen Inhalt.

Die Existenz von N (4) und N (4) ist hier eine einfache Folgerung aus
der Beschrianktheit von A4 .

Weiter unten beweisen wir als Hauptergebnis dieses Abschnitts die
folgenden beiden Aussagen:

Es gelten die Identititen

N@4)=H4); N(A)=H(4). (36)
Den Beweis vorbereitend, formulieren wir den folgenden
Hilfssatz 4. Bezeichnen G(A) = Max g(A4A%) und G(4) = Min g(47)

die grofite und die kleinste Anzahl Gitterpunkte, welche durch die relativ
zum Qutter G passend verschobene Menge A bedeckt werden, so gilt die
Ungleichung

G(4) <H(4) <HA) <G4). (37)

Unser Hilfssatz stellt eine Erweiterung des bekannten Theorems von
A.F. Blichfeldt und W. Scherrer?') dar, das sich auf I-mef3bare Mengen
bezieht und dessen Inhalt durch die Ungleichung G (4) < I(4) < G(4)
wiedergegeben werden kann, die im Hinblick auf (23) als Korollar zu (37)
erscheint. In Anlehnung an den Wortlaut des soeben erwdhnten Theo-
rems laBt sich unser Ergebnis etwa auch so aussprechen:

Eine beliebige beschrinkte Punktmenge A lift sich im Punkteinheits-
gitter G immer so verschieben, daf} die Anzahl der durch A bedeckten Gitter-
punkte nicht kleiner als der absolute Oberinhalt H (A) bzw. nicht groBer als
der absolute Unterinhalt H (A) ausfdllt.

»

1) loe. cit. 12), 13).
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Beweis von Hilfssatz 4. Wir fixieren eine Translation t durch die k
achsenparallelen Komponenten ¢,,i=1,...,k. Es sei jetzt Q die
Menge der Translationen 7z, fiir welche 0 <t, <1l,7=1,...k gilt.
Es handelt sich um die Restklasse der Translationsgruppe beziiglich der
Gittergruppe. Es besteht nun die disjunkte Zerlegung Q = 2 Q,,
wobei 2, die Teilmenge derjenigen 7ef2 bezeichnet, fiir die g(4*) = 4
ausfallt. Setzen wir nun A4) = X AG™ 7, 7 € 2,, also gleich der Vereini-
gungsmenge aller Durchschnitte von 4 mit den verschobenen Gittern
G~*, wo 7 wie rechts angedeutet (2, durchlduft, so besteht die dis-
junkte Zerlegung

A=2XA4 ' (a)
A

Ist P, der Koordinatenursprung (Gitterpunkt P,), so setzen wir weiter
Ey=2XP,"; ve,. Offensichtlich gilt die disjunkte Zerlegung

E'=ZE,, (b)
A

wobei £’ einen mit £ translationsgleichen Einheitswiirfel bedeutet. Aus
der Konstruktion oben folgert man mit einigen einfachen Uberlegungen,
daB die Zerlegungsrelation

Ay~1-E, (c)

besteht. Mit G <A1 < G folgert man aus (a), (c), (b) die Zerlegungs-
beziehung A ~ € G-E und G- E ~ C A mit disjunkten Auslegungen
von E , so daB sich nun mit (26), (4), (9), (5) die Ungleichungen H (4) < @
und G@ << H(A) ergeben, wzbw.

Bewets von (36). Mit Riicksicht auf die Gitterperiodizitit von ¢(4%)
ist es keine Einschrinkung, in (34) und (35) die Auslegungen n - 4 disjunkt
vorauszusetzen. Dies sei hier nun stets der Fall.

Nach Hilfssatz 4 gilt zunéichst H(n-A) < G(n-A) = Maxg [(n - 4)7];

unter Verwendung von (9) folgt H(A4) < (1/n) Max g [(n- A)*] und mit
(34) hieraus i
H(A) <N(4). (d)

Andererseits sei [n-A] < [p-E] und damit ¢ [(n-A4)] <g[(p-E)].
Mit g(£") =1 folgt g [(p-E)] = p; so folgert man aus der oben
stehenden Beziehung leicht Max(1/n) g [(n - 4)*] < p/n oder nach (34)

N (4) < p/n. Mit (1) schlieBt man auf
N ) <H(A). (e)
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Aus (d) und (e) folgt N(A) = H(A). Der Beweis fir N(4) = H(A)
verlduft analog.

Damit ist die vollstindige Ubereinstimmung des Newmannschen
Systems (R, N) mit dem absoluten nachgéwiesen. Samtliche sich auf das
absolute System sich beziehenden Ergebnisse kénnen einzeln auf das Neu-
mannsche System iibertragen werden.

Aus dieser erneuten Gegeniiberstellung ergibt sich eine weitere Charak-
terisierung der absolut meB3baren Mengen. Wir formulieren das

Kriterium 5. Eine Menge A ist dann und nur dann absolut mefbar
(¢m Neumannschen Sinn mefbar), wenn die Gitterpunktsanzahl g(A¥)
der wverschobemen Menge A als Funktion iber der Translationsgruppe
ergodisch ist. Der absolute Inhalt (Newmannsche Inhalt) H(A)= N(4)
selbst vst der Mittelwert von g(A*) im Sinne von J. von Neumann.

Beweis. a) g(A®) sei ergodisch. Zu einem ¢ > 0 gibt es n Trans-

lationen «,,v=1,...,n», und eine Zahl g, so dafl fiir alle Trans-
lationen 7

l n

e gA) —gi<e

n 1

ausfdllt. Bedeutet n-4 die Auslegung A*,..., A** so lafit sich
auch schreiben

1
g —e<Min - g[(n-4)"] <Max— g[(n-AF]<g+e

und mit (34) und (35) g — e < N(4) < N(4) < g + ¢. Das bedeutet
aber N(A) = N(A4), also wegen (36) auch H(A4) = H(A).

b) A sei absolut meBbar. Aus H(4) = H(A) folgt mit (36)
NA)=N4)=gyg

und nach (34) und (35) gibt es zu einem & >0 zwei Auslegungen
p-A=A4%,. .., A% und q.- 4 = A", ..., A%, fiir welche

Max %—g [(p-4)] <g+¢ undebenso g —¢ <Min—$-g [(g - 4)]

ausfillt. Ist pg- A dieaus p-4 und q-A gebildete Produktauslegung,
so folgert man leicht, dafl auch

1 1
g — s<Mm~p—§—g[(7?<1'A)'] <Max—@9[(pq-z4)']<g + &
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gilt. Fiihren wir noch die n = pq Translationen

71=0‘1/315"'7yn=0‘pﬁq

ein, so lafit sich auch

l n
— X g(Ar7) —g | < 2e
n 1

fiir alle Translationen 7 schlieBen; dies bedeutet, daB ¢(4°%) ergo-
disch ist.

(Eingegangen den 13. April 1953.)
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