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Absolut meBbare Punktmengen
im euklidischen Raum

Von H. Hadwiger, Bern

Meinem Lehrer und Freund Willy Scherrer zum 60. Geburtstag gewidmet

Einleitung

Im Rahmen einer axiomatischen Inhaltstheorie wird eine Menge absolut

meflbar genannt, wenn ihr Inhalt bereits durch die der Théorie zugrunde-
liegenden Inhaltsaxiome eindeutig vorbestimmt ist. Einer solchen Menge
wird demnach in allen individuellen Inhaltssystemen, in welchen sie noch
meBbar ausfallt, stets ein und derselbe Inhalt, nàmlich der absolute Inhalt,
zukommen miissen. Die Mannigfaltigkeit der absolut mefibaren Mengen
und der auf ihr definierte absolute Inhalt bilden unter Umstànden1) selbst
ein spezielles ïnhaltssystem, welchem offenbar innerhalb der betreffenden
axiomatischen Théorie eine ausgezeichnete Bedeutung zukommt.

Fur beschrânkte Punktmengen des linearen Raumes wurden Existenz
und Haupteigenschaften des absoluten Systems von A. Tarski2) nach-
gewiesen. Seine Konstruktion der absoluten MeBbarkeit stûtzt sich auf
den Begriff der Zerlegungsgleichheit (Endlichgleichheit) linearer
Punktmengen ; eine Erweiterung auf fc-dimensionale Punktmengen ist aber im
Hinblick auf die bekannten Banach-Tarskischen Zerlegungsparadoxien3)
fur h > 2 unmôglich.

Dies ândert sich indessen, wenn man das klassische Postulat der
Bewegungsinvarianz eines Inhalts fallen lâBt und nur noch Translations-

*) Im euklidischen Raum ist hierzu jedenfalls erforderlich, daô mit den Axiomen nicht
verlangt werde, das Inhaltsfeld sei ein Mengenring oder sogar ein Mengenkôrper. Das Feld
der absolut mefibaren Punktmengen ist nur additiv; der Durchschnitt absolut mefîbarer
Punktmengen ist i. a. nicht auch mefibar.

¦) A. Tarski, Ûber das absolute MaÛ linearer Punktmengen, Fund. Math. 30, 1938,
218-234.

8) St. Banach und A. Tarski, Sur la décomposition des ensembles de points en
parties respectivement congruentes, Fund. Math. 6, 1924, 244—277.
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invarianz verlangt. Da dièse Transformationsgruppe abelsch ist4), fallen die
oben angedeuteten Schwierigkeiten weg; manche fur den Ausbau der
Inhaltslehre bedeutsame Entwicklungswege, welche innerhalb der klas-
sischen Behandlungsweise verschlossen waren, stehen damit offen5).

Die vorliegende Abhandlung gibt einige erste Ansatze zu einer trans-
lationsinvarianten axiomatischen Inhaltsiheorie fur den fc-dimensionalen
euklidischen Raum und befaBt sich in erster Linie mit der Frage der
absolut mefibaren Punktmengen.

In Abschnitt I werden die Inhaltspostulate (Axiome) gewahlt. Ein Inhalt
ist ein uber einem translationsfreien, additiven und normalen Mengenfeld
definiertes definites, translationsvariantes, additives und normiertes Men-
genfunktional6). In Abschnitt II wird die Deckungsmonotonie eines Inhalts
besprochen, eine Eigensehaft, welche fur die vorgesehene Entwicklung
der Théorie von Bedeutung ist. Abschnitt III bringt Définition und Haupt-
eigenschaften eines speziellen Ober- und Unterinhaltes. Unsere Définition,
die in dieser Form neu sein durfte, schliefit an die Verhaltnisse an, die
bezuglich der gegenseitigen Bedeckbarkeit endlich vieler, translations -

gleicher Punktmengen und ebensolcher Einheitswurfel bestehen, wobei
die Vielfachheiten der tîberdeckung mitberucksichtigt werden7). In
Abschnitt IV wird das zugehorige Inhaltssystem erklart und Vergleiche mit

4) Nach sehr allgememen Ergebnissen von J.von Neumann (Zur allgemeinen
Théorie des Mafies, Fund. Math. 13, 1929, 73-116) bestehen îm Wirkungsraum emer
Gruppe keine ,,paradoxen" Zerlegungsverhaltnisse, wenn die Gruppe mefibar ist. Eine
abelsche Gruppe ist meÔbar, die fc-dimensionale eukhdische Bewegungsgruppe fur Je > 2

dagegen nicht.
8) Bei translationsmvariantem Aufbau ist das universelle Inhaltsproblem losbar, d. h.

es existieren m jedem euklidischenRaum Banach'sche Inhaltssysteme, wie sie von St. Banach
(Sur le problème de la mesure, Fund. Math. 4, 1923, 7—33) fur Gerade und Ebene in
bewegungsmvarianter Behandlung nachgewiesen wurden und fur welche jede beschrankte
Punktmenge mefîbar ist.

•) Es handelt sich um vier Forderungen, die sowohl in sachhcher als auch in historischer
Beziehung besonders ausgezeichnet sind; neu gegenuber den ubhchen Festsetzungen ist
nur die Beschrankung auf Translationsmvananz. Im emfacheren Rahmen eines allgemein
emfuhrenden Lehrbuchs ist der axiomatische Standpunkt innerhalb der Inhaltslehre
besonders klar hervorgehoben bei K. Knopp-H. v. Mangoldfs ,,Einfuhrung in die
hohere Mathematik", 3. Band, Leipzig 1942, 7. Auflage, Nr. 52.

In Spezialwerken uber neuere und abstrakte Mafitheorie wird m der Regel keine In-
varianzforderung m Betracht gezogen, schon deshalb nicht, weil m abstrakten Raumen
keme besondere Transformationsgruppe von vornherem in gleichem Mafie ausgezeichnet
ist, wie die Bewegungs- und Translationsgruppe im euklidischen Raum.

Eine abstrakte und mvananzlose Inhalts- und Mafitheorie kann vermoge der viel-
faltigen und femen Begriffsbildungen der neuzeithchen Mengenlehre sehr weit vorgetrieben
werden; sie bleibt jedoch in manchen Teilen formai.

7) Vgl. auch H. Hadunger, Une mesurabilité moyenne pour les ensembles
de points, Fund. Math. 34, 1947, 293-305. Die m dieser Note gewahlten Ansatze sind
mit den hier verwendeten verwandt.
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klassischen Systemen gezogen. Da sich spàter herausstellen wird, daB
diesem Inhaltssystem die Rolle des absoluten Systems zugesprochen wer-
den kann, trâgt es schon von Anfang an diesen Namen (absoluter Ober-
und Unterinhalt, absoluter Inhalt). In Abschnitt V werden zwei versehie-
den definierte Âquivalenzen in Betracht gezogen (Deckungs- und Zer-
legungsâquivalenz) und gezeigt, daB sie gleichwertig sind. Dieser Sach-
verhalt ermôglicht es, versehiedene neue Erkenntnisse zu erschlieBen. So

ergibt sich (wie in Abschnitt VI dargelegt wird), die Zerlegungsinvarianz
eines beliebigen deckungsmonotonen Inhalts8). Ferner kann gezeigt werden,

daB absoluter Ober- und Unterinhalt die exakte obère und untere
Schranke der Menge der Inhalte darstellen, welche der betreffenden
Punktmenge in deckungsmonotonen Systemen zukommen. Hierbei ergibt
sich auch die Bedeutung des absoluten Inhalts einer absolut meBbaren
Punktmenge.

In Abschnitt VII wird der âuftere und innere Tarskische Inhalt9) unab-
hàngig vom Vorstehenden mit Hilfe des Begriffs der translativen Zer-
legungsgleichheit definiert und dann gezeigt, daB dièse mit den in III. ein-
gefuhrten Ober- und Unterinhalten ûbereinstimmen. Damit ist erwiesen,
daB das von uns entwickelte absolute Inhaltssystem mit dem den Ideen
Tarski's nachgebildeten identisch ist. Eine Punktmenge ist genau dann
absolut meBbar, wenn sie mit einem Wurfel zerlegungsàquivalent ist.
Endlich wird in Abschnitt VIII noch eine weitere Konstruktion eines
àuBeren und eines inneren Inhaltes verfolgt, welche sich auf die Translation

der Punktmenge im Einheitsgitter und aufdie Anzahl der bedeckten
Gitterpunkte stiitzt. Da hierbei Ideen verwertet werden, welche der J. von
Neumannschen Théorie der Mittelwerte fastperiodischer Funktionen uber
Gruppen zugrundeliegen10), sind dièse beiden Inhalte nach diesem Autor
benannt. Es stellt sich wieder heraus, daB der âujiere und innere Neu-
mannsche Inhalt mit den in III. eingefuhrten absoluten Ober- und Unter-

8) Die bis anhin wenig beachtete Zerlegungsinvarianz des Lebesgue'schen Maôes wurde
fur lineare Punktmengen von A, Tarski (loc. cit.) bewiesen, allerdings auf dem Umwege
liber die Konstruktion BanacKscher Inhalte, die sich auf das Auswahlaxiom der Mengen-
lehre stûtzt. In diesem Zusammenhang sei darauf hingewiesen, dafi innerhalb der Tarslei'-
schen Théorie eine Mafifunktion bereits als zerlegungsinvariant vorausgesetzt wird. Wegen
dièses Umstandes ist es naturgemâB leichter, die Zusammenhànge zwischen dem absoluten
Mafi und beliebigen Mafifunktionen herzuleiten. Im Rahmen unserer Entwicklung zeigt es

sich, dafi aile diesbezûglichen, wesentlichen Ergebnisse Tarski's sich auf beliebige Râume
tibertragen lassen, auch dann, wenn die Zerlegungsinvarianz des Inhalts nicht axiomatisch
vorweggenommen wird.

9) loc. cit. 2).
10) J.von Neumann, Almost periodic functions in a group, Trans. Amer.

Math. Soc. 36, 1934, 445-492.
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inhalten ûbereinstimmen. Unser absolûtes Inhaltssystem ist so auch mit
dem sich aus den Ideen von Neumann's ergebenden identisch. Eine Punkt-
menge ist genau dann absolut mefibar, wenn die Bedeckungszahl im
Punkteinheitsgitter als Funktion der Translation ergodisch11) ist. Der
absolute Inhalt selbst ist ein Neumannscher Mittelwert dieser Funktion.

In diesem Zusammenhang ergibt sich noch eine Erweiterung eines
bekannten Theorems von A. F. Blichfeldt12) und W. Scherrer1*) auf belie-
bige beschrânkte Punktmengen.

I. Inhaltspostulate

A, B, C, sollen Punktmengen (kurz Mengen) des &-dimensionalen
euklidischen Raumes R bezeichnen; A sei die leere Menge. Eine Translation

<x in R fuhre die Menge A in die Menge A* ûber. Zwei Mengen heifien
translationsgleich, symboliseh A ^ B, wenn Aa B gilt. Besonders
ausgezeichnet ist der Einheitswurfel E, der bezogen auf ein festbleibendes
kartesisches Koordinatensystem durch das sich auf die Koordinaten seiner
Punkte beziehende Ungleichungssystem 0 ^ xt < 1 (i 1, k) charak-
terisiert sei.

Eine Menge A ist beschrânkt, wenn sie Teilmenge einer Vereinigungs-
menge endlich vieler mit E translationsgleicher Mengen ist, symboliseh
durch A c E E** ausgedriickt14).

Aile im folgenden auftretenden Mengen werden stillschweigend als
beschrânkt vorausgesetzt.

Ein Inhaltssystem (%,J) besteht aus einem Inhaltsoperator (Mengen-
funktional) J und einem Inhaltsfeld (Definitionsfeld des Mengenfunk-
tionals) g. Der Operator J ordnet jeder Menge A des Feldes 5 eine réelle
Zahl J(A) zu, welche Inhalt heiBt; A wird dann im betreffenden System
mefïbar genannt.

Innerhalb einer axiomatischen Inhaltstheorie werden fiir ein Inhaltssystem

willkurlich, aber sinnvoll gewâhlte Forderungen - die Inhalts-

ll) Vgl. ûber diesen Begriff: W, Maak, Integralmittelwerte auf Gruppen und
Halbgruppen, J. reine angew. Math. 190, 1952, 34-48.

12) A, F. Blichfeldt, A new principle in the geometry of numbers, with
some applications, Trans. Amer. Math. Soc. 15, 1914, 227-235.

13) W.Scherrer, Ein Satz uber Gitter und Volumen, Math. Ann. 86, 1922,
106-107.

14) Die besondere Form dieser Définition soll den Hinweis dafur geben, wie die Be-
schrânktheit in einem abstrakten Raum bezogen auf eine beliebig gewâhlte Einheits-
menge E erklàrt werden rauû, wenn der wesentlichste Teil der folgenden Théorie, wie dies

môglich ist, auf allgemeinere Baume mit abelscher Transformationsgruppe erweitert
werden soll.
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postulate — in Kraft gesetzt. Jedes Inhaltssystem, das den gesetzten For-
derungen genligt, ist dann innerhalb dieser Inhaltstheorie zulâssig, und es

ist Aufgabe der betreffenden axiomatischen Théorie, die mannigfaltigen
Verhàltnisse und Fragen, die sich ergeben, môglichst umfassend abzu-
klàren.

Die der hier vorliegenden Skizze einer axiomatischen Théorie zugrunde-
gelegten Inhaltspostulate lauten wie folgt:

a) Ein Inhaltsfeld g ist ein System beschrànkter Punktmengen des
Raumes R, welches den folgenden drei FeMpostulaten genligt :

(Io) 5 ist translationsfrei, d. h. aus A c g und A ^ B folgt B c g î

(II0) % ist additiv, d. h. aus A, B€%,AB A folgt A + B e g ;

(III0) 5 ist normal, d. h. es gilt E c g
b) Ein Inhaltsoperator J ist ein fur aile Mengen des Feldes Ç definiertes,

reellwertiges Mengenfunktional, welches den folgenden vier Operations-
postulaten genligt :

(I) J ist définit, d. h. es gilt 0 < J(A) < oo ;

(II) J ist translationsinvariant, d. h. es gilt J(A) J(B), falls
A ^ B ist ;

(III) J ist additiv, d. h. es gilt J(A + B) J(A) + J(B), falls
AB A ist ;

(IV) J ist normiert, d. h. es gilt J(E) 1

Neben den durch die Feldpostulate (Io) bis (III0) vorgeschriebenen
Eigenschaften kann ein Feld Ç noch weitere zusâtzliche Eigenschaften
aufweisen. Im Hinblick auf klassische Inhaltssysteme erwâhnen wir hier :

(IV0) 5 ist ein Mengenkôrper, d. h. aus A, B e 3f folgt auch
A + B,A- JScg;

(Vo) 5 ist ein Mengenring, d. h. aus A, B c 5 folgt auch

Eine Eigenschaft, die vor allem fur Inhaltssysteme in Betracht kommt,
welche innerhalb der hier entwickelten axiomatischen Théorie von Bedeu-

tung sind, beruht auf dem Begriff der Zerlegungsgleichheit. Zwei Mengen
A und B nennen wir translativ-zerlegungsgleich (kurz: zerlegungsgleich),
geschrieben A ~ B, wenn sie sich in je endlich viele disjunkte und paar-
weise translationsgleiche Mengen Av und Bv zerlegen lassen, so da8 also

A== EAV und B EBv, Av A(Â Bv B^ A{v =£ p) und Av ^ Bv
i î

gilt. Wie man leicht verifiziert, ist die Zerlegungsgleichheit transitiv, d. h.
aus A~B und B~C folgt Az±C.
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Die in Aussicht gestellte Feldeigenschaft ist nun die folgende :

(VI0) 5 ist zerlegungsfrei, d. h. aus A c Ç und AC^L B folgt B c %.

Selbstverstândlich kann auch der Inhaltsoperator J weitere zusàtzliche
Eigenschaften aufweisen. Eine besondere Monotonieeigenschaft, die sich
nicht aus den Operationspostulaten (I) bis (IV) ableiten lâfit, wird fur
unsere Entwicklung sehr wesentlich sein, und wir setzen uns mit ihr ein-
lâBlicher im folgenden Abschnitt auseinander.

II. Deckungsmonotonie

Wir erklaren weiter:

(V) J heifit monoton, wenn aus A c B die Beziehung J (A) ^ J {B)
folgt.

Wenn das Feld g ein Mengenkôrper ist - vergleiche (IV0) -, so ist (V)
ofïensichtlich eine einfache Folgerung aus (I) bis (IV). Im andern Fall
braucht J nicht monoton zu sein.

Wir wollen nun dieser bekannten, gewôhnlichen Monotonie eine etwas
stârkere Eigenschaft - die Deckungsmonotonie - gegenuberstellen, einen
Begriff, dessen Einfiïhrung (wie erst einlâfiliche Studien zeigen) durchaus
lohnend ist.

Vorbereitend noch einige Erklârungen: Es bezeichne [A] die charak-
teristische Funktion von A, d. h. eine im Raum S definierte Funktion,
welche fur Punkte von A den Wert 1 annimmt und sonst verschwindet.
Es sei weiter At, An ein endliches System von Mengen - im folgenden

Auslegnng genannt — und es sei die dieser Auslegung zugeordnete
n

Funktion [Al9 An] durch Ansatz [Al9 An] E [Av] definiert.
i

Es handelt sich um eine Funktion, welche ganzzahlige, nicht-negative
Werte annimmt ; der Funktionswert in einem Punkte P gibt die Vielfach-
heit der Bedeckung von P durch Mengen der Auslegung an.

Ist die Auslegung disjunkt, so da8 Av A^ A(X ^ /u) gilt, so ist
\A1, An] ofïensichtlich mit der charakteristischen Funktion der

n
Vereinigungsmenge X Av identisch.

i
Wir definieren jetzt :

(VI) J heiBt deckungsmonoton, wenn aus [At, An] < [Bt, Bm]
n m

die Beziehung S J(AV) < E JiB^) folgt.
i i
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Ohne weiteres erkennt man, daB die gewôhnliche Monotonie (V) in der
Deckungsmonotonie (VI) enthalten ist ; denn [A] ^ [B] ist mit A c B
gleichbedeutend.

Andererseits aber kann (VI) nicht allein aus (V) in Verbindung mit den
Postulaten (I) bis (IV) gefolgert werden.

Die Hauptergebnisse der vorliegenden Arbeit werden sich ausschlieBlieh
auf deckungsmonotone Inhaltssysterne beziehen. Dies bedeutet indessen
keine stôrende Einschrànkung, da einerseits die klassischen Système dièse

Eigenschaft haben, sich also als spezielle Fàlle unserer Théorie eingliedern
lassen, und andererseits die von uns besonders untersuchten Système
sich ebenfalls als deckungsmonoton herausstellen werden.

Es scheint, daB die in Betracht gezogene Deckungsmonotonie besonders

ausgezeichnet ist, da sie als zusâtzlich zu den iiblichen Axiomen (I) bis
(IV) hinzutretende Forderung einerseits noch schwach genug ist, um aile
im Rahmen der axiomatischen Théorie wichtigen Système zuzulassen,
andererseits aber stark genug, um die Théorie durch krâftige und abrun-
dende Sâtze zu einem befriedigenden AbschluB zu fuhren.

Als erstes beweisen wir nun ein fur die Deckungsmonotonie hinrei-
chendes

Kriterium 1. Ein Inhaltssystem (^r, J) ist dann deckungsmonoton, wenn
einer der drei folgenden Tatbestânde erfûllt ist :

a) g ist ein Mengenkôrper;

b) 5 ist ein Mengenring und J ist monoton;

c) 2? ist zerlegungsfrei und J ist monoton.

Den Beweis vorbereitend definieren wir : Eine Menge A heiBt zerlegungs-
kleiner als B, symbolisch A C^L c B> wenn eine Menge A' so existiert,
daB Ac^LA' und A' c B gilt. Dièse Beziehung ist, wie man sich leicht
iiberzeugt, wieder transitiv, d. h. aus A ~ c B und B ~ c C folgt
4~cC, Wir beweisen nun vorerst den folgenden

Hilfssatz 1. Wenn die Relation [Aly An] < [Bl9 Bm] besteht,

so gilt fur zwei disjunkte Auslegungen von mit den beteiligten Mengen Av
bzw. Bv translationsgleichen Mengen Arv bzw. Brv eine Zerlegungsbeziehung

n m

ZArv~ c EBfv

[Afv g* Av ; B'v ^ Bv ; A'v A^ B'v B^ A(v ^ ^)]

Die fur die Realisierung der Zerlegungsbeziehung erforderlichen Teilmengen
gehôren aile zu dem durch die Mengen Av und Bv erzeugten Mengenring.
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Beweis: Es bezeichne Ut bzw. Vt die Menge der Punkte in B, wo
[Alt An] i bzw. [jBx, Bm] i ausfâllt. Setzen wir

-4vt Av Ut bzw. JBV, Bv Vt,
n m

so gilt sicher Av 27 Avt und JSV 27 Bm. Fur eine disjunkte Aus-
t=l i=l n n n

legung der Mengen A'v làBt sich die Darstellung Z A'v 27 (27J^t)
1 v=li=l

aufschreiben, wobei -4^, ^ ^4vt gilt. Vertauschen wir die Reihenfolge in
der Mengenaddition und bedenken wir, daB im Hinblick auf die Kon-

n t
struktion der Menge Ut die Zerlegungsgleiehheit 27.4^ ~ 27 UtQ besteht,

v=l C=l
wobei rechts eine disjunkte Auslegung von i verschiedenen Mengen
Utg, UtQ ~î Ut, UlQ Uta A,(q =£ o) dargestellt ist, so erhalten wir
n n % m m %

ZA'VZ±S ZUtQ. Analog ergibt sich 27 B'v 2Z Z Z VtQ und da nach der

Voraussetzung des Hilfssatzes Ut c Vt gelten muB, folgt die Behaup-
n m

tung Z AfvC^L c Z Brv. Ferner sieht man leicht ein, daB sich die Mengen
i i

Ut bzw. Vt, also auch die Mengen Avl und Bvt durch endlichfache Durch-
schnittsbildung aus den ursprùnglich beteiligten Mengen Av und Bv

gewinnen lassen ; sie gehôren somit, wie behauptet, zu dem von diesen

erzeugten Mengenring.
Die Behauptungen von Kriterium 1 ergeben sich nun miihelos aus

dem Hilfssatz 1.

Wir wollen diesen Abschnitt abschlieBen, indem wir zeigen, daB
1. nickt monotone und 2. monotone, aber nicht deckungsmonotone Inhalts-
systeme existieren.

Beispiel 1. Es sei h 1. S bezeichne ein Intervall a ^ x <a + s

(— oo <a < oo; s > 1, ganz)und PeinenPunkt x p(— oo< p<oo).
5 sei nun das System aller Mengen A, die sich in endlich viele Punkte und

m n
Intervalle disjunkt zerlegen lassen, so daB A 27 Pv + 27 $„ gilt. Setzen

» 11wir J(A) m + £ s^, so sind die Postulate (Io) bis (III0) und (I) bis

(IV) erfûllt, so daB (gr, J) ein Inhaltssystem darstellt. Sind nun P und Q

zwei in E enthaltene Punkte und setzt man A P + Q » so gilt A c E ;

dagegen ist 2 J(A) > J(E) 1. Die Monotonie (F) ist also verletzt.

Beispiel 2. Es sei wieder Je 1. S habe die gleiche Bedeutung wie in
Beispiel 1 und T bezeichne weiter ein Intervall

a<#<a + £,(— °° <a <oo;J>0).
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2f sei das System aller Mengen A, die sich in endlich viele Intervalle 8 und
n m

T disjunkt zerlegen lassen, so da8 A — Z 8V + Z T» gilt. Wir setzen
n m 11J(A) Z sv + Z [t ], wobei [ ] die GauB'sche Klammer bedeutet, also
1 î

[t] die grôBte ganze Zahl darstellt, die nicht grôBer als t ist. Obwohl die
Zerlegung einer Menge A dieser Art in 8- und T-Intervalle nicht not-
wendig eindeutig ist, fàllt doch der oben angesetzte Wert J(A) fur aile
zulassigen Zerlegungen immer gleich aus, wie sich auf Grund der Bemer-
kung ergibt, daB fiir ganze s stets [s + t] s + M gilt. Man bestâtigt
sofort, daB (g, J) ein Inhaltssystem ist, indem man die Gultigkeit der
zustândigen Postulate iiberpruft. Ist nun A c B, so folgt auf Grund
einfacher Ûberlegungen, daB J(A) < J(B) wird ; hierbei ist die Funk-
tionalungleichung [u] + [v] < [u + v] zu beachten. Die Monotonie F)
ist also gewâhrleistet. Andererseits betrachten wir die beiden Intervalle
P : 0 < x < y2 und Q : y2 < x < 1, so daB EaP+Q oder also auch
[E] < [P, Q] gilt. Nun ist aber 1 J(E) > J(P) + J(Q) 0 ; die
Deckungsmonotonie (VI) ist demnach verletzt.

III. Absoluter Ober- und Unterinhalt

Unter n-A(n ^ 1, ganz) wollen wir im folgenden eine Auslegung von
n mit A translationsgleichen Mengen A*1, Aan verstehen; formai
ergànzend treffen wir noch die Konvention 0-^4 A. Bezeichnet wie im
vorstehenden Abschnitt [^4] die charakteristische Funktion von A, so

n
sei [n-A] [A*1, A**], wobei wie oben [A*1, A**] Z [Aa*>]

î
gesetzt ist. Dièse symbolischen Abkiirzungen sind fur die einfache und
ubersichtliche Darstellung der hier skizzierten Théorie von Bedeutung.
Wir geben jetzt die folgende

Définition 1. Unter dem ahsoluten Oberinhalt H (A) bzw. dem absoluten
Unterinhalt H_(A) einer beschrânlcten Punktmenge A verstehen wir die durch
die Ansàtze

H(A) inf p/n; [n-A] < \p-E] (1)

H(A) sup pin ; [p-E] < [n-A] (2)

erklarten unteren bzw. oberen Grenzen ; bei ihrer Bildung sind aile Aus-
legungen der Menge A und des EinheitsuMrjels E mit p > 0 und n^\
in Betracht zu ziehen, fur welche die rechts geschriebenen Bedingungen
realisiert werden.
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Die Existenz der beiden in (1) und (2) angesetzten Schranken weisen
wir weiter unten nach. Ebenso begriinden wir weiter unten einige ein-
fache Eigenschaften des absoluten Ober- und Unterinhaltes, die nun im
Zusammenhang genannt werden sollen. Es gelten nàmlich die Relationen :

0 ^H(A) ^H(A) <oo (3)

£(.4) <#(£); H(A) < H(B) (A c B) (4)

H(E) H (E) 1 (5)

(A s* B) (6)

(7)

H(A + B)^H(A) + H(B) (AB=A) (8)

H(n-A) nH(A); H(n-A) nH(A) {n¦ A disjunkt) (9)

H(A) + H(B) ^H(A + B) {AB=A) (10)

H_{A + B) ^E (A) + H(B) (AB=A) (11)

Zunâchst leiten wir einige weitere Hilfssâtze ab, auf die wir uns auch
bei spateren Beweisen stiitzen mtissen.

Hilfssatz 2. Aus [n-E] < [m-E] folgt n <ra.
Beweis: Es bezeichne yt(i 1, 2, 3, die Folge der Einheits-

gittertranslationen in R, so da8 durch die Gesamtheit der Wiirfel EYl
der ganze Raum R schlicht und luckenlos ûberdeckt wird. Ftir eine belie-

00

bige Translation <x gilt dann die Identitàt E [2?°^] 1. Ist n-E die
î

Auslegung E*1, E**1, so hat man

E [(n-E)n] Z I [E^Yi] Z(Z [E*^])
i i=ip=i p=i i

00

oder im Hinblick auf die eben erwâhnte Identitàt E [(n • E)Yi] n.
00 1

Analog gilt E [(m-E)Yi] m und mit Rûcksicht auf die Voraussetzung
i

folgt tatsàchlich n < m.
Ein fur die Beweistechnik leistungsfâhiger Hilfsbegriff ist derjenige der

Produktauslegung. Sind n A A*1, Aan und m A APi 9...A&n>

zwei Auslegungen, so erklâren wir die Produktauslegung n • (m• A) durch
n>(m*A) =(m-A)(Xl,...,(m-A)ocn ^lfltl, Ah*"*. InfolgederKom-
mutativitàt der Translationsgruppe gilt offensichtlich w-(m-^4)
m • (n 'A). Wir kônnen die Produktauslegung auch mit nm • A bezeichnen.
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Hilfssatz 3. Sind n-A und m-B zwei Auslegungen, fur welche

[n-A] < [m- B]

und ist p-X eine weitere Auslegung, so gilt [np-A] ^ [mp-B],
Beweis. Sei p - X X^ Xh ; dann folgt

[np-A] [(n-A)h,. .,(n^)^] < [(m.J5)§i, .,(m.B)b] [mpB]
Hilfssatz 4. ^4^5 [n -A] < [m • J5] und [p • 5] < [q • 0] /o^ die

Existenz zweier Produktauslegungen np-A und mq-C so, daji

[np-A] < [mq-C]
gilt.

Beweis. Nach Hilfssatz 3 ist [np A] < [mp - B], [mp • B] < [mg • C],
woraus die Behauptung sofort folgt.

Hilfssatz 5. Gilt [q - E] < \p - E], so gi6£ es zu einem beliebigen e > 0

Auslegungen n • (p - E),n • (q - E) und m - E so, dafi

[n.(p-E)]^[n.(q.E)] + [m-E]
und weiter

m\n < p — q + e

ausfàllt.

Beweis. Es sei q • E #*i, .EN und p - E E&
Weiter sollen yv (v 1, 2, n) n Translationen des Einheitsgitters im

n
Raum jR so bezeichnen, daB die Gesamtheit S Ey* den Wxirfel

î
W{0 < Xi < N,(i 1, h), N ganz}

der Kantenlânge N schlicht und liickenlos xiberdeckt. Offenbar ist dann
n Nk. Es ist nun

[n-(p.E)] Z[{p.EYv] [W*\ W'p]
i

Bedeutet U die Vereinigungsmenge WPl -)-... -|~ Wpp so gilt demnach

[n.(p-E)]^p[U]. (a)
Analog ist n

und falls F den Durchschnitt Tfai W"* bedeutet, gilt entsprechend

ï[F]<[n-(g--B)]. (b)
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Naeht Konstruktion ist F durch Nk gitterfôrmig angeordnete Einheits-
wiirfel ûberdeckt; einfache Erwâgungen ergeben, daB sich die Menge
U — F durch cNk-x gitterfôrmig angeordnete Einheitswurfel iiber-
decken làBt, wo die Konstante c nicht von N, sondern nur von den unserer
Betrachtung fest zugrunde liegenden Translationen a und /? abhângig ist.
Nach diesen beiden letzten Bemerkungen wird [F] < [Nk-E] und
[U — F] < [cN*-1 • E]. Rûckgreifend auf (a) haben wir zunâchst

p[U -V\ + (p - q)[V}+ q[V]
und in Verbindung mit (b) weiter

Wird noch m (p — q) Nk + pcNk~x gesetzt, so bleibt endlich

[n • (p • E)] < [n • (q £)] + [m £]
wobei «i/n p — q + pc/A^ ist. Da N beliebig groB gewâhlt werden
kann, bestâtigt sich die Behauptung mit pcjN < e.

Wir weisen jetzt die Existenz der mit (1) und (2) angesetzten Schranken
H (A) und H_(A) nach und verifizieren dann ihre durch (3) bis (11) aus-
gedrûckten Haupteigenschaften.

Da A beschrânkt ist, gilt fur eine ausreichende Auslegung p • E sicher
[1 • A] [A] < [p • E] ; also gibt es natûrliche Zahlenpaare n, p, fur
welche die Bedingung bei (1) erfûllt wird. Damit ist offenbar die Existenz
von H {A) sichergestellt. Andererseits gilt 0 [0 • E] < [1 A], so daB

auch Zahlenpaare n,p vorhanden sind, welche die Bedingung bei (2)
erfûllen. Wir haben zu zeigen, daB die Menge der Quotientèn p/n be-
schrànkt ist.

Es gelte [n1 A] < [p'E] und [p.E] < [n • A]. Nach Hilfssatz 4

gilt dann auch [n'p • E] < [npf • E] und nach Hilfssatz 2 folgt n'p^np'
oder p\n ^ p'jn'. Hieraus schliefien wir mit (1) pjn ^1S(A). Damit ist
offensichtlich die Existenz von H.(A) nachgewiesen. Gleichzeitig folgt (3).
Die Eigenschaften (4), (5) und (6) ergeben sich unmittelbar aus den Defi-
nitionen (1) und (2). Wir beweisen (7): Es sei [w-^4] < \jp-E] und
[m- B] < [q • E]. Nach Hilfssatz 3 gilt dann [nm • A] < [pm • E] und
[mn • JB] ^ [qn *E), so daB [nm • A, nm • jB] ^ [(mp + nq) • E]. Wegen
[nm • (A + B)] < [nm - A, nm • B] folgt so mit (1)

H(A + B) < (p/*) + (q/m)

und nochmals mit (1) schlieBlich H (A + B) < F(^l) + H(B), wzbw.
Der Beweis von (8) verlâuft analog, nur ist neu zu bedenken, daB dann
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[nm • (A + B)] [»w • -4, nm • J5] ausfâllt, da AB A voraus-
gesetzt ist.

Wir beweisen jetzt (9): Nach wiederholter Anwendung von (7) er~

gibt sich

H(n-A) ^nH(A). (c)

Es gelte weiter [m- (n - A)] [mn A] < [q E\ ; nach (1) ist demnach
H (A) < qjnm und erneut nach (1)

nH(A) ^H(n-A). (à)

Mit (c) und (d) folgt H(n -A) nH (A). Analog gewinnt man auch

H(n -A) nH(A), wzbw.
SchlieBlich weisen wir noch (10) nach: Es sei [p • E] < [^--4] und

[m • (^4 + B)] < [q • M]. Wegen A B A gilt

[m • (A + B)] [m A, m B] [m - A] + [m B].

Fiir die sinngemâB gebildeten Produktauslegungen gilt

[nm - A] + [nm • 2?] < [w^ • .B] und [j?m • E] ^ [wm • A]

Die Verbindung der beiden Relationen liefert

[pm • £] + [nm • S] < [nq • £] (e)

Insbesondere ist [pm - E] ^ [nq • E] und nach Hilfssatz 5 gibt es zu
jedem e > 0 zwei naturliche Zahlen r und s, so daB einerseits

[r • nq • £] < [r • 2>m .B] + [s • JET] (f
und andererseits

(sir) <nq — pm + e (g)

gilt. Greifen wir auf (e) zuriick, so resultiert mit Bildung der entsprechen-
den Produktauslegungen

[r • pm E] + [r • nm • JS] < [r • ng • i?]

und in Verbindung mit (f) folgt jetzt [mm B] < [s E]. Damit
schlieBen wir nach (1) zunachst auf H(B) ^ s/rnm und mit (g) hieraus
weiter auf 5(2?) + (p/n) < (q/m) + (ejnm) ; erneut nach (1) und (2)

folgt H {A) +H(B)^H(A + B) + e. Da e > 0 beliebig wahlbar ist,
folgt so die Behauptung (10); der Beweis von (11) verlâuft analog.
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IV. Absoluter Inhalt

Auf Grund der im vorstehenden Abschnitt untersuchten absoluten
Ober- und Unterinhalte H (A) und H_(A) konstruieren wir nun das absolute

Inhaltssystem, Die gewâhlte Bezeichnungsweise wird, wie schon in der
Einleitung bemerkt wurde, weiter unten durch die Gûltigkeit gewisser
Sâtze gerechtfertigt werden, welche die ausgezeichnete Rolle dièses

Systems innerhalb der axiomatischen Inhaltstheorie aufdecken.
Wir gehen aus von der folgenden

Définition 2. Eine beschrânkte Punktmenge A heijït absolut mefibar, wenn

H (A) H (A) H (A) (12)

ausfâllt, d. h. wenn der absolute Oberinhalt mit dem absoluten Unterinhalt
von A ilbereinstimmt. Den gemeinsamen Wert H (A) nennen wir den absoluten

Inhalt von A.
Es bezeichne § die Gesamtheit aller absolut meBbaren Mengen. Wir

zeigen jetzt, da8 £> ein Inhaltsfeld und H ein Inhaltsoperator ist. (§, H)
ist das absolute Inhaltssystem.

Fur § sind die Feldpostulate (Io) bis (III0) und fur H die Operations-
postulate (I) bis (IV) als giiltig nachzuweisen. Die erforderlichen Schlusse
sind aber so einfach, daB wir uns darauf beschrânken kônnen, zu jedem
Postulat nur stichwortartig die friiheren Relationen zu zitieren, auf die
man sich in stândiger Verbindung mit (12) berufen kann.

(Io): (6) ; (II0): (7), (8) und daim (3) ; (III0): (5) ;

(I): (3) ; (II): (6) ; (III): (7), (8) und dann (3) ; (IV): (5).

FormelmàBig nochmals zusammengestellt handelt es sich also um die
folgenden Eigenschaften des absoluten Inhalts:

0 < H (A) < oo; (13)

H(A) H(B) (A^B) (14)

H (A + B) H (A) + H(B) {AB A) (15)

H(E) 1 (16)

Wir bemerken noch, daB H (A) wohl additiv, aber sicher nicht voll-
additiv ist15).

16) Dies folgert man beispielsweise leicht auf Grund eines Ergebnisses von J. von Neu-
mann (Fund. Math. 11, 1928, 230-238), wonach sich ein abgeschlossener Wiirfel in abzâhl-
bar viele paarweise disjunkte, translationsgleiche Teilmengen zerlegen lâfît.
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Die Feldeigenschaften (IV0) oder (Vo) sind nicht realisiert, d. h. das
absolute Feld <r> ist kein Mengenkôrper, nicht einmal ein Mengenring,
dagegen hat es die wesentliche Eigenschafb (VI0), d. h. § ist zerlegungsfrei.
Dies kônnen wir allerdings erst im folgenden Abschnitt beweisen. Auf
Grand dieser Tatsache ergibt sich indirekt, dafi <r> kein Mengenring sein
kann ; andernfalls wiirde sich namlich leicht schlieBen lassen, daB jede
beschrânkte Menge absolut meBbar wâre, was nicht zutrifït. Die Existenz
nicht absolut mefibarer Mengen ergibt sich fur h > 2 leicht aus den para-
doxen Zerlegungen nach Banach-Tarski in Verbindung mit der am Ende
von Abschnitt VII gewonnenen Einsicht, daB § bewegungsfrei und H
bewegungsinvariant ist.

Dagegen ist die Eigenschaft (V) realisiert : es ist

H (A) < H(B) falls A c B (17)

d. h. H ist monoton. Dies folgt aus (4). DaB auch (VI) gilt, d. h. daB H
auch deckungsmonoton ist, kônnen wir erst im folgenden Abschnitt
beweisen.

Zusàtzlich fiigen wir noch die folgenden Relationen bei : Es gilt fur eine
absolut meBbare Menge A und jede Menge B nach (7), (8), (10) und (11)

H(A + B) H {A) + H(B) (AB A) (18)

H(A + B) H(A) + H(B) (AB A) (19)

Dièse Aussagen stehen in engem Zusammenhang mit dem folgenden

Kriterium 216). A ist dann und nur dann absolut me/ibar, wenn eine der
beiden Relationen

H(A + B) H(A) + H(B) (20)

H(A + B) H(A) + H(B) (21)

ftir aile Mengen B zutreffend ist.

Beweis. DaB das Kriterium notwendig ist, folgt aus (18) und (19) ;

daB es auch hinreicht, zeigen wir wie folgt: Es sei A eine vorgegebene
Menge, und es gelte etwa (20) fur jede Menge jB. Da A beschrànkt ist,
gibt es eine absolut meBbare Menge C, die A enthalt. C laBt sich etwa
aus einer ausreichenden Anzahl gitterfôrmig angeordneter Einheitswurfel
zusammensetzen. Ist nun B C — A, so ergibt sich nach (20) und (11) :

H (A) + H(B) H (A + B) H(C) H(A + B) < H(A) + H(B)
16 Dièses Kriterium folgt den Ideen Carathéodorys, wie sie in seiner Mafitheorie zum

Ausdruck kommen. Vgl. etwa ,,Reelle Funktionen", 1. Auflage 1918, 246 ff.
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oder H(A) < H{A). Hieraus folgt mit (3): H (A) H (A), also ist A
absolut meBbar.

Weiter erwâhnen wk noch eine Teilbarkeitseigenschaft des Feldes §:
Ist n*A eine disjunkte Auslegung und gehôrt von den beiden Mengen
A und n *A eine zu §, so trifft dies auch fur die andere zu und es gilt

H{n-A) nH(A) (22)

Dies ist eine einfache Folge von (9) in Verbindung mit der Définition (12).
Endlich geben wir noch einen kurzen Hinweis ûber das Verhâltnis

zwischen dem absoluten Inhaltssystem und den klassischen Systemen.
Bezeichnet (3 I) das Jordansche Inhaltssystem, so gilt 3 c S >

d. h. jede im Jordanschen Sinne meflbare Menge A ist absolut me/ibar, und
e8&lt H(A)==I(A). (23)

Umgekehrt gibt es absolut meBbare Mengen, welche nicht einmal im
Lebesgwschen Sinne meBbar sind. Dies ergibt sich aus den Tatsachen,
daB das Feld fi des Lebesgueschen Systems (fi, L) ein Mengenkôrper, das
Feld § aber zerlegungsfrei ist, in Verbindung mit dem Umstand, daB es

Mengen gibt, die nicht £-meBbar sind.
Der Nachweis der Aussage 3 c Ô un(l ^er Relation (23) ist einfach:

Die Behauptung ist richtig fur die Einheitsmenge E, also nach der oben
erwàhnten Teilbarkeitseigenschaft von § und (22) in Verbindung mit den
translativen und additiven Eigenschaften auch fur Wûrfel pE, die aus E
durch Dilatation mit einem rationalen p hervorgehen, ferner auch fur
rationale Wûrfelmengen, die sich in disjunkte Wurfel der Art pE zer-
legen lassen. Es sei nun zunàchst A eine beliebige beschrànkte Menge und
U und F zwei rationale Wûrfelmengen, so daB F c A c JJ gilt. Unter
Verwertung der Monotonie-Eigenschaften schlieBt man sodann

I(V) H(V) < H (A) < H (A) ^H (U) I(U)
und mit Berufung auf die klassischen Definitionen fur den âuBeren und
inneren Jordanschen Inhalt I(A) und l(A) ergibt sich schlieBlich die
Relation

&(A) ^ ^(A) ^ J{A) ^ (24)

aus der die Behauptung in vollem Umfang folgt.
Ein Vergleich mit dem Lebesgtùeschen System liefert keine zu (24)

analoge Relation zwischen den MaBzahlen L(A),L(A) einerseits und
H(A),H.(A) andererseits. Dagegen lâBt sich zeigen: Es gelten die
Formeln

L(A) "H(A) fur jede abgeschlossene Punktmenge A ;

L(A) H_(A) fur jede offene Punktmenge A
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Der Nachweis stutzt sich indessen auf die erst im Abschnitt VI her-
geleitete Beziehung (28), deren Anwendung auf L-meBbare Mengen17)
zunachst

H(A) ^L(A) <:H(A) (a)

ergibt. Ist nun A abgeschlossen, so gibt es zu jedem e > 0 noch eine
J-meBbare Menge X, so daB A a X und I(X) < L(A) + e ausfallt.
Mit (4) folgt H(A)^H{X) und mit (23) H(X) H(X) I(X),
so daB H (A) < L(A) + e oder also

H(A)^L(A) (b)

gilt. Aus (a) und (b) ergibt sich (25) fur abgeschlossene Mengen ; analog
schlieBt man fur offene Mengen

V. Deckungs- und Zerlegungsâquivalenz

Wir fuhren nun zwei auf verschiedene Art definierte Âquivalenzen ein.
Weitere Fortschritte und neue Einsichten innerhalb unserer axiomati-
schen Inhaltstheorie werden sich dann dadurch ergeben, daB nachfolgend
die Gleichwertigkeit der beiden Âquivalenzen aufgewiesen wird. Der
damit gewonnene Âquivalenzbegriff ist der axiomatischen Inhaltstheorie
insofern vollkommen angemessen, als sich herausstellen wird, daB zwei
Mengen dann und nur dann aquivalent sind, wenn sie in allen deckungs-
monotonen Inhaltssystemen, in welchen sie beide meBbar sind, uberein-
stimmenden Inhalt aufweisen.

Wir geben nun die folgende

Définition 3. Zwei beschrankte Punktmengen A und B nennen toir dek-

kungsaquivalent, symbolisch A ~B, wenn zu jedem e >0 naturliche
Zahlen n,p und m,q und zugehôrige Auslegungen so existieren, dafi

[n A] < [n • B] + [p E]
und gleichzeitig

[m- B] < [m-A] + [q-E]

gilt, wobei pjn < e und qjm < e ausfallt.
DaB die Deckungsaquivalenz reflexiv und symmetrisch ist, folgt unmittel-

bar ; daB sie auch transitiv ist, weist man muhelos nach, indem man sich
in passender Weise eines bereits wiederholt angewendeten Verfahrens
bedient, das mit den Produktauslegungen operiert.

1?) (28) gilt fur deckungsmonotone Inhalte. Dies tnfft naoh Kritenum 1 fur L(A) zu,
da das Feld £ ein Mengenkorper ist.
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Wir schlieBen hier gleich an die

Définition 4. Zwei beschrànkte Punktmengen A und B nennen wir
zerlegungsâquivalent, symbolisch A & B, wenn fur jedes e > 0 die
Belationen

A~ a B + eE und B ~ c A + e E

gelten, wobei eE ein durch Dilatation mit e aus E hervorgehender Wurfel ist.
Er sei in eine solche Lage verschoben, daji er mit A und B keine Punkte
gemeinsam hat.

DaB die Zerlegungsâquivalenz reflexiv und symmetrisch ist, folgt wieder
unmittelbar ; daB sie auch transitiv ist, ergibt sich sehr leicht mit Riick-
sicht darauf, daB dies fur die Relation ~ c (zerlegungskleiner) gilt.

Wir formulieren nun das erste Hauptergebnis unserer Théorie, welches
die Gleichwertigkeit der beiden oben definierten Âquivalenzen aussagt.
Es gilt der folgende

Satz 1. Zwei beschrànkte Punktmengen A und B sind dann und nur dann
zerlegungsâquivalent, wenn sie auch deckungsàquivalent sind ; aus A & B
folgt A ~ B und umgekehrt.

Beweis.
Aus A ** B folgt A ~ B (a)

2

1. Fall: Es sei A mit B 2-stufig zerlegungsgleich, symbolisch A ~ B,
so daB man durch eine passende Verschiebung die Beziehungen

A U +V und B U + V«

herstellen kann. Damit ergibt sich

xA âoc Aa*1"1] y rA<*v~\ y ïtt*vi _j_ y rFavi\jcx xi. xx J — Aé \xx J — jU \U J ~p jLê ^ V J

0 0 0

0

Beracksichtigt man, daB [1 • U] < [1 • B] und [1 • F] < [1 • B] < \p - E]
ist, wobei p nicht von dem willkiirlich wâhlbaren n abhângt, so folgt

[n-A] <[^.JS]+ \p*E\,

wâhrend pfn < e erzielt werden kann. Da man hier A und B vertauschen
darf, folgt A ~B.
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2. Fall: Es sei A mit B s-stufig zerlegungsgleich, symbolisch A ~ B,
8 8

so da8 A S Uv und B S U*v geschrieben werden kann. Wir
i i

setzen jetzt

AQ SUv AiAi SU^ + EUv und somit Ag Z U^ B
1 1 i+l 1

Nun erkennt man, daB die konsekutiven Mengen A{ und Ai+1 2-stufig
2 2 2

zerlegungsgleich sind, also io^i^ 2^.A8; nach dem ersten
Fall folgt somit ^o^J^^ ~As und in Verbindung mit der
Transitivitàt der Relation ^ schliefilich Ao <^> A 8

oder A ~ B.

3. Fall: Es sei A ^ B oder also erstens

A ~ A1 c B + £jE7 (0 < c < 1)

Nach dem 2. Fall ist A ~ Af, so daB zwei natiirliche Zahlen n und p
vorhanden sind, welchq die Relation

[n • A] < [n - Ar] + [p • E] mit p/rc < e (a)

erfullen. Weiter ist offenbar

[n • ^;] < [n • £] + [n • eE] (b)

Da eE absolut mefibar ist, gibt es nach den Definitionen 1 und 2 und nach
(23) zwei natiirliche Zahlen m und q so, daB die Relation

[m • eE] < [q • E] mit qjm < ek + e < 2e (c)

gilt. Durch Verbindung von (a), (b) und (c) mit Bildung geeigneter
Produktauslegungen gewinnt man

[mn • A] < [mn • B] + [(rap + nq) • $]
wobei (mp + nq)jmn (p/^) + (#/w) < 3e ausfallt. Da man A und jB

vertauschen kann, indem zweitens auch B C^L B' c A + eE gilt, folgt
-4 '—' JB, wzbw.

Aus A ~ B folgt ^4 ^ B (b)

Es gibt zwei natiirliche Zahlen n und m, fur welche die Relation

[n-A] ^[n*B] + [m> E]

besteht, wobei m/n < e ist. Wenn s eine naturliche Zahl bezeichnet,
k k _fur welche \/n ^ s > \/n — 1 gilt, so kann E durch eine disjunkte
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Auslegung n • (Ijs) E ûberdeckt werden, so da8 [m • E] ^ [n • m • (1/s)JE]
und also [w»i] < [>& • U, n • m • (1/s) 15] richtig ist.

Naeh Hilfssatz 1 gibt es disjunkte Auslegungen n A, n B und
n • (m • (1/s) U), fur welche die Zerlegungsbeziehung

besteht. Nach einem Theorem von D. Kônig und S. FaZifcd18) folgert man
hieraus

A ~ c £ -j- m • (1/5) J2

Nun gilt weiter *
m • (1/s) E~a {2 Vm/s) E

da der Inhalt des Wûrfelpolyeders links kleiner ist als der Wurfelinhalt
rechts (Verhâltnis 1: 2k). So ergibt sich

A ~ c B + e'E
k k k _

wo e' 2\/mjs < 4 \^mjn < 4 ]/s wird, falls n^ 2k ist, was ohne

Einschrânkung vorausgesetzt werden kann. Da man offensichtKch auch
Mer A und B vertauschen darf, folgt A ^ B wzbw.

VI. Aquivalenz und Inhalt

Wir bringen nun die im vorstehenden Abschnitt eingefûhrten Âqui-
valenzbegriffe mit der Inhaltstheorie in Beziehung. Zunàchst gewinnen
wir aus der festgestellten Gleichwertigkeit von Deckungs- und Zer-
legungsâquivalenz als einfache Folgerung gewisse Sâtze, welche die
Zerlegungsinvarianz eines deckungsmonotonen Inhalts ausmachen.

Wir wenden uns vorerst dem absoluten Inhaltssystem (£), H) zu.
Hier gelten die Relationen

H(A) H(B), H(A)=:H(B) (A~B), (26)

d. h. die absoluten Ober- und Unterinhalte sind einzeln bereits zerlegungs-
invariant.

Hieraus folgt jetzt, da6 das absolute Feld § die Eigenschaft (VI0) hat,
also zerlegungsfrei ist. Ist A eine absolut meBbare Menge, so ist auch jede

18) D, Kônig und S. Valkô, Ûber mehrdeutige Abbildungen, Math. Ann. 95
1925, 135-138. Vgl. auch A. Tarski, Ûber Aquivalenz der Mengen in bezug auf
eine beliebige Klasse von Abbildungen, Atti del Congresso Internazionale dei
Matematici, Bologna 1928, Bd. 2, 243-252.
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mit ihr zerlegungsgleiche Menge B absolut meBbar, und es gilt die Bezie-
hung H(A) H(B).

Da weiter nach (11) H auch monoton ist, folgt mit Kriterium 1, daB H
die Eigenschaft (VI) aufweist, also deckungsmonoton ist.

Wir beweisen jetzt (26): Mit A ~ B gilt nach Définition 4 erst recht
A & B und also nach Satz 1 auch A ~ B. Nach Définition 3 gilt somit
[n A] < [n B] + \p-E] mit pjn<e. Es sei ferner [m-B] < [q-E\.
Fur die passenden Produktauslegungen gilt nun

[nm • A] < [(nq + mp) • E]

und hieraus folgt mit (1) H (A) < (qlm) + (î>M) und erneut nach (1)
H (A) ^H(B) + e, also schlieBlich 5(4) <H(JB). Mankann^und J5

vertauschen, so daB sich der erste Teil von (26) ergibt ; der Beweis des
zweiten Teils verlàuft analog.

Es sei jetzt (g, J) ein deckungsmonotones, im ubrigen aber beliebiges
Inhaltssystem. Wir zeigen, daB der Inhalt stets zerlegungsinvariant ist,
d. h. daB die Relation

J(A)=:J(B) (A~B) (27)

gilt. Wenn das Feld g zerlegungsfrei ist, ergibt sich natûrlich die Zer-
legungsinvarianz als Folgerung aus den Inhaltspostulaten. Die Bedeutung
der Aussage liegt nun darin, daB der Inhalt auch dann zerlegungsinvariant
ausfâllt, wenn das Feld nicht zerlegungsfrei ist, wie das bei den klassi-
schen Systemen (Jordan, Lebesgue) zutrifft.

Fur den Beweis von (27) schlieBt man zunàchst gleich wie beim voraus-
gehenden Beweis von (26) auf eine Relation [n • A] ^ [n - B] + [p • E]
mit pjn < e. Nach der vorausgesetzten Deckungsmonotonie (VI) ziehen
wir die Folgerung nJ(A) ^.nJ(B) + p, und somit weiter

J(A) < J(B) + e oder also J(A) < J(B)

Auch hier kann man A und B vertauschen, so daB sich (27) ergibt.
Wir lassen jetzt das absolute Inhaltssystem mit einem beliebigen dek-

kungsmonotonen Inhaltssystem in Beziehung treten und beweisen die
folgende wichtige Relation :

Ist J(A) ein deckungsmonotoner Inhalt, so gilt fur jede J-mefibare Menge

H (A) < J(A) < H (A) (28)

Eine einfache Folgerung ist die folgende Aussage :
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Ist J(A) ein deckungsmonotoner Inhalt, so gilt fur jede J-mefibare Menge
A, welche gleichzeitig absolut mefibar ist :

J(A) H(A) (29)

Damit wird bereits die entscheidende charakteristische Eigenschaft
derMaBzahlen H_{A),H(A) und H (A) angedeutet, welche die gewàhlte
Bezeichnungsweise zu rechtfertigen vermag. Ein vollstàndigeres Urteil
gestatten indessen erst die weiter unten bewiesenen Sâtze.

Zum Beweis von (28) sei [n • A] ^ [p • E], so daB mit Riicksicht auf
die vorausgesetzte Deckungsmonotonie (VI) auf nJ(A) ^ p oder
J(A) ^p/n geschlossen wird. Mit (1) folgt jetzt J(A) ^H(A). Der
Nachweis von H_(A) ^J(A) verlâuft analog.

Wir gehen jetzt auf eine Aussage ein, die in gewissem Sinne eine Um-
kehrung von (28) darstellt.

Ist co ein beliebiger im Intervall H_(A) =$C co ^.H(A) gelegener Zahl-
wert, so existiert ein deckungsmonotoner Inhalt, fur welchen

J(A) co (30)
gilt.

Dies zeigt, daB die absoluten Ober- und Unterinhalte die exakten oberen
und unteren Schranken der Menge der Inhaltswerte darstellen, die der
Punktmenge in deckungsmonotonen Systemen zukommen kônnen.

Beweis: Ist A absolut meBbar, so liefert der Ansatz J(A) H (A)
eine Lôsung. Es sei A nicht absolut meBbar. Wir betrachten das System 5
aller Mengen X, fur welche eine Âquivalenz X ~ U + p • A besteht,
wobei p innerhalb der Reihe der nicht negativen ganzen Zahlen und U
innerhalb des Feldes § der absolut meBbaren Mengen unabhangig
variieren sollen. Die Auslegungen p • A der gegebenen Menge A seien

disjunkt und auch zu U fremd.
Nun setzen wir J(X) H(U) + pco und zeigen, daB dieser der

Menge X zugewiesene Zahlwert J(X) eindeutig durch X bestimmt ist.
In der Tat : Gilt etwa X ~ U + p • A und gleichzeitig X ~ F + q • A,
so ist offenbar auch U -{- p - A r^j V -\- q- A. Wie beim Beweis von (26)
gezeigt wurde, haben àquivalente Mengen den gleichen absoluten Ober-
inhalt, so daB zunâchst H(U + p A) H{V + q-A) folgt. Nach (18)
und in Verbindung mit (9) ergibt sich

H(U) + PH(A) H(V) + qH(A) (a)
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Eine analoge Betrachtung mit dem absoluten Unterinhalt ftihrt zu

H(U) + pH{A)=H{V) + qH{A). (b)

Subtrahiert man die beiden letzten Relationen (a) und (b), so erhàlt man

(p-q)(H(A)-H(A))=0.
Da A nicht absolut meBbar ist, muB der zweite Faktor positiv sein, so daB
sich p q ergibt. Aus (a) folgt weiter, daB H(U) H(V) sein muB, und
damit sind die der Menge X auf Grund der beiden verschiedenen Dar-
stellungen zugeordneten Zahlwerte J(X) gleich.

Wir wollen nun zeigen, daB das System g ein Inhaltsfeld und J ein in 5
definierter Inhaltsoperator ist. Die Feldpostulate (Io) bis (III0) und die
Operationspostulate (I) bis (IV) sind aber mit Rûcksicht auf die Kon-
struktion von $ un(ï J évident. Zusâtzlich zeigen wir noeh, daB J die
Eigenschaft (V) hat, also monotov ist.

Essei X=U + p'A,Y=V + q-A und weiter X c Y. Mit (4)
schlieBen wir zunâchst auf H(X)^H(Y) und H(X) ^H(Y) und
mit (18) und (19) in Verbindung mit (9) hieraus auf

und

1. Fall:

H(U)

H(U)

+ pH(A)i
+ pH(A)s

^H(V)

^H(V)
+ qE(A)

+ qH(A).

(c)

(d)

p < q ; wegen H (A) < co folgt aus (c) H(U) + pco < H (V) + qco

2. Fall :

q < p ; wegen co < H (A) folgt aus (d) H(U) + pco < H(V) + qœ

In beiden Fâllen hat sich J(X) ^J(Y) ergeben, wzbw.
Nun folgt weiter, daB J auch die Eigenschaft (VI) aufweist, also dek-

hungsmonoton ist. Da nàmlich JÇ nach Konstruktion sicher zerlegungsfrei
ist, folgt auf Grund der soeben nachgewiesenen Monotonie die Deckungs-
monotonie nach Kriterium 1. Mit der Bemerkung, daB J(A) oo ist,
schlieBt der Beweis von (30).

Wir wollen nun die Ergebnisse (28), (29) und (30) zusammengefaBt
formulieren in

Satz 2: Ist CS,J) ein deckungsmonotones Inkaltssystem, so gilt fur
jede Menge A e g die Ungleichung H.{A) ^J(A) ^.H(A); gilt au/Jer-
dem A € $, so ist insbesondere J(A) H (A), so dafi der Inhalt einer

absolut-mepbaren Menge in jedem deckungsmonotonen System gleich aus-
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fâllt und mit dem absoluten Inhalt identisch ist. Umgekehrt gibt es zu jedem
Zahlwert w des Intervertis H (A) < <o ^Z?(-4) ein deckungsmonotones
InhaUssystem ($,J), filr wdches J(A) (o wird.

Eine in gewissem Sinne absehlieBende Aussage ûber das Verhàltnis der
Âquivalenz zur axiomatischen Inhaltstheorie wird ausgesagt durch das

folgende
Kriterium 3. Zwei Mengen A und B sind dann und nur dann équivalent

(deckungsàquivahnt A~B, zerlegungsâquivalent A ?& B), wenn in
jedem deckungsmonotonen InhaUssystem, in welchem sie beide gleichzeitig
mefibar sind, J(A) J(B) ausfâllt.

Die Aussage ,,nur dann" ist im Hinblick auf die vorstehenden Ergeb-
nisse klar ; die Aussage ,,dann" ist jedoch nur unvollkommen belegt und
die vollstândige Beweisfûhrung wurde eine noch weitergehende Ent-
wicklung unserer Théorie in der Richtung zur Konstruktion universeller
oder Banach&chex Inhaltssysteme erforderlich machen, was im Rahmen
dieser Abhandlung nicht geschehen kann.

VII. Der Tarskische Inhalt

Im folgenden verallgemeinern wir einen von A. Tarski19) fur lineare
Punktmengen eingefuhrten MaBbegriff fur fc-dimensionale Punktmengen.
Dièse Erweiterung ist môglich, weil wir unsere Théorie translationsinva-
riant aufgebaut haben und demnach auch nur translative Zerlegungs-
gleichheit in Betracht ziehen. Da die Translationsgruppe abelsch ist, gibt
es nach bekannten, allgemein gewonnenen Einsichten keine Zerlegungs-
paradoxien im Sinne der Sâtze von 8t. Banach und A. Tarski20). Die
Nichtexistenz paradoxer Zerlegungen ist indessen bereits implizite in der
innerhalb unserer Théorie bewiesenen Zerlegungsinvarianz des Inhalts
enthalten. Wird die Bewegungsgruppe der Théorie zugrundegelegt, so

kann der Satz von der Gleichwertigkeit von Deckungs- und Zerlegungs-
àquivalenz fur mehrdimensionale Râume nicht mehr bewiesen werden ;

unsere Begriindung stûtzte sich wesentlich auf die Kommutativitât der
Translationen.

Wir geben nun die folgende, den Ansâtzen von A. Tarski nachgebildete

Définition 5. Fur eine beschrânkte Punktmenge A setzen wir

mî Xk\ A~aXE (31)

loe. cit. 2).
loc. cit. 3).

142



und anahg
T(A) sup Xk ; XE ~ c J. (32)

newwew ÎF(-4) dew âufîeren, T_{A) den inneren Tarskischen InhaU. Die
Ermittlung der unteren und oberen Grenzen erstreckt sich ilber aile X, fur
welche die rechts hingeschriebenen Zerlegungsrelationen erfullbar sind, Ist
T(A) T(A) T(A), so nennen wir T(A) den Tarskischen Inhalt.

Der Existenznachweis von T(A) und T_(A) ist in der weiter unten
folgenden Begrûndung des Hauptergebnisses dièses Abschnitts mit ent-
halten. Dièses wird durch die beiden folgenden Aussagen wiedergegeben:

Es getien die Identitaten

f(A) H(A); T(A) H(A). (33)

Beweis: Es sei i^ci£, also A ~ A' c XE, so daB mit (26) und
(4) folgt: H (A) =H(Af) ^H(XE). Wegen (23) ist

so daB auf H (A) ^ Xk und mit (31) weiter auf

H(A)^T(A) (a)
geschlossen werden kann.

Andererseits gehen wir von einer Relation [n • A] ^C \jp • E] aus, bei
der nach Hilfssatz 1 auf eine Zerlegungsrelation n • A ~ c p • E
geschlossen werden kann, fur die die beteiligten Auslegungen disjunkt sind.
Wird A so gewâhlt, daB Xk > pjn ist, so gilt wieder mit disjunkten
Auslegungen eine Zerlegungsrelation p -E ~ c n- XE, da das Wurfel-
polyeder rechts einen grôBeren Inhalt aufweist als das linksstehende. Mit
der Transitivitàt der Relation ~ c folgt nun nAC^L c n- XE, nach
dem bereits fruher angewendeten Theorem von D. Kônig und 8. Valkô
schlieBlich A ~ c XE und mit (31) T(A) ^Xk. Im Hinblick auf
unsere Konstruktion ergibt sich T(A) ^Lpjn und mit (1) also auch

(b)

Die Ergebnisse (a) und (b) verifizieren die Behauptung T(A) H (A).
Der Nachweis fur T(A) E[(A) verlâuft analog.

Mit dieser Feststellung, durch welche die vôllige Ûbereinstimmung des

Tar^ischen Systems mit dem von uns entwickelten absoluten System
aufgewiesen ist, kônnen wir hier abbrechen, da sich aile Ergebnisse ein-
zeln vom absoluten System auf das Tarsifcische System (X, T) ûber-
schreiben lassen.
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Wir formulieren lediglich noch eine Charakterisierung der absolut-meB-
baren Mengen, die sich aus dieser Gegeniiberstellung ergibt:

Kriterium 4, Eine Menge A ist dann und nur dann absolut mefîbar,
(im Tarskischen Sinne meftbar), wenn sie mit einem Wilrfel XE équivalent
ist (declcungsâquivalent A ~ XE, zerlegungsâquivalent A f*&XE). Ins-
besondere ist dann H (A) T(A) Xk.

Da kongruente Wiirfel translativ zerlegungsgleich sind, ergibt sich
leicht, daB kongraente Wûrfel in unserem Sinne âquivalent sind. Mit
Kriterium 4 schlieBt man hieraus auf eine weitere Eigenschaft des abso-
luten Systems : Das Feld § % ist bewegungsfrei und der absolute Inhalt
H T ist bewegungsinvariant.

VIII. Der Neumannsche Inhalt

Im folgenden entwickeln wir eine Konstruktion eines Inhalts, die auf
der Anzahl der von der Menge im Einheitsgitter bedeckten Gitterpunkte
beruht. Wird die Menge relativ zum Gitter verschoben, so erscheint dièse
Anzahl als Funktion uber der Translationsgruppe. Fur meBbare Mengen
wird es sich um eine ergodische Funktion handeln, und der Inhalt selbst
lâBt sich als Mittelwert im Sinne von J. von Neumann interpretieren. Aus
diesem Grande sprechen wir vom Neumannschen Inhalt.

Die Définition vorbereitend, erklaren wir die folgenden Hilfsbegriffe :

Es sei wie friiher [^4] die charakteristische Funktion der Menge A.
Bezeichnet noch P den verânderlichen Punkt im Raum B, so schreiben
wir fur die gleiche Funktion auch [^L ; P], falls es erforderlich sein sollte,
die Veranderliche P besonders hervortreten zu lassen. Es bedeute nun-
mehr G das Punkteinheitsgitter im Raum B, dessen Punkte ganzzahlige
Koordinaten haben. Die Anzahl der von der Menge A bedeckten
Gitterpunkte ist dann durch g (A) S [A ; PJ gegeben, wobei sich die Sum-

j
mation liber die irgendwie abgezâhlte Folge (Pô ; j 1, 2, der
Gitterpunkte von G zu erstrecken hat. Wegen der Beschrànktheit der
Menge A reduziert sich dièse Summation auf eine endliche.

Ist Al9 An eine Auslegung von n Mengen Av und r eine Trans-
n

lation, so setzen wir weiter g(A{, .,Arn) Eg(Axv), wobei wie er-

sichtlich aile Mengen der Auslegung simultan verschoben sind. Ist wie
frûher n • A eine Auslegung von n zu A translationsgleichen Mengen, so
ist g [(n • A)x] analog erklârt.

144



Wir geben nun die folgende

Définition 6. Fur eine beschrânkte Punktmenge A setzen wir

N(A) inf Max — g [(n - A)r] (34)
n x n

N(A) sup Min — g [(n - A)r] (35)

und nennen N(A) den àufteren, N^(A) den inneren Neumannschen Inhalt.
Die Ermittlung des Maximums bzw. des Minimums erstreckt sich bei fester
Auslegung n • A liber aile Translationen x und diejenige des Infimums bzw.
des Supremums liber aile Auslegungen. Ist N(A) N_(A) N(A),
so nennen wir N(A) den Neumannschen Inhalt.

Die Existenz von N(A) und N_(A) ist hier eine einfache Folgerung aus
der Beschrànktheit von A.

Weiter unten beweisen wir als Hauptergebnis dièses Abschnitts die
folgenden beiden Aussagen:

Es gelten die Identitâten

N(A) H (A) ; N(A) H{A) (36)

Den Beweis vorbereitend, formulieren wir den folgenden

Hilîssatz 4. Bezeichnen G (A) M&x g(Ar) und G (A) Ming(Ar)
X X

die grôflte und die kleinste Anzahl Gitterpunkte, welche durch die relativ
zum Gitter G passend verschobene Menge A bedeckt werden, so gilt die
Ungleichung

G(A) < H (A) < H(A) < G(A) (37)

Unser Hilfssatz stellt eine Erweiterung des bekannten Theorems von
A. F. Blichfeldt und W. Scherrer21) dar, das sich auf 7-meBbare Mengen
bezieht und dessen Inhalt durch die Ungleichung G (A) ^ I(A) ^ G (A)
wiedergegeben werden kann, die im Hinblick auf (23) als Korollar zu (37)
erscheint. In Anlehnung an den Wortlaut des soeben erwâhnten Theorems

lâBt sich unser Ergebnis etwa auch so aussprechen:
Eine beliebige beschrânkte Punktmenge A là/it sich im Punkteinheits-

gitter G immer so verschieben, dafi die Anzahl der durch A bedeckten
Gitterpunkte nicht kleiner als der absolute Oberinhalt H (A) bzw. nicht grôfier ah
der absolute Unterinhalt H_(A) ausfàllt.

21) loc. cit. 12), 13).
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Beweis von Hilfssatz 4. Wir fixieren eine Translation x durch die Je

achsenparallelen Komponenten ti, i 1, k. Es sei jetzt Q die
Menge der Translationen r, fur welche 0 <ti ^l,i l, k gilt.
Es handelt sich um die Restklasse der Translationsgruppe beziiglich der
Gittergruppe. Es besteht nun die disjunkte Zerlegung Q ZQx,
wobei Qx die Teilmenge derjenigen rcQ bezeichnet, fur die g{Ax) X

ausfallt. Setzen wir nun A\ H AG~X, r e Qx, also gleich der Vereini-
gungsmenge aller Durchschnitte von A mit den verschobenen Gittern
C?~T, wo t wie rechts angedeutet Qx durehlâuft, so besteht die
disjunkte Zerlegung

(a)

Ist PQ der Koordinatenursprung (Gitterpunkt Po), so setzen wir weiter
E\ S P0~x ; t c Qx* Ofïensichtlich gilt die disjunkte Zerlegung

E'^EEX, (b)
X

wobei E! einen mit E translationsgleichen Einheitswiirfel bedeutet. Aus
der Konstruktion oben folgert man mit einigen einfachen tîberlegungen,
daB die Zerlegungsrelation

AX~X-EX (c)

besteht. Mit G < A < G folgert man aus (a), (c), (b) die Zerlegungs-
beziehung A ~ c G • E und G • E ~ c A mit disjunkten Auslegungen
von E, so daB sich nun mit (26), (4), (9), (5) die Ungleichungen H (A) < G

und G ^ H_(A) ergeben, wzbw.

Beweis von (36). Mit Rucksicht auf die Gitterperiodizitât von g(Ar)
ist es keine Einschrânkung, in (34) und (35) die Auslegungen n- A disjunkt
vorauszusetzen. Dies sei hier nun stets der Fall.

Nach Hilfssatz 4 gilt zunàchst H (n - A) < G (n -A) Max g [(n A)r];
T

unter Verwendung von (9) folgt H {A) < (Ijn) Max g [(n • A)x] und mit
(34) hieraus T

(d)

Andererseits sei [n • A] ^ \p • E] und damit g [(n • A)r] < g [(p • E)x].
Mit g(Er) 1 folgt g [(p -E)r] p\ so folgert man aus der oben
stehenden Beziehung leicht Max(l/7i) g [(n • A)r] < pjn oder nach (34)

N(A) ^ pjn. Mit (1) schlieBt man auf

N(A)^H(A). (e)

146



Aus (d) und (e) folgt N(A) H(A). Der Beweis fur N(A) H(A)
verlâuft analog.

Damit ist die vollstândige Ûbereinstimmung des Neumannschen
Systems (91, N) mit dem absoluten nachgëwiesen. Sâmtliche sich auf das
absolute System sich beziehenden Ergebnisse kônnen einzeln auf das Neu-
mannsche System iibertragen werden.

Aus dieser erneuten Gegeniiberstellung ergibt sich eine weitere Charak-
terisierung der absolut meBbaren Mengen. Wir formulieren das

Kriterium 5. Eine Menge A ist dann und nur dann absolut mefibar
(im Neumannschen Sinn me/ibar), wenn die Oitterpunktsanzahl g(Ar)
der verschobenen Menge A als Funktion ûber der Translationsgruppe
ergodisch ist. Der absolute Inhalt (Neumannsche Inhalt) H(A) N(A)
selbst ist der Mittelwert von g(AT) im Sinne von J. von Neumann.

Beweis. a) g(AT) sei ergodisch. Zu einem e > 0 gibt es n Trans-
lationen ocv* v l, ,,n, und eine Zahl g, so daB fur aile Trans-
lationen r

n <e

ausfâllt. Bedeutet n-A die Auslegung A*1, A*71, so làBt sich
auch schreiben

g — «<Min — g[(n- A)r] < Max — g{(n-A)r] <g + e
n n

und mit (34) und (35) g — e < N(A) < N(A) < g + e. Das bedeutet
aber N(A) N(A), also wegen (36) auch H (A) H (A).

b) A sei absolut mefibar. Aus H {A) H(A) folgt mit (36)

und nach (34) und (35) gibt es zu einem e > 0 zwei Auslegungen
p A A"1, A"? und q A APl, A**, fiir welche

Max —g [(p • A)T] <g + e und ebenso g — e < Min — g [(q • A)r]

ausfâllt. Ist pq-A die aus p-A und q A gebildete Produktauslegung,
so folgert man leicht, daB auch

g - £<Min-— g[{pq-A)*] < Max —- g[(pq -A)*] <g + e
Vh. P9.

147



gilt. Fiihren wir noch die n pq Translationen

ein, so lâBt sich auch

n T <2e

fur aile Translationen x schlieBen; dies bedeutet, daB g{Ax) ergo-
disch ist.

(Eingegangen den 13. April 1953.)
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