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Uber die konforme Abbildung von Gebieten
unendlich hohen Zusammenhangs

Von KURT STREBEL, Ziirich

I. TEIL

Einleitung

1. Eine topologische Abbildung eines Gebietes G, der z-Ebene?!) in
die w-Ebene fiihrt ¢, wiederum in ein Gebiet G, iiber. Durch die Zuord-
nung der Gebietspunkte z<->w von G, und G, wird eine eineindeutige
Zuordnung der Randkomponenten I',<-> I, der beiden Gebiete indu-
ziert, in dem Sinne, daB} jeder Punktfolge (z,) aus G,, die gegen eine
Randkomponente I', konvergiert?), eine Punktfolge (w,) von G, ent-
spricht, die gegen eine und dieselbe Randkomponente I',, konvergiert
und umgekehrt. Ist G, von unendlich hohem Zusammenhang3), so ist die
induzierte Zuordnung der Menge der Randkomponenten iiberdies topolo-
gisch, wenn man als Umgebungen einer Randkomponente I' die Teil-
menge derjenigen Randkomponenten betrachtet, die in einer Umgebung
von I" beziiglich der komplexen Ebene liegen.

An Stelle der Randkomponenten ist es im folgenden praktischer, die
Komplementirkontinuen dieses Gebietes zu betrachten : Eine Rand-
komponente I" eines Gebietes G hat als Komplement eine offene Menge,
die im allgemeinen in mehrere einfach zusammenhéngende Gebietskompo-
nenten zerfillt. Eine derselben enthilt das Gebiet G, samtliche andern
sind zu @ fremd. Die Vereinigung der letztern mit I" stellt ein zu @ frem-
des Kontinuum dar; wir nennen es das zu I" gehorige Komplementér-

kontinuum I" von @. Ein solches ist stets einfach zusammenhéngend, das

heiB3t sein Komplement besteht aus einem einzigen Gebiet (welches G ent-
hilt).

1) Darunter verstehen wir stets die durch den unendlich fernen Punkt abgeschlossene
Ebene mit einem dem Abstand auf der Kugel éiquivalenten Umgebungsbegriff.

?) d. h. jede Umgebung von I", enthélt fast alle Punkte der Folge.

3) Zusammenhangszahl = Anzahl der Randkomponenten.
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Bei einer blo8 topologischen Abbildung etwa eines Gebietes @, endlichen
Zusammenhangs konnen nun die Komplementirkontinuen des Bild-
gebietes G, als auflerhalb voneinander liegende, einfach zusammenhéin-
gende Kontinuen beliebig vorgegeben werden, wenn nur ihre Anzahl gleich
der Anzahl der Komplementérkontinuen von G, ist. Dies ist jedoch bei einer
eineindeutigen und konformen Abbildung w(z) nicht mehr der Fall. Man wird

vielmehr jedem Komplementirkontinuum I, von G, eine ganze Klasse

C(I',) von einfach zusammenhiingenden Kontinuen zuordnen miissen,
aus der dann die Auswahl durch die konforme Abbildung selber getroffen
wird. Wir wollen ein System C,, ..., C, von solchen Klassen vollstindig
nennen, wenn jedes n-fach zusammenhéingende Gebiet G, mit beliebiger

eineindeutiger Zuordnung T’z«+ C (—l_“z) ein konform &quivalentes Ge-
biet G,, besitzt, dessen I", entsprechendes Komplementirkontinuum I,

in der Klasse C (1—“;) liegt. Man wird dabei bestrebt sein, die einzelnen
Klassen gleichzeitig so eng zu wilhlen, dal bei gegebenem @, das Gebiet
G, eindeutig bestimmt ist.

Ein einfaches Beispiel ist das sogenannte Koebesche Kreisnormie-
rungsprinzip (Koebe [1]): Die Klassen C,,..., C, sind alle identisch
und gleich der Menge aller Kreisscheiben und Punkte auf der Kugel.
Dieses System ist vollstéindig, das heilit jedes beliebige n-fach zusammen-
hiéingende Gebiet G, kann auf ein Gebiet @,, abgebildet werden, dessen
simtliche nicht-punktférmigen Randkomponenten Kreise oder Geraden
sind, und @, ist bis auf eine lineare Transformation eindeutig bestimmt.
Allgemeinere Klassen C sind fiir den Fall endlichen Zusammenhangs u. a.
von Grotzsch [1, 2] angegeben worden. Fiir Gebiete unendlich hohen
Zusammenhangs ist die Frage jedoch noch fast gar nicht behandelt. Es
tritt dabei auch fiir die Hiufungsrandkomponenten eine ganz neue Situa-
tion auf: Durch die den unmittelbar benachbarten Komponenten auf-
gepriagte Gestalt wird diejenige der Haufungsrandkomponente zusitzlich
beeinfluflt.

Ein instruktives Beispiel ist ebenfalls von Groétzsch ([3], Strebel [1])
angegeben worden : Die Klasse C, besteht aus dem Einheitskreis |w| < 1;
die iibrigen Klassen C,, C,, ... sind miteinander identisch und bestehen
aus den radialen Schlitzen. Das System der Klassen C,,..., C, ist fir
jedes endliche n vollstindig, das unendliche System jedoch nicht; das
heilt es gibt Gebiete abzihlbaren Zusammenhangs, die sich nicht auf ein
Gebiet, das vom Einheitskreis und lauter radialen Schlitzen berandet ist,
abbilden lassen. Die radialen Schlitze konnen ein Herausspringen eines
solchen am Einheitskreise selbst bewirken.
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Wir stellen uns nun folgendes Problem : Es sei @, ein Gebiet abzihl-
baren Zusammenhangs. Jedem Komplementirkontinuum T, von @, sei

eine gewisse Klasse C(I",) von einfach zusammenhingenden Kontinuen
zugeordnet, so daB endlich viele von diesen Klassen stets ein vollstdndiges
System bilden. Unter welchen (hinreichenden) Bedingungen iiber die
Héaufungsrandkomponenten von G, glbt es eine konforme Abbildung

w(z), die jedes Komplementirkontinuum F inein I', e C(I",) iiberfiihrt?

Im demnichst in derselben Zeitschrift erscheinenden zweiten Teil der
Arbeit wird unter zusédtzlichen Voraussetzungen iiber die Gestalt der
Randkomponenten I', die Unitdt gewisser speziell normierter Abbil-
dungen bewiesen.

§ 1. Der extremale Durchmesser eines Randpunktes

2. Die extremale Linge einer Kurvenmenge?). Es sei {y} eine Menge
von rektifizierbaren Kurven®) in einem Gebiete G der z-Ebene, und ¢(z)
eine reelle, nicht-negative Funktion in @, fiir die die Integrale

L, (y) 259 |dz| und F (@)= ,Ljegdwd?/

stets existieren und 0 <JF,(G) <oo ist. Jeder solchen Funktion ¢ ordnen
wir die Zahl

Lg {'}’}
ple, {y}, &) = 7, (@)

zu, L,{y} = inf L, (y). Unter der extremalen Linge A der Kurvenmenge
{?
{y} verstehen wir die obere Grenze der Zahlen y fiir alle den obigen Be-

dingungen geniigenden Vergleichsfunktionen p :

Ay} = S\zpu(e, {r}, @

Die Zahl A{y} ist unabhingig vom speziellen Gebiet @, in das die Kur-
venmenge {y} eingebettet ist, und invariant gegeniiber eineindeutiger
konformer Abbildung. Ferner besitzt sie folgende leicht zu beweisenden
Ergenschaften :

(2.1) Ist {y,} eine Teilmenge der Kurvenmenge {y}, so ist 4{y,}
> A{y}.

1) Vgl. L. Ahlfors und A. Beurling [1].

5) Unter einer rektifizierbaren Kurve in G verstehen wir das stetige und rektifizierbare
Bild eines Kreises oder das stetige Bild einer offenen Strecke, wobei das Bild jedes abge-
schlossenen Teilintervalles der Parameterstrecke in @ liege und rektifizierbar sei.
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(2.2) Enthilt jede Kurve der Menge {y} eine solche der Menge {y,},
so gilt A{y,} <A{y}.

(2.3) Ist {p} die Vereinigungsmenge der beiden nicht notwendig
elementfremden Kurvenmengen {y,} und {y,}, so gilt die Ungleichung
(Strebel [1])

-3

2 3

SA: +2;%’ =2y}, k=1,2.

3. Drie extremale Distanz eines Gebietspunktes von einer Randkompo-
nente. Wir betrachten eine Randkomponente I' eines Gebietes G' der
z-Ebene. I" sei eine in G gelegene Jordankurve, die uns im folgenden
als Hilfskurve dienen wird. In einem der durch I erzeugten beiden Teile
der Ebene liegt I': Wir bezeichnen diesen Teil als das Innere von /" und
sagen von Jordankurven, die in ¢ liegen und I" und I trennen, sie um-
fassen oder umschlieflen I,

Jedem Gebietspunkte z, der im Innern von I" liegt, ordnen wir auf
folgende Art beziiglich @, I" und I eine positive Zahl

d(z) =d(z;G, I, I")

zu, die wir die extremale Distanz®) (beziiglich I'") des
Punktes z von der Randkomponente /" nennen wollen :
{y} sei die Vereinigungsmenge aller in ¢' und im Innern
von I" gelegenen rektifizierbaren Jordankurven y!, die
z und I' umfassen, und Querschnitte 32, die z von I
trennen und auf I" enden ?) (Fig. 1). Unter d(z) verste-
hen wir die extremale Linge dieser Kurvenmenge :

Fig. 1 d(z) = Af{y} .

Diese extremale Distanz d(z) besitzt folgende Eigenschaften :

(3.1) Ist (z,) eine Folge von Punkten, fiir die d(z,) - 0 geht, so
folgt 2, — I'. Bilden wir ndmlich das Innere von I konform auf das
Innere des Einheitskreises |w|<1 ab8), wobei I in |w| =1 iiber-
gehe, so gilt d(z,) = d(w,), letztere beziiglich |w| =1 genommen.
Wihlen wir nun die Funktion p(w) =1 im Einheitskreis, so ist fiir
jeden Punkt w,

8) Die hier definierte extremale Distanz ist nicht identisch mit der bei Ahlfors und Beur-
ling definierten extremalen Distanz zweier Randkomponenten.

7) Das sind topologische Bilder der Parameterstrecke 0 <t << 1, deren in G kompakte
Intervalle rektifizierbar sind, und die fiir ¢ - 0 und ¢ > 1 gegen I’ gehen.

8) Eine Abbildung des Durchschnittes des Innern von I mit G in das innere des Ein-
heitskreises geniigt natirlich.
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ofy} o 40*(w,)
dw) 27 G =0

wo a(w,) den Abstand des Punktes w, von der Randkomponente I,
(= Bild von I') bedeutet. Es folgt also aus d(z,) - 0 auch a(w,) > 0
und damit z, — I

(3.2) Die Beziehung d(z,) - 0 ist unabhingig von der Hilfskurve
I'". Seien I'" und I'" zwei Hilfskurven, und fiir die Punktfolge (z,) gehe

d(z,;q,I''T") -0 .

Wir wihlen eine dritte Hilfskurve I'* in G, die I" sowohl von I als auch
von I'” trennt. Die Punkte der Folge (z,) liegen nach obigem schlieBlich
alle im Innern von I'*, und wir teilen fiir diese n die Menge der Konkur-
renzkurven beziiglich I ein in die Teilmenge derjenigen, die ganz im
Innern von I'* liegen, und die der iibrigen

{yn} = {'}’:} + {V:*} >

und bezeichnen die extremalen Léngen dieser Kurvenmengen mit 4,,
A, und A°*. Dann gilt die Beziehung

1 1 1

— < —
Vi VE Vi
Die GroBen 4" sind gleichm#Big nach unten beschréinkt durch eine posi-
tive Schranke, was man analog wie (3.1) beweist, indem man eine spe-
zielle Funktion g betrachtet. Daraus folgt aber mit Hilfe der Ungleichung,
dafl mit 4, — 0 auch A, — 0 gehen muB. Anderseits sind die Kurven
v, die Konkurrenzkurven des Punktes z, beziiglich I'*, und diese bilden
eine Teilmenge der Konkurrenzkurven von z, beziiglich I'” : Die extre-
male Linge der letzten Menge ist somit << A, und geht folglich mit 4,
gegen null.

Die Beziehung d(z,) — 0 ist somit allein durch das betrachtete Ge-
biet @, die Randkomponente I' und die Folge (z,) gegeben und insbeson-
dere invariant gegeniiber schlichter konformer Abbildung.

Ist I' ein Punkt, so ist die extremale Linge der Menge der Querschnitte
2, die auf I" enden und z von I" trennen, fiir jeden Punkt z gleich unend-
lich?), so daB also mit A{y} auch A{y'} - 0 gehen muf3'?). Eine solche

9) Die extremale Liinge dieser Kurven ist ndmlich > der extremalen Liénge der Ver-
bindungskurven zweier geeignet gewiihlter konzentrischer Kreise mit dem Mittelpunkt I"
und den Radien 7, und r, < 7y, also > (1/2x) log (ry/ry), wobei r; festbleibt und r4 beliebig
klein gew#ihlt werden kann,

10) Es folgt dies wiederum aus der Ungleichung (2.3).
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punktférmige Randkomponente wird nach Grotzsch[6] vollkommen punkt-
formig genannt. Sie geht bei jeder schlichten konformen Abbildung von
G wieder in einen Punkt tber. Ist I" ein Kontinuum, so ist A {p'} fiir
jedes z grofler als eine von z unabhéngige positive Zahl, so dafl mit
A{y} auch A{y?} — 0 gehen muB.

4. Der extremale Durchmesser eines Randpunktes. Die Randkompo-
nente I" von @ sei nun eine Jordankurve!!) oder ein Schlitz12), und ¢
ein Punkt darauf. Dazu wihlen wir wie oben eine Hilfskurve I". Be-
zeichnen wir als das Innere von I" denjenigen Teil der Ebene, der G ent-
halt, so gibt es bei nichtpunktformigem /" im
Durchschnitt einer hinreichend kleinen Um-
gebung von { mit dem Innern von I’ stets
eine wohlbestimmte einfach zusammenhin-
gende Gebietskomponente, die { als Rand-
punkt besitzt : Den Durchschnitt dieses Ge-
bietes mit G' nennen wir eine Nachbarschaft
N ({) des Punktes {. Wir betrachten nur
Nachbarschaften von £, die ganz im Innern
der Hilfskurve I" liegen und ordnen jeder
die Menge {yy} derjenigen im Innern von I
liegenden Jordankurven und Querschnitte
von @ zu, die N({) und I' umfassen bzw.
auf I"enden und N () von I" trennen, (Fig. 2). Unter dem extremalen
Durchmesser des Punktes { (beziiglich I') verstehen wir die untere
Grenze der extremalen Lingen der Kurvenmengen {yy} fiir alle Nach-
barschaften N (¢):

d(8) =d(¢;@, T') = inf Afyy} .
(N ),

Fig. 2

Dafiir gilt nun wieder :

(4.1) Die Gleichung d({) = 0 ist unabhingig von der gewihlten
Hilfskurve I".

Zum Beweis wihlen wir irgendeine absteigende Folge von Nachbar-
schaften N, des Punktes {, deren abgeschlossene Hiillen den Durch-

schnitt IT N, » = ¢ haben (= Fundamentalfolge von Nachbarschaften

k=0

von (). Es ist klar, daBl
d({) = lim 4 {yy,}

kE—> o

11) Gemeint auf der Riemannschen Kugel : Sie kann also durch 2z = co gehen.
12) Unter einem Schlitz verstehen wir einen zweiufrig zu nehmenden Jordanbogen ; als
Grenzfall lassen wir auch I"' = { zu.

106



ist. Nun teilen wir fiir jedes k¥ > 1 die Menge {yy,} auf in die Teil-
menge {yy,} derjenigen Kurven, die innerhalb N, verlaufen und die
der iibrigen. Die extremale Léinge der zweiten Menge ist wiederum gleich-
méBig fir alle ¥ durch eine positive Schranke nach unten beschrinkt,
was man wie oben beweist. Es mufl somit A {yy,} — 0 gehen. Da man
die Nachbarschaft N, beliebig wihlen kann, muB3 auch

a¢;aq, I =20

sein fiir jede von I'" verschiedene Hilfskurve I'".

Ist in einem Randpunkte ¢ d({) = 0, so gilt ersichtlich fiir jede
Folge z, - { d(z,) — 0. Ferner ist { notwendig ein erreichbarer Rand-
punkt ; denn es existiert in dem Falle, wo I" nicht punktformig ist, eine
ineinandergeschachtelte Folge von Querschnitten von G, deren Linge
gegen null geht und die gegen { konvergieren. Wir werden uns insbeson-
dere fiir den Fall interessieren, wo d(¢)=0 ist fiir jeden Punkt ¢ auf I
Dann gilt fiir jede Folge z, - I' d(z,) = 0.

Satz. Ist auf der Randkomponente I', d({) =0, so ist bei jeder
schlichten konformen Abbildung w(z) von G,, die I', als ganzes wieder in
eine Jordankurve (Schlitz, Punkt) I',, iwberfithrt, die induzierte Zuordnung
der Punkte von I', und I',, topologisch. Ferner ist dann d(w) = 0 fir die
Punkte v von I',,.

Bewers. Wir kénnen annehmen, daB3 keine von den beiden Rand-
komponenten I', und I, punktférmig ist. Sonst sind nimlich wegen
d(£) = 0 notwendig beide punktformig und die Behauptung ist bewiesen.
Ferner bedeutet es keine Einschrénkung, vorauszusetzen, dafl I, den
Punkt w =oo nicht enthalte. Zu einem beliebigen Punkte ¢ auf I, gibt
es eine ineinandergeschachtelte Folge von Querschnitten y,, die { ab-
trennen ®) und deren Bildlinge mit » —oco gegen null geht ; sonst be-
kime man mit Hilfe der Funktion ¢ = |dw/dz| einen Widerspruch
gegen d({) = 0. Da I',, nach Voraussetzung eine Jordankurve ist, kon-
vergiert somit die Bildfolge jeder Folge 2z, — { gegen einen und den-
selben Randpunkt w auf I',,, und diese Zuordnung ¢ — w ist offensicht-
lich stetig. Die Zuordnung ist ferner einwertig. Wiirden nidmlich zwei
Punkte ¢, und ¢, auf denselben Punkt o abgebildet, so gibe es zwei
Randwege von @,, «, und «,, die bzw. in ¢, und £, enden wiirden, und
deren Bilder 8, und B, in w endeten. Die Punkte ¢, und £, teilen I', in
zwei Intervalle, von denen eines auf den Punkt « abgebildet wird. Sei
{ ein Punkt dieses Intervalles und N,({) eine Nachbarschaft von ¢, die

12) D. h. zu irgendeiner Menge {yn} gehoren, wo N (G) eine Nachbarschaft von @ ist.
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jedoch nicht Nachbarschaft von ¢, oder {, ist. Dann gilt fiir eine zu ¢
gehorige Fundamentalfolge N, von Nachbarschaften, deren Anfangs-
element die gegebene Nachbarschaft N(¢) ist, nach fritherem 4 {y}y +1—>0,
wobei {yy,} die Menge der Querschnitte bedeutet, die in N, aber auler
halb N, verlaufen. Anderseits ist aber diese extremale Linge fiir jedes
k gleich unendlich, da die Bilder der Querschnitte yy, im Punkte w en-
den). Die Abbildung {<«->w ist somit topologisch, und natiirlich eine
Abbildung von I', auf I',,.

Da die Zuordnung G,<—@,, auf die Randkomponenten I", und I,
topologisch fortgesetzt werden kann, wird jede Nachbarschaft eines
Punktes ¢ in eine solche seines Bildpunktes w iibergefiihrt und umge-
kehrt. Da ferner die extremale Linge einer Kurvenmenge gegeniiber ein-
eindeutiger konformer Abbildung invariant ist, folgt, daBl auch d(w) =0
sein muf.

§ 2. Die Abbildung einer Randkomponente durch eine Grenzfunktion

5. Im Gebiete (7, sei eine wachsende Folge von endlich vielfach zu-
sammenhéingenden, Jordan-berandeten Teilgebieten G gegeben, die G,
ausschopft, und fiir jedes Gebiet G; eine schlichte konforme Abbildung
w,(2). Die Folge der Funktionen w,(z) konvergiere auf jedem kompak-
ten Teil von G, gleichmiBig. Der Limes ist somit entweder eine Konstante
(eventuell = oo), oder eine schlichte konforme Abbildung w(z) des gan-
zen Gebietes G,. Wir nehmen das letztere an und bezeichnen w(z) als die
Grenzfunktion der Folge w, (2).

I', sei irgendeine Randkomponente von (7,. Sie zeichnet in jedem Ge-
biete (", eindeutig eine Randkomponente I'; aus, durch die sie von G}
getrennt wird. Die Folge dieser Jordankurven I, ist ineinandergeschach-
telt und hat als Limes I',. Wir bezeichnen die Bilder von ¢ und 1'% mit-
tels der Funktion w,(z) mit G} bzw. I} , diejenigen von G, und I,
mittels w(z) mit ¢, I',,. Wir interessieren uns fiir die Beziehungen, die
zwischen den Randkomponenten I'j und der Randkomponente I, be-
stehen.

Ist y,, irgendeine in G, gelegene Jordankurve, und nennen wir denjeni-
gen Teil der w-Ebene ihr Inneres, der I',, enthélt, so entspricht ihr mittels
der Abbildung w(z) eine Jordankurve y, in (,, deren Inneres I', enthilt.
Fiir alle hinreichend grofien n liegt die Kurve I'; ebenfalls im Innern
von y,, und wegen der gleichmiBigen Konvergenz der Folge (w,(2))

U) Siehe FuBnote 9 Seite 105.
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auf einer in G, kompakten Umgebung von y, mul schlieBlich I';  auch
im Innern von y,, liegen.

Wir fithren nun zum Vergleich folgende Punktmengen der w-Ebene ein :

(1) Das zur Randkomponente I, gehérige Komplementirkontinuum
I',, des Gebietes G,,,.

(2) Die Menge I'®. D. i. der lim I, zusammen mit denjenigen Kom-
n—-oo

ponenten seines Komplementes, die ganz in I_:w enthalten sind ).
(3) Die Menge *I',,. D. i. die Vereinigung des lim I";, mit denjenigen

Komponenten seines Komplementes, die ganz in fw liegen.

Fiir die drei Punktmengen gilt nach der obigen Bemerkung ersichtlich
r,2rzos~r, .

6. Ist I', ein Punkt, so liegt derselbe, wieder nach der obigen Bemer-
kung, sicher in *I", , so daf} auch die umgekehrten Inklusionen erfiillt sind.
Im andern Falle aber ist die Umkehrung i. a. nicht richtig, sondern 1at
sich nur unter zusétzlichen Voraussetzungen iiber das Gebiet G, beweisen.

Satz. Falls fir jede Folge (z,) von Punkten aus G,, die gegen I', konver-
giert, die extremale Distanz d(z,) — 0 geht, so ist I'; 2 f;,

Wir kénnen von dem Fall, daB I, ein Punkt
ist, absehen, da dann auch I', ein Punkt und
der Satz also bewiesen ist. Die extremale Distanz
d (2) sei in @, beziiglich einer festen Kurve I", und
mit Hilfe der Kurven 92 allein berechnet¢). Die
Bilder w, (I')) konvergieren gleichmiBig gegen
das Bild w(I')), aber wir bezeichnen mit I'],
eine Jordankurve in G,,, die w(I",) umfaBt, d. h.
durch letztere von I, getrennt wird. Fiir alle
hinreichend groBen n umfaBt I') auch w,(I").
Die in der w-Ebene, aber nicht notwendig in G,
gelegene Jordankurve y, umfasse I'Z, d. h.
trenne I'® von I', (Fig. 3). Nun wiihlen wir zu

Fig. 3

15) Der l-igl’?vn ist die Menge derjenigen Punkte der Ebene, in deren jeder Umgebung
Punkte von oo vielen 1":0 n liegen, der lim I" Zm die Menge der Punkte, in deren jeder Um-

gebung Punkte von fast allen F?Un liegen. .

18) Siehe § 1, 3. Da bei nichtpunktférmiger Randkomponente I', die extremale Linge
der Menge {»'} unabhéingig von z nach unten beschriinkt ist, geht mit d(z) auch M y*}
gegen null.
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einem gegebenen positiven ¢ in @, eine I", umschlieBende Jordankurve
y,, fiir deren simtliche Punkte z

d(z) =d(z;G,, T,, I')<e

ist, was es wegen d(z) — 0 fiir z — I', gibt. Fiir alle hinreichend grofien
Indizes » werden auch die Kurven I'; von y, umfalt, und es gilt fiir die
Punkte z von y, :

d,(2) =d(z;q*, I'", I") <d(z;Q,, '<e ,

da jede Konkurrenzkurve fiir d eine solche fiir d, enthilt. Wegen der
konformen Invarianz ist fiir jeden Punkt w der Kurve w,(y,)

dw; G, I w, () <e

wn’
und um so mehr

dw;a%,, I, , I'y)<e

wn?

da hier die Menge der Konkurrenzkurven vergrofert wurde. Anderseits
wird fiir alle hinreichend groSen n das Kontinuum I}, von y,, umfaBt.
Ziehen wir nun zum Vergleich die extremale Distanz d*(w) des Punktes
w (falls es Punkte w € w,(y,) auBerhalb y,, iiberhaupt gibt) von ¥, be-
ziiglich des von y,, und I', berandeten Ringgebietes heran : Jede Kon-
kurrenzkurve fiir die Grofle

d(w ; G::;,u Fil:n’ Fz:))
enthilt eine solche fiir d*(w), so dafl um so mehr gilt
d*(w)<e .

Diese Beziehung kann aber nur fiir solche Punkte des zwischen ) und
I') liegenden Ringgebietes gelten, die in einer schmalen Umgebung U,
von y, liegen, in welcher also die Kurven w,(y,) fiir alle hinreichend
groflen » und somit wegen der gleichmiBigen Konvergenz auch w(y,)
liegen miissen. Da ¢ beliebig ist und U, mit ¢ gegen null geht, kann kein

Punkt von w(y,) im AuBern von y’ liegen, woraus folgt, daB auch I',
von ¥, umfaBt wird. Da y,, beliebig wihlbar ist, muB

r,cry
gelten, w. z. b. w.
Eine beliebige Teilfolge der Folge (w,(z)) konvergiert ebenfalls gegen
w(z), und es gilt somit fiir den lim. sup. der Bilder der entsprechenden
I'? dieselbe eben bewiesene Inklusion. Daraus folgt aber, dafl sogar

I, 2T,
ist. Gébe es nimlich einen Randpunkt { von I_’:, (d. h. einen Punkt von
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I',), der nicht zu *I’, gehort, so gibe es eine Umgebung U({) und eine
Teilfolge der Abbildungen w,(z), fiir die die Durchschnitte I'}, -U({)
leer wiren. Der lim. sup. der Randkomponenten Iy, fiir diese Teilfolge

konnte von einer Jordankurve umschlossen werden, die nicht ganz I,
umschlieBt, im Widerspruch zum bewiesenen Satz.

Beachtet man, dal es beim Beweis unwesentlich ist, daf die Gebiete G,
endlichen Zusammenhangs und in ¢, kompakt sind, sondern die Jordan-
kurven I"; ganz oder teilweise durch I', selber ersetzt werden kénnen, so
ergibt sich der

Hauptsatz. Ist w(z) eine schlichte konforme Abbildung des Gebietes G,
und Limes der in jedem kompakten Teil von G, gleichmdfig konvergenten
Folge w, (z), und geht fiir esne Randkomponente I', die extremale Distanz
d(z) >0 fur z —I,, so konvergieren die Bilder der I', entsprechenden
Randkomponenten der Ausschopfungsgebuete gegen I',, = w(l’,).

Die Konvergenz ist dabei so zu verstehen, daB3 der lim. sup. und der
lim. inf. dieser Bildkomponenten zusammen mit denjenigen Komponen-
ten ihrer Komplemente, die ¢, nicht enthalten, gleich dem Komplemen-

tarkontinuum Fw sind.

§ 3. Konforme Abbildung von Gebieten abzihlbar unendlich hohen
Zusammenhangs

7. Ein bekannter Abbildungssatz (Courant [1]) fiir endlich vielfach
zusammenhéngende Gebiete sei vorausgeschickt : Ein Gebiet ¢/, mit den
Randkomponenten I'i,..., I'* (wobei man I'} als Jordankurve voraus-
setzen darf) kann stets auf ein Gebiet ¢,, mit den Randkomponenten
ry,...,I* I'*<>T% abgebildet werden, welches folgende Bedingun-
gen erfiillt :

I'l ist eine gegebene, im Endlichen gelegene Jordankurve, die G,, in
ihrem Innern enthilt, und ein gewisser gegebener Punkt von I'. ent-
spricht einem gegebenen Punkt von I, 17).

I} gehort einer Klasse von Kurven an, die beziiglich eines festen, im
Innern von I'), gelegenen Punktes sternférmig und homothetisch sind.

Die Jordankurven [I,...,I. gehoren gegebenen Homothetie-
klassen8) von nicht-konkaven Jordankurven an, wozu wir als Grenzfall
auch die Schlitze zéhlen.

17) Diese Punktzuordnung ist nur fiir den spater folgenden Eindeutigkeitsbeweis wesent-
lich.
18) Zwei Kurven heiBen homothetisch, wenn sie durch eine Transformation
alw—wy) + wy, a>0, w,beliebig,
miteinander verkniipft sind.
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Sei nun G, ein Gebiet mit abzéhlbar vielen Randkomponenten, I}
(= Jordankurve) isoliert, die iibrigen, I'?, I'3, ... beliebig. Die Normie-
rungsbedingungen fiir G, seien dieselben, wobei wir nun zu den Klassen,
denen die Kurven I'* (k > 2) angehoren sollen, auch die Punkte zu-
lassen. Wir wollen, unter gewissen zusétzlichen Voraussetzungen iiber die
Héufungsrandkomponenten von G, die Existenz einer Abbildung w(z)
auch in diesem Falle beweisen. Die Kreisnormierung bildet natiirlich
einen Spezialfall davon.

8. Allgemeiner stellen wir uns das in der Einleitung angegebene Pro-
blem : Diejenigen unendlich vielfach zusammenhingenden Gebiete zu
charakterisieren, auf die ein beliebiger fiir endlichen Zusammenhang giil-
tiger Existenzsatz der konformen Abbildung erweitert werden kann.

Zu diesem Zwecke schopfen wir das Gebiet G, durch eine wachsende
Folge von kompakten oder nicht-kompakten, endlich vielfach zusammen-
hingenden Gebieten aus :

Gc@ic..c@=...cd,.

jedem der endlich vielen Komplementéirkontinuen der Gebiete G} ordnen
wir eine Klasse C von einfachzusammenhingenden Kontinuen der
w-Ebene zu, so dafl die den Gliedern jeder ineinandergeschachtelten
Folge von Komplementirkontinuen zugeordneten Klassen schliellich
identisch ist. Auflerdem sollen fiir die Klassen C folgende beiden Bedin-
gungen erfiillt sein :

(8.1) Jedes System von endlich vielen Klassen C ist vollstindig ?).

(8.2) Der Limes einer konvergenten Folge von Kontinuen einer und
derselben Klasse liegt stets wieder in der Klasse.

Fiir jedes Gebiet G gibt es also eine eineindeutige konforme Abbil-
dung w,(z), die jede Randkomponente in ein Kontinuum der ihr zu-
geordneten Klasse iiberfiihrt. Wir nehmen nun weiter an:

(8.3) Die Folge (w,(2)) enthalte eine in jedem kompakten Teil von
G, gleichmiBig konvergente Teilfolge, deren Limes keine Konstante ist 2°).
Der Limes w(z) einer gewissen konvergenten Teilfolge von Abbildun-
gen w, (z) ist somit eine schlichte konforme Abbildung des Gebietes G, .

Jedes Komplementidrkontinuum I', von @, bestimmt eine ineinander-
geschachtelte Folge von Komplementédrkontinuen der Gebiete G, deren

19) D. h. ein endlich vielfach zusammenhéingendes Gebiet besitzt stets ein konform
équivalentes, dessen Komplementéarkontinuen in den entsprechenden Klassen liegen.

20) Diese letzte Bedingung muB sich im konkreten Fall aus gewissen Normierungs-
bedingungen fiir die Abbildungen w, (2) ergeben.
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Limes es ist. Den Komplementéidrkontinuen der Folge ist schlie8lich allen
dieselbe Klasse C zugeordnet. Das Gebiet G, habe nun die Eigenschaft :

(8.4) Fiir jede Folge (z,) aus G,, die gegen den Rand von G, geht,
geht d(z,) - 0.

Dann liegt das Bild Fw von I_’; ebenfalls in der Klasse C.

9. Die Anzahl der verschiedenen Klassen ¢' von Kontinuen der
w-Ebene, die auf diese Art den Randkomponenten von G, zugeordnet
werden, ist notwendig abzdhlbar, weil die Anzahl der Randkomponenten
der Gebiete G, abzdhlbar ist. Wir wollen nun umgekehrt fiir ein Gebiet G,
abzéhlbaren Zusammenhangs von einer Zuordnung I', — C(I')) der
Klassen zu den Randkomponenten von G, ausgehen. Es ist eine spezielle
Ausschopfung des Gebietes (, zu finden, die es gestattet, die gegebene
Zuordnung I', - C(I',) auf die Ausschopfungsgebiete zu iibertragen.
Zu diesem Zwecke bilden wir die aufeinanderfolgenden Ableitungen der
Menge {I',} der Randkomponenten von G,%!) :

{38 {32 .. ()., {0, {0 et

wobei also {I',}' die Menge der Haufungsrandkomponenten ist, {I',}?
die Menge der Hiaufungskomponenten von {I',}!; {I',}* ist gleich dem
Durchschnitt der Mengen {I',}* fiir alle natiirlichen Zahlen usw. Solche
Ableitungen gibt es nur abzéhlbar viele nicht-leere, und eine letzte. Diese
enthilt daher nur endlich viele Komponenten von {I',}. Jede einzelne
davon trennen wir von einem ein fiir allemal fest gewihlten Punkt
2o € G, durch eine in G, verlaufende Jordankurve, so, daf} diese Jordan-
kurven alle auBerhalb voneinander und je in einer Umgebung vom Ra-
dius &, der zugehorigen Haufungsrandkomponente von G, verlaufen.
Durch diese Jordankurven wird eine gewisse Teilmenge von Randkom-
ponenten des Gebietes G, vom Punkte 2, getrennt. Mit der Menge der
iibrigen verfahren wir analog, d. h. wir bilden wieder die letzte nicht-
verschwindende Ableitung und trennen diese endlich vielen Randkom-
ponenten durch ebensoviele in @, verlaufende Jordankurven vom Punkte
2o, wobei diese Jordankurven nun auch auBlerhalb der zuerst gezogenen
verlaufen sollen. Es ist leicht zu sehen, daf3 nach endlich vielen Schritten
nur mehr endlich viele isolierte Komponenten von {I',} iibrigbleiben 22).
Das von diesen und den endlich vielen eingefiihrten Jordankurven be-
randete Teilgebiet von G, bezeichnen wir mit G. Falls gewisse isolierte
Randkomponenten von G, zur Normierung der Abbildung besonders

1) Wir bezeichnen die Menge mit; {I’z} , irgendeine einzelne Komponente davon mit I,.
22) Der Beweis ist in der Arbeit [2] des Verf. durchgefiihrt,
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ausgezeichnet sind, wie dies im eingangs erwahnten Beispiel I ist, kann
man die Ausschépfung so einrichten, dal dieselben auch wieder als
Randkomponenten von G} auftreten.

Um das Gebiet G2 zu erhalten, fithren wir dasselbe Verfahren mit den-
jenigen einzelnen Teilmengen von {I',} durch, die von den oben kon-
struierten Jordankurven umfat (d. h. von z, getrennt) werden. Dabei
wihlen wir die neuen Jordankurven in einer &,-Umgebung der zugehori-
gen Randkomponenten von @G,, und so, daBl @, € (? ist. Indem wir
diese Konstruktion fiir jede natiirliche Zahl n ausfiilhren und dabei die
Zahlen ¢, — 0 gehen lassen, erhalten wir eine Ausschopfung

1 2
GzCGzC N CGz

des Gebietes G,. Jeder Randkomponente des Gebietes G} (n = 1,2,...)
ist eindeutig eine Randkomponente I", von G, zugeordnet, nimlich ent-
weder sie selber oder diejenige, zu der sie konstruiert wurde : Letztere ist
die letzte nicht-verschwindende Ableitung des von der ersten umschlos-
senen Teils von {I',}. Wir ordnen ihr nun die Klasse C(I",) von Kon-
tinuen der w-Ebene zu.

Betrachten wir anderseits irgendeine Randkomponente I', von G,. Ist
sie isoliert, so wird sie schliefflich auch Randkomponente von G7 sein.
Andernfalls bestimmt sie in jedem G% eindeutig eine Randkomponente,
die sie von G} trennt. Die Folge (I'}) der dadurch ausgezeichneten Rand-
komponenten der Gebiete G, ist ineinandergeschachtelt und konvergiert
gegen I',. Es ist zu zeigen, daBl die den I'} zugeordneten Klassen schlief3-
lich gleich derjenigen von I, sind, das heifit da8 I', schliefilich stets die
letzte nicht-verschwindende Ableitung der von I”; umschlossenen Teil-
menge von {I',} ist. Dies folgt aber leicht : I, ist ndmlich isolierte Kom-
ponente einer wohlbestimmten Ableitung {I',}*, und die Ableitungen
der von den I'} umschlossenen Teilmengen von {I’,} sind gleich den von
I'; umschlossenen Teilmengen der entsprechenden Ableitungen der gan-
zen Menge. Fiir alle hinreichend nahe an I', gelegenen Kurven ist somit «
die Ordnung der letzten nicht-verschwindenden Ableitung des von I
umschlossenen Teils von {I',} und I', die einzige Komponente dieser
Ableitung. Die Zuordnung der Klassen C zu den Randkomponenten der
endlich vielfach zusammenhingenden Ausschopfungsgebiete %, I'; — C,
ist somit wohldefiniert und induziert die gegebene Zuordnung

r,-coc(r, .

Wir haben damit, falls man noch Bedingungen (8.1, 8.2) iiber die vor-
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gegebenen Klassen von Komplementdrkontinuen und die Bedingung
(8.3) beriicksichtigt, folgendes bewiesen :

Satz. Jeder Existenzsatz der konformen Abbildung fur endlichen Zu-
sammenhang gilt auch fir ein Gebiet G, abzihlbaren Zusammenhangs, fir
welches d(z) — 0 konvergiert, wenn z gegen eine beliebige Randkomponente
von G, geht. Dabes bedeutet d (z) die extremale Distanz des Punktes z von die-
ser Randkomponente, beziiglich irgendeiner Hilfskurve in G, .

Insbesondere ist damit der in Nr. 7 behauptete Abbildungssatz be-
wiesen, da natiirlich auch die dort verlangte Zuordnung eines Punktes
auf dem Rand von den Niherungsabbildungen auf die Grenzabbildung
iibergeht.

§ 4. Eine hinreichende Bedingung dafiir, da8 d = 0 ist auf einer
Randkomponente

10. Hqlfssdtze iiber Stresfengebiete. Wir wollen in diesem Paragraphen
eine hinreichende Bedingung dafiir angeben, daf3 der extremale Durch-
messer d({) jedes Punktes { auf einer Jordanrandkomponente (Schlitz)
null ist. Zu diesem Zwecke vergleichen wir die extremale Linge der { ab-
trennenden Querschnitte y, die zur Definition von d({) verwendet wur-
den, mit den Moduln gewisser Streifengebiete, die wir in das betrachtete
Gebiet legen.

Unter einem Streifengebiet G, verstehen wir ein im Endlichen gelegenes
Gebiet, dessen duflere Randkomponente I, eine Jordankurve ist, auf der
zwei abgeschlossene, getrennte Intervalle o, und o, ausgezeichnet sind.
Wir machen iiberdies die Voraussetzung, dafl sich die im Innern von I',
gelegenen Randkomponenten von G, nur gegen oy und o, hdufen, die bei-
den Komplementirintervalle 8 auf I', also freie Jordanbogen sind. Be-
kanntlich gibt es in dem Falle, wo I', isoliert ist, eine schlichte konforme
Abbildung w = u + v von @, auf ein Rechteck G,,, wobei die Inter-
valle oy und «, in die Seiten » = 0 und u = 1, die Komplementér-
intervalle in die Seiten » = 0 und v = a, und d1e innern Randkompo-
nenten in Schlitze v = konst. oder Punkte iibergefithrt werden. Uber-
dies besitzt die Funktion u(x, y) eine Minimaleigenschaft, die man etwa
mit Hilfe des Dirichletintegrals von » formulieren kann : In der Klasse
{p} aller in @, stetigen und stiickweise stetig differenzierbaren Funk-
tionen ¢(x,y) mit den Randwerten 0 auf o und 1 auf o, ist u(z, y)
diejenige, die das Dirichletintegral

loll2=J§(e: + ¢}) dzdy
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minimisiert ). Wir nennen w(z) die Parallelschlitzabbildung des Strei-
fens G ,.

Sind die beiden Intervalle oy und «, nicht isoliert, so gibt es i. A. keine
Funktion in {p}, welche dem Dirichletintegral den kleinsten Wert er-
teilt. Jedenfalls aber gibt es darin eine Minimalfolge (¢,), d.1i. eine Folge
mit der Eigenschaft || ¢,|| >d = i{nf | ¢ {|. Es gilt nun der

%

Satz. Es gibt eine tn G, harmonische Funktion w(x, y) mit der Eigen-
schaft, daB || u — @, || = O geht fir jede Minimalfolge (p,). Sie ist bis
auf eine additive Konstante eindeutig bestimmt durch die beiden Eigen-
schaften : (@) u(x, y) st tn G, stetig und stiickweise stetrg differenzierbar ;
®) |luw— @ || >0 far esne Minvmalfolge (g,,).

Zum Beweis konstruieren wir zunichst eine spezielle Minimalfolge
u,(x, y): Zu den beiden Bogen o, und «, geben wir je eine ineinander-
geschachtelte Folge von Querschnitten
og bzw. of des Gebietes G,*), die gegen
op bzw. «, konvergieren und auf den
Komplementirbogen § enden (Fig. 4).
Die von den beiden Querschnitten «f
und o und den dieselben verbindenden
beiden Intervallen der Bogen B beran-
deten Teilgebiete G sind wieder
Streifengebiete mit den beiden ausge-
zeichneten Intervallen of und «f. Die
Funktion w%,(x,y) sei darin die Losung des Minimumproblems fiir
G;. Wir erginzen diese Funktionen in den beiden durch of und of abge-
trennten Teilen von G, durch 0 bzw. 1 und erhalten dadurch eine Folge
von Vergleichsfunktionen fiir das Gebiet &,; ebenso ist w, natiirlich
eine Vergleichsfunktion fiir das Gebiet G%+!, so daf} also fiir jedes n gilt:

Fig. 4

H’“m“ 2Hun-HH Zd .

Es ist leicht einzusehen, daB die Folge dieser erweiterten Funktionen
u,(x, y) eine Minimalfolge fiir das Gebiet G, bildet 25). Nun ist aber be-
kanntlich jede Minimalfolge (p,) eine Fundamentalfolge, d. h. es gilt

| on — Pm || =0 fiir n,m —o0?) .

#) Im Falle endlichen Zusammenhangs von G, impliziert die gegebene geometrische
Charakterisierung von G,, diese Minimaleigenschaft.

24) Das sind hier topologische, glatte Bilder einer abgeschlossenen Strecke, die mit Aus-
nahme der Endpunkte in G liegen.

%) Ist namlich @(x, y) eine beliebige Vergleichsfunktion in G,, so hat die Funktion
= (1+4+2¢)p—e (¢>0) die Randwerte —¢ auf oy und 1 + ¢ auf ;. Auf allen
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Wenden wir dies auf unsere spezielle Minimalfolge «,, an, so folgt daraus
wegen der Harmonizitidt dieser Funktionen die gleichmiflige Konvergenz
der Folge wu,(x,y) — u, (%, %), WO (%, ¥y) ein fester Punkt von G,
ist, in jedem kompakten Teil von ¢,. Der Limes u(x, y) dieser Folge ist
entweder = 0 oder Realteil einer schlichten konformen Abbildung
w(z) = u + tv (w(z) = 0) vond@,. Sind 2, und z, zwei beliebige Punkte
von G,, so gilt im zweiten Fall

| R {w(z) —wz)}] <1

|J {w(z)) —w(zy)}| <a, a=Ilimea

n >

wo a, = || u,||? gleich der Hohe des Bildrechtecks von @7 mittels der
Abbildung w, = u, + tv, ist. Das bedeutet aber, da3 das Bildgebiet
G, ganz in einem Rechteck der Hohe ¢ und der Basis 1 liegt. Dabei
werden die beiden freien Intervalle §, und 8, von I', auf je ein Intervall
der beiden horizontalen Rechteckseiten abgebildet (die nicht die ganzen
Seiten ausmachen miissen).

Um zu beweisen, dal lim || w — u, || = O ist, wihlen wir zu einer ge-
gebenen positiven Zahl ¢ ein n so, daf} fir alle p>0 ||u,, , —u,||<e
ist und hernach ein in G, kompaktes Teilgebiet D,, so dafl im Komple-
ment G, — D, ||u,|| ¢_p<e und || ul|g_p<e ist?*). Dann gilt fir
jedes p

N pin l gop = I s + (Upypy — %) || g_p <2¢
und

1% — g 112 = 1=ty | % A+ =ty 1| 3 < [ Uty || S + 92

Nun kann man auBlerdem zu D, die Zahl p, so wihlen, daB fiir p>p,
| v — u,pp || p<e ist, woraus fir p>p,

Querschnitten mit hinreichend grolem n hat y somit Randwerte <0 bzw. > 1. Daraus
ergibt sich aber leicht, daB fiir diese n
fu | <llwll =@ +e)ll@ll
und also lim || u, || < d ist.
%) Diese Relation ergibt sich folgendermaflen : Die Zahlen || ¢,, — ¢,, || sind beschréinkt :
Sei M eine gemeinsame obere Schranke. Dann gilt fiir jede reelle Zahl 4

@ + AP — @) |IP = 1l @ |1 + 24(@p> @ — @) + 2l @, — @, |12 = d?
und also
, (w»n’ (pm—(pn) l2 < (” Pn “2__d2) M2 .
(@n> @ — @,) geht also gegen 0 fir n—>o0c0. Fir 4 =1 folgt
H Pm “2 = H Pn H2 + 2((pn’ (pm_.(pn) + “ P — Pn H2
und somit die Behauptung.

%7) DaB ||« || endlich ist, folgt aus dem vorhergehenden Abbildungssatz; es ist aber
auch ohne denselben zu beweisen, da8 ||« || < d ist.
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| % — s,y [| <V10

folgt. Daraus folgt insbesondere wegen

s [l + 112 — iy || 2wl 2 U || = 1] % — Uy ||

daB || ||?=d?=a ist. Das heiflt fiir d >0, dal das Bildgebiet @, das
Rechteck mit der Hohe a und der Basis 1, in dem es liegt, bis auf eine
Menge vom Flachenma@ null ausfiillt 28). Aus der Beziehung || ¢, — ¢, ||
— 0, die fiir jede Minimalfolge (¢,) aus {p} gilt, folgt schlieBlich noch
|| v — @, || - 0 fiir jede Minimalfolge, womit der erste Teil des Satzes
bewiesen ist.

Ist u*(x, y) eine stetige und stiickweise stetig differenzierbare Funk-
tion in G, , und (p,,) eine Minimalfolge mit lim || ¢, —u*|| =0, so gilt auch
||« — u*|| = 0. Die Differenz % — u* ist somit stiickweise konstant
und daher konstant in G,.

11. Wir betrachten die Menge derjenigen Kurven y in G,, die die
beiden Intervalle o und o, verbinden. Fiir die extremale Linge A1 {y}
dieser Kurvenmenge gilt

Ay} =2 Myn}=1fa, n=1,2,...%)

wo {y,} die entsprechende Kurvenmenge fiir das Gebiet G, ist. Daraus
folgt Afy} = 1a , (@ =lima,) .

Ist 2{y} endlich, so kann || % ||> = a nicht null, « also keine Konstante
sein.

Wir setzen nun voraus, dafl G, abzdhlbaren Zusammenhangs sei und
A{y} endlich. Wegen der konformen Invarianz der Grofle 4 konnen wir
dieselbe in @, berechnen. Die Kurvenmenge {y} geht bei der Abbildung
@, - @, iiber in die Menge derjenigen Kurven von @,,, die die Bilder
der beiden Intervalle § (die auf den Seiten v = konst liegen) trennen.
Die Menge {y’'} derjenigen Querschnitte v = konst von @, die die
beiden Horizontalseiten trennen, ist eine Teilmenge von {y}, somit
A{y} < A{y'}. Wegen des abzéhlbaren Zusammenhangs und der Schlitz-
eigenschaft von @, gibt es auf jeder Geraden v = konst., die G, trifft,
mit Ausnahme einer abzihlbaren Ordinatenmenge, einen solchen Quer-

28) Es 148t sich nun mit den iiblichen Methoden (Courant [2]) beweigen, da die innern
Randkomponenten auf Schlitze abgebildet werden.

29) Die Ungleichung kommt daher, daB jede Kurve y eine Kurve y, enthilt. Die Glei-
chung beweist man zunéchst fiir endlichen Zusammenhang und durch Ausschopfung fiir
beliebigen.

118



schnitt. Fiir eine beliebige Vergleichsfunktion g(u, v) und einen beliebigen
solchen Querschnitt y’ gilt

Lyfy'y <Li(y) = (Jo(u,v) duw)? < [ o*(u, v)du ,
v’ ¥
und durch Integration nach v
Li{y'ta < (fo*(u,v)dudv <F,(@G,) .
Es mufl deshalb auch 4{y'} < 1l/a sein, und wegen
o < Afy} <2y} <la

mull iiberall das Gleichheitszeichen stehen. Ferner folgt, daf alle Strecken
y' (v = konst.) bis auf hochstens diejenigen einer Ordinatenmenge vom
MaB null die Léange 1 haben. Wire dem nédmlich nicht so, so gibe es offe-
bar eine positive Zahl ¢ und eine Ordinatenmenge M von positivem Maf}
m, fiir die Lange des Querschnitts I[(v) <1 — ¢ ist. Die extremale Linge
A, dieser Menge von Strecken wire nach derselben Berechnung gli—f ,
die extremale Linge A, der Menge der iibrigen Strecken hochstens
1/(@ — m). Die von den beiden Streckenmengen iiberdeckten Punkt-
mengen sind punktfremd, so daBl nach einem allgemeinen Satz (Ahlfors,
Beurling [1]) iiber extremale Lingen gilt

YA > 1M+ 12 >a —m +

m
1—¢ =@
im Widerspruch zu 4'=1J/a. Das Gebiet G, ist somit ein auf hochstens
einer Ordinatenmenge vom Masse null horizontal geschlitztes Recht-
eck?0),

Ist umgekehrt % = lim w,, nicht konstant, so ist die extremale Linge
A’ der Querschnitte 9’ von G,, endlich, und somit gilt dasselbe fiir 4 {y};
wir haben also den

Satz. Ist das Streifengebiet G, von abzihlbarem Zusammenhang, so ist
die extremale Linge der Kurven {y} wvon G,, die die beiden ausgezeichneten
Intervalle oy und o, verbinden, dann und nur dann endlich, wenn w = lim u,,
keine Konstante ist. Ste ist dann gleich der extremalen Linge der Quer-
schnitte v = konst. von Q,,, die die Linge 1 haben, und gleich 1/a, wo a die
Hohe des Rechteckes G, bedeutet.

12. Vergleich zweier Extremalprobleme. Wir betrachten im Streifen-
gebiet @, wiederum die Menge {p} der reellen Funktionen ¢(x, ), und

30) Es folgt wieder, daB @ das ganze Rechteck bis auf eine Menge vom Fléchenmaf null
ausfiillt. Der Beweis geht gleich, sobald die innere Schlitzmenge eine Horizontalprojektion
vom linearen Ma8 null hat.
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daneben die Menge {w} aller schlichten konformen Abbildungen w/(z)
= u(u, y) + tv(x, y), die G, in ein Rechteck G, der Basislinge 1 ab-
bilden, wobei I, in die Rechteckskontur iibergehen soll, und zwar so, daf3
die beiden Intervalle oy und «, den Seiten # = 0 und u = 1 des Recht-
ecks entsprechen. Wir stellen die beiden Minimumprobleme :

(1) In der Menge {p} eine Funktion ¢ zu finden, die das Dirichlet-
integral || ¢ ||> minimisiert.

(2) In der Menge {w} eine Abbildung w(z) zu finden, die die Hohe
a(w) des Bildrechtecks minimisiert.

Diese beiden Variationsprobleme sind dquivalent. Beweis : Die Real-
teile u(x, y) der Abbildungen w(z) bilden eine Teilmenge von {¢}.
Es ist somit fiir jede Abbildung w(z)

a(w) > ||u|]* =inf|] ¢ |[* .

Umgekehrt kann man, wie man leicht sieht, mit Realteilen von solchen
Abbildungen w(z), fiir welche a(w) = ||  ||? ist, eine Minimalfolge fiir das
Problem (1) herstellen ; es mufl somit

infa(w) = inf || ¢ ||?

i}
sein. Ist nun ¢ die Losung von (1), so ist ¢ Realteil einer Abbildung
w(z), und || ¢ ||2 gleich der H6he a des Bildrechtecks: w(z) somit eine
Losung von (2). Ist umgekehrt w(z) eine Losung von (2), soist v = Rw
in {¢} und ||u]||?=a(w), also ||« ||? =inf|| ¢ ||?, das heillt u eine
Losung von (1). il

Da die Losung von (1) eindeutig ist, ist es auch diejenige von (2).

13. Ein H:ilfssatz iiber Ringgebiete. G, sei ein in der z2-Ebene gelegenes
Ringgebiet3!), das den unendlich fernen Punkt nicht enthilt, und von
dem keine der beiden Randkomponenten aus einem einzigen Punkt be-
steht. Mit d bezeichnen wir den Durchmesser der innern Randkompo-
nente, mit ¢ den Abstand der beiden Randkomponenten. Wir wollen a
nach unten abschéitzen durch d und den Modul ¢ von G, . Dazu bilden wir
G, schlicht konform auf ein Kreisringgebiet G, ab, so daBl die innere
Randkomponente in den Kreis |w| =1, die dullere in den Kreis
| w| = r>1 iibergeht. w(z) sei die (bis auf eine Rotation in der w-Ebene
bestimmte) Abbildung ; die durch @, allein bestimmte konforme Inva-
riante u = log r heilt der konforme Modul von G,. Der Kreis v, :
|w| = (1 4 r)/2 wird durch die Umkehrfunktion z(w) auf eine analyti-

81) D. i. ein zweifach zusammenhiéngendes Gebiet.
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sche Jordankurve y, abgebildet, und jede Kreisscheibe vom Radius
(r—1)/2 um einen Punkt w von y,, auf ein Teilgebiet von G, , das einen Kreis

vom Radius —8 1 ;j} um den Mittelpunkt z (w) enthilt. Esist somit
r — dz
= 4 M n dw

und nach dem Koebeschen Verzerrungssatz

dz dz
Mm T >q Max T

wobei g eine nur vom konformen Modul von (¢, abhédngige positive Zahl

ist. Daraus folgt fiir das Integral j | dz | :

r+ 1 dz
5 Max T

27 >j|dz|>2d

und fiir den Abstand a

1 r —1 1 et — 1
> — .
@z 5 W =5, T 11

Es gilt also fiir den Durchmesser d der innern Randkomponente des Ring-
gebietes @,
d < a konst. ,

mit einer Konstanten, die nur vom Modul von @, abhéngt.

14. Hine hinreichende Modulbedingung. Wir betrachten eine Jordan-
randkomponente (Schlitz) I, eines Gebietes G, .

Satz. Gibt es in G, etn System von auferhald voneinander liegenden
Ringgebieten, die den gesamten von I, verschiedenen Rand von Q, umfassen
(d. h. von I, trennen), und deren Moduln oberhalb einer positiven Schranke
liegen, so ist der extremale Durchmesser d({) jedes Punktes { von I, g.leich
null®?),

Beweis: Wir ersetzen fiir ein solches System von Ringgebieten den von
I, verschiedenen Rand von G, durch die innern Randkomponenten der
Ringgebiete, wodurch ein Gebiet G, von abzdhlbarem Zusammenhang
entsteht, das in G, enthalten ist und I', als Randkomponente besitzt.
{ sei ein Punkt auf I',, und zur Vereinfachung der Darstellung nehmen

82) Falls I', ein Punkt ist, so ist notwendig und hinreichend fir d(I",) = 0, da8 es eine
ineinandergeschachtelte Folge von Ringgebieten in G, gibt, die I', umschlieBen und deren
Modulsumme gleich oo ist (Grotzsch [6]).
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wir an, z =o0 liege in (,. Auf jedem Kreis |z — {| =7 mit hin-
reichend kleinem Radius 7 gibt es im AuBlern von I, einen wohlbestimm-
ten Bogen, dessen Endpunkte auf I', liegen und der { von z = oo trennt.
Den Durchschnitt dieses Bogens mit G, nennen wir y(r), y(r) zusammen
mit den von diesem Bogensystem getroffenen Randkomponenten
(# I',) von @, nennen wir eine ,Kette“ c(r). Ist w(z) eine beliebige
schlichte konforme Abbildung von G, oder auch nur eines passenden
Teilgebietes von G, mit einem Dirichlet-Integral <M, so gilt fiir die
Linge I(r) des Bildes von y(r)

Bry=(f|w'||dz|)2< 2nr[|w Prdp (z— {=re?)
4

Y(r) (r)
und durch Integration
71 71
12 (r) :
p dr < 2= |w 2rdrdp < 2aM . (14.1)
To 1o Y(7)

Fiir den Durchmesser I(r) des Bildes der Kette c(r) gilt:

I(r) <1(r) + Zd, <1(r) + ¢ Zay <L+l . (142
k=1

Dabei bedeuten die Zahlen d, die Durchmesser der Bilder der von y(r)
getroffenen Randkomponenten von @, die a, die Abstinde der beiden
Randkomponenten der denselben entsprechenden Ringgebiete, und
q>0 eine feste Zahl.

Seien nun y, und y, zwei den Punkt { abtrennende Querschnitte von
@, wobei yoin |z — (| <7, und y,in |z — {|>r,>r, verlaufe. Das
durch die beiden Jordanbogen y, und y, und die beiden auf I', liegenden
Intervalle o, und «, begrenzte Streifengebiet unterwerfen wir mit o, und
o, als ausgezeichneten Intervallen der Parallelschlitzabbildung. Es ist
leicht zu sehen, dafl unter den gemachten Voraussetzungen oy und o, auf
die beiden vertikalen Seiten des Bildrechtecks abgebildet werden3).
Demzufolge ist die extremale Linge A{y} der Menge aller { abtrennen-

33) Dies sieht man, indem man wie oben im Streifengebiet je eine Folge von Quer-
schnitten af und o«f definiert, und die Parallelschlitzabbildung des Streifens anndhert
durch die Parallelschlitzabbildungen derjenigen Streifengebiete, die entstehen, wenn man
alle auBerhalb der Querschnitte off und o} liegenden Komplementiirkontinuen zum Strei-
fen hinzunimmt, bei denen dann also a, und a, isoliert sind. Wegen der Beschrénktheit
der Dirichletintegrale dieser Naherungsabbildungen gilt gleichmaBig (14.1) und (14.2)
fiir einen beliebigen Punkt {’ auf o und ;. Das bedeutet aber, da es zwischen zwei von
der Naherungsabbildung unabhiingigen Radien 7} und »{ Ketten ¢(r') um den Punkt ('
geben muB, die ein Bild mit beliebig kleinem Durchmesser haben.
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den Querschnitte y, die in ¢, zwischen y, und y, verlaufen, héchstens
gleich dem reziproken Wert der Hohe a(y,,y,) des Bildrechtecks3%).
Ferner hat das Bild jeder Kette c(r), r, < r <r, einen Durchmesser

I(r) > 1. Geht nun bei festem y, r, - 0 (damit gleichzeitig y, — {),
so kann das Dirichletintegral a(y,, y,) der Parallelschlitzabbildungen
nicht beschrénkt bleiben, da es sonst wegen (14.1) Radien r geben miifite
mit beliebig kleinem I(r) und damit wegen (14.2) mit beliebig kleinem

l_(r), im Widerspruch zu l_(r) > 1. Das bedeutet aber, dafl mit r, — 0
a(yy, y1) gegen oo und demzufolge A{y} — 0 gehen muf.

§ 6. Das harmonische MaB einer Randkomponente

15. Definition. I, sei eine Randkomponente von &,. Wegen der In-
varianz der im folgenden vorkommenden Begriffe gegeniiber linearen
Transformationen konnen wir das zu I', gehorige Komplementarkonti-

nuum fz von G, als im Endlichen gelegen voraussetzen. Ferner sei (y7})
n=0,1,..., eine ineinandergeschachtelte Folge von Jordankurven

des Gebietes ¢,, die I', umfassen und gegen I', konvergieren, und w,(2)
das harmonische MaB der Kurve " beziiglich des von »* und »? =y,
berandeten Teilgebietes D} von G,%). Die Folge der Funktionen w,(z)
konvergiert in D, (= 2'D?) gegen eine Funktion w (z), und zwar gleich-

miBig in jedem Gebiet D¥, k fest3%). Diese harmonische und von der
Wahl der Folge (y;) (r > 1) unabhingige Funktion nennen wir das
harmonische MaB3 von I', beziiglich &,, v,.

Fiir die harmonischen MaBe  (2) und w’'(2) beziiglich zweier verschie-
dener Kurven y, und y, gilt : Zu jeder positiven Zahl ¢ gibt es eine Um-
gebung U, von I, in der

lw(z) — o' (2) | <e

34) Die extremale Liinge der in G; verlaufenden Querschnitte y ist nédmlich gleich
a (ye, 1)-

35) Sind simtliche Randkomponenten von D} Kontinua, so kann man w,(z) als die-
jenige in D% harmonische und beschrénkte Funktion definieren, die auf % den Wert 1,
auf den iibrigen Randkomponenten von D? den Wert null annimmt. Sind gewisse punkt-
formig, so muB man ,(z) durch eine Ausschopfung von D7 definieren, indem man die
von p, und y%¥ verschiedenen Randkomponenten zuniéchst durch Jordankurven aus-
schliet und dann zur Grenze iibergeht.

%) Die monoton fallende Folge von positiven harmonischen Funktionen w,(z) konver-
giert vermoge des Harnackschen Prinzips auf jedem kompakten Teil von D, gleichmiBig.
Anderseits nimmt die Differenz @, — @, > 0 (n =k, p > 0) ihr Maximum beziiglich
D% auf p¥ an, wobei y¥ in D, ja kompakt ist.
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ist. Das ergibt sich folgendermaflen: In einer der (einfach zusammen-
hingenden) Komponenten des Durchschnittes der beiden Innengebiete

von y, und y, liegt -1_“;. Durch Entfernen von Fz erhidlt man daraus ein
zweifach zusammenhingendes Gebiet D) : wu(z) sei das harmonische
MaB von I', beziiglich D;. Die Funktionen (z) und ’(z) seien durch
dieselbe Folge (y;), » =1,2,... von Jordankurven definiert, die in
D} liegen. Dann gilt fiir die Niherungsfunktionen w, und o/,

l Wy — w:z l <l—wu
und somit
lo — o' | <1 —u,
woraus die Behauptung folgt.
Ist ¢ ein Punkt auf I',, so verstehen wir unter dem limes superior der
Funktion w im Randpunkte ¢ die Zahl

lim o (2) = lim( sup ‘w(z)) .
e>0\|z-¢|<e
Dieser ist in jedem Randpunkte { von I', definiert, aber i. a. nicht kon-
form invariant, da schon der Begriff des Randpunktes es in diesem ge-

wohnlichen Sinne nicht ist.
Der lim w({) ist entweder null oder 1 in jedem Punkte {. Zum Beweis

nehmen wir an, es sei in einem Punkte { der lim w(l) =M<1. Dann
gibt es eine positive Zahl g, so daf} in jedem Punktez vonG,, |2 — (| <p
w(2)<(1 + M)/2 ist. Der Durchschnitt von |2 — | < ¢/2 mit I_’; zer-
fillt in eine Menge von Kontinuen, deren eines den Punkt { enthilt.
Dieses, das heillt dessen Rand, berandet mit |z — {| = ¢ zusammen ein
zweifach zusammenhédngendes Gebiet. % (z) sei das harmonische Maf} des
Kreises |z — (| = p Dbeziiglich dieses Ringgebietes. Das Mal w(z) sei

durch das Kurvensystem (y,,y;) n=1,2,... definiert, wobei
|z— ¢ |< o im Innern von y, liegen moge. Wir betrachten die Funk-
tionen 14+ M

wn(z) = _; wn(z) ’

deren Limes [(1 + M)/2] - w(z) ist. Fiir alle hinreichend grolen » hat
D% mit |z — {|<p einen nicht-leeren Durchschnitt, der in einzelne
Gebiete zerfillt. Jeder Randpunkt eines solchen Teilgebietes ist ent-
weder ein Punkt von 9%, von |z — {| = g, oder ein nicht auf I, liegen-
der Randpunkt von G,. Aus dem Maximumprinzip ergibt sich somit die
Abschétzung??)

87) Dabei muB man w unter Umsténden zunichst durch die kleinere Funktion w’ er-

setzen, indem in D'z' der Rand von @, durch Jordankurven ausgeschlossen wird, auf denen
o' = 0 ist. Fir die Funktion o’ gilt die Ungleichung, und wegen o’'—> w auch fir w.
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Pnt U 20,
und demzufolge

1+ M)2o+u>o0,

woraus folgt, daBl v > [(1 — M)/2] - w ist. Nun ist aber der limes supe-
rior von % (z) im Punkte ¢ gleich null, somit auch der von w(z).

16. Das Gebiet G, werde durch die wachsende Gebietsfolge G aus-
geschopft, » = 0,1,..., deren Rand aus je endlich vielen Jordan-
kurven besteht. Dann bestimmt die Randkomponente I', eine Funda-
mentalfolge von Randkurven 97 der Gebiete G, die wir zur Definition
des harmonischen MaBes w (z) von I', beziiglich G,, y, (= %) verwenden
konnen. Ist w(z) = f(z) eine schlichte konforme Abbildung des Ge-
bietes ¢, auf ein Gebiet G,,, so ist das harmonische Maf3 der Bildkompo-
nente I, von I', beziiglich des Bildes y,, von y, und G,,

o (w) = w(z(w)) .

Denn die Kurvenfolge (y7) geht mittels der Abbildung f(z) in eine Kurven-
folge (y},) tiber, die man als definierende Folge verwenden kann, und fiir
die harmonischen Masse dieser Anniherungskurven ist die Ubertragbar-
keit evident.

Jedes Gebiet G werde nun durch eine schlichte konforme Abbildung
w, = f,(2) auf ein Gebiet G, abgebildet, und die Abbildungsfolge
f.(2) konvergiere in jedem kompakten Teil von G, gleichméBig gegen die
Abbildung w = f(z). Die harmonischen MaBle der Randkomponenten
Ywn = [n(yy) — die keine Jordankurven zu sein brauchen — beziiglich
der Kurven y, = f,(y,) und der Gebiete &}, sind die Funktionen

B (w,) = w0, (" (wy))

wobei w, (2) das harmonische Mal der Kurve 3} beziiglich G7, y, be-
deutet, n > 1. Wir behaupten nun, da diese in jedem kompakten Teil
B,, des Bildgebietes D,, von D, gleichméBig gegen @ (w) konvergieren.

Beweis. Dieser kompakte Teil B, liegt schlielich in jedem Gebiet G, ,
und somit ist @,(w) auf B,, definiert. Die Differenz

I d_)n(w) - (B(%U) ‘

nimmt in einem Punkte von B,, ihr Maximum beziiglich B, an, und
diese Punkte haben fiir n— oo einen Haufungspunkt w* in B,,. Wir wih-
len zu einer gegebenen Zahl ¢>0 den Radius r so, daB im Kreise C,,(r):
lw—w*| <r, | o@w') — @w")]| <eist. Das Urbild C, = f*(C,) ist ein
gewisses einfach zusammenhingendes, abgeschlossenes Gebiet von &, , und
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wir konnen N, so wihlen, daB fir » >N, auf C,|f,(2) — f(z) | <7/2 ist.
Der Kreis O, (r/2) wird somit vom Bilde f,(C,) fir » > N, iiberdeckt.
Nun wihlen wir N,>N, so, daB fir »n > N, |w,(2) — w(z)|<e ist
auf C,. Also gilt fiir jeden Punkt w von C,(r/2)

| @, (w) — @(w) | = | w,(f;* (W) — o(f*(w)) |
= | w,(f;* W) — w(f; (W) + o(f;* @) — o(f(w) | <2¢ .

Sei nun wieder I'j der limes superior der Randkomponenten y;, .

Wir bilden das harmonische Mafl «*(w) von I'j, beziiglich des von I'{,
und y,, berandeten Ringgebietes. Dann gilt

o”(w) > o(w) .

Sind ndmlich g und f* zwei Jordankurven, die bzw. y, und I';, um-
fassen, und wobei * im Innern von y,, liegt, so gilt fiir das harmonische
MaBl w*(w) von B~ beziiglich g fiir alle hinreichend groflen n

@, (w) < o*(w) ,

weil fiir alle hinreichend grofien » die Jordankurve 8~ das Randkonti-
nuum y, und g die Kurve y,, umfa3t. Durch Grenziibergang ergibt sich

ow) < o*(w) ,

und, da w* durch w* beliebig angendhert werden kann, auch die behaup-
tete Ungleichung.
Ist nun w ein Punkt auf I, der nicht auf I'y, liegt, so ist w*™(w)<1

und somit lim w (w) = 0. Durch Ubergang zu einer Teilfolge der Folge
(f.(?)) kann man wie in (6) dasselbe fiir den limes inf. *I', der Folge
Y, Zeigen. Es gilt somit der

Satz: In jedem Punkte w der Randkomponente I, der nicht zu =TI,

gehort (beziiglich der Abbildungsfolge (f,(2))) ist das harmonische Maf von
I, gleich null.

Insbesondere folgt daraus fiir isolierte Randkomponenten wieder die

Gleichung *I', =TI, = I,, denn das harmonische MaB einer solchen
hat iiberall auf I',, den Randwert 1. Allgemein kann man sagen :

Satz. Hat eine Hdiufungsrandkomponente I', eines Gebietes G, die
Eigenschaft, daf sie bei jeder®®) schlichten konformen Abbildung w(z) in

3%) Es geniigt, Abbildungen in das Innere des Einheitskreises zu betrachten, wobei I,
in die Kreisperipherie tibergeht.
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etne Randkomponente I',, des Bildgebietes @,, bergeht, in deren jedem
Punkte der limes superior des harmonischen Mafes gleich 1 ist, so gilt fiir

jede Abbildungsfolge (f,(2)) die Beziehung *I', = I'y = I,.

Diese Bedingung ist aber vermutlich schwicher als die oben mit Hilfe
der extremalen Lingen formulierte.
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