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Uber eine spezîelle Klasse

Euler'scher Graphen
Von F. Bâbler, Zurich

Vor kurzem machte Oystein Ore1) in einer Note auf gewisse spezielle
Eulersche Graphen aufmerksam. Sie sind dadurch charakterisiert, daB
sie eine Ecke A besitzen, derart, daB ein Punkt, der von ihr ausgeht, den
Graphen durchlâuft und sich dabei nur an die Vorschrift hait, keine Kante
zweimal zu durchlaufen, jedesmal den ganzen Graphen durchlaufen hat,
wenn er das letztemal zum Ausgangspunkt zurùckgekehrt ist. Es zeigt
sich, daB dièse Graphen identisch sind mit denjenigen, deren sâmtliche
Zykel durch eine bestimmte Ecke gehen. Wir werden derartige Graphen
Zûge nennen.

In diesem Aufsatz wird zunâchst dièses Résultat von Ore in knapper
Fassung noch einmal bewiesen und hierauf eine Reihe von Sâtzen ab-

geleitet, welche die Struktur der Ziige betreffen.
Einmal wird angezeigt, daB jeder Zug als direkte Summe2) gewisser

Teilziige aufgefaBt werden kann, welche wir Primzuge nennen. Dièse sind
dadurch charakterisiert, daB sie mit Ausnahme des Ausgangspunktes zu
dem Restzug, welcher nach ihrer Entfernung aus dem Zuge entsteht,
fremd sind, aber selber keine derartige Zerfâllung in Teilziige gestatten.
Die Zerfallung ist eindeutig. Dièse Tatsache ist einfach ein anderer Aus-
druck fur den Umstand, daB ein Zug, aus welchem man die Ecke A samt
allen mit ihr verknûpften Kanten heraushebt, entweder ein Baum, eine
Summe von Bâumen, eine Summe von Bâumen und isolierten Punkten
oder von isolierten Punkten allein wird.

AnschlieBend wird die Frage nach der Existenz von Teilziigen be-

zuglich der Ecke A vollstandig durch die Feststellung beantwortet, daB
in einem Primzug je 2v von A ausgehende Kanten immer genau einen
Teilzug bestimmen.

x) Oystein Ore: A problem regarding the traeing of graphs, El. Math.
Bd. VI, Nr. 3, p. 49—53, 1951.

2) Wir sagen, G sei die direkte Summe von GltG2, Gn, wenn: 1. die Gi paarweise
kantenfremd sind und 2. die Vereinigungsmenge der Ecken bzw. der Kanten der Ot ge-
rade, die Ecken bzw. die Kantenmengen von G sind.
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Weiterhin wird die Feststellung von Ore, daB jeder Zug als direkte
Summe von Zyklen aufgefaBt werden kann, in der Weise verschârfb,
daB wir angeben, wie viele solche Zykelbasen ein bestimmter gerade vor-
liegender Zug haben kann und wie dièse Anzahlen mit der Zerfâllung
in Primzlige zusammenhangen.

SchlieBlich werden einige Anwendungen der vorangehenden Resultate
auf andere Fragen der Graphentheorie gemacht. Insbesondere werden die
Resultate, welche J. Senior3) letzthin bewiesen hat, auf kiirzerem Wege
hergeleitet. Die erwâhnte Arbeit bezieht sich auf die Frage, unter welchen
Voraussetzungen irgendeine Menge von positiven ganzen Zahlen als Menge
der Grade der Ecken eines beliebigen bzw. eines schlingenlosen oder eines

zusammenhângenden oder eines zusammenhângenden und schlingenlosen

Graphen aufgefaBt werden kann, und unter welchen speziellen
Voraussetzungen ein einziger Graph der letzten Art durch die Zahlenmenge
bestimmt sei.

Die Beweise bestehen im wesentlichen in Konstruktionsvorschriften
fur Graphen aller Klassen, die in Betracht gezogen werden. Dièse Vor-
schriften kônnen sich, wenigstens in den Fâllen, wo die Anzahl der Ele-
mente in den betrachteten Zahlenmengen nicht sehr groB ist, dazu eignen,
die Anzahl der verschiedenen zu diesen Zahlenmengen gehôrigen Graphen
festzustellen, falls man gewisse auf der Hand liegende Modifîkationen
dieser Vorschriften vornimmt.

I.

1. Ein Punkt P durchlaufe einen endlichen zusammenhângenden Euler-
schen Graphen G von einer Ecke E ausgehend ganz oder teilweise, in-
dem er dabei nur an die Vorschrift gebunden ist, keine Kante mehr als
einmal zu durchlaufen. Jede Ecke, die er auf seinem Wege erreicht, kann
er auch wieder verlassen, mit Ausnahme von E, die er ein letztesmal auf
einer noch nicht durchlaufenen Kante schlieBlich erreichen muB. Wir
nennen jede solche Durchlaufung ahgeschlossen beziiglich E. Gibt es eine
abgeschlossene Durchlaufung, bei der jede Kante von G durchlaufen
wird, so heiBt dièse vollstândig bezûglich E.

Es stellt sich nun die Frage, wodurch diejenigen Eulerschen Graphen
charakterisiert sind, welche mindestens eine Ecke A besitzen derart, daB

jede abgeschlossene Durchlaufung bezûglich A auch vollstândig ist. Wir
wollen jeden solchen Graphen einen vollstandigen Zug bezûglich A oder
einfach Zug nennen. A heiBt sein Anfangspunkt.

*) Senior, James K. : Partitions and their représentative graphs, Am.
J.Math. 73, 663—689 (1951).
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Wenn wir jeder Ecke eines Zuges Z*) ihren halben Grad als Vielfach-
heit zuordnen, so bewirkt jede vollstândige Durchlaufung bezuglich A
eine eineindeutige Abbildung von Z auf den Einheitskreis K5). Bei die-
ser Abbildung folgen sîch die Bilder der Ecken sukzessive. Wûrden dabei
zwei Bilder einer Ecke E* zwischen zwei aufeinanderfolgende Bilder von
A zu liegen kommen, so bestunde in Z ein Zykel, der die Ecke A nicht
enthâlt. Dann kônnte man den zwischen den beiden Bildern von E*
liegenden Bogen auf K in einen Punkt zusammenziehen, diesen als Bild
von E* betrachten und wtirde der neuen Abbildung eines Teiles der Kan-
ten und Ecken von Z entsprechend eine abgeschlossene Durchlaufung
von Z erhalten, die nicht vollstàndig wàre. In einem Zug Z bezuglich A
mufi daher jeder Zykel die Ecke A enthalten.

Nun sei G ein Eulerscher Graph, der eine Ecke A besitzt, welche in
jedem seiner Zykel enthalten ist. Wir fuhren eine abgeschlossene
Durchlaufung von G bezuglich A durch und entfernen nachher aile durch-
laufenen Kanten und auch aile Ecken, von denen nur durchlaufene Kan-
ten ausgehen. Es bleibt ein Eulerscher Restgraph Gr ûbrig. Wenn (î'nicht
der Nullgraph wâre, so enthielte er mindestens einen Zykel, und dieser
kônnte entgegen der Voraussetzung nicht durch A gehen. Daher gilt:

Genau jeder Eulersche Graph, welcher eine Ecke besitzt, die auf allen
seinen Zykeln liegt, ist ein Zug.

Bemerkung: Die Ûberlegungen gelten unverandert fur unendliche
Eulersche Graphen endlichen Grades.

2. Aus diesen Feststellungen ergeben sich unmittelbar die folgenden
Konsequenzen :

1. A ist eine Ecke maximalen Grades in Z.
2. Ist der Grad von A 2n, so ist Z die direkte Summe von n Zyklen.

Dièse sind im allgemeinen nicht eindeutig bestimmt. Wir nennen ein
solches System von Zykeln eine Basis von Z.

3. Zwei Zykel C und G" in Z haben auBer A hôchstens eine weitere Ecke
gemeinsam, wenn sie keine gemeinsame Kante haben. Sind gemein-
same Kanten vorhanden, so bilden dièse einen zusammenhàngenden
Kantenzug, der A nicht als inneren Punkt enthâlt.

4. Es gibt in Z hôchstens zwei Ecken maximalen Grades. Wenn es deren
zwei gibt, heifit Z Strange. Jeder Zykel enthâlt beide.6)

*) Z bezeichnet kûnftig immer einen Zug.
6) Aus dieser Abbildung liest man die charakteristische Eigenschaft in der Struktur

der Zûge fast unmittelbar ab. Ore leitet sie aus Satz 2, 3 und 4 und einem weitern Satz ab.
6) Ore Satz 5 und Satz 6.
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5. Durchschneidet man jede von A ausgehende Kante in einem inneren
Punkt und entfernt hierauf den Stern mit der Ecke A als Zentrum
und den von ihr ausgehenden Kantenstiicken als Kanten, so entsteht
aus dem Zug ein kreisloser Graph, der zusammenhangend sein kann
oder auch nicht.

6. Dasselbe Résultat hat im wesentlichen auch die Entfernung des Sterns,
welcher A als Zentrum besitzt und die von dieser Ecke ausgehenden
Kanten als Kanten. Es kônnen dabei aber als Teile des Restgraphen
isolierte Punkte entstehen.

7. Verbindet man jede Ecke ungeraden Grades in einem Baum durch eine
ungerade Anzahl von Kanten mit einem festen Punkt A, den man als

neue Ecke auffaBt, so entsteht ein Zug beziiglich A.7)
Verfâhrt man in einer Summe von getrennten Baumen und isolierten
Punkten mit den ersteren gleich wie eben und verbindet man jeden
isolierten Punkt durch eine gerade Anzahl von Kanten mit A, so
entsteht wiederum ein Zug.
Daraus folgt, dafi jede der beiden nachstehenden Konstruktionen
jeden Zug liefert.
Man geht aus von der Gesamtmenge {B} aller endlichen Summen von
paarweise fremden Baumen, deren innere Ecken geraden Grades sind,
und verbindet in jedem von ihnen die Ecken 1. Grades E* mit einem
festen Punkt A auBerhalb jedes Baumes, worauf man die Ecken E*
ihrer Eigenschaft als Ecken entkleidet. Dièse Zuordnung zwischen den
Elementen aus {JS} und denjenigen der Gesamtheit {Z} der Zûge ist
eineindeutig.
Man zieht in analoger Weise die Menge {B; P} der Summen aller
paarweise fremden Baume und isolierten Punkte in Betracht und
verfâhrt, wie unter (7) beschrieben wurde. Dièse Zuordnung der Ele-
mente aus {B; P} zu denen aus {Z} ist nicht eineindeutig.
Wenn der Grad von A 2n ist, so sagen wir: der Zug Z habe den
Grad n.

3. Ehe wir zu der Anwendung der Zuge fur die Lôsung gewisser spe-
zieller Pragen der Graphentheorie iibergehen, soll einiges abgeleitet wer-
den, was die Struktur der Zûge betrifft.

Greift man zwei von A ausgehende Kanten heraus, so entspricht diesen

genau ein Zykel von «Z, falls Z aus einem Baum gewonnen werden kann.
Andernfalls kann es sein, da8 zwei beliebigen von A ausgehenden Kanten
kein Eulerscher Teilgraph von Z entspricht.

7) Ore Satz 5 und Satz 6.
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Wir stellen uns nun die Frage: Unter welchen Voraussetzungen be-
stimmen 2v beliebige von A ausgehende Kanten einen Teilzug Zv von Z,
ferner: ist dieser Teilzug, wenn er existiert, eindeutig bestimmt? Prâ-
ziser : wann gibt es eine Teilmenge M der Kanten und Ecken von Z, so
daB dièse mit A und den 2v von dieser Ecke ausgehenden Kanten einen
Zug beziiglich A bilden, und wann ist dièse Menge eindeutig bestimmt?

4. Um einen genaueren Einblick in die Verhàltnisse zu bekommen, ist
es nûtzlich, zunâchst von einer Basis B des Zuges Zn 8) auszugehen. Es
ist môglieh, daB gewisse Zykel aus B zu ihren Komplementârzligen
beziiglich Zn fremd sind. Fremd heiBt: sie haben nur A gemein. Wir bilden
die direkte Summe Z} ail dieser Zykel und wenden unsere Aufmerksam-
keit dem Komplementârzug Zn_3 von Z3 beziiglich Zn zu. Diejenigen
Zykel aus JS, welche nicht in Z} sind — im extremen Fall aile —, bilden
eine Basis B' von Zn_j. Kein Zykel aus B' kann zu seinem Komplementârzug

beziiglich Zn_j fremd sein. Man betrachtet daher die sâmtlichen
direkten Summen von je zwei Zyklen aus B1', scheidet unter ihnen
diejenigen aus, welche zu ihren Komplementârziigen beziiglich Zn_3 fremd
sind, bildet deren Summe Ze und deren Komplementârzug Zn_3__e

beziiglich Zn_j. Es ist zu bemerken, daB die Paare, welche Ze bilden, ihrer
Définition gemâB gegenseitig fremd sein miissen. Diejenigen Zykel aus
B, welche weder in Ze noch in Z} sind, bilden eine Basis B!1 von Zn_3_e.
Es ist klar, daB man nun die Gesamtheit der Summen von je dreien
unter den Zykeln aus Bn und deren Komplementârzûge beziiglich Zn_3_e

im selben Sinne klassifiziert wie eben die Paare von Zykeln usw. Spâ-

testens nach -— Schritten hat man Zn auf dièse Weise entweder in Teil-

zùge zerfâllt, die paarweise fremd sind, oder man hat festgestellt, daB
eine derartige Zerfâllung nicht môglich ist. Im zweiten Fall nennt man
Zn einen Primzug, im ersten Fall heiBt jeder der Teilziige so. Wir werden
sehen, daB dièse, vorlâufig von einer speziellen Basis aus gewonnenen,
Primzûge von dieser Basis nicht abhângen, sondern einen invarianten,
die Struktur von Zn bestimmenden Charakter haben. Ihre Bedeutung
liegt in dem

Satz : Jeder Zug kann genau auf eine Weise in Primzûge zerlegt werden.

Ehe wir dies beweisen, definieren wir ganz allgemein : Z heiflt Primzug
von Z, wenn er die beiden folgenden Eigenschaften besitzt.

8) Der Indexé inZ% bedeutet, wenn nichts anderes gesagt ist, kûnftig immer den Grad
des Zuges.
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1. Z ist zu seinem Komplementarzug Z' Z—Z fremd.
2. Z besitzt keinen Teilzug Z*, so da/5 Z* zu Z—Z* fremd ist.

Der Beweis des vorangehenden Satzes kann nun gefuhrt werden, wie
folgt.

Beweis : Wir sahen, da8 durch das Herausheben des Sterns mit A als
Zentrum aus Z ein Graph entsteht, welcher zykelfrei ist, also entweder
ein Baum, eine Summe von Baumen, ein isolierter Punkt oder eine Summe
von Baumen und Punkten oder von Punkten allein. Die Primzuge sind
nun diejenigen Ziige, welche man erhâlt, wenn man jeweils die von A
nach den Ecken ungeraden Grades eines Baumes oder nach einem iso-
lierten Punkte des Restgraphen 0' laufenden Kanten wieder einsetzt. Die
Zerfâllung eines Zuges Z in Primzuge Z1, Z2 Ze zieht nâmlich die
Zerlegung seiner Ecken exklusive A in ebensoviele Teilmengen Ml9
M 2 Me nach sieh, derart, dafi zwei Ecken E1 und En, die verschie-
denen Teilmengen angehôren, nur durch Kantenwege uber A miteinan-
der verknupft sind.

Umgekehrt fuhrt nur dann jeder Kantenweg zwischen zwei Ecken, in
Z iiber A, wenn sie getrennten Teilen von 0' angehôren.

Damit ist gezeigt : jeder Zug ist eindeutig als direkte Summe von Prim-
zûgen darstellbar. Dièse sind eineindeutig den paarweise fremden Teil-
graphen zugeordnet, in welche der Restgraph 0' zerfâllt, der aus Z durch die
Entfernung von A und den von dieser Ecke ausgehenden Kanten entsteht.

Man kann nun die Menge {Je} der von A ausgehenden Kanten nach
den Primzligen ordnen, welchen sie angehôren. Dadurch erhâlt man e

Kantenmengen {k}x; {k}2 {k}ei wenn Z e Primzuge besitzt. Die zu
{k}^ i 1, 2 e gehôrigen Kanten sollen in irgendeiner Reihenfolge
mit kn, ki2, ki3 bezeichnet werden.

5. Wir kônnen jetzt unmittelbar erkennen, wann einer Teilmenge
{&}* der von A ausgehenden Kanten ein Teilzug von Z entsprechen kann.
Das ist offensiehtlich hôchstens daim der Fall, wenn von den Kanten
in {k}* zu jeder der Mengen {k}{ entweder eine gerade Anzahl oder keine
gehôrt. Wir werden zeigen, daB unter diesen Voraussetzungen zu jeder
Menge {k}* genau ein Teilzug von Z gehôrt. Der Beweis ist gefuhrt,
wenn wir bewiesen haben: In jedem Primzug bestimmen 2v von seinem

Anfang A ausgehende Kanten eindeutig einen Teilzug Zv.
Wir haben bereits gesehen, daB zwei beliebige Kanten in einem Primzug

genau einen Zykel bestimmen, da es zwischen zwei beliebigen Ecken
eines Baumes genau einen Weg gibt. Wir setzen als bewiesen voraus, daB

es zu 2m von A ausgehenden Kanten immer genau einen Teilzug Zm
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gibt, und werden folgern, daB der Satz auch fur 2 (m + 1) Kanten rieh-
tig bleibt.

Zunachst zeigen wir, daû es zu einer Menge M von 2 m + 2 mit A in-
zidenten Kanten hochstens einen Teilzug Z' geben kann, und setzen zu
diesem Zweck voraus, es gebe deren zwei Z' und Zn,

Es ist ausgeschlossen, daB Z' und Zn einen gemeinsamen Zykel C be-
sitzen. Denn nach unserer Induktionsvoraussetzung mufiten die Zuge
Z' —C und Zl! — C identisch sein und somit auch die ursprunglichen.

Nun sei (O{, Cf2 C'm + 1) Bf irgendeine Basis des Zuges Zf,
(C'[, C"m + x) Bn eine Basis von Zrf, M die Menge der mit A inziden-
ten Kanten. Der Zykel C[x aus B' enthalte die Kanten ktl und kl2 aus M.
kî2 liegt auch in einem Zykel Cl[x aus B", und dieser enthâlt auBerdem
die Kante kH aus M. Dièse liegt ihrerseits wiederum mit einer Kante k%k

in einem Zykel C[t aus Bf usw. In der so gebildeten Kette von Zykeln,
die abwechslungsweise zu B1 und B" gehoren, existiert ein Zykel C'[

fcwelcher ktl enthalt. Man kann nun einen Punkt von derjenigen Ecke E'
aus, in welcher sich C'%1 und C'[x gabeln, auf C"ei laufen lassen bis zu
derjenigen Ecke En ^ A, in welcher er C[2 trifft, hierauf auf C[2 bis zu der
Ecke E/f =£ A, wo dieser sich mit Cne% veremigt usw., bis man auf Cne zum

Zykel Cf%1 zuruckkehrt. Auf Cf(1 wandre der Punkt, ohne uber A zu laufen,

nach E' zuruck. Es gabe daher in Z einen geschlossenen Kanten-
weg, welcher A nicht enthalt, im Widerspruch zu der charakteristischen
Eigenschaft des Zuges.

DaB die Menge M einen Teilzug Z bestimmt, kann man etwa auf fol-
gende Weise einsehen. Es sei M* eine Teilmenge von M, aus 2 m Kanten
bestehend M* bestimmt eindeutig einen Teilzug Z*, den beiden Kanten

k' und kfi\ welche M — M* ausmachen, entspricht eindeutig ein
Zykel C in Zn. Sind Z* und C kantenfremd, so ist die direkte Summe dieser

beiden Zuge der postulierte Zug. Andernfalls hat C mit einem oder
mehreren Zykeln irgendeiner Basis von Z* je einen Kantenzug — even-
tuell eine einzelne Kante — gemein. Die Kanten dieser Zuge und auch
ihre inneren Ecken, falls sie vom zweiten Grad bezuglich Z* sind, lâBt
man aus der Summe weg und erhalt dadurch den gewunschten Zug.

Wir haben also gezeigt-

In jedem Primzug bestimmen 2v beliebige von A ausgehende Kanten
eindeutig einen Teilzug, Ist Z nicht prim, so lautet der entsprechende Satz :

Wahlt man 2v von A ausgehende Kanten des Zuges so, dafi jedem Primzug
eine gerade Anzahl oder keine angehort, so bestimmen sie eindeutig einen

Teilzug Zv. Andere Teilzuge mit dem Anfangspunkt A existieren nicht.
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6. Wie wir bereits festgestellt haben, kann jeder Zug als direkte Summe
von n Zykeln Cx, C2 Cn aufgefaBt werden. Wie viele verschiedene
derartige Basen erster Ordnung gibt es zu einem Zug Zn%

Es ist leicht, dièse Frage in zwei extremen Fâllen zu béantworten.

1. Zn sei prim und besitze auBer A noch eine Ecke 2n-ten Grades. Wâhlt
man dann eine beliebige von A ausgehende Kante Je, so bestimmt dièse

mit irgendeiner anderen ki aus {k} eindeutig einen Zykel C^. Aile dièse

Zykel sind verschieden. Entfernt man aus Zn irgendeinen Zykel 0,-, so
bleibt ein Zug Zjn_x iibrig, der wiederum prim ist. Fur aile dièse Zykel
ist ohne Zweifel die Anzahl der Basen dieselbe. Jede Basis von Z\i_x gibt
mit C5 zusammen eine Basis von Zn. Dièse Basen sind aile verschieden.
Sie sind auch verschieden von denjenigen, welche aus Z\ _ x und Ck hervor-
gehen, fur beliebiges k =£ j, und man erhâlt durch den angedeuteten Pro-
ze8 jede Basis von Zn. Die Anzahl der verschiedenen Basen von Zn ist
daher (2n — 1) x Anzahl der Basen von Zjn_x. Die letztere ist nach der-
selben SchluBweise (2n — 3) x Anzahl der Basen von Zen_z usw., so
daB man schlieBlich erhâlt

n
Anzahl der Basen von Zn II (2n — 2v -\- l) a*n

i
Nun sei Zn keine Strange und Ol5 C2 Cn eine Basis. Zu den C{ ge-
hôren die Kantenpaare kiX und ki2 aus {k}; i 1 ; 2 n. Zu diesem

System von Kantenpaaren gibt es aber auch eine Basis in der Strange
Z* 9), die aus A und einer zweiten Ecke A' und {k} besteht. Sind 2 Basen
zu Zn verschieden, dann auch die entsprechenden zu Z* Der Zug Zn
kann also hôchstens a8n Basen besitzen. Wir werden zeigen, daB es weniger
sind.

Zerfâllt Zn in n Primzuge, so ist die Anzahl seiner Basen 1. Weiter
folgt: zerfâllt Zn in i Prim-Strangen Znl, Zn2 Zni, so existieren

^=i v==nfJi

(*) an= II II {2n^ —2^+1) verschiedene Basen. Es gilt also an< a8n.

7. Nun sei Zn prim, aber keine Strange. Entfernt man aus Zn einen
Zykel Cj} so entsteht ein Zug Zn_x, Zn_x ist prim, wenn Cx durch hôchstens

eine Ecke von hôherem als zweitem Grade geht. Andernfalls
zerfâllt er in Primzuge. Infolge unserer Voraussetzung muB Zn mindestens
zwei Ecken Ef und E!f enthalten, deren Grad grôBer ist als 2. ffl kann
mit E" in Z durch einen Kantenweg wx verbunden werden, welcher A
nicht enthâlt. Von E1 und auch von En fûhrt je ein Weg w2 bzw. wz nach A.

®) Das Zeichen Z* bedeutet im folgenden immer eine solche Strange.
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Dièse Wege haben auBer E' bzw. E" keine Punkte mit wx gemein. Daher
existiert in Zn mindestens ein Zykel C, so daB der Zug Zn—G in mehrere
Primzûge zerfàllt. Sind dièse Primzûge Strangen, so kann man nach (*)
sofort die Anzahl der Basen von Zn angeben. Sie ist kleiner, als wenn Zn
eine Strange wâre. Sind die Primziige aile oder zum Teil keine Strangen,
so besitzt jeder von ihnen hôchstens so viele Basen wie eine Strange vom
gleichen Grad. Damit ist unsere Behauptung bewiesen, d. h. filr die Basen-

n
anzahl an eines Zuges gilt die Ungleichung 1 < an<II1 (2n — 2v + 1)

i
a8n. Das Gleichheitszeichen wird links nur angenommen bei einem Zug,
der aus n sonst punktfremdem Zykeln durch A besteht, das Gleichheitszeichen

rechts nur fur Strangen.
DaB nicht jede Zahl 1 < a < a8n Basenanzahl eines Zuges Zn ist, kann

leicht erkannt werden. Wir betrachten zu diesem Zweck den Zug Z\
welcher auBer A nur zwei Ecken von hoherem Orad hat, E' vom Grad
2n — 2 und E" vom Grad 4. Nun wàhlt man in A eine Kante k, durch
die nur Zykel Ck laufen, welche En enthalten. Nach Entfernung eines

Zykels Ck aus Z\ bleibt in zwei Fâllen eine Strange vom Grade n — 1,
in den ûbrigen 2n — 3 Fallen je ein Zug, welcher als Primziige eine

Strange vom Grad n — 2 und einen Zykel besitzt. Die Anzahl der ver-
schiedenen Basen ist daher

w-1 n-2
a 2 n (2 (n — 1) - 2v + 1) + (2n - 3) 77 (2 (n - 2) - 2v + 1)

i i
nl- 3 77(2 (n- 1)- 2v+ l)=3<^
i

Besitzt der Primzug Zn mehr als zwei Ecken hôheren Grades, so folgt
analog zu S. 88, daB jeder Basis von Zn eine von Z° entspricht, je zwei

verschiedenen zwei verschiedene. Das trifft erst recht zu, wenn Zn nicht
prim ist. Also ist keine zwischen 3a* _ x und asn enthaltene Zahl Basenzahl
eines Zuges nten Grades.

Betrachtet man andererseits einen Zug Zfn welcher auBer A eine ein-
zige Ecke hôheren, nâmlich 4. Grades hat, so stellt man unmittelbar fest,
daB die Anzahl seiner Basen a'n 3 ist. Es gibt also keinen Zug Zn mit
zwei Basen.

8. Dièse Umstânde legen die Frage nahe, welche Zahlen zwischen 1

und a* Basenzahlen von Zligen n. Grades sein kônnen. Unter der Basenzahl

eines Zuges ist die Anzahl seiner verschiedenen Basen zu verstehen.
Um dièse Frage zu beantworten, stellen wir vorlâufig einige Relationen
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zwischen dem Grad eines Zuges und den Graden seiner Ecken auf. Zu-
nâchst sei der Zug n. Grades Zn prim. Wir entfernen aus Zn A samt einem
Teil jeder Kante, welche von dieser Ecke ausgeht. Es bleibt ein Baum BQ

mit 2n Endkantenubrig. In J50 hebt man aile Ecken 2. Grades als Ecken auf
und erhâlt einen Baum B. Ev E2 Er (E) seien die innern Ecken in B.
Unter den Ecken in (E) gibt es mindestens eine, welche mit einer ein-
zigen der anderen durch eine Kante k0 in B verbunden ist. Die gegen-
teilige Annahme wiirde zur Existenz eines Zykels in B fûhren. Ex sei
eine dieser Ecken, ihr Grad 2nv Von Ex gehen 2nx — 1 Endkanten aus.
Nun entferne man aus B Ex und aile von Ex ausgehenden Endkanten
samt Endpunkten sowie einen Teil der von dieser Ecke ausgehenden
Kante &0. Es entsteht ein Baum Bf. Aile Endkanten von Bf mit Aus-
nahme einer einzigen, sind auch Endkanten von B. Aus Br gewinnt man
durch dasselbe Verfahren einen Baum B". Die eliminierte Ecke sei E2,
ihr Grad 2n2. Die Anzahl der von ihr ausgehenden Endkanten ist 2 n2 — 1.

Aile Endkanten von B" mit Ausnahme einer einzigen sind Endkanten
von B'. So fortfahrend, kommt man nach r — 1 Schritten zu einem Baum
jB<f""1), welcher eine einzige innere Ecke etwa Er vom Grad 2nr hat.
J5<r-i) besi^zt 2nr Endkanten, davon sind nach dem Vorangehenden
r — 1 nicht Endkanten von B. Daraus folgt die Relation

2n + r - 1 Z (2% - 1) + 1 oder I. n + r - 1 Z n<
i î

und ferner, wenn man aile innern Ecken von B einbezieht,

m

I'. n + m — 1 Znt
i

Zerfâllt Zn in p Primzûge, so ergeben sich aus den vorangehenden Glei-
chungen unmittelbar die Relationen

p p rk »»

II. n + Z (rk — 1) Z Z nki bzw. II'. n + mnr — p Z n{
i fc=i i=i i

wobei in II rk und nki die analoge Bedeutung fur den kten Primzughaben
wie r und n{ fur Zninl, und in II7, m die Anzahl der Ecken exklusive
A in Zn\ Ui der Grad der Ecke E{ ist.

9. Die beiden Relationen erlauben uns bereits, die Frage nach den
Basenzahlen vollstândig zu beantworten. Wir gehen aus von einem Prim-
zug Zn vom Grade n. (E) soll dieselbe Bedeutung haben wie auf S. 10

Zeile 5 und Ex wiederum eine der Ecken hôheren Grades sein, die mit
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einer einzigen ihrer Art durch eine Kante verbunden ist. Entfernt man aus
dem Zn entsprechenden Baum B aile Endkanten aus Ex bis auf eine, so
erhâlt man einen Baum JS*. Diesem entspricht ein Zug Z° vom Grad
n — nx + 1 • Da man 2nx — 1 Môglichkeiten hat, eine Kante zu behal-
ten, so bekommt man 2nx — 1 verschiedene Teilzûge vom Grade
n — nx-\- 1. Andererseits entspricht den entfernten 2nx — 2 Kanten ein
Teilzug Z*i_1 von Zn. Z*i_1 ist eine Strange. Unsere Ûberlegungen zei-

gen, daB Zn auf 2nx — 1 Arten als direkte Summe von zwei Teilziigen
Z° und Z*t_x dargestellt werden kann10). In jedem Paar ist die direkte
Summe jeder Basis von Z° mit jeder Basis von Z*i_l eine Basis vonZn.

m-i
Die Anzahl der Basen von Z*x_x ist 77 (2 (nx — 1) — 2v + l). Somit

gilt die Gleichung: Basisanzahl von Zn II (2nx — 2v + 1) X

Basisanzahl von Z°. Indem man auf Z° dieselben Ûberlegungen anwendet
wie auf Zn und so fortfâhrt, erhâlt man fur die Basisanzahl an von Zn

III. an II Vn%{2nt - 2v + 1) 77* Vn%{2nt - 2* + 1)

°der r r m

an II{2nl)\ I 2TInl II (2nt) / 2TInt\
i ii i

Wie man sieht, sind die Ecken zweiten Grades fur die Basenanzahl be-

langlos, was naturlich auch unmittelbar der Anschauung entnommen
werden kann. Die n% mussen der Bedingung I bzw. l'geniigen, die wir noch

r m

in derForm I* n — 1 Z (nt — 1) bzw. I*' n — 1 Z (nt — 1)

schreiben. 1 x

10. Es ist leicht zu zeigen, daB die unter III dargestellten Zahlen aile
als Basenzahlen von Primzugen wirklich vorkommen. Zu diesem Zwecke
kann man von einem Kantenzug 77 mit r inneren Ecken Et ausgehen
und in jeder Ecke E% noch 2nt — 2 Endkanten einfugen. Dadurch er-

r
hait man einen Baum mit 2?2(wt — l)+2 2w Endkanten und

i
daraus einen Zug Z vom Grad n. Die Eckengrade der Ecken Et von Zn

geniigen der Relation I*. Ihre Basenzahlen sind fur jedes n und jedes
System nt,i=l,2...r, durch III bestimmt. Man kann daher sagen:
Basenzahlen der Primziige n. Grades Zn sind genau die Zahlen an
r r

77 (2nt)\ I 2IInl\ wobei die r natûrlichen Zahlen nt> 2 sein und die
i i

10) Die Basenzahlen der Z° und der ^J1_i hângen nicht von der Wahl der entfernten
Kanten ab.
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Relation n — 1 Z (n% — 1) befriedigen milssen. Man kann auch die
i

Ecken vom Grade 2 mitzâhlen. Fur dièse ist nt 1. Im Produkt fur
aw, das man nun von 1 bis m zu bilden hat, liefern sie Faktoren 1, in der
nachfolgenden Summe Summanden Null.

Wenn Z in p Primziige zerfàllt, so gilt fur jeden von ihnen die Glei-
chung III. Man erhâlt als Basenzahlen deshalb die GrôBenmm m

an TI (2nt) / 2 FI nt\ mit der Bedingung n — p Z (nt — 1)11 i
wobei wieder m in die Anzahl der Ecken exklusive A ist und n% ihre
Grade.

11. Wir ziehen nun zunâchst noch einige Folgerungen aus den Rela-
tionen II bzw. II' S. 12 fur einen Zug. Zunâchst folgt, daB die Anzahl
der Ecken hôheren als zweiten Grades durch den Grad des Zuges und die
Anzahl seiner Primziige beschrânkt wird.

Es existiert hôchstens eine Ecke vom Grad h,n<h ^ 2n. Wenn
n gerade ist, existieren hôchstens drei Ecken vom Grad n. Dièse extre-
male Anzahl wird nur fur n 4 erreicht. Fur aile hôheren Grade sind
deren zwei môglich, wenn Zn prim ist, zu denen dann noch eine Ecke
vierten Grades tritt. Ist r n — 1, so sind sâmtliche Ecken von Zn
auBer A zweiten oder vierten Grades. Die Anzahl der Ecken zweiten
Grades ist immer beliebig. Die Relationen II bzw. II' liefern auch un-
mittelbar einen ersten Anhaltspunkt dafur, ob ein etwa durch sein In-
zidenzschema gegebener Eulerscher Graph ein Zug ist. Wenn 2n maxi-
maler Eckengrad ist, so muB die Z {nt — 1) ûber die anderen Ecken
erstreckt, kleiner als n sein. Leider ist dies kein hinreichendes Kriterium.

II.
1. In einer kûrzlich erschienenen Publikation stellt und beantwortet

Herr I. Senior11) die folgenden Fragen:

Es sei n\px^p2^... ^ Pm12) eine Menge von m ganzen positiven
Zahlen. Welches sind die notwendigen und hinreichenden Bedingungen
hinsichtlich/7, damit die folgenden Klassen von Graphen nicht leer sind?

A. Die Klasse der Graphen©mit denEcken Et vom Grad p%9 i 1, 2... m.

B. Die Unterklasse von A, welche aus schlingenlosen Graphen besteht.

u) Vergleiche Anmerkung 2, S. 81.
12) Die Zahlen jeder Menge 77 sollen kûnftig immer in abnehmender Folge geordnet sein.
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C. Die Unterklasse von A, welche aus zusammenhàngenden Graphen be-
steht.

D. Die Klasse der gemeinsamen Elemente aus B und C.
Dazu tritt noch die Frage

E. Unter welchen Voraussetzungen enthâlt die Klasse D ein einziges
Elément?

Die Diskussion dieser Fragen wird an entscheidender Stelle wesentlich
kurzer und gleichzeitig vôllig durchsichtig, wenn man sich dabei der
Eigenschaften der Ziige bedient.

2. Die Anwort auf die Frage A folgt unmittelbar aus der Bemerkung,
daB die Gradsumme jedes Graphen um 2 herabgesetzt wird, wenn man
aus ihm eine Kante entfernt (samt Endpunkt, wenn es eine Endkante ist).

m
Daher mu8 £ p% 2 S eine gerade Zahl sein. Daraus schlieBt man wei-

i
ter. daB die Anzahl der ungeraden Zahlen in JJ gerade sein muB. Sind
dièse beiden Voraussetzungen hinsichtlich U erfûllt, so ist es umgekehrt
leicht, wenigstens einen Graphen6r0 mit einer Eckenmenge E±, E2 Em

anzugeben, welcher zur Klasse A gehôrt. Man wàhle nach Belieben
m Punkte Ei9 ordne 2u unter ihnen zu Paaren, wenn in 77 2u ungerade
Zahlen vorkommen, verbinde die Punkte eines jeden Paares und lege

durch jeden Punkt Ei^ Schlingen.

Zwei weitere einfache Bemerkungen fuhren leicht zu notwendigen Be-

dingungen fur die Klassen B, C und Z>.

2'. In einem Baum gilt die Gleichung

i
wobei pt, m und S dieselbe Bedeutung haben wie oben. Jeder zusam-
menhângende Graph kann aus einem Baum durch Verbindung von
Ecken gewonnen werden. Daher gilt fur jeden zusammenhàngenden
Graphen, also fur die Klasse C

m

I. F2 (i7) S - m + 1 > 0 ; S £ Z Vi ¦
1

2". Gehen aile Kanten eines schlingenlosen Graphen von der Ecke Ex
m

aus, so ist Pi E Pi oder F1(IT) S — px 0 Sind nicht aile
2

Kanten von 0 mit Et inzident, so muB daher 8 — p±> 0 gelten. Not-
wendig fur die Existenz von Graphen der Klasse B ist also

m

IL F, (77) | Z pt - Pl S - Pl ^ 0
1
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Ans den Definitionen von F± und von F2 erkennt man unmittelbar :

Die beiden Relationen eines jeden der folgenden Paare von Ungleichungen,
F1(IJ)<0 und jP2(/Z)<0, bzw. Fx(IJ)^O und F1(IJ)<0, sindnicht
miteinander vertràglich.

Ferner folgt aus dem Vorangehenden :

a) (2, l)13) Jeder Menge II mit jP1(/7X 0 entspricht genau ein zusam-
menhangender Graph mit minimaler Schlingenzahl. Oilt Fx (II) 0 so ist
der Graph schlingerilos.

FaBt man die beiden vorangehenden Bedingungen zusammen, so hat
man als notwendige Bedingung fur die Existenz der Klasse D

III. Fx (il) > 0 ; F2 (77) > 0

3. Wir werden sehen, daB dièse Bedingungen auch hinreichend sind.
Fur G ist das leicht zu erkennen. Es sei px ^ ^ pr> 1, pr+1 1.

Dann folgt aus
S ~m+ 1^0 2S~2m+2>0

oder
r r

Z Pi + m — r — 2 m + 2 £ (p{, — 2) + 2 — (m — r) > 0
i i

Wenn man die Ecken El9 E2 Er der Reihe nach verbindet, so ge-
r

nugt die restliche Gradsumme 2J (p{ — 2) + 2 dieser Ecken minde-
î

stens zur Verknûpfung mit den m — r Ecken ersten Grades. Falls
F2 (II) 0 ist, fûhrt die eben erwâhnte Konstruktion zu einem Baum B.
Schneidet man jede Kante E{Ei+1; 1 ^ i < r — 1 in einem inneren
Punkte durch, so zerfâllt B in r Sterne mit den Zentren E{. Fiigt man
dièse Sterne irgendwie wieder zusammen, indem man mit zweien be-

ginnt, in jedem eine Endkante wàhlt, deren Endpunkte verschmilzt
und gleichzeitig als Ecken aufhebt, dann einen dritten Stern nimmt und
diesen auf dieselbe Weise mit dem ersten oder dem zweiten verknûpft
usw., kommt man wieder zu einem Baum, welcher II entspricht. Ist
r > 3 und hat mindestens ein Stern 3 oder mehr Kanten, so kann man
auf dièse Weise immer einen Baum B1 konstruieren, der von B verschie-
den ist.

(d1) Ist dagegen px 2, so erhâlt man immer einen Streckenzug aus

r + 2 Kanten.

13) Mit den in hinter die Zeichen a), b) gesetzten Zahlenpaaren indiziert Herr
Senior dieselben Kesultate.
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Ist r 3 und pt ^ ps, so ist entweder der Baum, welcher der Ecken-
folge EXEZE2 oder derjenige, welcher der Folge E2E1EZ entspricht, von
demjenigen verschieden, welcher zu E1E2E2 gehôrt.

b) Ist dagegen r 3 und px — p3, F2 (77) 0, so ist der Baum ein-
deutig bestimmt.

3'. c) (2, 2) m 3 Fx (77) < 0 Die eindeutig bestimmten Lôsungen
der beiden Gleichungen p' -f- pn px und p2 — Pr — P3 — Vn sin(ï ganz
und positiv, und auBerdem gilt p1 < p2 ; pn ^ p3. i?«s gré&Ê also einen

einzigen schlingenlosen Graphen, und er ist zusammenhangend.

d) (2, 4) p1 2. Ist J^2 (/7)> 0, so gibt es einen einzigen Graphen.
Dieser ist ein Zykel. Berlicksichtigt man noch df, so kann man sagen:
Ist px 2 ; F2 (77) > 0 so ist durch II ein einziger Graph bestimmt,

e) (2, 3) p3= 1; Ft (77) 0, dann ist Ex mit E2 durch p2 Kanten
und mit jeder der Ecken E% i ^ 3 durch eine Kante zu verbinden. Nun
sei F1 (77) > 0 ; F2 (77) > 0, und s m — 2. Die beiden Gleichungen
s' -|- 5/r 5 und s1 — «;/ px — p2 haben die eindeutig bestimmten

Lôsungen 0< .' £LZ|ï±î Pi=|S=f + s< s und 5" ^
Zudem ist, weil 2 (p2 + 5) und pi + P2 + s g©rade sind, auch px —

p2 — s gerade, also sr ganz; s" ganz. 72$ existiert also ein einziger Graph.

4. Wir setzen nun jP1(77)>0; JP2(77)>0, px>2, p3> 1 m> 3 voraus
und wenden uns wieder allgemeinen Betrachtungen zu. Unser erster Schritt
in der Konstruktion eines zur Zahlenmenge II gehôrigen zusammenhân-
genden schlingenlosen Graphen G besteht darin, daB wir mit 77 in be-
stimmter Weise eine Zahlenmenge 77' verknupfen, fur welche Fx (II') ^ 0

und F2 (W) ^ gilt, wenn die entsprechenden Relationen fur 77 erfullt
sind. 77' besteht aus lauter geraden Zahlen, und die Konstruktion eines

zugehôrigen schlingenlosen und zusammenhàngenden Graphen G'wird
sich miihelos mit Hilfe eines Zuges ergeben. Der Ûbergang von G' zu G

erfolgt dann ruckwarts auf Grund des Verfahrens, durch welches 77'

aus 77 gewonnen wurde. Fur die eben erwâhnte Verknupfung haben wir
verschiedene Fâlle zu unterscheiden.

A. Aile p% sind gerade. Dann ist 77' 77.

B. Es gibt in77r ungerade Zahlen > 1, q gerade und deren s, die gleich 1

sind. Immer gilt r-{-s 2t ; | r — s | 2u ; t ganz, u ganz. Wir
vermindern zunâchst aile ungeraden Zahlen aus 77 um 1 und er-
halten dadurch eine Zahlenmenge 77* mit n ^ m Elementen. Nun sei
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Iat fur /7

s, so setzen wir 77' 77*. Gilt dagegen

r, so vermindern wir sukzessive je eine der maximalen Zahlen
aus 77* um 2, und zwar wâhlen wir bei jedem Schritt diejenige mit
dem grôBten Index. Im ganzen fuhren wir u solche Schritte aus.
Die sich ergebende Zahlenmenge ist 77'. Gilt

(B2) p* — p* 2v> 0, so unterscheiden wir die folgenden Fâlle:

(Bg) v ^ t. Dann setzen wir p[ px — 2t, wenn p1 gerade ist bzw.
p[ Pi — 2t + 1 fur ungerades px • p[ bildet mit den ûbrigen
Zahlen aus 77* zusammen 77'.

Ist v< t, so hat man zwei Falle zu unterscheiden.

(Bg) 2v + r > s. Dann setzt man p[ p* ~ 2v und p\ p* ; i > 1.

Ist dagegen

(B^) 2v + r< s, dann vermindert man erst p* um 2t? und geht hierauf
vor wie unter (B^)t indem man -| (s ~ r — 2v) l Schritte aus-
fûhrt.

Die Reduktion von 77 auf 77' ist so eingerichtet, daB Fx (77) > 0 auf
Fx (II1) ^ 0 fûhrt. Da ferner fur eine Zahlenmenge Z, deren Elemente
aile grôBer sind als 1, immer F2 (Z)> 0 ist, hat man F2 (II1)> 0. Es
ist fur das Folgende daruber hinaus wichtig, daB durch die Reduktion
jedem pt > 1 ein p[ > 1 zugeordnet wird. Gibt es nâmlich in 77 q gerade,
r ungerade Zahlen > 1 und s Zahlen 1, so kann man F2 (77) > 0 in

m
der Form \£ pt — q ~- r> s — 1 schreiben. Daraus folgt

n 1

\ £ VÎ ~~ $ — r ^ jf (s — r) und daraus weiter, daB es môglich ist,
i

gewisse unter den p* um insgesamt s — r zu verkleinern, jede um eine

gerade Zahl, so daB keine einzige dieser Zahlen auf Null reduziert wird.

5. Zu 77' gehôrt ein Graph G'Q, bestehend aus den Ecken Et, welche

je ~- Schlingen tragen i 1, 2, n, Wie man aus Of0 einen zusam-

menhângenden schlingenlosen Graphen gewinnen kann, geben wir jetzt an.
Wir wàhlen zu diesem Zweck auf jeder Schlinge einen inneren Punkt

und ziehen aile dièse Punkte in einen einzigen A zusammen. Dadurch
erhalten wir einen Zug Z. Diesen denken wir uns zunâchst irgendwie von
A aus durchlaufen und die Ecken in der Reihenfolge, in welcher man sie

antrijfft, aufgeschrieben. Man erhâlt so eine Eckenfolge Eix, EÎ2 Ein,
wobei aile Indizes Zahlen von 1 bis n sind. Kann man die Durchlaufung
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so durchfuhren, daB nie zwei aufeinanderfolgende Indizes gleich und der
erste vom letzten verschieden ist, so erhâlt man aus Z dadurch einen
schlingenlosen zusammenhângenden Graphen G'9 da8 man jedes Weg-
stuck zwischen jeder Ecke und der nachfolgenden als einzige Kante
betrachtet und desgleichen die beiden Wegstûcke AEit und EihA zu-
sammen.

Ehe wir zeigen, daB es solche Durchlaufungen gibt, fûhren wir zur
Abkurzung der Schreibweise einige Bezeichnungen ein.

Statt von der Durchlaufung von Z sprechen wir von der Koppelung der
Ecken.

Wir nennen dabei die Anzahl der noch nicht durchlaufenen Schlingen
durch jede Ecke jedesmal, wenn wir uns wâhrend der Durchlaufung in A
befinden, die momentané Koppelungsvalenz der Ecke.

Hat ein Teil der Eckenfolge die Gestalt ElEkElE6 EtEx, so sa-

gen wir, die Koppelung sei dort alternierend bezuglich Et.
Hat dagegen ein Teil der Eckenfolge die Form EtEt+1Et+% so

nennen wir diesen Teil eine geordnete Koppelung.

6. Nach diesen Vorbereitungen sind wir imstande, die Koppelungen,
welche uns zum Ziele fuhren, kurz zu beschreiben.

oc) p[ p'2 pfe> pe+x (môglicherweise existiert pe+1 nicht).
Wir koppeln im ersten Schritt die Ecken Ex bis Ee geordnet. Es kann
sein, daB damit die Koppelung bereits beendigt ist. Wenn nicht, so neh-
men wir als zweiten Schritt die geordnete Koppelung aller Ecken von
maximaler momentaner Koppelungsvalenz vor. Ist die Koppelung dann
noch nicht beendigt, so fàhrt man in derselben Weise fort bis zum SchluB.

/?) p[ ist eigentlich maximal. Dann koppelt man zunâchst alternierend
bezuglich Ex, indem man bei jedem Schritt auf Ex diejenige Ecke maximaler

Koppelungsvalenz folgen lâBt, welche den grôBten Index tràgt.
Erreicht man dabei das Stadium, in dem die momentané Koppelungsvalenz

von Ex nicht mehr eigentlich maximal ist, so fâhrt man wie un-
ter a) mit geordneter Koppelung fort bis zum SchluB. Mindestens der
letzte Schritt muB wegen Fx (II') > 0 von der letzten Art sein, und zwar
miissen dabei mindestens die Ecken EtE2Ez geordnet gekoppelt wer-
den.

Der gewonnene schlingenlose zusammenhângende Graph G' enthàlt
daher mindestens einen Zykel, und dieser ist mindestens dreigliedrig.

7. Der Ûbergang von G' zu einem Graphen G, welcher II entspricht,
vollzieht sich nun auf folgende Weise :

7 Commentarii Mathematici Helvetici q^



(B^) Man lâBt von s unter den Ecken ursprûnglieh ungeraden Grades

Pi> 1 je eine Endkante ausgehen. Die ûbrigen faBt man zu Paaren zu-
sammen und verbindet jedes Paar durch eine Kante.

(Bi) Man fûgt in jeder Ecke pt — pr{ Endkanten an.

(Bg) Man fûgt in der Ecke Ex s Endkanten an und verbindet sie mit
allen anderen, deren Grad urspriinglich ungerade und grôBer als 1 war.

(Bg) Man kann môglichst viele Endkanten von Ex ausgehen lassen,
aile, wenn s ^ 2v und px gerade, bzw. s ^ 2v + 1 und px ungerade ist.
Dann verknûpft man Ex noch mit 2v — s bzw. 2v -f- 1 — s Ecken E*,
deren Grad pf{ pt — 1 ^ 2 ist, und verbindet die iibrigbleibenden E*
zu Paaren.

Ist s> 2v, so zieht man von E aus 2v bzw. 2v + 1 Endkanten, dazu
5 — 2# bzw. 5 — 2v — 1 Endkanten von beliebigen unter den Ecken E* aus,
von jeder eine, undverkniipft schlieBlich wieder die restlichenE* zu Paaren.

(Bf2) Man làBt von jeder Ecke pi — p\ Endkanten ausgehen.

8. Zum SchluB soll jetzt gezeigt werden, daB mit zwei Ausnahmen zu
jedemi7, welches den Voraussetzungen Fx (II) > 0, F2 (77) > 0, px > 2,
j?3 ^ 2, m> 3 genûgt, mindestens zwei verschiedene Graphen existieren.

Um dies zu beweisen, gehen wir von dem Graphen 0 aus, dessen Exi-
stenz eben sichergestellt worden ist, und leiten aus ihm durch geeignete
Umformungen einen zweiten von ihm verschiedenen Graphen Gx ab.

Bemerkung. Dabei ist uns insbesondere der Umstand niitzlich, daB in
0 jede Ecke hôheren Grades mit Ex in mindestens einem Zykel liegt, so
daB man eine von Ex ausgehende Kante entfernen darf, ohne den Zu-
sammenhang zu zerstôren.

D. Jede Zahl p{ in II ist grôBer als 1.

(Dj) Falls F1(II)> 1 ist, existiert in G mindestens ein Zykel 0*.
EtE2 EjtEi mit h > 4. Wenn irgendeine Ecke Ei ; 1 < i < h
bereits mit Ex verkniipft ist, ersetzt man 0* durch zwei Zykel C und
Cff, wobei C Ex und eine von E{ verschiedene Ecke Ek aus (7* enthâlt,
G" dagegen E{ und aile Ecken aus 0* auBer Et und Et. Die zusâtzliche
Voraussetzung ist erfullt, wenn px > 3 ist. Fur px p2 3 kann man
Ex und E2 als Paar wâhleii, das in G durch eine Kante verkniipft ist,
also Ei E2 setzen.

P2) Fi (II) 1. In G existiert ein Zykel C: E1E2EBE1. Iatp2 ^ pm,
so kann man die Koppelung der Ecken so abândern, daB an Stelle von C

z. B. der Zykel C: E1EzEmE1 tritt. In allen Fâllen ist der neue Graph Gx

von G verschieden.
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(f) (2, 5) Dagegen entspricht einem II mit Fx (II) 1, p2 — pm genau
ein Graph. Das folgt unmittelbar aus unserer Konstruktion.

H. px > p2 ^ > ph> 1, ph+x pm 1.

(Hi) Px sei eigentlich maximal und aile Endkanten gehen von Ex aus.
Wegen p3 ^ 2 und Fx (II) ^ 1 gibt es dann in G mindestens einen Zykel
C: EXE2 EjE1 mit mindestens drei Ecken. Man entfernt aus C die
Kante E2E3, setzt in E2 eine Endkante ein, entfernt eine solche, welche
von Ex ausgeht, und verbindet Ex mit Ez.

(H() px ist eigentlich maximal, und es geht von einer anderen Ecke E{
(Pi> 2) eine Endkante k aus. Nun entfernt man k und eine Kante
ExEk, k =fi i verbindet dann E{ mit Ek und setzt in Ex eine Endkante
an. In beiden Fâllen sind die neuen Graphen von den ursprunglichen ver-
schieden.

(H2) px p2. Wenn von einer Ecke 2?, in G Endkanten ausgehen, so
ist ihre Anzahl gerade oder ungerade, je nachdem pj gerade oder ungerade
ist. Ferner existiert in G mindestens ein Zykel, auf welchem aile Ecken
liegen, deren Grad hôher als 1 ist.

(Hg) Falls in G mehr als eine Endkante existiert, kônnen zwei Fâlle
eintreten.

1. Aile Endkanten gehen von einer einzigen Ecke Ek aus. Dann sind
es deren zwei. Aile Ecken hôheren Grades liegen in mindestens einem
Zykel C. Man entfernt aus diesem eine Kante E{Ee; i ^ k, e ^ k,
desgleichen eine Endkante aus Ek, setzt eine Endkante in E{ an und
verbindet Ee mit Ek.

2. Es gehen von mindestens zwei Ecken Ei und Ek Endkanten aus,
von Ek hôchstens so viele wie von E{. Es gibt immer eine Kante E{Et;
l zfi k (vgl. Bem. zu H2). Dièse Kante entfernt man, ebenso eine von
Ek ausgehende Endkante, setzt eine Endkante in E{ ein und verbindet
Ek mit Ee.

(Hg In G existiere eine einzige Endkante. Sie geht von einer Ecke un-
geraden Grades E{ aus. Ist px> pm_1? so kann man durch ein vôllig
gleichartiges Verfahren wie in den vorangehenden Fâllen einen Graphen
Gx konstruieren, in welchem die Endkante von einer Ecke Ee ausgeht,
deren Grad pe ^ pt ist. Ist px pm_x und m > 4, ersetzt man den
Zykel C, dem aile Ecken Et, i ^ m angehôren, wie in Dx durch zwei
Zykel C und C", und man erhâlt so einen Graphen Gl9 der von G verschie-
den ist. Dagegen gilt:

(g) Wenn px pz > 1, pé 1, m 4 gilt, so ist durch II eindeutig
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ein Oraph bestimmt. Denn 77' bestimmt nach S. 15 (2, 2) eindeutig einen
Graphen, und es ist bedeutungslos, von welcher Ecke die Endkante aus-
geht14).

Damit ist auch unsere letzte Behauptung bewiesen.

9. Wir haben schlieBlich noch zu zeigen, daB jeder Menge 77 mit
F1 (77) ^ 0 ein schlingenloser Graph entspricht. Das ist bereits bewiesen
fur F1(II)^O und .F2(77)>0. Es bleibt noch der Beweis fur
Ft (77) > 0 ; F2 (77) < 0 zu erbringen. In diesem Falle gehen wir von
77 zu einer Menge 77* iiber, fur welche F2 (77*) 0 gilt. Um dièse Menge
zu erhalten, muB man entweder eine geeignete gerade Anzahl von Einern
aus 77 weglassen oder eine ungerade Anzahl von ihnen streichen und ein

Pi > 1 durch p* pi: — 1 ersetzen. Der Menge 77* entspricht minde-
stens ein Baum, also ein schlingenloser Graph. Umsomehr gehôrt auch
der Menge 77 mindestens ein schlingenloser Graph.

(Eingegangen den 9. Mai 1952.)

u) Die Fâlle g) und b), S. 16, treten an die Stelle der Fâlle (2.6), (2.6') und (2.6") bei
Senior.
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