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Uber eine spezielle Klasse

Euler’scher Graphen

Von F.\BKBLER, Ziirich

Vor kurzem machte Oystein Ore!) in einer Note auf gewisse spezielle
Eulersche Graphen aufmerksam. Sie sind dadurch charakterisiert, dafl
sie eine Ecke 4 besitzen, derart, dal ein Punkt, der von ihr ausgeht, den
Graphen durchlduft und sich dabei nur an die Vorschrift hilt, keine Kante
zweimal zu durchlaufen, jedesmal den ganzen Graphen durchlaufen hat,
wenn er das letztemal zum Ausgangspunkt zuriickgekehrt ist. Es zeigt
sich, daf} diese Graphen identisch sind mit denjenigen, deren simtliche
Zykel durch eine bestimmte Ecke gehen. Wir werden derartige Graphen
Zige nennen.

In diesem Aufsatz wird zunédchst dieses Resultat von Ore in knapper
Fassung noch einmal bewiesen und hierauf eine Reihe von Sétzen ab-
geleitet, welche die Struktur der Ziige betreffen.

Einmal wird angezeigt, dafl jeder Zug als direkte Summe?) gewisser
Teilziige aufgefalit werden kann, welche wir Primziige nennen. Diese sind
dadurch charakterisiert, dafl sie mit Ausnahme des Ausgangspunktes zu
dem Restzug, welcher nach ihrer Entfernung aus dem Zuge entsteht,
fremd sind, aber selber keine derartige Zerfillung in Teilziige gestatten.
Die Zerfillung ist eindeutig. Diese Tatsache ist einfach ein anderer Aus-
druck fiir den Umstand, daB ein Zug, aus welchem man die Ecke 4 samt
allen mit ihr verkniipften Kanten heraushebt, entweder ein Baum, eine
Summe von Biumen, eine Summe von Biumen und isolierten Punkten
oder von isolierten Punkten allein wird.

AnschlieBend wird die Frage nach der Existenz von Teilziigen be-
ziiglich der Ecke A vollstindig durch die Feststellung beantwortet, daf3
in einem Primzug je 2v von 4 ausgehende Kanten immer genau einen
Teilzug bestimmen.

1) Oystein Ore: A problem regarding the tracing of graphs, ElL Math.
Bd. VI, Nr. 3, p. 49—53, 1951.

%) Wir sagen, @ sei die direkte Sumome von G,, G,, ..., @,, wenn: 1. die G; paarweise
kantenfremd sind und 2. die Vereinigungsmenge der Ecken bzw. der Kanten der G, ge-
rade, die Ecken bzw. die Kantenmengen von @ sind.
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Weiterhin wird die Feststellung von Ore, dal jeder Zug als direkte
Summe von Zyklen aufgefafit werden kann, in der Weise verschirft,
daBl wir angeben, wie viele solche Zykelbasen ein bestimmter gerade vor-
liegender Zug haben kann und wie diese Anzahlen mit der Zerfillung
in Primziige zusammenhéngen.

SchlieBlich werden einige Anwendungen der vorangehenden Resultate
auf andere Fragen der Graphentheorie gemacht. Insbesondere werden die
Resultate, welche J. Senior®) letzthin bewiesen hat, auf kiirzerem Wege
hergeleitet. Die erwéhnte Arbeit bezieht sich auf die Frage, unter welchen
Voraussetzungen irgendeine Menge von positiven ganzen Zahlen als Menge
der Grade der Ecken eines beliebigen bzw. eines schlingenlosen oder eines
zusammenhidngenden oder eines zusammenhingenden und schlingen-
losen Graphen aufgefafit werden kann, und unter welchen speziellen Vor-
aussetzungen ein einziger Graph der letzten Art durch die Zahlenmenge
bestimmt sei.

Die Beweise bestehen im wesentlichen in Konstruktionsvorschriften
fiir Graphen aller Klassen, die in Betracht gezogen werden. Diese Vor-
schriften kénnen sich, wenigstens in den Fillen, wo die Anzahl der Ele-
mente in den betrachteten Zahlenmengen nicht sehr gro8 ist, dazu eignen,
die Anzahl der verschiedenen zu diesen Zahlenmengen gehorigen Graphen
festzustellen, falls man gewisse auf der Hand liegende Modifikationen
dieser Vorschriften vornimmt.

I.

1. Ein Punkt P durchlaufe einen endlichen zusammenhédngenden Euler-
schen Graphen G von einer Ecke K ausgehend ganz oder teilweise, in-
dem er dabei nur an die Vorschrift gebunden ist, keine Kante mehr als
einmal zu durchlaufen. Jede Ecke, die er auf seinem Wege erreicht, kann
er auch wieder verlassen, mit Ausnahme von &, die er ein letztesmal auf
einer noch nicht durchlaufenen Kante schlieflich erreichen mufi. Wir
nennen jede solche Durchlaufung abgeschlossen beziiglich E. Gibt es eine
abgeschlossene Durchlaufung, bei der jede Kante von G durchlaufen
wird, so hei3t diese wollstindig beziiglich E.

Es stellt sich nun die Frage, wodurch diejenigen Eulerschen Graphen
charakterisiert sind, welche mindestens eine Ecke A4 besitzen derart, daB
jede abgeschlossene Durchlaufung beziiglich 4 auch vollstindig ist. Wir
wollen jeden solchen Graphen einen vollstindigen Zug beziiglich A oder
einfach Zug nennen. A4 heifit sein Anfangspunkt.

3) Senior, James K.: Partitions and their representative graphs, Am,
J. Math. 73, 663—689 (1951).
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Wenn wir jeder Ecke eines Zuges Z4) ihren halben Grad als Vielfach-
heit zuordnen, so bewirkt jede vollstindige Durchlaufung beziiglich 4
eine eineindeutige Abbildung von Z auf den Einheitskreis K%). Bei die-
ser Abbildung folgen sich die Bilder der Ecken sukzessive. Wiirden dabei
zwei Bilder einer Ecke E* zwischen zwei aufeinanderfolgende Bilder von
A zu liegen kommen, so bestiinde in Z ein Zykel, der die Ecke 4 nicht
enthdlt. Dann konnte man den zwischen den beiden Bildern von E*
liegenden Bogen auf K in einen Punkt zusammenziehen, diesen als Bild
von E* betrachten und wiirde der neuen Abbildung eines Teiles der Kan-
ten und Ecken von Z entsprechend eine abgeschlossene Durchlaufung
von Z erhalten, die nicht vollstindig wire. In einem Zug Z beziiglich A
muf3 daher jeder Zykel die Ecke A enthalten.

Nun sei G ein Eulerscher Graph, der eine Ecke A besitzt, welche in
jedem seiner Zykel enthalten ist. Wir fithren eine abgeschlossene Durch-
laufung von G beziiglich A durch und entfernen nachher alle durch-
laufenen Kanten und auch alle Ecken, von denen nur durchlaufene Kan-
ten ausgehen. Es bleibt ein Eulerscher Restgraph G iibrig. Wenn G'nicht
der Nullgraph wire, so enthielte er mindestens einen Zykel, und dieser
konnte entgegen der Voraussetzung nicht durch A gehen. Daher gilt:

Genau jeder Eulersche Graph, welcher eine Ecke besitzt, die auf allen
seinen Zykeln liegt, ist ein Zug.

Bemerkung: Die Uberlegungen gelten unverindert fiir unendliche
Eulersche Graphen endlichen Grades.

2. Aus diesen Feststellungen ergeben sich unmittelbar die folgenden
Konsequenzen:

1. 4 ist eine Ecke maximalen Grades in Z.

2. Ist der Grad von 4 = 2n, so ist Z die direkte Summe von n Zyklen.
Diese sind im allgemeinen nicht eindeutig bestimmt. Wir nennen ein
solches System von Zykeln eine Basis von Z.

3. Zwei Zykel C' und 0" in Z haben auBler 4 hochstens eine weitere Ecke
gemeinsam, wenn sie keine gemeinsame Kante haben. Sind gemein-
same Kanten vorhanden, so bilden diese einen zusammenhingenden
Kantenzug, der 4 nicht als inneren Punkt enthilt.

4. Es gibt in Z hochstens zwei Ecken maximalen Grades. Wenn es deren
zwei gibt, heilt Z Strange. Jeder Zykel enthilt beide. ¢)

4) Z bezeichnet kiinftig immer einen Zug.

5) Aus dieser Abbildung liest man die charakteristische Eigenschaft in der Struktur
der Ziige fast unmittelbar ab. Ore leitet sie aus Satz 2, 3 und 4 und einem weitern Satz ab.

) Ore Satz 5 und Satz 6. )
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5. Durchschneidet man jede von A ausgehende Kante in einem inneren
Punkt und entfernt hierauf den Stern mit der Ecke 4 als Zentrum
und den von ihr ausgehenden Kantenstiicken als Kanten, so entsteht
aus dem Zug ein kreisloser Graph, der zusammenhingend sein kann
oder auch nicht.

6. Dasselbe Resultat hat im wesentlichen auch die Entfernung des Sterns,
welcher A4 als Zentrum besitzt und die von dieser Ecke ausgehenden
Kanten als Kanten. Es konnen dabei aber als Teile des Restgraphen
isolierte Punkte entstehen.

7. Verbindet man jede Ecke ungeraden Grades in einem Baum durch eine
ungerade Anzahl von Kanten mit einem festen Punkt 4, den man als
neue Ecke auffaBt, so entsteht ein Zug beziiglich A4.7)

Verfahrt man in einer Summe von getrennten Biumen und isolierten
Punkten mit den ersteren gleich wie eben und verbindet man jeden
isolierten Punkt durch eine gerade Anzahl von Kanten mit 4, so ent-
steht wiederum ein Zug.

Daraus folgt, dafl jede der beiden nachstehenden Konstruktionen
jeden Zug liefert.

Man geht aus von der Gesamtmenge {B} aller endlichen Summen von
paarweise fremden Bdumen, deren innere Ecken geraden Grades sind,
und verbindet in jedem von ihnen die Ecken 1. Grades E* mit einem
festen Punkt A auBerhalb jedes Baumes, worauf man die Ecken E*
ihrer Eigenschaft als Ecken entkleidet. Diese Zuordnung zwischen den
Elementen aus {B} und denjenigen der Gesamtheit {Z} der Ziige ist
eineindeutig.

Man zieht in analoger Weise die Menge {B; P} der Summen aller paar-
weise fremden Bdume und isolierten Punkte in Betracht und ver-
fahrt, wie unter (7) beschrieben wurde. Diese Zuordnung der Ele-
mente aus {B; P} zu denen aus {Z} ist nicht eineindeutig.

Wenn der Grad von 4 = 2n ist, so sagen wir: der Zug Z habe den
Grad n.

3. Ehe wir zu der Anwendung der Ziige fiir die Losung gewisser spe-
zieller Fragen der Graphentheorie iibergehen, soll einiges abgeleitet wer-
den, was die Struktur der Ziige betrifft.

Greift man zwei von 4 ausgehende Kanten heraus, so entspricht diesen
genau ein Zykel von Z, falls Z aus einem Baum gewonnen werden kann.
Andernfalls kann es sein, dafl zwei beliebigen von 4 ausgehenden Kanten
kein Eulerscher Teilgraph von Z entspricht.

7) Ore Satz 5 und Satz 6.
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Wir stellen uns nun die Frage: Unter welchen Voraussetzungen be-
stimmen 2v beliebige von 4 ausgehende Kanten einen Teilzug Z, von Z,
ferner: ist dieser Teilzug, wenn er existiert, eindeutig bestimmt? Pri-
ziser: wann gibt es eine Teilmenge M der Kanten und Ecken von Z, so
daBl diese mit 4 und den 2» von dieser Ecke ausgehenden Kanten einen
Zug beziiglich 4 bilden, und wann ist diese Menge eindeutig bestimmt ?

4. Um einen genaueren Einblick in die Verhéltnisse zu bekommen, ist
es niitzlich, zundchst von einer Basis B des Zuges Z,8) auszugehen. Es
ist moglich, da gewisse Zykel aus B zu ihren Komplementirziigen be-
ziiglich Z, fremd sind. Fremd heiflt: sie haben nur 4 gemein. Wir bilden
die direkte Summe Z; all dieser Zykel und wenden unsere Aufmerksam-
keit dem Komplementidrzug Z,_; von Z,; beziiglich Z, zu. Diejenigen
Zykel aus B, welche nicht in Z, sind — im extremen Fall alle —, bilden
eine Basis B’ von Z,_;. Kein Zykel aus B’ kann zu seinem Komplemen-
tarzug beziiglich Z,_; fremd sein. Man betrachtet daher die simtlichen
direkten Summen von je zwei Zyklen aus B’, scheidet unter ihnen die-
jenigen aus, welche zu ihren Komplementirziigen beziiglich Z, ; fremd
sind, bildet deren Summe Z, und deren Komplementérzug Z, ; , be-
ziiglich Z,,_;. Es ist zu bemerken, daf} die Paare, welche Z, bilden, ihrer
Definition gemill gegenseitig fremd sein miissen. Diejenigen Zykel aus
B, welche weder in Z, noch in Z; sind, bilden eine Basis B” von Z,,_,_,.
Es ist klar, dal man nun die Gesamtheit der Summen von je dreien
unter den Zykeln aus B” und deren Komplementirziige beziiglich Z,,_;_,
im selben Sinne klassifiziert wie eben die Paare von Zykeln usw. Spé-

2

ziige zerfillt, die paarweise fremd sind, oder man hat festgestellt, da@3
eine derartige Zerfiallung nicht moglich ist. Im zweiten Fall nennt man
Z, einen Primzug, im ersten Fall heiB3t jeder der Teilziige so. Wir werden
sehen, dal diese, vorldufig von einer speziellen Basis aus gewonnenen,
Primziige von dieser Basis nicht abhéngen, sondern einen invarianten,
die Struktur von Z, bestimmenden Charakter haben. IThre Bedeutung
liegt in dem

testens nach [ZZ—] Schritten hat man Z, auf diese Weise entweder in Teil-

Satz: Jeder Zug kann genau auf eine Weise in Primzitge zerlegt werden.

Ehe wir dies beweisen, definieren wir ganz allgemein: Z heift Primzug
von Z, wenn er die beiden folgenden Eigenschaften besitzt.

8) Der Index<¢inZ; bedeutet, wenn nichts anderes gesagt ist, kiinftig immer den Grad
des Zuges.
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1. Z ist zu seinem Komplementirzug Z' = Z — zZ fremd.
2. Z besitzt keinen Teilzug Z*, so daf Z* zu Z —Z* fremd 7st.
Der Beweis des vorangehenden Satzes kann nun gefiihrt werden, wie

folgt.

Beweis : Wir sahen, da3 durch das Herausheben des Sterns mit 4 als
Zentrum aus Z ein Graph entsteht, welcher zykelfrei ist, also entweder
ein Baum, eine Summe von Bidumen, ein isolierter Punkt oder eine Summe
von Bdumen und Punkten oder von Punkten allein. Die Primziige sind
nun diejenigen Ziige, welche man erhilt, wenn man jeweils die von A4
nach den Ecken ungeraden Grades eines Baumes oder nach einem iso-
lierten Punkte des Restgraphen @' laufenden Kanten wieder einsetzt. Die
Zerfillung eines Zuges Z in Primziige Z1, Z% ... Z¢° zieht nidmlich die
Zerlegung seiner Ecken exklusive 4 in ebensoviele Teilmengen M|,
M, ... M, nach sich, derart, dal zwei Ecken E’ und E”, die verschie-
denen Teilmengen angehoren, nur durch Kantenwege iiber 4 miteinan-
der verkniipft sind.

Umgekehrt fiihrt nur dann jeder Kantenweg zwischen zwei Ecken, in
Z iiber A, wenn sie getrennten Teilen von G’ angehoren.

Damit ist gezeigt: jeder Zug ist eindeutig als direkte Summe von Prim-
zitgen darstellbar. Diese sind eineindeutig den paarweise fremden Teil-
graphen zugeordnet, in welche der Restgraph Q' zerfdillt, der aus Z durch die
Entfernung von A und den von dieser Ecke ausgehenden Kanten entsteht.

Man kann nun die Menge {k} der von A ausgehenden Kanten nach
den Primziigen ordnen, welchen sie angehoren. Dadurch erhidlt man e
Kantenmengen {k},; {k}, ... {k},, wenn Z e Primziige besitzt. Die zu
{k};; 1+ =1, 2... e gehorigen Kanten sollen in irgendeiner Reihenfolge
mit k,, k;s, k;5 ... bezeichnet werden.

5. Wir konnen jetzt unmittelbar erkennen, wann einer Teilmenge
{k}* der von A ausgehenden Kanten ein Teilzug von Z entsprechen kann.
Das ist offensichtlich hochstens dann der Fall, wenn von den Kanten
in {k}* zu jeder der Mengen {k}, entweder eine gerade Anzahl oder keine
gehort. Wir werden zeigen, dal unter diesen Voraussetzungen zu jeder
Menge {k}* genau ein Teilzug von Z gehort. Der Beweis ist gefiihrt,
wenn wir bewiesen haben: In jedem Primzug bestimmen 2v von seinem
Anfang A ausgehende Kanten eindeutig einen Teilzug Z,.

Wir haben bereits gesehen, da3 zwei beliebige Kanten in einem Prim-
zug genau einen Zykel bestimmen, da es zwischen zwei beliebigen Ecken
eines Baumes genau einen Weg gibt. Wir setzen als bewiesen voraus, da@
es zu 2m von A ausgehenden Kanten immer genau einen Teilzug Z,,
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gibt, und werden folgern, da8 der Satz auch fiir 2 (m 4+ 1) Kanten rich-
tig bleibt.

Zunichst zeigen wir, daB es zu einer Menge M von 2m + 2 mit 4 in-
zidenten Kanten hochstens einen Teilzug Z' geben kann, und setzen zu
diesem Zweck voraus, es gebe deren zwei Z’' und Z”.

Es ist ausgeschlossen, dal Z' und Z” einen gemeinsamen Zykel C be-
sitzen. Denn nach unserer Induktionsvoraussetzung miBten die Ziige
Z' —C und Z” — C identisch sein und somit auch die urspriinglichen.

Nun sei (C;,Cy...0,, .,) = B irgendeine Basis des Zuges Z';
(€%, ... Cr..) = B’ eineBasis von Z”, M die Menge der mit 4 inziden-
ten Kanten. Der Zykel C;, aus B’ enthalte die Kanten k,, und k,, aus M.
k;, liegt auch in einem Zykel C; aus B”, und dieser enthilt auSerdem
die Kante k; aus M. Diese liegt ihrerseits wiederum mit einer Kante %,
in einem Zykel C; aus B’ usw. In der so gebildeten Kette von Zykeln,
die abwechslungsweise zu B’ und B’ gehoren, existiert ein Zykel Cf“ ,

. welcher k; enthilt. Man kann nun einen Punkt von derjenigen Ecke £’
aus, in welcher sich C;, und C, gabeln, auf C; laufen lassen bis zu der-
jenigen Ecke E” 3 A, in welcher er O}, trifft, hierauf auf C;  bis zu der
Ecke E” # A, wo dieser sich mit C, vereinigt usw., bis man auf O;'“ zum

Zykel C; zuriickkehrt. Auf C;, wandre der Punkt, ohne iiber 4 zu lau-
fen, nach E' zuriick. Es gibe daher in Z einen geschlossenen Kanten-
weg, welcher 4 nicht enthélt, im Widerspruch zu der charakteristischen
Eigenschaft des Zuges.

Daf} die Menge M einen Teilzug Z bestimmt, kann man etwa auf fol-
gende Weise einsehen. Es sei M * eine Teilmenge von M, aus 2m Kanten
bestehend. M* bestimmt eindeutig einen Teilzug Z*; den beiden Kan-
ten k' und %”, welche M — M* ausmachen, entspricht eindeutig ein
Zykel C in Z,,. Sind Z* und C kantenfremd, so ist die direkte Summe die-
ser beiden Ziige der postulierte Zug. Andernfalls hat C mit einem oder
mehreren Zykeln irgendeiner Basis von Z* je einen Kantenzug — even-
tuell eine einzelne Kante — gemein. Die Kanten dieser Ziige und auch
ihre inneren Ecken, falls sie vom zweiten Grad beziiglich Z* sind, 1483t
man aus der Summe weg und erhélt dadurch den gewiinschten Zug.

Wir haben also gezeigt:

In jedem Primzug bestimmen 2v beliebige von A ausgehende Kanten ein-
deutrg einen Teilzug. Ist Z nicht prim, so lautet der entsprechende Satz:
Wihlt man 2v von A ausgehende Kanten des Zuges so, daf jedem Primzug
eine gerade Anzahl oder keine angehort, so bestimmen sie eindeutig einen
Teilzug Z,. Andere Teilziige mit dem Anfangspunkt A4 existieren nicht.
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6. Wie wir bereits festgestellt haben, kann jeder Zug als direkte Summe
von n Zykeln C,, C, ... C, aufgefafit werden. Wie viele verschiedene
derartige Basen erster Ordnung gibt es zu einem Zug Z,?

Es ist leicht, diese Frage in zwei extremen Fillen zu beantworten.

1. Z, sei prim und besitze auller 4 noch eine Ecke 2n-ten Grades. Wihlt
man dann eine beliebige von 4 ausgehende Kante %, so bestimmt diese
mit irgendeiner anderen k; aus {k} eindeutig einen Zykel C,. Alle diese
Zykel sind verschieden. Entfernt man aus Z, irgendeinen Zykel C;, so
bleibt ein Zug Z’ _, iibrig, der wiederum prim ist. Fiir alle diese Zykel
ist ohne Zweifel die Anzahl der Basen dieselbe. Jede Basis von Z7 _, gibt
mit C; zusammen eine Basis von Z,. Diese Basen sind alle verschieden.
Sie sind auch verschieden von denjenigen, welche aus Z¥ _ | und C, hervor-
gehen, fiir beliebiges k& = j, und man erhélt durch den angedeuteten Pro-
zel} jede Basis von Z,. Die Anzahl der verschiedenen Basen von Z, ist
daher (2n — 1) x Anzahl der Basen von Z/ _, . Die letztere ist nach der-
selben Schluflweise = (2n — 3) X Anzahl der Basen von Z; _,; usw., so’
dafl man schlieflich erhilt

Anzahl der Basen von Z, =1II (2n — 2v + 1) = a;, .
1

Nun sei Z, keine Strange und C,,C, ... C, eine Basis. Zu den C, ge-
horen die Kantenpaare k,; und k,, aus {k};+=1;2 ... n. Zu diesem
System von Kantenpaaren gibt es aber auch eine Basis in der Strange
Z)*), die aus A und einer zweiten Ecke A’ und {k} besteht. Sind 2 Basen
zu Z, verschieden, dann auch die entsprechenden zu Z* . Der Zug Z,
kann also hochstens a; Basen besitzen. Wir werden zeigen, dafl es weniger
sind.
Zerfillt Z, in » Primziige, so ist die Anzahl seiner Basen 1. Weiter
folgt: zerfallt Z, in ¢ Prim-Strangen Z,,,Z,, ... Z,;, so existieren
=i v=n
(*) a, = MH II'(2n, — 2v + 1) verschiedene Basen. Es gilt also a,,<ay,.
p=1 y=1
7. Nun sei Z, prim, aber keine Strange. Entfernt man aus Z, einen
Zykel C,, so entsteht ein Zug Z,,_,. Z,_, ist prim, wenn (', durch hoch-
stens eine Ecke von hoherem als zweitem Grade geht. Andernfalls zer-
fallt er in Primziige. Infolge unserer Voraussetzung mufl Z, mindestens
zwei Ecken E’' und E” enthalten, deren Grad groBer ist als 2. E’ kann
mit E” in Z durch einen Kantenweg w, verbunden werden, welcher A
nicht enthilt. Von E’ und auch von E” fiihrt je ein Weg w, bzw. w; nach 4.

9) Das Zeichen Z* bedeutet im folgenden immer eine solche Strange.
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Diese Wege haben aufler £’ bzw. E” keine Punkte mit w, gemein. Daher
existiert in Z, mindestens ein Zykel C, so dal der Zug Z,,—C in mehrere
Primziige zerfillt. Sind diese Primziige Strangen, so kann man nach (*)
sofort die Anzahl der Basen von Z, angeben. Sie ist kleiner, als wenn Z,,
eine Strange wire. Sind die Primziige alle oder zum Teil keine Strangen,
so besitzt jeder von ihnen hochstens so viele Basen wie eine Strange vom
gleichen Grad. Damit ist unsere Behauptung bewiesen, d. h. fiir die Basen-

n
anzahl a, evnes Zuges gilt die Ungleichung 1 < a, < II, 2n — 2v 4+ 1) =
1

a, . Das Gleichheitszeichen wird links nur angenommen bei einem Zug,
der aus » sonst punktfremdem Zykeln durch A besteht, das Gleichheits-
zeichen rechts nur fiir Strangen.

Daf} nicht jede Zahl 1 < a < a; Basenanzahl eines Zuges Z, ist, kann
leicht erkannt werden. Wir betrachten zu diesem Zweck den Zug Z? ,
welcher auller A nur zwei Hcken von hoherem Grad hat, E' vom Grad
2n — 2 und E” vom Grad 4. Nun wéhlt man in 4 eine Kante k, durch
die nur Zykel C, laufen, welche E” enthalten. Nach Entfernung eines
Zykels C, aus Z bleibt in zwei Fillen eine Strange vom Grade n — 1,
in den iibrigen 2n — 3 Fillen je ein Zug, welcher als Primziige eine
Strange vom Grad » — 2 und einen Zykel besitzt. Die Anzahl der ver-
schiedenen Basen ist daher

n—1 n—2

a=2IT2M—1)—2W+1)+2n—3)T(2n—2) — 2+ 1)

n-—1

=3I(2n—1)—2v+1)=3d]}
1

n—1°

Besitzt der Primzug _Z—,; mehr als zwei Ecken hoheren Grades, so folgt
analog zu S. 88, daf} jeder Basis von Z, eine von Z° entspricht, je zwei

verschiedenen zwei verschiedene. Das trifft erst recht zu, wenn Zn nicht
prim ist. Also ist keine zwischen 3a;, _, und a enthaltene Zahl Basenzahl
eines Zuges n'" Grades.

Betrachtet man andererseits einen Zug Z, , welcher auBer A eine ein-
zige Ecke hoheren, ndmlich 4. Grades hat, so stellt man unmittelbar fest,
daB die Anzahl seiner Basen a, = 3 ist. Es gibt also keinen Zug Z, mit
zwel Basen.

8. Diese Umsténde legen die Frage nahe, welche Zahlen zwischen 1
und a; Basenzahlen von Ziigen n. Grades sein konnen. Unter der Basen-
zahl eines Zuges ist die Anzahl seiner verschiedenen Basen zu verstehen.
Um diese Frage zu beantworten, stellen wir vorldufig einige Relationen
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zwischen dem Grad eines Zuges und den Graden seiner Ecken auf. Zu-
nichst sei der Zug n. Grades Z, prim. Wir entfernen aus Z, 4 samt einem
Teil jeder Kante, welche von dieser Ecke ausgeht. Es bleibt ein Baum B,
mit 2n» Endkanten iibrig. In B, hebt man alle Ecken 2. Grades als Ecken auf
und erhilt einen Baum B. E,, K, ... E, = (E) seien die innern Ecken in B.
Unter den Ecken in (£) gibt es mindestens eine, welche mit einer ein-
zigen der anderen durch eine Kante k, in B verbunden ist. Die gegen-
teilige Annahme wiirde zur Existenz eines Zykels in B fiihren. #, sei
eine dieser Ecken, ihr Grad 27,. Von K, gehen 2n, — 1 Endkanten aus.
Nun entferne man aus B F, und alle von E, ausgehenden Endkanten
samt Endpunkten sowie einen Teil der von dieser Ecke ausgehenden
Kante k,. Es entsteht ein Baum B’. Alle Endkanten von B’ mit Aus-
nahme einer einzigen, sind auch Endkanten von B. Aus B’ gewinnt man
durch dasselbe Verfahren einen Baum B”. Die eliminierte Ecke sei E,,
ihr Grad 2n,. Die Anzahl der von ihr ausgehenden Endkanten ist 2n, — 1.
Alle Endkanten von B” mit Ausnahme einer einzigen sind Endkanten
von B'. So fortfahrend, kommt man nach » — 1 Schritten zu einem Baum
B"V | welcher eine einzige innere Ecke etwa E, vom Grad 2u, hat.
BV besitzt 2n, Endkanten, davon sind nach dem Vorangehenden
r — 1 nicht Endkanten von B. Daraus folgt die Relation
r

2n+r—1=23 2n,— 1)+ 1 oder I. n4+r—1=2n,
1

1

und ferner, wenn man alle innern Ecken von B einbezieht,
m
I'. n4+m—1=3n,.
1

Zerfallt Z,, in p Primziige, so ergeben sich aus den vorangehenden Glei-
chungen unmittelbar die Relationen

=
t )

P >
ot X —1)=2X%
1 k=1 1

m
Ny,; bzw. II'. n +mnr — p = X' n,,
1

Il
-

wobei in II 7, und n,; die analoge Bedeutung fiir den k" Primzug haben
wie 7 und », fiir Z, in I, und in IT', m die Anzahl der Ecken exklusive
A in Z,; n; der Grad der Ecke K, ist.

9. Die beiden Relationen erlauben uns bereits, die Frage nach den
Basenzahlen vollsténdig zu beantworten. Wir gehen aus von einem Prim-
zug Z, vom Grade n. (E) soll dieselbe Bedeutung haben wie auf §.10
Zeile 5 und E, wiederum eine der Ecken hoheren Grades sein, die mit
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einer einzigen ihrer Art durch eine Kante verbunden ist. Entfernt man aus
dem Z, entsprechenden Baum B alle Endkanten aus E, bis auf eine, so
erhidlt man einen Baum B*. Diesem entspricht ein Zug Z° vom Grad
n — n; + 1. Da man 2n, — 1 Moglichkeiten hat, eine Kante zu behal-
ten, so bekommt man 2n, — 1 verschiedene Teilziige vom Grade
n — n; + 1. Andererseits entspricht den entfernten 27, — 2 Kanten ein
Teilzug Z, _, von Z,. Z, _, ist eine Strange. Unsere Uberlegungen zei-
gen, dafl Z, auf 2n, — 1 Arten als direkte Summe von zwei Teilziigen
Z° und Z:1—1 dargestellt werden kann?). In jedem Paar ist die direkte

Summe jeder Basis von Z°® mit jeder Basis von Z: _, eine Basis von Z,,.
n;—1

Die Anzahl der Basen von Z _, ist H 2 (fn1 — 1) — 2y + 1). Somit
gilt die Gleichung: Basisanzahl von Z = H (2ny; — 2v + 1) X Basis-

1
anzahl von Z°. Indem man auf Z° dieselben Uberlegungen anwendet

wie auf Z, und so fortfiahrt, erhilt man fiir die Basisanzahl a, von Z,
=r v=n4 t=m v=n4
II1. a, = II IT 2n, —2v+1)=1II ITI (2n; — 2v + 1)
i=1 v=1 i=1 vy=1

oder m

r r m
a,=I1I2n)"! | 2n,!'=1I2n,)"! | 2In,;!
1 1 1 1
Wie man sieht, sind die Ecken zweiten Grades fiir die Basenanzahl be-
langlos, was natiirlich auch unmittelbar der Anschauung entnommen
werden kann. Die n; miissen der Bedingung I bzw. I' geniigen, die wir noch

1nderFormI*n——l-2(n——l) bzw., I*n —1=3 (n,— 1)
schreiben. 1

10. Es ist leicht zu zeigen, daBl die unter III dargestellten Zahlen alle
als Basenzahlen von Primziigen wirklich vorkommen. Zu diesem Zwecke
kann man von einem Kantenzug /7 mit r inneren Ecken E, ausgehen
und in jeder Ecke E, noch 2n, — 2 Endkanten einfiigen. Dadurch er-

r
hilt man einen Baum mit 3 2(n; — 1) + 2 = 2n Endkanten und
1

daraus einen Zug Z vom Grad n. Die Eckengrade der Ecken E, von Z,
geniigen der Relation I*. Thre Basenzahlen sind fiir jedes » und jedes
System n,,¢=1,2...r, durch IIT bestimmt. Man kann daher sagen:

Basenzahlen der Primziige n. Grades Z, sind genau die Zahlen a, =
r r

IT 2n,)! |21 n,! , wobei die r natirlichen Zahlen n,> 2 sein und die
1 1 .

1) Die Basenzahlen der Z° und der Zj, ,—1 héngen nicht von der Wahl der entfernten
Kanten ab.
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r

Relation m — 1 = 3 (n, — 1) befriedigen miissen. Man kann auch die
1

Ecken vom Grade 2 mitzéhlen. Fiir diese ist », = 1. Im Produkt fiir
a,, das man nun von 1 bis m zu bilden hat, liefern sie Faktoren 1, in der
nachfolgenden Summe Summanden Null.

Wenn Z in p Primziige zerfillt, so gilt fiir jeden von ihnen die Glei-
chung ITI. Man erhilt als Basenzahlen deshalb die GroBen

m m m
a,=1I(2n,)! | 2IIn,! mit der Bedingung n — p = 3 (n, — 1)

1 1 1
wobei wieder m in die Anzahl der Ecken exklusive 4 ist und »; ihre

Grade.

11. Wir ziehen nun zunéchst noch einige Folgerungen aus den Rela-
tionen II bzw. II' S. 12 fiir einen Zug. Zunéchst folgt, daB die Anzahl
der Ecken hoheren als zweiten Grades durch den Grad des Zuges und die
Anzahl seiner Primziige beschrinkt wird.

Es existiert hochstens eine Ecke vom Grad 2, n< h << 2n. Wenn
n gerade ist, existieren hochstens drei Ecken vom Grad n. Diese extre-
male Anzahl wird nur fiir » = 4 erreicht. Fiir alle hoheren Grade sind
deren zwei moglich, wenn Z, prim ist, zu denen dann noch eine Ecke
vierten Grades tritt. Ist » =% — 1, so sind sdmtliche Ecken von Z,
auller 4 zweiten oder vierten Grades. Die Anzahl der Ecken zweiten
Grades ist immer beliebig. Die Relationen II bzw. IT’ liefern auch un-
mittelbar einen ersten Anhaltspunkt dafiir, ob ein etwa durch sein In-
zidenzschema gegebener Eulerscher Graph ein Zug ist. Wenn 2n maxi-
maler Eckengrad ist, so mul die 2 (n, — 1) iiber die anderen Ecken
erstreckt, kleiner als n sein. Leider ist dies kein hinreichendes Kriterium.

II.

1. In einer kiirzlich erschienenen Publikation stellt und beantwortet
Herr I. Senior!!) die folgenden Fragen:

Es sei II:p, =2 p,=... = p,'?) eine Menge von m ganzen positiven
Zahlen. Welches sind die notwendigen und hinreichenden Bedingungen
hinsichtlich /7, damit die folgenden Klassen von Graphen nicht leer sind ?

A. DieKlasse der Graphen @ mit den Ecken E;, vom Grad p,, 7 = 1, 2...m.

B. Die Unterklasse von A, welche aus schlingenlosen Graphen besteht.

11) Vergleiche Anmerkung 2, S, 81.
12) Die Zahlen jeder Menge IT sollen kiinftig immer in abnehmender Folge geordnet sein.
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C. Die Unterklasse von 4, welche aus zusammenhéngenden Graphen be-
steht.

D. Die Klasse der gemeinsamen Elemente aus B und C.
Dazu tritt noch die Frage

E. Unter welchen Voraussetzungen enthilt die Klasse D ein einziges
Element ?

Die Diskussion dieser Fragen wird an entscheidender Stelle wesentlich
kiirzer und gleichzeitig vollig durchsichtig, wenn man sich dabei der
Eigenschaften der Ziige bedient.

2. Die Anwort auf die Frage 4 folgt unmittelbar aus der Bemerkung,
daf} die Gradsumme jedes Graphen um 2 herabgesetzt wird, wenn man

aus ihm eine Kante entfernt (samt Endpunkt, wenn es eine Endkante ist).
m

Daher mufl 3 p, = 2.8 eine gerade Zahl sein. Daraus schlieft man wei-
1

ter, daBl die Anzahl der ungeraden Zahlen in /7 gerade sein mufl. Sind
diese beiden Voraussetzungen hinsichtlich I7 erfiillt, so ist es umgekehrt
leicht, wenigstens einen Graphen G, mit einer Eckenmenge E,, E, ... E,,
anzugeben, welcher zur Klasse 4 gehort. Man wihle nach Belieben
m Punkte E,, ordne 2« unter ihnen zu Paaren, wenn in /7 2% ungerade
Zahlen vorkommen, verbinde die Punkte eines jeden Paares und lege

durch jeden Punkt X, [%] Schlingen.

Zwei weitere einfache Bemerkungen fiihren leicht zu notwendigen Be-
dingungen fiir die Klassen B, C' und D.
2. In einem Baum gilt die Gleichung

1Yp,—m+1=8—-—m+41=0,
1

wobei p,, m und S dieselbe Bedeutung haben wie oben. Jeder zusam-
menhingende Graph kann aus einem Baum durch Verbindung von
Ecken gewonnen werden. Daher gilt fir jeden zusammenhingenden
Graphen, also fiir die Klasse C

m
I. F,I)=8—m+1>20; S=1X p,.
1
2", Gehen alle Kanten eines schlingenlosen Graphen von der Ecke E,
m
aus, so ist p,= Y p, oder F,(I[I)=8 — p, =0. Sind nicht alle

2
Kanten von G mit E, inzident, so mull daher § — p,> 0 gelten. Not-
wendig fiir die Existenz von Graphen der Klasse B ist also

II. FI(H)=%Zpi—p1=S~p1>O.
1

93



Aus den Definitionen von F; und von F, erkennt man unmittelbar:
Die beiden Relationen eines jeden der folgenden Paare von Ungleichungen,
F,(IT)<0 und F,(IT) <0, bzw. F,(I]) <0 und F,(I])<0, sind nicht
mitesnander vertrdglich.

Ferner folgt aus dem Vorangehenden:

a) (2, 1)18) Jeder Menge IT mit F,(II) <0 entspricht genau ein zusam-
menhdingender Graph mit minimaler Schlingenzahl. Gilt F, (II) = 0 so st
der Graph schlingenlos.

Faflt man die beiden vorangehenden Bedingungen zusammen, so hat
man als notwendige Bedingung fiir die Existenz der Klasse D

1. F,(1)>0; F,(I1)>0.

3. Wir werden sehen, dall diese Bedingungen auch hinreichend sind.
Fiir C ist das leicht zu erkennen. Es sei p, > ... > p,>1,p,,, = 1.
Dann folgt aus

S—m+1>0 28 —2m+2>0
oder

r

Zr'Pi+m—7‘—2m+2=Z'(Pi~—2)—l—2——(m——r)>0.
1

1

Wenn man die Ecken E,, E, ... E, der Reihe nach verbindet, so ge-
niigt die restliche Gradsumme 3 (p, — 2) + 2 dieser Ecken minde-
1

stens zur Verkniipfung mit den m — r Ecken ersten Grades. Falls
F, (II) = 0 ist, fiihrt die eben erwihnte Konstruktion zu einem Baum B.
Schneidet man jede Kante E,E; ,; 1 <i¢<r — 1 in einem inneren
Punkte durch, so zerfillt B in r Sterne mit den Zentren X,. Fiigt man
diese Sterne irgendwie wieder zusammen, indem man mit zweien be-
ginnt, in jedem eine Endkante wihlt, deren Endpunkte verschmilzt
und gleichzeitig als Ecken aufhebt, dann einen dritten Stern nimmt und
diesen auf dieselbe Weise mit dem ersten oder dem zweiten verkniipft
usw., kommt man wieder zu einem Baum, welcher II entspricht. Ist
r> 3 und hat mindestens ein Stern 3 oder mehr Kanten, so kann man
auf diese Weise immer einen Baum B’ konstruieren, der von B verschie-
den ist.

(d') Ist dagegen p, = 2, so erhilt man immer einen Streckenzug aus
r + 2 Kanten.

13) Mit den in () hinter die Zeichen a), b) ... gesetzten Zahlenpaaren indiziert Herr
Senior dieselben Resultate.
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Ist r = 3 und p, # p,;, so ist entweder der Baum, welcher der Ecken-
folge E,E,E, oder derjenige, welcher der Folge K, E, E, entspricht, von
demjenigen verschieden, welcher zu K, E, E, gehort.

b) Ist dagegen r = 3 und p, = py, F, ([I) = 0, so ist der Baum ein-
deutig bestimmi.

3'.¢)(2,2) m=3 F,(I[)<0. Die eindeutig bestimmten Losungen
der beiden Gleichungen p’ + p” = p, und p, — p' = p; — p” sind ganz
und positiv, und auBerdem gilt p’ < p,; " < p;. Es gibt also einen
etnzigen schlingenlosen Graphen, und er ist zusammenhingend.

d) (2,4) p, = 2. Ist F, (II)> 0, so gibt es einen einzigen Graphen.
Dieser ist ein Zykel. Beriicksichtigt man noch d’, so kann man sagen:
Ist p,=2; F,(II) = 0 so st durch II ein einziger Graph bestimmt.

e) (2,3) p,=1; F,(lI) =0, dann ist K, mit E, durch p, Kanten
und mit jeder der Ecken E, ¢ > 3 durch eine Kante zu verbinden. Nun
sei F,(II)>0; F,(lI) >0, und s =m — 2. Die beiden Gleichungen
8 +8 =¢ und s —§”" = p, — p, haben die eindeutig bestimmten
/5! “‘52“‘3 _ D "“52“‘3 4 s<sund s = P2 —;91+8
Zudem ist, weil 2 (p, + s8) und p, + p, + s gerade sind, auch p, —
p, — 8 gerade, also s’ ganz; s” ganz. Es existiert also ein einziger Graph.

Losungen 0< &' =

4. Wir setzen nun F,(II)>0; F,(II)>0, p;>2,p;>1 m> 3 voraus
und wenden uns wieder allgemeinen Betrachtungen zu. Unser erster Schritt
in der Konstruktion eines zur Zahlenmenge /7 gehorigen zusammenhén-
genden schlingenlosen Graphen G besteht darin, dall wir mit /7 in be-
stimmter Weise eine Zahlenmenge /1’ verkniipfen, fiir welche F', (II') > 0
und F, (II') > gilt, wenn die entsprechenden Relationen fiir /7 erfillt
sind. IT' besteht aus lauter geraden Zahlen, und die Konstruktion eines
zugehorigen schlingenlosen und zusammenhingenden Graphen @' wird
sich miihelos mit Hilfe eines Zuges ergeben. Der Ubergang von G’ zu G
erfolgt dann riickwirts auf Grund des Verfahrens, durch welches II'
aus IT gewonnen wurde. Fiir die eben erwihnte Verkniipfung haben wir
verschiedene Fille zu unterscheiden.

A. Alle p, sind gerade. Dann ist II' = II.

B. Esgibt inIIr ungerade Zahlen > 1, g gerade und deren s, die gleich 1
. sind. Immer gilt r+4s = 2¢; |r —s| = 2u; t ganz, v ganz. Wir
vermindern zunichst alle ungeraden Zahlen aus /7 um 1 und er-
halten dadurch eine Zahlenmenge I7* mit n <X m Elementen. Nun sei
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(B) pf =Py = ... = pp > Py, - Ist fiir 17
(B}) 7 = s, so setzen wir I’ = IT*. Gilt dagegen

(BY) s> r, so vermindern wir sukzessive je eine der maximalen Zahlen
aus [7* um 2, und zwar wihlen wir bei jedem Schritt diejenige mit
dem grofiten Index. Im ganzen fithren wir » solche Schritte aus.
Die sich ergebende Zahlenmenge ist I1'. Gilt

(B,) pf — p = 2v> 0, so unterscheiden wir die folgenden Fiille:

(B;) v >t. Dann setzen wir p, = p, — 2¢t, wenn p, gerade ist bzw.
p; = p; — 2t + 1 fiir ungerades p, - p, bildet mit den iibrigen
Zahlen aus /7* zusammen /7.

Ist v< ¢, so hat man zwei Fille zu unterscheiden.

(B) 20+ 7 >s. Dann setzt man p; = p; — 2v und p; = p); i > 1.
Ist dagegen

(B)) 2v + r < s, dann vermindert man erst p,;” um 2v und geht hierauf
vor wie unter (B]), indem man L (s —r — 2v) =1 Schritte aus-
fiihrt.

Die Reduktion von II auf II' ist so eingerichtet, dafl ¥, (II)> 0 auf
F, (Il') > 0 fiihrt. Da ferner fiir eine Zahlenmenge Z, deren Elemente
alle groBer sind als 1, immer F, (Z)> 0 ist, hat man F, (II')> 0. Es
ist fiir das Folgende dariiber hinaus wichtig, daf durch die Reduktion
jedem p,> 1 ein p, > 1 zugeordnet wird. Gibt es niimlich in IT g gerade,
r ungerade Za,hlen > 1 und s Zahlen = 1, so kann man F, (I/)> 0 in

der Form 1 Z p; —q —r>s — 1 schreiben. Daraus folgt
%Z’ p; —q¢—r>=3%(s—r) und daraus weiter, daB es moglich ist,

gew1sse unter den p;f um insgesamt s — r zu verkleinern, jede um eine
gerade Zahl, so dafl keine einzige dieser Zahlen auf Null reduziert wird.

5. Zu IT' gehort ein Graph G, , bestehend aus den Ecken E,, welche

i . 5 ] .
je loi Schlingen tragen ¢ = 1,2, ... n. Wie man aus (, einen zusam-

2
menhingenden schlingenlosen Graphen gewinnen kann, geben wir jetztan.
Wir wihlen zu diesem Zweck auf jeder Schlinge einen inneren Punkt
und ziehen alle diese Punkte in einen einzigen A zusammen. Dadurch
erhalten wir einen Zug Z. Diesen denken wir uns zunéichst irgendwie von
A aus durchlaufen und die Ecken in der Reihenfolge, in welcher man sie
antrifft, aufgeschrieben. Man erhilt so eine Eckenfolge E; , E; ... E,

wn?

wobei alle Indizes Zahlen von 1 bis 7 sind. Kann man die Durchlaufung
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so durchfiihren, daf nie zwei aufeinanderfolgende Indizes gleich und der
erste vom letzten verschieden ist, so erhilt man aus Z dadurch einen
schlingenlosen zusammenhéngenden Graphen @', dal man jedes Weg-
stiick zwischen jeder Ecke und der nachfolgenden als einzige Kante
betrachtet und desgleichen die beiden Wegstiicke 4 E; und E;, 4 zu-
sammen.

Ehe wir zeigen, daBl es solche Durchlaufungen gibt, fithren wir zur
Abkiirzung der Schreibweise einige Bezeichnungen ein.

Statt von der Durchlaufung von Z sprechen wir von der Koppelung der
Ecken.

Wir nennen dabei die Anzahl der noch nicht durchlaufenen Schlingen
durch jede Ecke jedesmal, wenn wir uns wihrend der Durchlaufung in 4
befinden, die momentane Koppelungsvalenz der Ecke.

Hat ein Teil der Eckenfolge die Gestalt E,E.E.E, ... E,E,, so sa-
gen wir, die Koppelung sei dort alternierend beziiglich E,.

Hat dagegen ein Teil der Eckenfolge die Form E K, K, , .
nennen wir diesen Teil eine geordnete Koppelung.

.., 8O

6. Nach diesen Vorbereitungen sind wir imstande, die Koppelungen,
welche uns zum Ziele fithren, kurz zu beschreiben.

x) Py=pPy= ... =p,>p,., (moglicherweise existiert p,,, nicht).
Wir koppeln im ersten Schritt die Ecken E, bis £, geordnet. Es kann
sein, daf} damit die Koppelung bereits beendigt ist. Wenn nicht, so neh-
men wir als zweiten Schritt die geordnete Koppelung aller Ecken von
maximaler momentaner Koppelungsvalenz vor. Ist die Koppelung dann
noch nicht beendigt, so fihrt man in derselben Weise fort bis zum SchluB.

B) p! ist eigentlich maximal. Dann koppelt man zunichst alternierend
beziiglich ¥, indem man bei jedem Schritt auf £, diejenige Ecke maxi-
maler Koppelungsvalenz folgen 148t, welche den grofiten Index trigt.
Erreicht man dabei das Stadium, in dem die momentane Koppelungs-
valenz von X, nicht mehr eigentlich maximal ist, so fahrt man wie un-
ter «) mit geordneter Koppelung fort bis zum SchluB. Mindestens der
letzte Schritt mull wegen F, (II')> 0 von der letzten Art sein, und zwar
miissen dabei mindestens die Ecken FE,E,E, geordnet gekoppelt wer-
den.

Der gewonnene schlingenlose zusammenhingende Graph G’ enthilt
daher mindestens einen Zykel, und dieser ist mindestens dreigliedrig.

7. Der Ubergang von G zu einem Graphen @, welcher IT entspricht,
vollzieht sich nun auf folgende Weise:
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(B;) Man 1liBt von s unter den Ecken urspriinglich ungeraden Grades
p;> 1 je eine Endkante ausgehen. Die iibrigen faflt man zu Paaren zu-
sammen und verbindet jedes Paar durch eine Kante.

(By) Man fiigt in jeder Ecke p; — p; Endkanten an.

(B;) Man fiigt in der Ecke E, s Endkanten an und verbindet sie mit
allen anderen, deren Grad urspriinglich ungerade und grofler als 1 war.

(B;) Man kann moglichst viele Endkanten von E, ausgehen lassen,
alle, wenn s << 2v und p, gerade, bzw. s < 2v + 1 und p, ungerade ist.
Dann verkniipft man £, noch mit 20 — s bzw. 2v + 1 — s Ecken E*,
deren Grad p; = p;, — 1 > 2 ist, und verbindet die iibrigbleibenden E*
zu Paaren.

Ist s> 2v, so zieht man von F aus 2v bzw. 2v 4 1 Endkanten, dazu
8 — 2v bzw. s — 2v — 1 Endkanten von beliebigen unter den Ecken E* aus,
von jeder eine, und verkniipft schlieBlich wieder die restlichen £ * zu Paaren.

(B)') Man 148t von jeder Ecke p; — p; Endkanten ausgehen.

8. Zum Schluf} soll jetzt gezeigt werden, dal mit zwei Ausnahmen zu
jedem II, welches den Voraussetzungen F, (II) >0, F, (II)> 0, p, > 2,
ps =2, m>3 geniigt, mindestens zwei verschiedene Graphen existieren.

Um dies zu beweisen, gehen wir von dem Graphen G aus, dessen Exi-
stenz eben sichergestellt worden ist, und leiten aus ihm durch geeignete
Umformungen einen zweiten von ihm verschiedenen Graphen G, ab.

Bemerkung. Dabei ist uns insbesondere der Umstand niitzlich, daB in
G jede Ecke hoheren Grades mit F, in mindestens einem Zykel liegt, so
daB man eine von E, ausgehende Kante entfernen darf, ohne den Zu-
sammenhang zu zerstoren.

D. Jede Zahl p, in IT ist groBer als 1.

(D,) Falls F, (II)>1 ist, existiert in G mindestens ein Zykel C*.
E\E,... E,E, mit h>4. Wenn irgendeine Ecke E,; 1<i<h
bereits mit E, verkniipft ist, ersetzt man C* durch zwei Zykel C' und
C”, wobei C' E, und eine von E, verschiedene Ecke E, aus C* enthilt,
C” dagegen E, und alle Ecken aus C* auBler E, und E,. Die zusitzliche
Voraussetzung ist erfiillt, wenn p, > 3 ist. Fir p, = p, = 3 kann man
E, und %, als Paar wihlen, das in G durch eine Kante verkniipft ist,
also E, = K, setzen.

(D,) F,(II) = 1. In @ existiert ein Zykel C: E\E,E,E,. Ist p, #* p,,,
so kann man die Koppelung der Ecken so abéndern, dafl an Stelle von C
z. B. der Zykel C: E,E,E, E, tritt. In allen Féllen ist der neue Graph G,
von G verschieden.
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(£) (2, 5) Dagegen entspricht einem Il mit F, (II) = 1, p, = p,, genau
etn Graph. Das folgt unmittelbar aus unserer Konstruktion.

H p2p2...20>1L 0= ... =p,=1.

(H,) p, sei eigentlich maximal und alle Endkanten gehen von E, aus.
Wegen p, = 2 und F, (II) > 1 gibt es dann in ¢ mindestens einen Zykel
C: E\E, ... E;E, mit mindestens drei Ecken. Man entfernt aus C die
Kante E,E,, setzt in E, eine Endkante ein, entfernt eine solche, welche
von E, ausgeht, und verbindet £, mit ¥,.

(H]) p, ist eigentlich maximal, und es geht von einer anderen Ecke E,
(p;> 2) eine Endkante k¥ aus. Nun entfernt man ¥ und eine Kante
E.\E,, k # + verbindet dann E,; mit £, und setzt in £, eine Endkante
an. In beiden Féllen sind die neuen Graphen von den urspriinglichen ver-
schieden.

(Hy) p, = p,. Wenn von einer Ecke £, in G Endkanten ausgehen, so
ist ihre Anzahl gerade oder ungerade, je nachdem p, gerade oder ungerade
ist. Ferner existiert in @ mindestens ein Zykel, auf welchem alle Ecken
liegen, deren Grad hoher als 1 ist.

(H;) Falls in G mehr als eine Endkante existiert, konnen zwei Fille
eintreten.

1. Alle Endkanten gehen von einer einzigen Ecke E, aus. Dann sind
es deren zwei. Alle Ecken hoheren Grades liegen in mindestens einem
Zykel C. Man entfernt aus diesem eine Kante K. H,; 1 # k, e #~# k,
desgleichen eine Endkante aus K, setzt eine Endkante in E; an und
verbindet £, mit £, .

2. Es gehen von mindestens zwei Ecken £, und E, Endkanten aus,
von E, hochstens so viele wie von E,. Es gibt immer eine Kante K, E,;
I # k (vgl. Bem. zu H,). Diese Kante entfernt man, ebenso eine von

E, ausgehende Endkante, setzt eine Endkante in E; ein und verbindet
E, mit E,.

(H]) In G existiere eine einzige Endkante. Sie geht von einer Ecke un-
geraden Grades K, aus. Ist p,> p,,_,, so kann man durch ein vollig
gleichartiges Verfahren wie in den vorangehenden Féllen einen Graphen
G, konstruieren, in welchem die Endkante von einer Ecke X, ausgeht,
deren Grad p, # p, ist. Ist p; = p,,_, und m> 4, ersetzt man den
Zykel C, dem alle Ecken E,, ¢ #* m angehéren, wie in D, durch zwei
Zykel C' und C”, und man erhilt so einen Graphen @,, der von G verschie-
den ist. Dagegen gilt:

(g) Wenn p, = p;>1, p, =1, m = 4 gilt, so ist durch II eindeutig
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ein Graph bestimmt. Denn II' bestimmt nach S. 15 (2, 2) eindeutig einen
Graphen, und es ist bedeutungslos, von welcher Ecke die Endkante aus-
geht14).

Damit ist auch unsere letzte Behauptung bewiesen.

9. Wir haben schlieBlich noch zu zeigen, dafl jeder Menge I/ mit
F, (II) = 0 ein schlingenloser Graph entspricht. Das ist bereits bewiesen
fir F,(I{[)>0 und F,(lI)>0. Es bleibt noch der Beweis fiir
F,({I)> 0; F,(II) < 0 zu erbringen. In diesem Falle gehen wir von
I1 zu einer Menge IT* iiber, fiir welche F, (II*) = 0 gilt. Um diese Menge
zu erhalten, mufl man entweder eine geeignete gerade Anzahl von Einern
aus /T weglassen oder eine ungerade Anzahl von ihnen streichen und ein
p;>1 durch p} = p, — 1 ersetzen. Der Menge IT* entspricht minde-
stens ein Baum, also ein schlingenloser Graph. Umsomehr gehort auch
der Menge I7 mindestens ein schlingenloser Graph.

(Eingegangen den 9. Mai 1952.)

14) Die Falle g) und b), 8. 16, treten an die Stelle der Falle (2.6), (2.6') und (2.6") bei
Senior.
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