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On admissibility of sequences
and a theorem of Pélya

R. CrEIGHTON BUCK

1. Introduction. Le K be the space of entire functions which obey
the growth conditions f(z) = O(e4r), f(iy) = O(ec!?!) for some A < co
and ¢ <z . By a theorem of Carlson [7] any such function is completely
determined by its values at the positive integers. A sequence {a,} of
complex numbers is said to be admissible for the sequence of functionals
T, and the function space C if there exists f e C such that 7T, (f) = a,
for n =0,1,....[3] For the functionals 7,(f) = f(r) and C = K ,
admissibility is a delicate property ; if one term of an admissible sequence
is altered the result is inadmissible. More generally, if two sequences
agree except for a non-void set of indices of density zero, only one can
be admissible. A necessary and sufficient condition for admissibility in
this case has been given. [Buck 2, Theorem 2.3.] The present paper
deals with the closely related problem of admissibility for the functionals

TX(f) = 4f(0) and the class K . Since T = (— 1) Z( ) (— 1) T, and
T, = Z' (%) Ty, a sequence {a,} is admissible for {T,,} if and only if

the sequence b, = A"a, is admissibility {7's}. In replacing {7',} by
{T*} much is gained. Admissibility no longer depends as much on the
precise structure of a sequence but rather on matters of size and angular
distribution. For this reason, it is much easier to discuss many questions
relative to {7',} admissibility in terms of {7')} . This approach has been
used with success in the characterization problem for integral-valued
entire functions. [Buck, 5] In the present paper, we discuss several other
applications. In particular, Theorem 2 answers a number of questions
raised by the “even difference’” theorem of Agnew and Fuchs. The last
section, which is somewhat independent, contains a new and extremely
brief proof of the classical theorem of Polya on functions of zero type.

2. Admissibility {7*}. The first theorem gives a convenient necessary
and sufficient condition for the {7} admissibility of a sequence {b,} .
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Since the proof follows closely the pattern of that for the corresponding
theorem for {7',}, we omit most of the details. (See [2].)

Theorem 1. Given a complex sequence {b,}, let g(z) = 2'b,2", Then:
0

(i) {b,} is admissible {7} if and only if g is analytic at zero and
can be continued to the interval —1<<2<0.

(i) when {b,} is admissible, the interpolating function f for which
4"f(0) = b, is given by

fz) = (ML) — .ff*(:) b, (2.1)

where () =12(z—1)---(z—n -+ 1)/n! and ML denotes Mittag-
Leffler summability.

(iii) g(=) is entire if and only if f(2) is of zero type
(iv) if g(z) is a polynomial of degree N, so is f(z), and conversely.
. Proof. If feK then g(z) = 2 A"f(0)2" is given by

g(z) = _5:3_;@(10) [1 — (e¥ — 1)2]"tdw (2.2)

where @ (w) is the Borel transform of f and I" encloses the indicator set
D(f) of f-[4][2]. Let E be the image of the boundary of D(f) under
the map w— (e” — 1)~1. g(z) is then analytic at zero and may be
continued via (2.2) to the component of the complement of £ which
contains zero; this set in particular contains the interval [— 1,0]. If
f is of zero type, D(f) is the origin, and g is entire. Conversely, let
g(z) = 2'b, 2" be analytic on [— 1, 0] and consider the function f(2)
defined by

£0) = gor f 9O [0+ 1)/

where I' is now a path enclosing the interval [— 1,0]. Calculation
shows that f e K and that A4"f(0) = b,. Moreover, if g is entire, f is
of zero type. Statement (ii) follows from a known theorem concerning
the expansion of functions into Newton series [Buck 4, Theorem 4.3]
and implies (iv) immediately. As an illustration, all “small” sequences
are admissible {7’y }. [18, p. 52, Thm. 10].

Corollary 1. If lim sup | b, | <1, {b,} is admissible {T}.

Any theorem connecting the presence of singular points of a power
series with its coefficients may be used to yield characterization theorems
for sequences {b,} and in turn for {a,}. At this point we insert a

76



generalization of the familiar theorem concerning power series with posi-
tive coefficients. [15, p. 215].

Lemma. Let lim sup |c,|' =1/R. Let S,(2) = 2Xc,2* and
0

suppose that there is a sequence of points z; approaching a point
B = Re'® from outside the circle |z| = R such that for each j, S,(z,)
approaches the point at infinity in an angle of openig less than 7. Then,
B is a singular point for f(z) = X¢, 2" .

If f(z) is regular at g, it is regular in a circular neighborhood N of g8
and (ML) — lim 8, (z) = f(2) forallzin N . But, NV contains a point z,,
and since Mittag-Leffler summability is totally regular, (ML) — lim
Sn (25) = o0.

We note that Borel summability could have been used in place of
Mittag-Leffler, if N is slightly modified; also, the same method yields
an analogous result for Dirichlet series and for Laplace transforms. In
the classical case, ¢, = 0 so that lim S,(x) = + oo forall x> R.

Corollary 2. Let {c,} be a complex sequence with limsup |¢,|"=1,
and obeying the condition described in the lemma, with R = 1. Then,
the sequence b, = (—1)"c, is not admissible {7'}}.

Corollary 3. If lim sup |b,|'*=1 but (—1)"b,=0, {b,} is not
admissible {7)}.

For b, = A4"a,, the oscillation conditions (—1)"b,=0 and
(—1)"a, =0 are closely related; in fact, the latter implies the former.
In particular, we obtain again the following theorem for {7',} admis-
sibility [2, Theorem 4.1].

Corollary 4. If ay; % 0 and (— 1)"a, = 0, then there is no function
f €e K such that f(n) =a, for n=0,1,....

Similarly, Corollary 2 could be turned into a somewhat complicated
theorem concerned with admissibility {7',} . Some growth condition
in Corollary 2 is needed since b, = (— 1)" 2" is an oscillating sequence,
achieved by the function 2-%. The condition given says essentially that
infinitely many of the terms b, are “large”’, for example, bounded away
from zero.

3. Vanishing differences. Agnew [1] proved that if {a,} is a bounded
sequence such that 4"q, =0 for n=0,2,4,..., then a,=0 for
all n =0,1,.... Pollard [11] gave a different proof of this and assum-
ing that a, = 0(n”") proved that @, = f(n) where f(2) is a polynomial.
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Fuchs [6] approached the problem from a different direction and proved
the theorem with a weakened assumption on the set of » for which
4" ay = 0, which in fact was shown to be best possible. We consider
the effect of relaxing both this condition and the growth restriction on

{a,} . We use a simple relation connecting the functions g¢(z) = 2'b, 2*
0

and F(z) = 23.3 a, 2", namely
9(z) = (1 +2) 1 F(z/(1 +2)). (3.1)

This is easily established, assuming that F is analytic at the origin.
(See also [11].)

Theorem 2. Let lim sup |a,|™ <1 and let 4%a, =0 for n €4,
a set of integers of density d. If d > 1, then the serie X'(}) 4"aq,
0

converges for all z to a function f(z) of exponential type not exceeding
log (1 + 2cos md) such that f(n) =a, for n = 0,1,2,... . In partic-
ular, if d = 1, fis of type zero. The value %as a lower bound for d is
best possible.

Proof. F(t) = Z a,t" is regular for |t] < 1 so that by (3.1) ¢(z) =
Z 4" ay 2" | is regula.r in the half plane > — }. Let the radius of con-

Vergence of this series be R. By Poélya’s density theorem for power
series [12], every arc of |z| = R of opening 2x(1 — d) contains a
singularity of g(z) . Combining these, we see that if d > § then R>1,

and by Corollary 1, b, = A" a, is admissible {7')}; 1t then follows
that {a,} is admissible {7',} and is therefore the sequence {f(n)} for
a unique function feK. When d= 1. R is infinite, g(z) is entire
and by Theorem 1, f is of zero type. If 1<d<3, R=(2cosnd)?
and further calculation shows that the function @(w) of (2.2) is regular
at least for |w| > log(l + R-'). The type of f does not exceed this
value, and in particular is less than log 2, so that the Newton series (2.1)
is in fact convergent to f(z) [18, p. 52, Thm. 10]. That the number 1/3
cannot be improved follows from the fact that the sequence {b,} defined

by 2b,2" = (z — 1)/(z + 1) (* — 1) is not admissible {7')} so that
0

the corresponding sequence {a,} has vanishing differences of density 1,
obeys the growth condition @, = 0(1), but is not admissible {7',}.

The effect of the weakened growth condition lim sup |a,| " <1 is
striking; in contrast with the Agnew-Fuchs result, d may exceed 3 and
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may in fact be 1, without f(z) being a polynomial. Witness for example
fz) = 2 (%) (1/n!). In this connection, the following more detailed
0

information may be of interest. As we have seen, the region of regularity
of g(z) restricts the rate of growth of f(z), and when g¢g(z) is entire,
f(2) is of growth at most order 1, type 0. In this case, the rate of growth
of g might be expected to impose further restrictions.

Theorem 3. Let ¢(2) = 2’4" f(0) 2", where feK . If g is analytic

0
in |z|] <R and R>1, fis (at most) of order 1 type log(l + R);
if g is entire, and of infinite order, f is of order 1 type 0; if ¢ is of finite
oder g, f is of order /(1 + o).

Since the first two statements have already been discussed, we prove
only the last. From (3.1) F(z) = 2f(n)z" = (1 —2)"1g(z/(1 —2)). If
{=1/(1 —2z) this may be written as {g({ — 1) which is of order o
as a function of {. By a theorem of Whittaker and Wilson [17] f is of
order o/(1 + o).

For the specific example, f(z) = 2'(%) (1/n!) ¢ is of infinite order
and f of zero type. In contrast, X'(Z.,) (1/n2!) is of order 3 with d again 1.

4. The Theorem of P6lya. The theorem in question is the following [13]:

Theorem 4. Let f(z) be of order 1 type 0 and suppose that f(n) =
O(1) for n =0,1, —1,2, —2,.... Then, f is constant.

Many proofs of this have been given since it was first proposed. (See
Szego [14], Tschakaloff [16], Paley and Wiener [10, p. 81], Levinson
[9, p. 127], Korevaar [8]). The following proof is new and has the virtue
of extreme simplicity, involving no interpolation series or delicate growth
estimates. We make the initial observation, as in [8], than nothing is
lost by the assumption that 2’| f(n) | <oco. Since f is of zero type,
g(z) is entire and is given by (2. 2). Expanding the kernel [1 — (e¥ — 1)2]-1,
we have

0(6) = g | D) (L2 Z e [5/(1 + 2)]" dw

=<L+f»§meMI+ar

valid for |z]|< |1+ z|. (This is also another verification of (3.1).)
From our assumption on X'|f(n)|, ¢(2) is bounded in the half plane
x> — 4. Expanding the kernel in the opposite fashion,
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96) = g f P (= U) e +0% [+ Do) dw

I

(—1)2) .:i'ﬂ— n —1) [(1 + 2)fa]"

valid for |14 2| <|2z|. Again, g(2) is bounded in the half plane
x < — 4. Combining these, g and hence f is constant.
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